厂房设计论文十篇

时间:2023-04-06 16:38:37

厂房设计论文

厂房设计论文篇1

【提 要】 本文根据国家标准《建筑抗震设计规范》编制的原则,通过对单层砖柱厂房震害分析,提出相应的抗震设计方法。 【论文关键词】 砖柱厂房,地震震害,抗震设计 单层砖柱厂房具有选价低廉、构造简单、施工方便等优点,在中小型工业厂肩中得到广泛应用。砖柱厂房是以砖柱(墙)做为承重和抗侧力构件,由于材料的脆性性质,其抗震性能比钢筋混凝土柱厂房差;由于砖往厂房内部空旷、横墙问距大,地震时的抗倒塌能力不如砌体结构的民用建筑。因此根据砖柱厂房的震害特点,找出杭震的薄弱环节,提出相应的抗震措施,提高其抗震能力是必要的。 1.地震震害及其特点:·地震震害表明:6、7度区单层砖柱厂房破坏较轻,少数砖柱出现弯曲水平裂缝:8度区出现倒塌或局部倒塌,主体结构产生破坏;9度区厂房出现较为严重的破坏,倒塌率较大。 从震害特点看,砖柱是厂房的薄弱环节,外纵墙的砖柱在窗台高度或厂房底部产主水平裂缝,内纵墙的砖柱在底部产生水平裂缝,砖柱的破坏是厂肩倒塌的主要原因。山墙在地震时产生以水平裂缝为代表的平面外弯曲破坏,山墙外倾、檩条拔出,严重时山墙倒塌,端开间屋盖塌落。屋盖形式对厂房抗震性能有一定的影响,重屋盖厂房的震害普遍重子轻屋盖厂房,楞摊瓦和稀铺望板的瓦木屋盖,其纵向水平刚度和空间作用较差,地震时屋盖易产生倾斜。 2.适用范围及结构布置2.1单跨和等高多跨的单层砖柱厂房,当无吊车且跨度和柱顶标高均不大时,地震破坏较轻。不等高厂房由于高振型的影响,变截面柱的上柱震害严重又不易修复,容易造成屋架塌落。因此规定砖柱厂房的适用范围为单跨或等高多跨且无桥式吊车的中小型厂房,6-8度时厂房的跨度不大子15m且柱顶标高下大于6.6m,9度时跨度不大于12m且柱顶标高不大于 4.5m。 2.2厂房的平立面应简单规则。平面宜为矩形,当平面为L、T形时,厂房阴角部位易产生震害,特别是平面刚度不对称,将产生应力集中。对于立面复杂的厂房,当屋面高低错落时,由于振动的不协调而发主碰撞,震害更为严重。 2.3当厂房体型复杂或有贴建的房屋(或构筑物)时,应设置防震缝将厂房与附属建筑分割成各自独立、体型简单的抗震单元,以避免地震时产主破坏。针对中小型厂房的特点,钢筋混凝上无檀屋盖的砖柱厂房应设置防震缝,而轻型屋盖的砖柱厂房可不设防震缝。防震缝处宜设置双柱或双墙,以保证结构的整体稳定性和刚度,防震缝的宽度应根据地震时最大弹塑性变形计算确定。一般可采用50~70mm。 3.结构体系3.1地震时厂房破坏程度与屋盖类型有关,一般来说重型屋盖厂房震害重,轻型屋盖厂房震害轻,在高烈度区影响更为明显。因此要求6-8度时宜采用轻型屋盖,9度时应采用轻型屋盖。人之地震震害调查表明:6、7度时的单跨和等高多跨砖柱厂房基本完好或轻微破坏,8、9度时排架柱有一定的震害甚至倒塌。因此《建筑抗震设计规范》(G8Jll一89)规定:6、7度时可采用十字形截面的无筋砖柱,8度1、2类场地应采用组合砖柱,8度3、4类场地及9度时边柱宣采用组合砖柱,中柱直采用钢筋混凝土柱。经过地震震害分析发现:非抗震设计的单层砖柱厂房经过8度地震也有相当数量的厂房基本完好,所倒塌的厂肩大部份在设计和施工上也存在先天不足,因此正常设计正常施工和正常使用的无筋砖柱单层厂后,在8度区仍然具有一定的抗震能力。可见对8度区的单层砖柱厂房都配筋的要求是偏严的,在抗震规范的修订稿中将8度1、2类场地“应”采用组合砖往改为“宜”采用组合砖柱,允许设计人员根据不同情况对是否配筋有所选择。一般来说,当单层砖柱厂房符合砌体结构刚性方案条件,经抗震验算承载力满足要求时,可以采用无筋砖柱。3. 3对于单层砖柱厂房的纵向仍然要求具有足够的强度和刚度,单靠砖柱做为抗侧力构件是不够的,如果象钢筋混凝土柱厂房那样设置柱间支撑,会吸引相当大的地震剪力。使砖拄剪坏。为了增强厂房的纵

厂房设计论文篇2

地下厂房按2级建筑物设计,厂区地震基本烈度为6度,按规范规定,建筑物不进行地震设防。

1地下厂房位置选择

在选择地下厂房位置时,考虑了下面几个因素。

(1)厂房上游侧靠近水库处有F1断层,与厂房轴线基本平行。厂房应尽量远离F1,以确保厂房围岩稳定和减少渗水量。

(2)厂房靠山体侧的F3断层沿冲沟发育,F3影响范围内的不透水层埋藏很深,透水量较大。因此厂房应尽可能远离F3影响带。

(3)通过厂房的F7、F28、F29断层,与厂房轴线有较大的夹角,对厂房围岩稳定影响不大。而F12、F2断层与厂房轴线基本平行,F2断层靠河床侧正与厂房顶拱相切,对厂房围岩稳定不利,厂房应尽可能地避开。

综合以上因素,同时考虑主变室、尾水调压室及输水系统的布置,确定了主厂房位置。根据实际开挖揭露的地质情况来看,地下厂房位置选择是合理的。

2厂房纵轴线方向确定

2.1确定原则

(1)厂房纵轴线应尽可能垂直于岩体主要节理裂隙的走向或与其成较大的夹角,避免上下游边墙承受较大的侧向压力,以利于围岩稳定。

(2)轴线尽可能平行于初始地应力的最大主应力方向或与其成较小夹角。

2.2轴线方向确定

根据厂区节理玫瑰图及实测的三维地应力成果,在满足洞室稳定和输水发电系统总布置要求的前提下,厂房轴线方向确定为N40°E。理由如下。

(1)根据厂区节理玫瑰图分析,主要节理组方向为N15~30°W,次要节理组方向为N70~85°E。厂房纵轴线与主要节理组方向夹角为55~70°,与次要节理组方向夹角为30~45°。

(2)从实测的三维地应力成果看,最大主应力方向为N68.9°E,与厂房纵轴线方向夹角为28.9°,虽然夹角稍偏大,但其应力值为6.80MPa,属中低应力区,对厂房纵轴线方向选择影响不大。

3地下洞室群布置

除了开关站出线场和控制楼布置于地面外,主厂房、主变室、尾水调压室及其他洞室均布置于地下,形成了一个错综复杂的地下洞室群。

厂区枢纽布置采用主厂房、主变室、尾水调压室三大洞室平行布置的形式,因此,三大洞室的纵轴线方向与主要节理的夹角方向均较大,对顶拱和边墙稳定有利。主厂房与主变室间净距22m(1倍大洞室跨度),主变室与尾水调压室间净距19.6m。主变室靠近主厂房布置,母线长度较短,可降低造价,提高运行的可靠性。

主厂房与主变室间布置有4条母线洞,每台机组母线通过各自的母线洞至主变室。主变室中布置有电缆电梯竖井,与高程180m的地面开关站和控制楼相连接,由于主变室与主厂房安装场高程相同,故布置了一条进厂交通洞,担负主厂房和主变室的交通运输。在主厂房和主变室四周设上下两层排水廊道,排水廊道内设D76@3m排水孔形成排水帷幕,组成厂区排水系统,以减少主厂房和主变室的渗水量。

地下厂房安全通道除靠山体侧的进厂交通洞和电缆电梯竖井直接与地面相通外,靠河床侧还利用下层排水廊道经过2号排风竖井和调压室运输洞与左岸厂坝公路相接。

4厂房内部布置

主厂房洞室开挖尺寸为129.50m×21.90m×52.08m(长×宽×高),布置有4台单机容量150MW的竖轴水轮发电机组,机组间距21m。水轮机安装高程为65.60m。廊道层、水轮机层、发电机层及厂房洞顶高程分别为59.00、69.80、76.60、100.58m,尾水管底板高程50.00m。廊道层布置有盘形阀、滤水设备等;水轮机层上游侧布置调速器、油压装置等水力机械设备及管路,下游侧布置母线出线、电缆等电器设备。发电机层下游侧布置有励磁盘、机旁盘等设备。每一个机组段设楼梯一部,作为连接发电机层和廊道层的垂直交通道。安装场布置在靠山体一侧,长39m,按1台机组大修时主要部件堆放的实际需要,同时考虑施工期的安装及卸车等要求确定。检修集水井和渗漏集水井布置于主厂房靠河床侧,为避免机组检修时下游水位倒灌,检修集水井顶部高程为76.60m,与发电机层高程相同。由于山体内渗透水量难以准确计算,为保证厂房安全运行,厂房内渗漏集水井仅考虑厂房围岩及机组渗漏水量;排水廊道内的山体渗水量流入排水廊道单独设置的集水井内。在主厂房两端各布置1个空调机室。

主厂房吊车梁采用岩壁吊车梁,省去了钢筋混凝土吊车柱,缩小了厂房跨度,同时厂房桥机可以提前安装运行,方便施工。主厂房顶部采用轻钢屋架,上设轻质防水屋面,下设轻质吊顶,中间布置通风管道等。

为了改善地下厂房的运行条件,副厂房采用分散布置方式,将中控室和电气辅助生产用房及办公用房布置于主变室顶部高程180m的地面控制楼内,其余房间分别布置于主厂房和主变室内。

主变室开挖尺寸为97.35m×16.00m×14.80m(长×宽×高),内设两台220kV三相360MV·A双卷主变压器,底高程76.60m,与发电机层相同,主变压器可经进厂交通洞入安装场进行检修。主变室下部为高压电缆道和事故油池。主变室靠近进厂交通洞布置,电缆电梯竖井通向高程180m地面开关站和控制楼。在主变室两端各布置1个空调机室。

母线洞与主厂房纵轴线相垂直,开挖断面为8.00m×8.40m(宽×高),底板高程69.80m,与主厂房水轮机层高程相同。母线洞内布置有电压互感器柜、发电机断路器、励磁变压器、电气制动柜等设备。地下厂房横剖面见图1。

5地下厂房支护设计

5.1支护设计原则

(1)根据厂房部位的地质条件,主厂房、主变室、母线洞、尾水调压室和进厂交通洞等均采用喷锚支护作为永久支护形式,对尾水管、输水隧洞及局部洞室交岔口采用钢筋混凝土衬砌作为永久支护。

(2)喷锚支护设计按招标设计阶段地勘报告提供的岩体参数进行,即按维持Ⅱ类围岩稳定所需的支护强度设计。

(3)喷锚支护设计按照新奥法原理,采用“设计施工监测修正设计”的方法,在施工中加强监测和观察,根据实际情况随时调整支护参数。

5.2系统喷锚支护设计

初期喷锚支护参数的选择主要采用围岩分类法、工程类比法、理论验算法,并辅以有限单元法计算成果进行验证。

围岩分类法采用N·Barton,Q系统分类法、Bieniawski地质力学分类法(RMR)、《GBJ86-85锚杆喷射混凝土支护技术规范》和《SD335-89水电站厂房设计规范》等;工程类比法采用国内外已建地下厂房的实例进行类比;理论验算法采用喷、锚、网联合支护的设计方法验算支护效果;有限单元法采用平面有限元和三维有限元法对地下洞室群的围岩稳定性、初选支护参数的合理性、地质参数的敏感性等进行分析、论证,选择了较为合理的支护参数。

6主厂房结构设计

主厂房主要结构有尾水管、蜗壳、机墩、风罩、发电机层楼板和岩壁吊车梁等。

6.1尾水管

尾水管为单孔钢筋混凝土结构,出口为8m×8m的方形断面,轴线与机组纵轴线垂直。尾水管结构由锥管段、弯管段和扩散段三部分组成。由于锥管段和弯管上段四周为大体积混凝土,并设有钢衬,所以设计中只对弯管下段和扩散段进行了结构计算,锥管段及弯管上段参照已建电站经验配置构造钢筋。

弯管下段结构计算中,在垂直水流方向切取一代表性剖面,按弹性地基上的箱形结构进行内力计算,由于尾水管杆件截面尺寸较大,跨高比小,故计算中考虑剪切变形和刚性节点影响。扩散段结构计算中,在垂直水流方向切取两个代表性剖面,按钢筋混凝土衬砌结构采用边值法进行结构分析、配筋,按有限元法进行校核。

6.2蜗壳

蜗壳采用金属蜗壳,进口直径为5.40m,顶板最小厚度1.50m。蜗壳上半部与钢筋混凝土之间铺设弹性垫层隔开,使蜗壳混凝土不承受内水压力作用。弹性垫层材料采用聚苯乙烯泡沫板,厚度为3cm。蜗壳钢筋混凝土结构为一空间整体结构,计算中简化为平面问题考虑,即沿蜗壳中心线0°、90°、180°径向切取3个计算断面,形成一变截面Γ形框架,不考虑各Γ形框架之间的约束作用。采用结构力学和平面有限元方法进行内力分析。考虑到弹性垫层材料具有一定的弹模,正常运行时蜗壳内水压力有可能部分传至混凝土结构,为安全计,结构计算中对上述情况进行了校核。

6.3机墩、风罩

机墩是水轮发电机组的支承结构,承受着巨大的动荷载和静荷载。本电站机墩形式为圆筒式,内径5.93m,下部最大壁厚4.035m,高3.145m,它具有刚度大、抗扭和抗振性能好的特点。机墩结构计算包括动力计算和静力计算两部分。动力计算中忽略机墩自重,用一个作用于圆筒顶的集中质量代替原有圆筒的质量,使在此集中质量作用下的单自由度体系的振动频率与原来的多自由度体系的最小频率接近;机墩的振动作为单自由度体系计算,在计算动力系数及自振频率中不计阻尼影响;机墩的振动为弹性限幅内的微幅振动,力和变位之间的关系服从虎克定律;结构振动时的弹性曲线与在静质量荷载作用下的弹性曲线形式相似,从而可用“动静法”进行动力计算。在静力计算中假定荷载沿圆周均匀分布,正应力取单宽直条按矩形截面偏心受压构件计算;扭矩产生的剪应力假定按两端自由的圆筒受扭公式计算;有人孔部位的扭矩剪应力假定按开口圆筒受扭公式计算;孔边应力集中(正应力)按圆筒展开后的无限大平板开孔公式计算。计算结果除进人孔部位因主拉应力超过混凝土允许拉应力需按计算配筋外,其余部位按构造配筋。

发电机风罩为一钢筋混凝土薄壁圆筒结构,内径13m,壁厚0.50m,高3.655m,其底部固结于机墩上,顶部与发电机层楼板整体连接。风罩内力按薄壁圆筒公式进行计算,计算时考虑温度应力的影响,外壁温度取20℃(冬天)、30℃(夏天);内壁温度取40℃;混凝土浇筑温度根据当地的气温资料取12℃。计算结果表明,混凝土浇筑温度对风罩内力影响很大,因此在施工中要求严格控制混凝土的浇筑温度。

6.4楼板

发电机层楼板采用薄板、次梁、主梁和柱组成的常规板、梁、柱结构系统。设计活荷载发电机层为50kN/m2,安装场为160kN/m2。

6.5岩壁吊车梁

岩壁吊车梁是通过长锚杆将钢筋混凝土吊车梁固定在岩壁上的结构,吊车的全部荷载通过锚杆和钢筋混凝土吊车梁与岩石接触面上的摩擦力传到岩体上。岩壁吊车梁计算取纵向单米宽度,按刚体极限平衡计算,不考虑吊车梁纵向的影响。桥机设计最大轮压450kN,计算中对岩壁吊车梁的断面尺寸、岩壁壁座角和上排锚杆倾角进行了多种组合,最终确定的岩壁吊车梁岩壁壁座角α=20°,上排受拉锚杆(A、B锚杆)倾角分别为βA=25°、βB=20°,锚杆直径和间距均为φ36@0.75m,锚杆计算安全系数K=2.24(设计),K′=2.11(校核)。

受拉锚杆锚入岩石的深度,一方面是为了吊车梁受力的需要,另一方面是加强岩壁支护和控制围岩变形,根据挪威专家推荐的经验公式L=0.15H+2(H为厂房边墙高度m)进行计算,受拉锚杆锚入岩石的深度为8m。受压锚杆主要起加固围岩和保证吊车梁混凝土与岩壁良好粘结的作用,其直径、间距及锚入岩石的深度,参照已建工程的经验选用φ32@0.75m,L=6m。设计中要求锚杆靠岩壁表面2m范围涂上沥青,将拉力传至岩体深部以减小锚杆的初始应力(但由于种种原因施工中未被采用)。

厂房设计论文篇3

【关键词】高层钢结构 工业厂房 厂房设计 钢结构设计 高层结构设计 框架

中图分类号:TU391 文献标识码:A 文章编号:

一.引言。

高层钢结构,一般是指层数为6层以上或者是高度为30米以上的,主要采用型钢、钢板连接或者是采用焊接成为构件,在经过焊接连接而成的结构体系。高层钢结构通常分为钢框架结构和钢框架—混凝土核心筒结构形式。钢结构框架是采用钢材制作为主的建筑结构,也是最主要的建筑结构类型之一,由于钢结构刚度大、强度高、自重轻等优点,被广泛应用于超重型、超高、大跨度的建筑物结构设计中。钢框架-混凝土核心筒结构一般用于现代高层或是超高层钢结构建筑中,其实质是钢—混凝土混合结构,应用较为广泛。

二.工业厂房高层钢结构方案选择。

 1.工程概况。

国内某铜冶炼厂需要从国外引进3台奥斯麦特炉,其中有沉降炉、熔炼炉、吹炼炉各有一台,需要将设备集中放置于熔炼炉的主厂房内。熔炼炉主厂房车间平面为矩形厂房,长度为36米,宽度为25米,主跨度为21米,副跨度为4米,其檐口标高为47.2米,总建筑面积为5000平方米。主跨内设置有50T和10T重量级的桥式起重机各一台,其轨顶标高为41.77米,在屋面梁下悬挂有供炉子提升氧枪所用的2台10T电动葫芦,该厂房楼面的大部分活载为30kN/㎡。

工程工艺较为新颖,要求较为严格,施工流程较为复杂,同时室内具有高温热源,受到二氧化硫等气体的腐蚀影响,楼层间的高低差距较大,工程位于7度地震区,厂房业主要求工期较为紧迫。

2.方案选择。

由于该工程的特殊性,同时考虑工艺流程配置的特殊要求,综合考虑其他因素,确定采用钢框架结构较为适宜。考虑到厂房形式为自下而上的敞开大空间,没有完整的楼层,其结构空间刚度较弱,在厂房四周设置垂直的支撑,设计时室内柱间无障碍物,便于设备管线的布置。采用钢框架结构的结构体系,具有较为稳定的抗侧刚度,其稳定性取决于柱和梁的连接接点刚度及其延性。

3.结构类型选择参考。

钢结构工业厂房设计中,通常采用的建筑结构形式有三种:

(1)第一种为框架和支撑体系,设计时将横向设计为刚接框架,钢架梁和柱子也为刚接;纵向设计成为柱-支撑体系,框架梁和柱子为铰接,各柱间的支撑抵抗水平的荷载。此种结构比较适合横向较短,纵向较长的工业厂房,结构较为经济,比较节省钢材,其缺点为各柱间的支撑可能会影响到上部钢结构的使用。

(2)纯框架结构体系。此种结构为将纵向和横向两个方向上都设计为刚接框架,不在各柱间设置支撑。纯框架结构体系的使用空间不容易受到影响,在设计时不适合采用工字型截面柱,一般适宜采用口形或圆形等两个方向上惯性矩差别不大的截面形式,采用此结构需要较多的钢材用量,施工制作相对较为困难。

(3)钢架+支撑混合体系。钢架和支撑混合体系综合了框架和支撑体系、纯框架结构体系两种结构体系的优点,结构设计时将纵向设计为钢架和支撑混合的结构形式,在厂房的外侧设置柱间支撑,依靠二者的共同作用来抵抗水平力。钢架和支撑混合体系将少了柱子的纵向弯矩,柱间的支撑抵抗水平力效果较好,设计可以采用工字型的截面柱,此种结构需要较大的楼层刚度,适合采用钢筋混凝土楼面来保证整体的空间刚度,其截面宽度较大。

结合工程要求和钢结构各结构体系的优缺点,本方案选择钢架和支撑混合体系。

三.高层钢结构工业厂房设计。

1.高层钢结构工业厂房刚度保证。

工业厂房中的钢结构体系具有较好的延性,非常利于建筑的抗震设计。钢结构体系要满足建筑结构使用要求,就必须保证结构中的钢材具有足够的刚度。因此,在高层钢结构工业厂房的设计中,要从结构计算和结构构造两个方面来保证建筑厂房的刚度要求。

(1)结构计算。

本工程内厂房没有较为完整的楼层,其建筑空间工作性能较差,在进行厂房设计时,要根据平面框架体系来进行计算,其结构的侧向变形要严格控制。

在厂房外部风荷载作用下,其顶点的侧移要低于建筑物高度的1/500,各层间的位移要低于建筑楼层的1/400;考虑吊车的水平横向上的刹车力作用,要将厂房柱在吊车梁的顶面处横向变为控制在小于Ht/2000。考虑厂房位于7度地震区内,在地震的水平力作用影响下,建筑结构在弹性阶段的层间位移不能高于结构层高的1/250。根据设备提供方的所标明的设备安装工艺要求,在标高21.2米处,受到风荷载作用影响时,最大的水平位移要控制在35mm以内。

(2)结构构造。

高层钢结构厂房设计的结构构造是要通过加强构造措施,来保证结构关键和薄弱部位,来提升结构设计。结合本工程的实际情况,要从多方面来考虑。

结构设计中,在不影响生产操作的大前提条件下,在厂房的四周上要设置水平和垂直的支撑,来加强支撑体系。在本方案中,厂房高度为47米,楼层层数为9层,各层高平均为5.2米,层高是普通民用建筑的2倍之多,楼层中最矮的层高为3米,楼层最高的层高为7米。在整个楼层建筑中,基本上没有一个是较为完整的楼层,部分楼层还是钢格板,其建筑空间的工作性能较差。为了保证结构安装时的稳定性和加强厂房的刚度,在厂房的部分要增设柱间支撑,在每隔一层楼板的位置,沿着厂房的外侧来设置宽度大于3米的水平支撑。

厂房设计时,要考虑框架梁的侧向支撑。考虑抗震设计要求,在框架的各节点中,距离柱轴线的1/10梁跨处,为防止框架梁在弹塑性的状态下的侧向屈曲,有可能出现塑性铰的位置上要设置侧向的支撑构件。结合本方案情况,在设计时需要考虑一下两种情况:第一,当梁上翼缘和楼板相连在一起时,可只设置下翼缘受压区的侧向支撑;第二,独立框架梁在上下翼缘都设置有支撑时,其基本方式是要在互相垂直的两根梁的中间部位设置偶撑。

结构设计中,要在框架的纵横两个方向上都要采用刚性节点的方式,各柱脚位置要采用外包式的刚性柱柱脚。

2.钢结构厂房在设计时需要考虑的因素。

钢结构的发展是随着我国建材市场的发展而得到广泛应用,现代的工程通常都采用了钢结构的厂房,其由于抗震性能好、自重较轻、施工速度较快等诸多优点,被广泛应用到建筑工程中。本工程案例就是钢结构应用的典型。作为建筑结构类型之一的钢结构,在进行高层厂房设计时,需要考虑多方面因素。

(1)钢结构工业厂房的图纸设计的重要性。

工业建筑工程的图纸是工程施工的重要依据,在高层钢结构工业厂房的设计期间,要组织专业的技术人员对设计图纸进行严格审核,要检查施工图纸中是否存在“漏、错、缺”等问题,要力争将问题在施工之前进行解决,要尽量减少因施工图纸对工程施工进度和施工质量产生影响。高层钢结构工业厂房在工程设计中要针对制作阶段和工程安装阶段分别编制对应的施工组织设计,在结构中的制作工艺要包括制作阶段工序、分项的技术要求和质量标准,要为提高建筑结构的产品质量制定各类具体措施。

(2)高层钢结构工业厂房的支撑系统设计原则。

高层钢结构工业厂房具有特殊的结构形式,为了保证厂房空间工作性能,要提高建筑结构的整体刚度,要能承受和传递纵向方面的水平力,最大程度的防治杆件产生过大变形,要避免压杆出现失稳,以此来保证结构的整体稳定。设计中要根据厂房的结构形式,设置车间吊车、振动设备、厂房跨度以及厂房的高度、温度区段的长度等等基本情况来设置稳定可靠的支撑系统。在厂房结构中,对每一温度区段要设置较为稳定的柱间支撑系统,要同屋盖的横向水平支撑保持相互协调的布置。作为决定厂房在纵向结构变形方向上的重要因素,要控制下柱的支撑位置,并减少下柱支撑位置对温度应力的影响,要考虑吊车梁等纵向构件会由于温度的变化而在自由区段向两端伸缩。在温度区段的长度较小时,通常情况下要在温度区段的中间位置设置一道下端柱支撑,当温度区段的程度超过150米时,要在温度区段内设置两道下段柱支撑,以此来保证和提升厂房的纵向刚度,下段柱的布置位置要尽可能布置在温度区段中间的1/3位置范围内,同时,为了考虑避免出现过大的温度应力,在两道支撑的中心距离要控制在72米以内。

(3)高层钢结构工业厂房抗震设计要点。

在进行高层钢结构工业厂房设计时,要考虑厂房的抗震性能。在厂房的总体布置要求上,要将厂房结构刚度和质量进行均匀分布,保证厂房的均匀受力,通过协调变形,来尽量避免厂房因结构的刚度不均匀造成厂房抗震影响。钢结构厂房的横向结构采用钢架或屋架和柱的框架连接,要保证钢结构的受力性能,避免减少横向结构的变形。通常情况下,钢结构的厂房破坏主要是由于杆件的强度不足高层杆件失稳而造成的,所以要通过合理布置支撑系统,来提升厂房结构的整体稳定性能。同时,要考虑在地震的作用下,存在低周疲劳作用影响,在设计时 要考虑其对高层钢结构工业厂房的影响。钢结构的连接点设计时,要保证节点的破坏不能先于结构构件的截面屈服,要在结构构件能够进入塑性工作时,能够充分吸收地震的能量,能充分发挥结构的抗震能力。

(4)高层钢结构工业厂房的耐热能力设计。

钢结构的工业厂房本身具有较差的防火能力,在钢材受热温度超过100℃以上时,随着温度升高,钢材的抗拉强度逐渐降低,同时其塑性增大;在受热温度超过250℃时,钢材的抗拉强度增大,但是塑性却降低,容易出现蓝脆现象;在钢结构的表面温度基本上出于150℃时,要必须做好隔热和防火设计,一般都通过涂刷耐热涂料来处理,同时也可以在钢结构构件外包耐火砖、硬质防火板材、混凝土等来进行隔离处理。

(5)高层钢结构工业厂房的防锈蚀设计。

由于工业钢结构厂房外部无其他保护措施,都是直接暴露在空气中,因而容易受到空气中的侵蚀介质和在刚结构构件受到外部潮湿环境,产生结构锈蚀或构件损坏等问题。钢结构的锈蚀造成构件截面厚度变薄,同时会在构件饿表层形成局部的锈坑,当修饰时间较长时,锈坑的长期锈蚀,会形成空洞,在结构构件受力较为集中时,会造成结构的过早破坏。因此,在进行高层钢结构工业厂房设计时,钢结构构件的防锈蚀要引起足够的重视。在进行设计时,要考虑厂房的侵蚀介质情况和环境条件,设计中要在厂房布置、结构内部、工艺布置、结构选型、材料选择上来设置相对应的对策和相关措施,以此来保证钢结构厂房的安全。通常情况下,钢结构的防锈蚀一般多采用涂刷防锈漆到构件表面,来提升构件防锈蚀的能力,涂刷的层数和涂刷厚度根据涂层性质和构件使用环境来进行确定。室内钢结构在自然大气介质作用下,钢构件的涂层厚度约为100μm左右,通常涂刷形式为底漆两遍、面漆两遍的形式。对露天的钢结构长期暴露在工业大气的侵蚀下,要求的涂刷总厚度为150μm至200μm以上。在钢柱的柱脚部位,地面以下部分涂刷强度和等级要超过C20混凝土的包裹,涂刷的保护层厚度要超过50mm。高层钢结构工业厂房中,有侵蚀介质的厂房中的受力构件,设计时的型钢厚度不得少于8mm,其受力焊接的厚度不能低于8mm。

(6)刚性节点设计控制因素。

高层钢结构工业厂房在进行刚性节点设计时,其节点的构造要尽量保持和设计的假定相符,在受力后的节点产生转动时,要同节点连接各杆件的夹角要保持不变,虽然这是一种较为理想的假定,但由于节点部位并不是绝对的刚度,会存在一定的剪切变形,为了能够减少刚性节点的剪切变形作用,在进行厂房设计时,要采取构造措施,来增加劲板来加强节点区的刚度。各节点的杆件之间要能保证具有相互传递剪力和弯矩的能力,要尽可能采用直接传力的方式来进行传递。同时,要尽可能设计较为简单的构造,达到节省材料的目的。虽然,节省材料、构造简单和传力安全可靠有所矛盾,但是要根据负荷大小和节点的重要性,来综合考虑。根据节点的具体情况来选择合理的节点形式。为了提高节点的运输能力和安全能力,要在安装时便于固定和调整,在进行设计时,要在节点部分杆件主材连接外,要适当增加连接件,同时要注意,连接件越多时,在制作过程中需要切割下料和拼接焊接时的工作量会有所增加,这点在进行设计时要引起注意。

四.结束语

高层钢结构工业厂房是常见的厂房结构形式,其具有空间工作性能好,其具有的高空间能力、较高抗震水平,被广泛应用于现代工业建设中。在进行设计时,要综合考虑多方面因素,来提升钢结构的整体性能,保障建筑结构安全。

参考文献:

[1] 杨萍 高层钢结构工业厂房设计 [期刊论文] 《沈阳大学学报》 -2004年4期

[2] 魏利金 高层钢结构在工业厂房中的应用 [期刊论文] 《钢结构》 -2000年3期

[3] 何乃文 陈四川 高层钢结构工业厂房制造安装施工技术 [会议论文] 2004 - 第18届全国高层建筑结构学术交流会

[4] 江利 浅议多高层钢结构厂房的结构设计 [期刊论文] 《中华民居》 -2012年19期

[5] 赵正旭 辽镁海城高纯镁砂工程高层钢结构厂房建筑设计 [会议论文] 1987 - 中国金属学会冶金建筑及建筑物理专业学术会议

厂房设计论文篇4

关键词:工业厂房;方向;设计;趋势

长期以来,工业厂房设计被广大建筑师忽略,导致了不少缺乏系统考虑的工业厂房对城市、社会环境带来破坏。随着人类社会步入信息化时代,工业厂房也发生了巨大的变革。研究现代工业厂房的发展趋势,是一个十分重要而且不可回避的问题。工业厂房是为生产产品提供工作空间场所的建筑物,是为满足生产活动需要的建筑类型,所以工业厂房的设计本质是在创造一个生产和生存空间。我们应当从工业厂房的生产空间及生存空间的发展中寻找规律,把握工业厂房的时代脉搏。

一、工业厂房发展方向

1.随着我国经济的高速发展,城市化进程不断加速和产业结构、社会生活方式的变化,工业生产正以劳动力密集型向技术密集型转化。这对工业厂房设计迎来了新的发展时期。一个个造型活泼生动的、洁净优美的现代化工厂在祖国的工地上展现出来。业主为创造自己的品牌、树立企业的形象、加大对生产空间及生存空问的人性化投入,在工业厂房设计中更加考虑了人的需求,这不仅体现在人们对生活物质的需求,更体现在人们的精神世界对美的渴望、对理想的追求、对事业的进取,这些都是可以通过工业厂房体现出来的。

2.随着社会的发展和科技的进步,工业厂房设计从以往的以生产设备为中心朝着以人为本的方向发展,人的因素在建筑中越来越重要,工业厂房的人性化设计要求建筑师摒弃只重生产工艺的需求,轻人得行为和心理需求的倾向,注重人对空间环境的体验和感受,创造方便、安全、健康和舒适的工作空间,使工业厂房空间环境与人相融合,创造让人产生归属感和亲切感的良好生活环境,最终达到提高员工的生活质量及工作效率的目的。

(1)自然环境的引入与渗透。

在工业厂房的内部空间环境中,应重视开放空间的创建,使内部空间与自然环境相互交流和渗透。通过设置一些自然景点,观景窗、观景台、内庭园以及落地窗等措施加强人与自然的联系。此外,引进自然改善内部生产环境还可以借鉴我国传统园林的一些设计手法如;渗透、借景、对景等。

(2)工业厂房外部空间的和谐统一。

在工业厂房的外部空间环境设计中,应结合环境要素和内在的生产工艺,综合考虑建筑空间布置、群体组合、突出项目自身的功能空间及环境要素特质,以统一的空间建构、色彩构成等处理手法来强化其自身风格的整体性,增强工业厂房外部空间环境的可识别性和亲和力。

3.工业厂房是为生产产品提供工作空间场所的建筑物。设计人员在设计工业厂房时应该根据实际任务书和工艺设计人员提供的生产工艺资料,提炼出建筑专业的设计信息:平面形状、柱网尺寸、剖面形式、建筑体型,选择合理的结构方案和围护结构的类型,以及细部构造设计,协调建筑结构、给排水、电气、暖通等工种,认真贯彻“坚固适用,经济合理,技术先进”的设计原则。在设计中应能满足以下基本要求;(1)满足生产工艺的要求;(2)满足建筑的技术要求,(3)满足建筑经济要求,尽可能考虑缩小建筑体积,充分利用建筑空间,合理减少结构面积,提高使用面积;(4)满足卫生及安全要求,保证厂房内工作面上的照度以及条件相适应的通风措施。

二、工业厂房外观的设计

工业厂房形象效果直接影响到厂区整体艺术质量,现在工业厂房的发展已不再是过去人们印象中的纯生产容器,只有机械、简单朴实的想象,而是把建筑艺术中的风格、意义、内涵、形式融进设计中。

工业厂房遵循“形式服从功能”的建筑原则,建筑形体简洁、明快,运用美学观点处理好工业厂房的大尺度、大比例、大色块、大空间的相互关系,通过建筑造型表现建筑的特性。

(1)入口和门的处理:主入口部分进行适当的变化处理,可突出入口位置而增强指示性,改善墙面虚实关系,并可丰富立面效果。

(2)窗的组合:合理的进行窗组合可有效的协调墙面的虚实关系,同时可增加厂房立面的建筑艺术效果。

(3)墙面的划分:利用建筑构件、线脚、抹灰等手法,将墙面采用水平或垂直或混合进行划分,以达到简洁舒展、挺拔雄伟、和谐等艺术效果。

(4)工业厂房的色彩处理应强调其整体性,在统一种中求变化,产生均衡、适度、和谐的韵律感、序列感和统一感。

工业厂房外观的艺术处理如果得当,它不仅使整个厂区的色彩、造型都赏心悦目,人在其中工作心旷神怡,而且有特色的厂区、厂房造型、色彩等,也会给人留下深刻的印象,对提升企业的形象与品牌知名度大有好处。

三、现代工业厂房的趋势

(1)工业厂房高科技趋势主要体现在新技术、新材料、新理论的应用,材料工业的发展和压型钢板生产工艺和能力的提高,也使工业厂房向轻质高强、结构体系大跨度、大空间、多层甚至高层、多功能方向发展;技术及设备上的发展也更好的满足了生产与管理的微型化、自动化、洁净化、精密化、环境无污染化等要求;而计算机技术、多媒体、现代通信、环境监控等技术与工业厂房艺术融合在一起,就使工业厂房出现了智能化的特点,人们就能获得提高工作质量的环境。

(2)工业厂房设计的人性化趋势,人性化设计的本质是将人类工程学引入现代工业厂房中去,人性化设计必将要求建筑师将建筑设计的中心从以往的生产设备转移到以人为本的理念上来,在建筑的内部及外部空间的设计中,创造让人产生归属感和亲切感的良好环境,最终达到提高员工的生活质量及工作效率的目的。

(3)节约能源和保护环境,注重可持续发展。

①节能设计:节能是可持续发展工业厂房的一个最普遍、最明显的特征。它包括两个方面,一是建筑营运的低能耗,二是建造工业厂房过程本身的低能耗。这两点可以从一些工业厂房利用太阳能、自然通风、天然采光及新产品的运用中体现出来。

②绿色设计:指从建筑的原材料、工艺手段、工业产品、设备到能源的利用,从工业的营运到废物的二次利用等所有环节都不对环境构成威胁,绿色设计应摒弃盲目追求高科技的做法,强调高科技与适宜技术并举。

③洁净设计:洁净设计是强调在生产和使用工程中做到尽量坚守啊废弃物的排放并设置废弃物的处理和回收利用系统,以实现无污染。这是工业厂房科持续发展的重要措施,强调对建设用地、建筑材料、采暖空间的资源再生利用,因此有效的利用资源、能源,实现技术的有效性和生态的可持续发展,建造负责人的,具有生态环境一时的工业厂房常成为必然。

四、结束语

随着时代的发展和科技的进步。人们的要求也不断发展,对工艺建筑设计也提出了更高的要求。现代建筑设计应当是注入了认人的思想和理念的过程,工业厂房业不单单是工业厂房,那么简单,它已经融入了人们的生活。建筑师只有将上述发展趋势融入到自己的设计中现代工业厂房的艺术美,这是现代工业厂房的必由之路去。才能创造出于时代相适应的工业厂房来,让人们享受现代工业厂房的艺术美,这是现代工业厂房的必由之路。

参考文献:

1 费麟 工业建筑设计的现状与发展[期刊论文] -工业厂房2003(4)

2 郑敏楠 工业建筑设计的新时代[期刊论文] -工业厂房1998(5)

厂房设计论文篇5

【关键字】单层工业厂房;抗震设计;结构;承载力;加固

1 单层大空间工业厂房的结构体系

钢结构具有强度高、塑性韧性好、自重小、制作简便、施工工期短、节能环保等优点。随着经济的发展,单层钢结构厂房在工业建筑中得到广泛应用。采用单层工业厂房,生产工艺流程相对简洁,地面上可以放置较重的机器设备和产品,内部生产运输容易组织。但是在强烈地震作用下单层厂房有局部破坏、甚至倒塌现象的事故发生。

对于工业厂房的地震反应,在横向要取一排架或框排架作为计算单元;在纵向要取一个柱列,忽略结构的整体作用。换言之,该结构屋盖的水平刚度可以忽略不计,地震期间各排架、框排架和山墙都是独立振动而互不影响。

有学者根据单层厂房的实测数据,对单层厂房的空间整体工作与变形性质进行了研究,进而提出了空间振动理论。该理论为工业厂房抗震空间分析奠定了理论基础。根据实测数据所获得的结构厂房整体变形性质,我们可以提出一个简单的简化模型,“用屋盖将一系列排架和山墙联系起来而形成一个空间体系”,同时我们认为,从结构体系的整体来看,主厂房屋盖的横向变形是以剪切变形为主,在结构分析中,可以视屋盖为水平剪切粱,如果将横向排架所起的约束作用简化为沿纵向均匀分布的弹性约束,也就可以将数量较多的弹件支座用符合文克尔假定的弹性地基来代替。

对于单层大空间体系复杂结构,一般采用混凝土组合结构和钢结构等抗震设计、计算和构造以及抗震措施。针对大型工业主厂房结构的特点,重点内容有以下几个方面:钢筋混凝土结构着重解决高强度混凝土在主厂房结构中的应用及薄弱环节的抗震;组合结构要解决钢管混凝土、外包钢的节点及楼盖等组合结构及其节点连接的抗震性能;钢结构主要解决结构体系和连接节点设计构造及强震作用下钢结构的铰接和刚性节点特性;减震、耗能措施主要侧重于新型材料研制、消能支撑的抗震以及新型减震、消能材料及其在支撑中的应用等。

2 单层大空间工业厂房的抗震设计与加固要点

2.1 结构的选型及高度限制

2.1.1 钢结构适用的结构类型

(1)框架结构。梁柱之间均为刚性连接,从而形成刚构体系,可单独承担侧向力,即为纯框架结构,可用于不超过12层的结构或较低的高层钢结构,有较好的延性。但纯框架侧向刚度小,属柔性结构,故其层数和高度受到一定限制。多应用于多层及高层民用建筑和多层的工业建筑,建筑平面布置灵活,易于布置较大房间。

(2)框架——中心支撑结构。抗侧力构件的支撑体系为支撑构件与周边框架组成的支撑框架从而成为一个抗侧力结构。中心支撑宜采用交叉支撑,也可采用人字(V形)支撑或单斜杆支撑,不宜采用K形支撑。钢支撑可显著增强框架的抗侧刚度,减少侧向位移,是抗震设计的一个重要方面。

(3)框架——偏心支撑。(延性墙板)结构。特点是每对支撑与梁的交点问形成消能梁段,或是支撑与梁的交点和柱之间形成消能梁段,而每根支撑应至少有一端与框架梁相连。偏心支撑耗能梁段的设置部位决定支撑的布置。从大量的震害经验总结出,偏心支撑最好采用消能梁段位于横梁中部的支撑形式。此种结构的设计原则是强柱、强支撑和弱消能梁段。

(4)内藏钢支撑钢筋混凝土剪力墙板结构。主要是以其中的钢板支撑承担水平力起抗震作用,外包钢筋混凝土在弹性阶段可以增加水平刚度。

(5)空间桁架结构。此结构的结点一般都看作圆球铰结点,连接圆球铰的杆件可以绕通过铰中心的任意轴线转动。常用于网架结构、塔架、起重机构架等。

2.1.2 高度限制

建筑适用的最大高度与结构类型、没防烈度等因素有关。《建筑抗震设计规范》中表8.1.1对钢结构房屋的最大高度作出相应的规定。另平面和竖向均不规则或建造于Ⅳ类场地的结构,适用的最大高度应适当降低。对于超过表内高度的房屋,应进行专门研究和论证,采取有效的加强措施。

2.2 防震缝的设置

2.2.1 防震缝设置原则

多层钢结构的结构平面布置、竖向布置应遵守抗震设计中布置规则性的原则,一般可不设防震缝。GB 50011-2010建筑抗震设计规范明确规定体型复杂、平立面不规则的建筑,应根据不规则程度、地基基础条件和技术经济等因素的比较分析,确定是否设置防震缝。

2.2.2 防震缝的宽度

当建筑物的高度不超过15m时,可设防震缝宽度(缝两侧建筑物外边缘之间距离)为120mm,高度超过15m时,6度,7度,8度,9度相应每增加5m,4m,3m,2m时,防震缝宜加宽30mm。由于钢结构侧向位移的规定限值较混凝土结构大,防震缝的宽度不小于相应钢筋混凝土结构的1.5倍。

2.3 钢柱脚的设计

2.3.1 钢柱脚的形式

根据对柱脚的受力分析,可大致分为铰接柱脚和刚性固定柱脚。刚性固定柱脚再分为外露式、埋人式、外包式。外包式一般用于单层厂房、低层框架或高层的裙房,可以按铰接或刚接设计。高层的柱底为刚接,抗震构造要求较高,超过l2层的高层钢结构宜采用埋入式柱脚,6度,7度时也可采用外包式柱脚。

2.3.2 钢柱脚的埋入深度

(1)埋入式柱脚:对轻型工字形柱,不得小于钢柱截面高度的2倍;对大截面H形钢柱和箱形截面柱不得小于钢柱截面高度的3倍。(2)外包式柱脚:将钢柱直接置于地下室墙或基础梁顶面。

2.4 楼盖结构

钢结构房屋的楼盖宜采用压型钢板现浇钢筋混凝土组合楼板或钢筋混凝土楼板,并应与钢梁有可靠连接。对不超过12层的钢结构房屋尚可采用装配整体式钢筋混凝土楼板,亦可采用装配式楼板。对超过12层的高层钢结构楼盖可采用压型钢板现浇钢筋混凝土组合楼板或非组合楼板。但对于楼盖孔口较大如电梯间等削弱较大的楼板,在开洞旁应设水平支撑,以保证楼盖平面内刚度。

2.5 厂房的结构布置

由于体型复杂,特别或严重不规则的结构受力复杂,结构分析难度大,且结构设计不合理会导致地震时的严重破坏,因此厂房的结构布置应符合一定的要求。即:平面宜为矩形,立面宜简单对称;在结构单元平面内,框架、柱问支撑等抗侧力构件宜对称布置;质量大的设备宜设置在距刚度中心较近的部位。

3 结束语

单层工业厂房抗震设计时,应从提高厂房整体的抗震性能着手,使厂房在总体上满足抗震的要求,而不仅仅考虑局部的构件和部位。随着对地震作用研究的深入,对抗震设计的经验总结也越来越全面。同时,抗震设计也越来越受到重视。工业厂房的抗震设计发展前景将会很广阔。

参考文献

[1]赵西安.从汶川地震看结构抗震设计与施工中的一些问题[J].建筑科学,2008(7):97-98.

厂房设计论文篇6

【关键字】洁净厂房防火设计

中图分类号:S611 文献标识码:A 文章编号:

一、引言

近年来,我国的洁净厂房发展不断加快,它广泛应用于电子、生物制药、宇航、精密仪器制造及科研各个行业中,其重要性越来越被人们所认识。洁净厂房在建筑设计上具有一定的特殊性,大多采用钢筋混凝土结构, 根据生产性质和工艺一般以单、多层建筑为主。洁净厂房主要结构由人员净化室、物料净化室、空气吹淋室、气闸室、空调净化机房、辅助用房、技术管道组成。它与其它工业厂房的区别在于洁净厂房内的生产工艺有空气洁净度要求, 建筑技术措施方面,防火设计上必须做到技术先进、经济适用、安全可靠、确保质量,并应符合节能环保卫生的要求。

二、洁净厂房的主要火灾危险因素

1、装修过程中往往使用大量可燃材料和不符合规定的材料 洁净厂房内部装修使用的材料有的比较易燃,如风管保温使用聚苯乙烯等可燃材料,增加了建筑物的火灾荷载,一旦发生火灾,燃烧猛烈,火势难以控制。对于洁净厂房来说,都要在原有的生产车间内部进行二次装修,但由于绝大多数企业缺少必要的防火安全知识,在装修中大量的使用易燃和可燃的复合材料。现在市场上使用比较普遍的有双层聚苯乙烯泡沫彩钢板,这种材料在发生火灾后中间的聚苯乙烯泡沫会很快燃烧,散发出大量对人体有毒的气体,使人窒息死亡,同时厂房的承载力也会迅速下降,极易导致整体坍塌事故。

2、密闭性强,蔓延速度快,疏散和扑救难度大

对于工业洁净厂房来说,由于其进户过程必须经过清洗、更衣、消毒等程序,内部又必须保证高度的密闭要求,因此必然会导致其内部布局复杂,出现一些门中门、房中房的现象。一旦发生火灾,室内温度迅速升高,热量难以散发,会使可燃物很快达到燃点而促使火势扩大,产生的烟雾又会通过内部的风管快速蔓延,导致有限的空间内能见度降低,人员疏散和火灾扑救难度加大,极大地威胁着火场中人员的生命安全。 3、生产工艺涉及易燃易爆类、可燃类物质

洁净厂房中不少生产工艺使用易燃易爆液体、气体,如汽油、甲苯、丙酮等作为清洁剂清洗微型轴承、磁带抹布等,特别是半导体器件工艺中还涉及使用氢气、氧气、硅烷等气体,极易引发火灾、爆炸。而医药类产品包装材料以及一些辅料也常常是可燃物,同样存在火灾危险性。更值得一提的是某些洁净厂房生产工艺中需要加热操作、且普遍使用电阻丝加热器或高频加热器,此类加热器件一旦接触可燃物也极易引发火灾。

三、加强洁净厂房消防设计的措施

1、严格控制消防用电设备配电线路及配电装置设计 。《建筑设计防火规范》要求: “消防用电设备应采用专用的供电回路”,是指从低压总配电室或分配电室至消防设备最末级配电箱的配电线路,均应与其他配电线路分开,不能与其他动力设备、照明设备等共用回路。其配电线路应穿管保护,暗敷时应敷设在不燃烧体结构内,保护层厚度不小于 30 mm。明敷时 ( 包括敷设在吊顶内) 需穿金属管或封闭式金属线槽,并在表面涂防火涂料或采用隔热材料覆盖,导线应选用耐火型。 消防用电设备配电系统的分支线路不应跨越防火分区,分支干线不宜跨越防火分区。末级消防配电箱至其配电消防设备之间的距离不宜大于 30 m。消防用电设备的配电设备应有明显标志,盘面加注“消防”字样标志。

2、专业设计,合理布局。首先,对于洁净厂房的设计,除了满足一般工业厂房的消防要求外,还应对内部装修进行统筹的二次设计。其中所涉及的危险品库房应设置在相对独立的安全部位,与周围的区域之间应采用防火墙、防火门等措施进行隔断。而对于规模较大、功能复杂的厂房来说,内部所涉及到使用甲、乙类危险物品的重点工段、包装组装等人员密集的生产部位应设置在靠近外墙的部位,并应作为单独的防火分区考虑。其次,对于洁净厂房内部人员疏散路线的设计,应遵循简捷明了的原则,由于通常进入厂房必须经过清洗、更衣、消毒等多重复杂的程序,时间长、空间小,所以人员进入净化路线一般不作为安全出口使用。在设计中,往往是在走道靠外墙或楼梯间处设置一钢化玻璃门作为紧急安全出口,同时应在旁边配有橡皮锤和安全出口灯,且每个洁净区安全出口应保证不得少于两个。当安全出口的数量不能满足疏散要求时,也可以用专门的消防逃生口代替。另外,在疏散走道上,应多配备疏散指示标志及应急照明设施。

3、消防联动控制。当火灾自动报警系统收到火灾信号并确认后,通过联动控制设备和输出模块发出指令关闭空调系统及防火阀,起动消防泵。火灾发生后,打开排烟风口、排烟阀同时起动排烟风机。当火灾温度上升到 280 ℃ 时,排烟阀关闭,同时停止排烟风机运行。当可燃气体发生泄漏且其浓度达到爆炸下限值的 20%时,在电气防爆区内的可燃气体探测器发出报警信号; 当可燃气体浓度达到爆炸下限值的 50% 时,发出报警信号,起动事故排风系统,并显示返回信号。

《火灾自动报警系统设计规范》第 6. 3. 1. 8 条要求: “消防控制室在确认火灾后,应能切断有关部位的非消防电源”。很多地区消防部门要求自动切断非消防电源,但 《医药工业洁净厂房设计规范》对此有明确要求: “应手动切断有关部位的非消防电源”。对此,针对洁净厂房这种特殊的建筑,设计人员应积极与工程项目当地消防部门沟通,并严格按照相关规范的要求设计。

4、严格控制探测器设计质量。

(1)在探测器的设计中,其中报警探测器和控制器必须严格遵守相关的规定,进行选择,必须保证二者是同一个厂家生产。在探测器的选择中,由于不同的厂家所出售的探测器都具有各自的特点,虽然都能够通过相关部门的质量和功能检测,但在使用的时候,质量依然存在着一定的差距,在对多家产品进行综合分析的基础上,结合用户对该产品的质量反馈,做好探测器的选型。

(2)在洁净厂房电气消防设计中 ,一般使用智能型探测器,不仅仅可以满足正常的功能,也能够根据环境的变化而自动协调,能够随时保持很好的灵敏性。同时,在不同的时间段,不同的功能部位都可以设定最合理最科学的灵敏度。

5、防微杜渐,科学管理。好的管理体现出一个企业的整体水平和档次,而消防管理更是其中非常重要的一个环节。首先,要注重对员工的培训,针对每个岗位的特点,尤其是对那些火灾概率较高工段的操作人员应进行预先教育,加强他们的防火意识。其次,加强危险性工艺消防安全管理。洁净厂房内,易燃易爆物品应只限于当班用量,下班后对剩余的易燃易爆物品应存放入安全场所。最后,应制定消防安全责任制度,落实到人、贯彻到位,对于生产规模较大的单位,还应设有专人进行管理,并按照相关的消防法律法规实行目标责任制度,做到奖惩分明。

四、结束语

洁净厂房由于其特殊的建筑结构和用途,使其在消防方面要格外的注意,做好各方面的消防措施,为工业生产做好安全保障。

参考文献:

[1] 姜凤玲 关于洁净厂房设计规范的学习体会 [期刊论文] 《武汉轻工设计》- 2002年4期

[2]英华 张璐 浅谈洁净厂房防火设计 [期刊论文] 《工业设计》-2012年3期

[3]屠红云 清洁厂房的防火设计 [期刊论文] 《防消在线》-2003年10期

[4]毕飞 顾正军 洁净厂房防火设计 [期刊论文] 《建设科技》-2011年4期

厂房设计论文篇7

关键词:钢结构工业厂房;设计问题;施工问题及对策

1 钢结构工业厂房的简要论述

1.1 钢结构工业厂房的设计原则。在对钢结构工业厂房进行设计工作时,我们必须要充分的考虑到工程项目的自身特点和实际情况,科学的选择施工材料、构造措施以及结构的方案,从而保证钢结构的构件在运输、使用以及安装过程中的刚度、强度以及稳定性都是符合相应的质量要求的,同时也满足防腐蚀和防火规范中的具体要求,为了尽可能的减少制作和安装的工作量,建议选择标准化的通用构件。

在钢结构的设计文件中,对于建筑结构的钢号、连接材料的型号以及设计使用年限等内容,都应清楚的标明,同时文件中还应清楚的写明端面刨平顶紧部位、焊缝质量等级以及焊缝的形式等施工要求。

1.2 钢结构工业厂房的优点。与其他类型的工业厂房相比,钢结构工业厂房主要具有以下三个显著的优点:一是钢结构工业厂房的自重非常轻,与钢筋混凝土的结构体系相比,钢结构工业厂房的经济优势较为明显;二是借助于我国现有的生产技术,钢结构构件已经可以实现大批量的生产了,其施工简单、操作方便并且安装快捷;三是我国现阶段在全面的推行环境保护工作,而钢材具有高效能和高强度的施工材料,施工时也并不需要进行制模的操作,有利于环保工作的顺利开展。

2 钢结构工业厂房设计中应注意的问题

2.1 关于保温隔热与防火设计钢材。由于钢材具有非常好的导热性能,所以,钢结构工业厂房对于温度就会非常的敏感,那么在设计的过程中,就要重视对钢结构工业厂房进行隔热处理工作,如果没有采取合理的隔热处理措施,就会造成大量的经济上和资源上的浪费。当温度超过了100摄氏度时,就必须对钢结构工业厂房采取隔热保护措施,同时还要注意防火的问题。一般情况下,我们主要采取两种应对高温的措施,一是可以在钢结构的表面涂上一层隔热防火材料,应在详细的分析实际情况后计算得出涂层的厚度;另一种则是在钢结构工业厂房的外面包裹一层具有良好耐火性的材料。

2.2 立面设计工作。对于那些采用轻质钢结构的建筑工程项目来说,其主要具有规模、色彩、变化以及线条四大特点。虽然在采用了彩色的压型钢板后,能够凸显出轻钢结构建筑具有丰富的色彩,但是在设计钢结构工业厂房时,施工工艺一定会对厂房的体型产生限制作用,同时工程的施工成本也会有所增加。而为了避免此类问题的发生,设计师在设计钢结构工业厂房时,建议尽可能的选择冷色调,这样不但能够提升工业厂房的档次和气势,同时也使得钢结构工业厂房看起来更加的立体。

2.3 钢结构工业厂房抗震性设计工作的重点。在对钢结构工业厂房进行抗震设计工作时,主要有以下三个设计的重点内容:第一,结构的刚度分布必须是足够均匀的,否则就会对抗震工作造成不利的影响;第二,在钢结构工业厂房的抗震设计工作中,科学的布置支撑结构是一项非常重要的内容;第三,要充分的考虑到地震对钢结构工业厂房影响的基础上,应始终保持结构构件是出于塑性的工作状态下的。

2.4 应合理的设置温度伸缩缝。由于钢材料自身的独特特性,钢结构工业厂房与其他类型的工业厂房相比,其对温度的变化情况会更加的敏感,只要温度稍有变化,钢结构都有可能出现变形的情况,并且材质和温差等因素也直接决定了结构的变形程度。如果钢结构工业厂房有很大的平面尺度,那么在其纵向位置或是横向位置处就应设置温度伸缩缝。通常情况下,应采用的处理方法为双柱的方法,如果是横向的温度伸缩缝,那么在檀条和框架梁的连接处建议采用槽钢夹板滑动或是椭圆孔滑动的方式,而如果是纵向的温度伸缩缝,则应在屋架的支座位置处设置一个滚动支座。

2.5 重点关注屋盖支撑系统及屋面的设计工作。在布置钢结构工业厂房的屋盖支撑系统时,我们应综合的考虑柱网布置、厂房的高度和跨度、吊车吨位的大小、振动设备的情况以及屋盖的结构形式等因素,通常情况下,在屋盖的结构中都必须设置垂直支撑的结构,同时在天窗架上弦和屋架上弦还应设置相应的上弦支撑结构,如果在厂房内部有较大的振动设备或是屋架的间距超过了12m,那么还应设置相应的纵向水平支撑结构。在对屋面进行设计工作时,我们经常会用到以下两种方法:一是复合柔性钢屋面系统,其由保温层、隔汽层、防水层以及屋面彩钢板内板组成,受温度的影响较小,但是成本较高;二是双层彩色压型钢板内夹保温棉,这种做法应用较为广泛,但易受温度影响,并且存在着明显的热胀冷缩的问题。

3 钢结构工业厂房施工中的常见问题和解决对策

3.1 钢结构工业厂房施工中的常见问题。在对钢结构工业厂房进行涂层作业时,气温条件对钢结构整体工程的质量是会产生决定性的影响的,因此,进行涂层作业时应将温度控制在5-40摄氏度的范围内,如果气温超过了40摄氏度,建议立刻停止涂层的作业;而当气温低于了5摄氏度时,那么则建议选择低温涂层材料进行涂层作业。当构件的温度超过了40摄氏度时,在钢结构表面涂刷油漆时就一定会出现气泡,漆膜的附着力就会大大的降低。

3.2 钢结构体系中存在的若干问题。现阶段,研究人员在对网壳结构的稳定性进行研究时,其中最核心的问题就是怎样才能准确的反映出弯矩和轴力的耦合效应。而在大跨度结构的设计工作中,局部稳定性与整体稳定性的相互关系也是一个值得深入研究的问题。一般情况下,对大跨度的结构进行设计时,我们都会采取一个统一的稳定安全系数,而局部的稳定性与整体稳定性之间的相互关系却无法准确的反映出来。另外,在对钢结构体系稳定性的研究工作中,很多客观的随机因素也会对其产生影响,而现阶段我们所能解决的对结构产生随机影响的问题还主要集中在随机荷载的输入以及确定的结构参数等问题上,而在实际的施工作业中,结构参数还是有很多不确定性和随机性,那么结构的响应也会存在较大的差异。因此,以随机参数为基础的干扰性屈曲、跳跃型失稳问题以及结构极值失稳等问题应成为重点研究的课题。

通过以上的论述,我们对钢结构工业厂房的简要论述、钢结构工业厂房设计中应注意的问题以及钢结构工业厂房施工中的常见问题和解决对策三个方面的内容进行了详细的分析和探讨。与其他类型的民用建筑不同,钢结构工业厂房的内部结构会受到设备布置情况的影响,因此,在对其进行设计时,就应充分的考虑到这一问题。而在钢结构工业厂房实际应用的过程中也确实暴露出了一定的问题,我们应从设计和施工等方面详细的分析问题产生的原因,并且制定出有针对性地解决对策,从而促进钢结构工业厂房得到进一步的普及和应用。

参考文献

厂房设计论文篇8

关键词:工业建筑;厂房;结构设计;优化;基本方法

中图分类号:TS958文献标识码: A

前言

一般而言,工业建筑是指用以从事工业生产的各种房屋,也叫厂房或厂房建筑。工业是我国国民经济支柱产业,保证工业安全生产,提高工业基础设施建设水平是工业发展的必要条件,为此人们对工业厂房建筑的建设逐渐给予了更多的关注。在厂房建设过程中,结构设计是第一步关键工作环节,其决定了厂房建设的施工质量和投资效益。工业建筑的设计风格根据设计人的经验和角度不同存在差异,我国目前普遍采用的形式为钢筋混凝土结构和钢结构。本文针对工业厂房建筑结构的设计优化提出了一些个人观点,仅供设计人员及施工人员参考。

一、解析结构设计优化的基本方法

目前建筑工程的结构设计优化技术的基本方法主要有两种,即直觉优化与概念设计处理。所谓直觉优化,就是指建筑工程的结构设计中,可以采用多种设计方案时,设计人员一般会根据自己的经验和直觉来判断出应当选择哪种设计方案比较合适,尤其是在确定结构布置设计、荷载分析、细部处理的设计方案时,更是无法使用计算机来代替,必须要由设计人员靠自己的判断来决定。但是在实际的建筑工程结构设计中,设计人员自己的判断是需要根据设计规律和实践经验来判断,其在一定情况下,还是需要结合概念来进行设计处理。为此在结构设计优化技术中,概念设计处理也是非常常见的优化技术方法。

二、钢结构厂房的结构设计优化技术应用

本文以钢结构厂房为例,来详细探讨结构设计优化技术的具体应用。

1.厂房钢结构设计优化的基本原则

首先,要保证有足够的工作空间。其次,在生产中机械设备的运行往往会带来一定的震动,为保证厂房的安全性,在优化厂房结构设计时,需要重点对结构的抗震性进行设计。再者,一些厂房在生产中会散发大量的热量,而钢本身具有很大的传热性能,若温度过高时,钢结构的强度也会减弱,为此设计中还注重对钢结构的耐热性进行优化设计。最后,厂房的支撑体系设计、屋面设计和立面设计也都要充分结合实际需要,合理设计,提高厂房结构设计方案的经济性和合理性。

2.钢结构厂房的抗震性设计优化

首先,在进行总体布置的时候,厂房结构的质量和刚度分布应该具有均匀性,钢架是厂房横向结构选择的最佳材料,通过这种形式,可以使钢结构的受力性能得到充分地应用,并且横向结构变形几率也在一定程度上有所降低。其次,钢结构厂房出现破坏,通常情况下,并不是因为杆件没有足够的强度,在很多时候是因为杆件没有稳定性而使其出现破坏现象,因此,布置支撑系统要具有一定的合理性。第三,在地震影响下,低周疲劳作用有所发挥,而在设计过程中,应该着重考虑它对厂房所产生的影响。在设计结构连接点的时候,节点的破坏要晚于结构构件的全截面屈服,结构构件应该加入到塑性工作中,将其中地震能量充分地吸收进来,从而发挥抗震能力。对工字型钢的焊接截面的腹板采用加劲板加强,可以有效提高局部稳定性,减小厚度,优化截面. 柱间支撑形式的合理选择,可有效提高厂房纵向抗震能力,减小钢柱在纵向荷载作用下的用钢量。

3.钢结构工业厂房的耐热性设计

钢结构工业厂房防火能力很差,当钢材受热在100℃以上时,随着温度的升高,钢材的抗拉强度降低,塑性增大;温度在250℃左右时,钢材抗拉强度略有提高,而塑性却降低,出现蓝脆现象;当温度超过250℃时钢材出现徐变现象;当温度达500℃时,钢材强度降至很低,以致钢结构塌落。因此,当钢结构表面温度处于150℃以上时,必须做隔热及防火设计。这样可以增强建筑的耐热能力,使建筑更加的安全。例如冶金钢结构厂房中加热炉附近的厂房钢柱需要进行耐热保护,但是对厂房柱的保护应适度,热辐射范围内的柱子适度保护,范围外的柱子不进行热保护,这样达到优化的目的.

4.屋面支撑系统及屋面结构的设计优化

屋盖支撑系统的布置应根据厂房跨度、高度、柱网布置、屋盖结构形式、吊车吨位和所在地区的抗震设防烈度等条件来决定。一般情况下无论有檩或无檩体系的屋盖结构均应设置垂直支撑;在无檩体系中,大型屋面板有三点和屋架焊接,可起到上弦支撑作用,但考虑到施工条件的限制和安装需要,无论有檩或无檩体系屋盖均应在屋架上弦和天窗架上弦设置上弦横向支撑。对于屋架间距不小于12m 的厂房或厂房内设有特重级桥式吊车或厂房内有较大振动设备的均应设置纵向水平支撑。支撑系统的合理布置,能大幅降低支撑用钢量;准确计算支撑杆件的内力,减小杆件的截面,对大型屋面板可以优化成轻质混凝土板,减少荷载,

屋面的排水及防水设计在屋面设计中需重点考虑,根据《屋面工程技术规范》的规定,屋面坡度最小为5%,在积雪较大的地区,坡度应适当加大。单坡屋面的长度主要取决于所在地区的温差以及降雨所形成的最大水头高度。根据工程设计经验,单坡屋面长度宜控制在70m以内。目前,市场上钢结构屋面的做法常用的有两种:1)刚性屋面:双层彩色压型钢板内夹保温棉;2)复合柔性屋面:由屋面彩钢板内板、隔气层、保温层、卷材防水层组成。

屋面用钢量的优化,主要还在于对檩条这个用钢量大户的优化,例如,在高铁车站雨棚的设计优化中,采用连续檩条比简支檩条省15%~30%的用钢量。

5.立面设计的优化

在厂房轻钢结构的设计中,除了要对力学性能进行优化设计以外,还需要对其立面设计进行优化。尤其是要对厂房轻钢结构的规模、线条、色彩等方面进行优化设计。由于厂房一般多用于生产,因此在设计其立面的规模和线条时,可以考虑设计简单统一的立面。在色彩选择上,也可以尽量考虑彩色的钢板,避免整个厂区都处于一种单调沉重的混凝土结构中。尤其是在厂房的出入口、外天沟已经收边泛水等部位进行合理优化设计,在保证其基本功能的基础上,实现良好的立面效果。使厂房给人一种亲切的感觉,从而调节员工的心情,提高工作积极性。另外,线条是表现轻钢结构建筑风格最独特的特征,均匀的线条或横或竖,使得轻钢结构建筑富有流畅的金属质感,体现了强烈的现代工业气息。很多厂房在设计上往往考虑到采光问题而在墙面上挖较多的孔洞,破坏了立面效果,笔者建议可以大量使用屋面采光板,以此来解决采光和立面效果的矛盾,同时还能解决厂房的通风问题。

6.吊车梁系统优化

对大型重载吊车梁系统,建议采用连续梁系统,不但可以减小吊车梁截面高度,

降低用钢量,而且使厂房纵向刚度增加,可以使厂房柱系统更轻便。

结束语

随着我国现代工业的不断发展,行业领军企业的规模不断加大,新建工业园区过程中企业对工业建筑的要求也不断提高。针对工业建筑的特殊性,工业企业加强了对建筑结构设计的关注。为了满足现代工业的厂房建设需要,我们必须要不断的改进设计理念,优化厂房结构的设计方案。目前钢结构逐渐成为厂房建筑的主要结构形式,在对其进行结构设计优化时,需要结合钢结构的特点,和实际的工业生产需要,对钢结构的抗震性、耐热性、吊车系统和支撑系统进行优化设计,同时还要注重厂房结构设计的立面设计,在满足厂房基本功能需求的基础上,设计出优美大方,更符合工业性质的厂房结构设计方案,从而提升我国厂房建筑结构设计水平。

参考文献:

[l]蔡红军,蒋凤鸣,董辉.浅谈钢结构厂房设计[J].中国科技信息,2010.

[2]耿云峰.论钢结构工业厂房的设计与施工[J].今日科苑.2008 (20).

[3冯双艳.钢结构厂房中屋而支撑的设计实例分析[J].科技情报开发与经济,2007(19).

[4]陶少军基于钢结构的工业厂房结构体系设计思路浅析[J].科技资讯,2010(22).

[5]汪树玉.结构优化设计的现状与进展[J].基建优化,2007:12-13.

厂房设计论文篇9

关键词:钢结构厂房 厂房设计 注意事项

传统厂房构建,主要使用的是钢筋混凝土,与现阶段厂房构建的发展趋势不适应。因此,越来越多的厂房设计者倾向于使用新材料,以保证厂房效能的发挥。而在此过程中,钢结构厂房就成为应用的主要对象,被大量使用到厂房工程中去,发挥着越来越重要的作用。因此,我们有必要积极去探析钢结构厂房设计中需要注意的问题。

一,钢结构厂房设计工作管理的必要性

从理论上来讲,钢结构厂房在施工速度,承载能力,抗震性能,整体刚度等方面发挥着很大的优势,但是钢结构厂房由于自身材料的缺陷性,同样在部分性能发挥方面存在漏洞。因此,我们有必要在钢结构厂房设计阶段,开展管理和控制活动,以保证规避缺陷,发扬优势,最大化的发挥钢结构厂房的效能。具体来讲,钢结构厂房设计工作管理的必要性可以从以下几个方面来探析:其一,钢结构厂房设计工作管理,有利于促进钢结构整体性能的发挥,保证其符合厂房建设的需求;其二,钢结构厂房设计工作管理,有利于保证钢结构缺陷的规避,是促进经济效益提高的关键所在;其三,钢结构厂房设计工作管理,有利于促进钢结构厂房建设的规范化,是保证钢结构厂房项目顺利进行的重点环节。

二,钢结构厂房设计过程中应该注意的问题

2.1钢结构厂材料的保温隔热和防火效能

从理论上来讲,钢结构的温度达到400度。当钢材温度达到150度的时候,其强度会出现下降的情况,此时就应该积极做好保温隔热和防火设计工作,以保证刚才的导热性能,使得其不至于受到高温作用而难以发挥作用。对此,一般情况下,会采取以下几方面的措施进行完善:其一,在钢结构构件周围浇筑混凝土或者安装耐火性强的转,以保证其保温隔热性能;其二,在钢结构附近安置硬质板材,将相关的热量导出,实现散热的目的;其三,依据当地实际气候,采用厚涂型的防火涂料对于钢材进行保温,以营造比较好的工况环境。

2.2屋盖支撑系统和屋面设计工作

实际上,屋盖支撑系统主要设计到横向支撑,纵向支撑,垂直支撑和系杆结构。在构建支撑系统的过程中,应该注意以下几方面的问题:其一,综合考虑厂房的跨度,高度,柱网布置,屋盖结构形式,吊车设置和吨位大小等因素,做好合理的工作规划;其二,屋盖设置垂直支撑;其三,在无檩体系大型屋面面板处理过程中,三点与屋架之间需要进行焊接,但是往往由于施工条件的原因,在屋盖上都应该做好横向支撑;其四,在此过程中,如果厂房屋架间距超过一定范围,或者在厂房内部设置有吊车和振动设备的话,就应该积极做好纵向支撑的设置工作。以上是屋盖支撑系统的设计工作。另外,我们还应该高度重视屋面的设计工作,具体来讲,需要注重以下内容:其一,树立防水设计意识,将防水设计作为重点来开展;其二,综合考虑屋面坡度,天沟形式,单坡屋面长度等因素,开展屋面设计工作;其三,积极弄清楚当地气候,在掌握其自然规律的同时,做好爬坡度的调整,保证做到具体问题具体分析;其四,对于单坡屋面来讲,其长度应该有温度和降雨来决定,保证其符合当地的气候特点;其五,对于单坡长度超过一定范围的情况,应该积极做好特殊处理,以保证发挥相应的效能。

2.3温度伸缩缝的设计工作

从理论上来讲,钢结构厂房的打下受到很多方面因素的影响,而柱子的刚度,温度和吊车轨顶高度有着很大的关系。从这个角度出发,在构建面积比较大的工程的时候,往往可以将厂房进行划分,在厂房中设置相应的温度缝,要么是横向设计的,要么是纵向设计的。至于温度伸缩缝的处理方式,可以依据实际情况,采用双柱方法,或者单柱方法。另外,还需要注意的是:对于纵向温度缝来讲,应该设置相应的滚动支座;对于横向温度伸缩缝来讲,应该设置椭圆孔滑动或者槽钢夹板滑动的方式来进行操作。

2.4钢材的防锈处理过程

如果将没有进行有效处理的钢结构放置在空气中的话,时间一长就会受到锈蚀作用的影响。尤其对于部分厂房来讲,其位置本身就处于侵蚀性较强的潮湿环境中,钢结构厂房的锈蚀情况往往更加严重。从理论上来讲,钢结构一旦被锈蚀,钢构件的界面厚度会不断减小,这会导致钢结构应力集中的情况,也就是说此时的钢结构使用寿命被严重缩短,造成了资源的极大浪费。对于这种情况,我们应该在设计之初,就采取对应的措施进行改善和调整。具体来讲,其主要涉及到以下几个方面的内容:其一,总结和归纳厂房腐蚀情况,全面掌握厂房的布局,材料的选择和车间的工艺结构,为制定对应的防腐蚀方案打下基础;其二,积极使用防钢结构腐蚀的方法,在钢结构表面涂上一层防锈漆,科学确信其涂层的数量和厚度;其三,特殊处理露天环境下的钢结构,保证其厚度和成熟,使得其处于良好的保护条件下,避免侵蚀情况的恶化。

2.5钢结构厂房的立面设计工作

一般情况下,钢结构建筑特征表现为规模大小,色彩颜色,线条搭配和变化等方面的内容。在此方面,也需要高度重视设计工作的开展。具体来讲,需要注意以下几个环节:其一,依据工艺需求,秉持简洁统一原则,设计相应的节点,处理好色彩搭配工作;其二,在设计钢结构厂房的时候,对于重点区域做出特殊标记,保证以冷色调的方式来进行强调,以达到比较好的立体效果;其三,为了达到比较理想的采光要求,应该积极将采光窗设置在墙面上。

三,钢结构厂房设计工作质量提高的策略

上述仅仅是从细节技术角度上去探析钢结构厂房设计工作,实际上钢结构厂房设计工作质量的提高,还需要做好很多方面的工作。具体来讲,其主要涉及到:其一,钢结构厂房设计工作人才的培养。严格控制钢结构设计人才的进入机制,考核施工队伍的资质,保证钢结构厂房设计工作人力资源的专业性;其二,制定健全的钢结构厂房设计规章制度,将其作为规范钢结构厂房设计工作的行为标准,使得各项工作开展都有理有据;其三,建立有效的钢结构厂房设计监督机制,对于设计方案的合理性,经济性进行综合考量,在此基础上确定通过;其四,不断将先进的技术纳入到钢结构厂房设计工作中去,实现工作质量的不断提高。

四,结束语

综上所述,钢结构厂房设计工作需要做好多方面的工作。作为钢结构厂房设计人员,应该不断总结和归纳自身钢结构建设经验和教训,查缺补漏,学习先进的钢结构构件原理和技巧,为开展更加深刻的钢结构厂房设计工作打下基础。我相信,随着钢结构厂房设计经验的积累,钢结构厂房运用前景将越来越光明。

参考文献

[1] 赵永江. 轻型门式钢架厂房结构设计要点探讨[J]. 中国城市经济. 2011(09)

[2] 林攀举. 浅谈门式钢架轻型房屋钢结构设计[J]. 科技资讯. 2010(21)

[3] 袁硕. 关于轻型钢结构房屋设计[J]. 油气田地面工程. 2004(09)

[4] 闫桂森,陈旭. 设计钢结构厂房应注意的问题[J]. 山西建筑. 2008(05)

厂房设计论文篇10

关键词:医院厂房;防爆电器;电气设计

DOI:10.16640/ki.37-1222/t.2017.01.203

0 引言

在医院厂房防爆电气设计中,使用隔爆型和增安型电器设备,能够有效避免爆炸带来的电气骤燃问题。医院厂房在药品装配的过程中,会产生大量的可挥发有机体,这些气体具有一定的可点燃特性。在防爆设计活动中,加装灵敏度较高的气体检测装置,在危险气体逸出时,及时报警并且自动断电,防止易燃物泄露造成的用电危险问题产生。使用外壳防护和限制表面温度保护的电气设备,增强厂房电气系统电机设备的防爆结构稳定性。

1 医药厂房作业环境与防爆电气设计安装标准介绍

厂房区域生产过程中,人员走动和物品的摩擦产生静电,当生产原料飘散到空中生成粉尘时,空气中的粉尘遇到明火或者较强电流,便会产生骤燃爆炸的危险。采用绕线型感应式电动机,对厂房区域的变化情况进行感应,及时对电气系统运转安全性进行有效防护。做好医院厂房电气系统的防雷接地设计,采用三相电的插座和线路供电系统,配合同步电动机,对厂区环境的防爆性能进行加强。

对于医院厂房电气系统的设计与安装,应该认真参照《爆炸危险环境电力装置设计规范》,进行接地线路安装和电插座的防爆加固设计。医院厂房处常见的气体有甲烷、乙烯等,当电气设备在运行不良时产生火花,容易引燃这些挥发性机体造成爆炸。这些气体都会在集聚到一定的浓度时,触发危险。因此,在医院厂房防爆环境优化中,还应该经常进行通风,对这些气体进行稀释。我们分析医院厂房中的典型气体,其中,国标一型的甲烷气点燃特性相对较弱。国标二A型的丙烷气体,可点燃的特性比甲烷要强,国标二B型的乙烯气体的可点燃特性更强。相较于国标A型气体和B型气体来说,C类气体最容易被点燃,氢气就属于很容易被点燃的气体类型,并且在医院厂房生产区域中比较常见。医院厂房防爆电气系统设计,应该考虑到电气导电性和非导电性的区别,对电气安装部件进行分门别类的设计。

2 医药厂房防爆电气设计探讨

2.1 电气设备防爆和阻燃系统安装

医院厂房区域应该采用恒温室内设计模式,设定允许的最高环境温度。在额定运行时的温度中,确保医药厂房的室内温度整体处于极限温度标准值之下。

提升医院厂房防爆电气设备的温度耐受级别。对于储存氢化物类药品的厂区,应该安装防止火花引燃型的控制盘和接线箱。并且在电气管线区域张贴防爆型式及相关标识,部分电源插座可以采用浇封型设计方式,确保正常工作中设备不产生火花。在医院厂区储存有液体药瓶等有较强燃爆风险的储藏室中,应该安装适合阻燃的防爆型装置,避免静电产生。建立能够承受2个故障的本安型、正压通风型的电气系统。医院厂房环境中,保存着大量的药品和精密的医疗设备,这些医用器具的价值比较高,并且生产的成本也比较高。在医院厂房生产和储存区域中,使用防爆型的电气设备,显著降低电气设备爆炸造成的厂区燃烧风险。对空调设备加装高强度的锰钢矩形管,防止工作时由于温度升高过热造成的永久性变形。

2.2 电气设备选型安装与线路敷设

在医院厂房防爆电气系统设计活动中,技术人员应该尽量减少木质型电器的使用,而是使用特种电器材料,提升防爆型式电器设备的使用质量。

在防爆电气设备的应用中,安装隔热绝缘效果更好的灯具、电机,对于电机设备中的照明设备,应该安装隔热罩,防止照明器具在运行的过程中,出现器具过热问题引发爆炸。变压器并且使用按钮盒和伴热带,插座接头处,使用绝缘效果更好的金属套索装置,防止插头处被飞溅水滴弄湿导致短路起火现象出现。采用集中式的系统供电设计,防止供电故障造成电气设备焚毁问题产生。在电气系统布线安装中,采用内置埋藏型电缆和电缆敷设的方法,避免电线暴露在外,提升电力电缆线路的防腐等级和防护等级。医院厂房电气系统中,配装防爆性能更强的配电箱。在配电箱的内部设置总开关,并且装上国家专利电路控制器,方便电力工作人员检修和维护。

2.3 建立预警探测与自动灭火系统

建立可燃气体探测预防警报系统,在探测器的感应区域加装定制特做的进口双密封圈液压缸,提升探测器的耐高温性能,当气体逸出时,能够迅速触发报警装置,并且自动断电防止电气系统遭受过热压力。

在医院厂房防爆设计活动中,技术人员应该对电气设备允许最高表面温度进行控制。其中,电气设备允许最高表面温度应该达到450摄氏度为宜,气体/蒸汽引燃温度不低于500摄氏度。在医院厂房安全防护设计中,建立火灾自动报警系统,电气作业人员应该做好消防联动控制设计,当厂房区域出现火情时,消防装置自动预警并且灭火。技术人员还应该对医院厂房电气设备运转时,各种电器额定运行时的温升数据进行记录。采用转子堵转实验控制温升的方式,提升火灾预警和控制的反应速率。医用药品和医疗设备储存区域,应该安装干粉灭火器装置,按照变压器防火设计规范,对医院厂房的辅助消防系统功能进行加强,变压器及其他带油电气设备,应该安装水喷雾与自动喷水灭火系统。

3 结束语

对医院厂区用变压器进行增容增压改造,同时对新近安装的线路进行抗老化加强维护,对于老旧新路进行更换。为了提升医院厂房预警防火的性能,技术人员应该对报警系统装置灵敏度进行优化设计,建立可燃气体探测报警系统

参考文献:

[1]姜杰.医药化工企业防爆厂房的电气设计探讨[J].建筑工程技术与设计,2015(14):1501-1501.

[2]徐磊.浅谈医药企业防爆厂房电气设计[J].城市建设理论研究(电子版),2014(08):318-120.