污水处理流程十篇

时间:2023-03-22 12:07:10

污水处理流程

污水处理流程篇1

关键词:污水处理厂 生产技术 工艺流程 研究探讨 建议措施

中图分类号:X5 文献标识码:A 文章编号:1674-098X(2014)01(a)-0059-01

随着科技的发展和技术的成熟,污水处理厂的生产工艺和生产技术也在不断的革新和发展,但具体还是要通过粗格栅、污水泵、细格栅、沉沙池、生化池、终沉池和过滤池等环节,通过各个程序的连续操作,采用一系列的处理方式来达到净水的目的。

1 污水处理

1.1 污水处理

污水处理主要是指通过采用合理有效的处理手段,采用有效的设备和空间对收集的污水进行过滤和消毒等,排出后可以供再次使用,或者排入到某个特定的区域,不构成环境和生态的污染。

1.2 污水处理等级

通常按照污水处理的等级将污水处理分为三个等级,分别一级、二级和三级处理等。(1)一级处理主要是消除污水中的悬浮颗粒物和固体物质等,一级处理可以采用物理处理法进行处理,通过可以达到30%的处理,满足不了排放的标准和要求,一般为二级处理的前奏。(2)二级处理主要是消除污水中的有机污染物或者溶解状态的物质,包括BOD.COD物质,消除90%以上的污染,满足排放要求。(3)三级处理属于高等级的污水处理,将污水中的可溶性无机物和氮磷等元素消除掉,具体的可以采用砂率法、混凝沉淀法和活性炭吸附法等,另外还可以使用电渗分析法和离子交换法等技术来处理。

1.3 污水处理方法

污水处理的一般过程是通过厂区获取一定量的待处理污水,然后通过截流井让污水进入到厂区处的粗栅格中,去除过大的渣滓,经过污水泵后经污水提升到一定高度,然后在流入到细格栅,去除掉较小的渣滓,利用重力分离的原理在沉沙池将污水跟沙分离,排除较大的颗粒物,然后再转到生化池,此时采用活性强的污泥将水中的SS、BOD5和其他的氮和磷等消除掉,通过终沉池排除剩下淤泥后进入到D型过滤池,彻底消除掉SS,最后进行紫外线消毒来消灭水中的大肠杆菌等细菌,排除过滤后的水。

在进行污水处理时采用物理处理法、生化处理法和化学处理法等,通常生化处理法将被运用在城市生活污水的主流处理上,例如具体的方式可以采用mbr和活性污泥法等。

1.4 污水处理中各构筑物的作用和能耗分析

(1)污水提升泵房。污水提升泵房的耗能占据了污水处理厂生产环节的很大比例,当污水通过粗格栅流入到提升泵房时,在提升泵房将污水转移到高处的沉砂池的前池,在该过程中需要耗费大量的能量,其中耗能的多少也跟污水流量有关系。

(2)沉砂池。沉砂池主要分为多尔沉砂池、曝气沉砂池、平流沉砂池和钟式沉砂池等类型,通常可以将沉砂池安置在泵站之前,避免污水中的颗粒对管道和水泵的磨损等。沉砂池主要为砂水分离器和吸砂机供应能量。

(3)初次沉淀池。初次沉淀池一般分为竖流沉淀池、平流沉淀池和辐流沉淀池等,对于一级处理来说非常重要,设置在生物处理构筑物的前方,可以消除掉BOD5和SS等物质,减少了BOD5的负荷。该构筑物的能耗主要是在排泥装置上,其中涵盖了刮泥撇渣机、链带式刮泥机和吸泥泵等设备,因为这种能耗受到周期性的影响,能耗程度较小,所以可不予考虑其能耗。

(4)生物处理构筑物。污水的污泥处理和污水生物处理过程中能耗占据了整个污水厂直接能耗的60%,例如在进行曝气处理时需要消耗很大部分的电能,在处理曝气问题时可以采用生物膜法处理设备进行,同时搭配活性污泥法,但生物膜法耗能较小,可以大规模的使用。

(5)二次沉淀池。二次沉淀过程中主要是涉及到污水表层上的漂浮物的消除,同时还会进行污泥的抽吸等过程,但两者对能量的消耗较少。

(6)污泥处理。污泥处理时整个污水处理流程中较为重要的过程,主要包括污泥脱水、干燥等过程中的能量消耗,这些处理设备都需要做很多的功,所以设备的电耗很大。

2 污水处理的工艺流程

污水处理是现代社会发展的重要课题,有利于改善生态环境、节约能源、维持生态平衡等过程,其中通过有效的污水处理方式可以将污水中的污染物分离,将污染物转化为对环境没有危害的物质,达到净水的目的。其中污水处理的方法有:

1)物理化学法,例如可以在处理污水时采用混凝沉淀法。2)物理处理法,在污水处理过程中采用沉淀法和过滤法等,有效的将污水的杂质去除掉,达到净水的效果,提高水源质量。3)采用生物处理法,该方式主要是通过经微生物放置于污水中,将微生物来分解和吸附污水中有机物等,将有害的、不稳定的有机物等消除掉,或者将其转化为无害的物质,污水得到净化的目的,其中活性污泥法就属于生活处理法的范畴。

预处理阶段:由格栅间来处理污水中的悬浮颗粒物,进入曝气沉砂池,将无机颗粒物进行沉淀,在配水井中处理从曝气沉砂池流出的污水,经过缓冲和分配,稳定性处理,利用传动刮泥机等工具来去除大部分的泥渣。

生化处理阶段:在A/O生化池,通过微生物来消灭掉水中的磷和有机物等,进入二沉池,将底部的泥渣跟水分离开,进入鼓风机房达到处理污水的效果。然后通过水的排放系统将水排放到河道中,在由污泥处理系统将污泥进行处理。

3 结语

社会的不断发展和进步,使得社会中的污水排放量逐渐增加,不但破坏了社会环境和生态平衡,还影响了人们的生活质量。所以要想提高社会生态环境的质量,就需要加大对污水的处理问题进行研究和探讨。污水处理主要是通过对污水进行集中、过滤、消毒等一系列的程序进行,最后得到达标的处理水。由于在处理中会涉及到很多个环节和处理工艺,再加上条件的复杂性等,降低了污水处理厂的工作效率和工作质量。所以,针对目前污水处理的情况进行分析,研究污水处理中存在的一系列问题,然后指定有效的应对措施,提高污水处理的效率和质量。

参考文献

[1] 赵振.活性污泥数学模型在天山污水处理厂工艺优化改造中的模拟研究[D].东华大学,2004.

[2] 朱勇.城市污水处理工艺方案的层次分析和工程设计实践[D].重庆大学,2004.

[3] 桂红艳.城市污水处理厂对周边环境污染及防治初步研究[D].中国科学院研究生院(广州地球化学研究所),2007.

污水处理流程篇2

[关键词]渗滤液;厌氧工艺;好氧工艺

不同类型的垃圾渗滤液都含有大量对环境和人类有严重危害性的物质,必须有效的处理才能达标排放或回用。而渗滤液污水具有污染物浓度高、水质成分复杂、含有大量有机污染物、氨氮含量高、营养元素比例失衡,可生化性较好,水质差异大等特点,与一般工业废水和生活污水来对比,其处理难度和成本都要高很多,目前还没有完善出普遍适用的经济高效的处理工艺,不同的项目需要根据具体情况确定合理可行的污水处理工艺[1]。某垃圾渗滤液污水处理厂主要处理园区内生活垃圾焚烧厂、生活垃圾卫生填埋场、餐厨垃圾处理厂产生的渗滤液,出水外排或者回用。本文将就渗滤液的污水处理工艺比选、流程设计和工艺方案进行探讨,为渗滤液处理工艺设计提供参考。

1渗滤液来源、水量和进出水水质

1.1渗滤液来源

本项目渗滤液污水处理厂主要有三个来源:1.1.1生活垃圾卫生填埋场渗滤液该类型渗滤液主要来自生活垃圾填埋场。园区的生活垃圾填埋场主要处理中心城区及其周边城镇产生的生活垃圾,该填埋场包括部分已投运中老龄垃圾填埋场和部分新建垃圾填埋场。1.1.2生活垃圾焚烧厂渗滤液该类型渗滤液主要来自生活垃圾焚烧厂。园区的生活垃圾焚烧厂为新建垃圾处理工程,以机械炉排炉作为焚烧炉炉型,主要处理城区及其周边城镇产生的不可回收生活垃圾。1.1.3餐厨垃圾处理厂渗滤液该类型渗滤液主要来自餐厨垃圾处理厂。园区的餐厨垃圾处理厂主要处理城区及其周边城镇产生的餐厨垃圾和其他有机垃圾。

1.2渗滤液污水水量和水质的确定

根据前期调研资料,初步确定本污水处理厂进水渗滤液中生活垃圾卫生填埋场渗滤液水量约为200t/d,生活垃圾焚烧厂渗滤液水量约为450t/d,餐厨垃圾处理厂渗滤液水量约为150t/d。依据本项目所处环境,园区生活垃圾焚烧厂和餐厨垃圾处理厂的处理工艺、生活垃圾卫生填埋的场龄,并参照目前类似垃圾处理项目的渗滤液水质,考虑一定裕量,本污水处理厂的渗滤液混合液的进水水质初步确定如下:目前国内大部分的垃圾渗滤液污水处理厂的出水就近排入生活污水处理厂处理。按照园区规划方案及考虑本项目的实际情况,本渗滤液污水处理厂处理后的出水考虑直接排放自然水体,部分作为中水回用于园区绿化,浇洒道路,洗车等用途。本工程处理后出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。

2渗滤液混合液处理主体工艺方案的比选

根据本项目水质特征和不同工艺的特点比较,初步确定本项目垃圾渗滤液污水处理厂采用“厌氧工艺段+好氧工艺段+深度处理工艺段”组合的三段式工艺流程。本文主要探讨厌氧工艺段和好氧工艺段的工艺比选。

2.1渗滤液厌氧处理工艺比选

厌氧生化处理具有能耗少,操作简单,剩余污泥少,投资及运行费用低廉等优点,已经广泛应用于国内外的垃圾渗滤液的处理,该工艺所需的营养物质少,适合于营养物质失调的渗滤液的处理。近年来,运用于垃圾渗滤液处理的厌氧生化处理方法主要有上流式厌氧污泥床反应器(UASB)、厌氧滤池(AF)、厌氧流化床反应器(AFB)等。上流式厌氧污泥床反应器(UASB)是一种结构简单、处理高效的新型厌氧反应器。废水从反应器底部上升通过包含颗粒污泥和絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应。反应器具有三相分离器的特殊结构,可以在反应器内高效实现水、气、泥的分离,将活性较高的颗粒污泥保留在反应器中[2]。该反应器可维持较高的污泥浓度,较高的容积负荷率,无需投加填料和载体,运行维护简单,对有机污染物去除有良好的效果,在渗滤液污水处理领域应用广泛。厌氧滤器(AF)是采用填充材料作为微生物载体的一种高速厌氧反应器,厌氧菌在填充材料上附着生长,形成生物膜[3]。生物膜与填充材料一起形成固定的滤床。污水在流动过程中生长并保持与充满厌氧细菌的填料接触,因为细菌生长在填料上将不随出水流失,在短的水力停留时间下可取得较长的污泥泥龄。由于滤床容易被渗滤液污水中的悬浮物堵塞,厌氧滤器不适合处理悬浮物较多的废水。厌氧流化床反应器(AFB)是一种新型高效流化态厌氧生化处理反应器。厌氧流化床内填充活性炭等细小的固体颗粒作为载体[3]。废水从床底部向上流动,并使用循环泵将部分出水回流,以提高反应器内水流的上升速度使载体颗粒在反应器内处于流化状态。流化床反应器需要大量的回流水以保证流化态,致使能耗增加,成本上升。流化态的形成必须依赖于所形成的生物膜在厚度、密度、强度等方面相对均匀或形成的颗粒均匀,较轻的颗粒或絮状的污泥将会从反应器中连续冲出。生物膜的形成与剥落难于控制,真正的流化床形态很难实现,致使工艺控制困难,投资运行成本较高。通过厌氧工艺比较分析,考虑本项目的特殊性和进水水质情况,初步确定UASB作为本项目的厌氧处理工艺。UASB按800m3/d处理规模进行设计。设置3座UASB钢制反应塔,每座容积1000m3,直径12m,高12m。UASB前设置预酸化池,用于对初沉池的出水进行加热、调节pH和预酸化。预酸化池内设置潜水搅拌机,防止池体内固形物沉淀。

2.2渗滤液好氧处理工艺比选

渗滤液经过UASB厌氧生物处理后,出水中仍含有高浓度的COD和氨氮需要去除。渗滤液处理常用的生化工艺包括氧化沟、SBR、A/O工艺等,这些工艺的主要功能包括去除有机物和生物脱氮,对降低垃圾渗滤液中的BOD5、CODCr、氨氮和总氮都有显著效果。氧化沟利用连续环式反应池作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,通常在延时曝气条件下使用。氧化沟设置有曝气和搅动装置,从而使被搅动的液体在闭合式渠道中循环。该工艺具有出水水质好、抗冲击负荷能力强、运行稳定、管理方便等技术特点,但该工艺也存在着占地面积大、基建投资高、污泥易膨胀等缺陷。SBR工艺较为简单,通过时间上的交替实现传统活性污泥法的各工序[4]。在流程上只有一个基本单元,将调节池、曝气池、二沉池功能集中于一池,进行水质水量调节、微生物降解有机物和固液分离等,故节省了占地和投资,耐冲击负荷且运行方式灵活,可以从时间上安排曝气、缺氧和厌氧的不同状态,实现脱氮除磷的目的。但SBR工艺对自动化控制要求很高。由于该工艺为序批式工艺,相关设备不是连续运行,设备闲置率较高。如图1所示。A/O工艺是一种流程简单、稳定可靠、运行费用较低的脱氮脱碳工艺,通过硝化和反硝化作用机理,将去除CODcr和去除NH3-N、TN有机地结合。由于渗滤液中含有大量表面活性物质,直接采用好氧工艺处理,容易在曝气池产生大量泡沫,并加剧污泥膨胀问题。经缺氧处理后表面活性物质得到了分解,可显著减少好氧池的泡沫,有利于系统的正常运行。如图2所示。通过表4中的好氧工艺比较,在渗滤液处理领域,A/O工艺优势明显,而且在处理高浓度有机废水包括垃圾渗滤液方面已获得大量成功经验和运行数据,工艺比较成熟、运行费用较为低廉。是否可采取A/O组合工艺,还必须考虑实际的水质特征,主要利用BOD5/TN比值进行判断。如果渗滤液保持在一个低C/N比的水平,或是老龄化进程较为明显,这时就必须对缺氧工艺的可行性进行分析论证。通过分析,本项目中A/O进水BOD5/TN>5,能保证污水有充足碳源供反硝化菌利用。因此,本工程考虑在厌氧工艺之后设置A/O工艺可以最大限度去除废水中有机污染物。缺氧池按800m3/d处理规模设计,设置1座,停留时间约24h。好氧池按800m3/d处理规模设计,设置1座,停留时间约96h。二沉池采用竖流式沉淀池,停留时间3h。二沉池出水进入深度处理工艺进一步处理后排放或回用。

2.3渗滤液处理工艺流程

通过对渗滤液不同工艺的优劣势比较,确定了垃圾渗滤液污水处理厂的工艺流程如下:垃圾渗滤液通过细格栅进入调节池并进行预曝气,在调节水质水量的同时可以去除一部分氨氮和有机物,出水通过初沉池沉淀预处理去除大颗粒有机物和无机物,然后进入UASB工艺前的预酸化池。渗滤液在预酸化池内调节pH、温度等,再由提升泵进入UASB进行厌氧生化处理。UASB反应器出水进入A/O工艺进行处理。A池接收来自UASB反应器出水,废水中部分反硝化菌群利用进水中的有机碳源进行反硝化脱氮作用。O池接收来自A池出水,在O池内发生有机物的去除和硝化过程,部分硝化混合液回流至A池。好氧池出水自流进入二沉池,部分污泥通过泥浆泵回流到A池内,提高污泥浓度。二沉池出水经泵提升后连续进入AMBR,在AMBR内进一步去除有机物,AMBR出水通过纳滤(NF)和反渗透(RO)处理后直接排放或者作为中水回用。

3小结

渗滤液污水处理的工艺流程一般都包括多个工艺段,不同工艺段的设计又受多个因素影响。渗滤液处理工艺中采用厌氧生化处理能耗少,操作简单,投资及运行费用低,但不同的厌氧工艺对不同的渗滤液的适应性有差异,应根据具体情况确定合适的厌氧工艺。在选用好氧工艺时,同样应当进行分析比较以确定合理工艺。反硝化细菌是在分解有机物过程中进行反硝化脱氮,在不加外来碳源条件下,污水中必须有足够的碳源才能保证反硝化过程的顺利进行,因此需要确保进水水质C/N比较高。渗滤液污水水质复杂,在工艺流程的设计时,需要从水量,水质,运行管理,工程投资等多个方面综合考虑以确定经济、合理、可行的工艺方案。

参考文献

[1]焦义坤,迟慧,刘洪鹏.MBR+NF+RO组合工艺处理垃圾渗滤液的工程应用[J].化学工程与装备,2014(02):200-203.

[2]代华军.常温下强化UASB处理垃圾渗滤液工艺研究[D].武汉理工大学,2006.

[3]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998:469-490.

污水处理流程篇3

关键词:污水处理工艺;应用;优化措施

中图分类号:U664文献标识码: A

引言

城市污水处理工程是一个综合性极强的系统工程,其中任何一个环节不科学都会给整个工程带来影响和损失。

一、城市生活污水处理出现问题的因素

(一)环境意识缺失

在我国城市发展的过程中,对于环境的保护情况存在着“先污染、后治理”,这种思想原本就是对环境保护的一种意识形态的缺失,从每一个城市成员角度来说,城市成员在对于水资源的保护意识的缺失是导致我国城市生活用水污染严重的意识因素。

(二)城市经济发展速度过快

随着我国经济的发展,城市的经济速度十分快,城市居民的生活水平也在逐渐的提升,城市居民生活质量的提升在很大程度上增加了城市用水量,数量增多的城市生活用水必然在很大程度上造成水污染。城市经济的发展,人民生活水平的提升直接导致了城市生活污水处理问题的出现。

(三)硬件设施不齐全

在城市生活污水的处理过程中,城市生活用水处理过程需要完善的硬件设备支持,其需要结合不同的城市生活用水情况,来建立和完善不同的硬件设备,以便于更好的进行污水的处理。从目前我国城市对于生活污水处理的设备支持来看,其较工业污水处理的设备来说还不是十分的完善,其中还存在着诸多的问题,在很大程度上不利于城市生活污水的处理。

(四)处理技术更新慢

处理技术的更新速度慢导致了更多城市污水处理问题的出现,加之对于污水处理设备维修的不及时,更是使得城市生活污水处理难上加难。技术更新速度慢对于我国城市生活污水处理来说是一个决定性的因素,直接关系到污水处理的程度。

二、城市生活污水主要处理技术

(一)膜分离技术

目前此项技术已经被应用于城市生活污水的处理当中并在某些技术上取得了一定的进展,且一些经过处理之后的生活污水已经被二次回用,当然此项技术也伴随一定的问题,就是难以控制的膜污染。膜污染就是处理膜因而多次使用而使得膜处理能力下降,如何进行膜污染防治。就目前来说,主要有对滤液的前处理工作,对处理环境的改善以及在一定的时间段内就对膜进行及时的清理等处理工作。通过这些工作可以实现如下结果:1)及时的将滤液中一些较大的颗粒物处理掉;2)在冲洗的情况下将膜污染的程度降低。虽然这些处理措施有一定的作用,但是耗能较大且费时费劲,因而探讨一种创新性的低消耗高处理的污水处理技术势在必行。

(二)强化一级处理技术

对于此项处理技术来说,其有着投资需求低,费用消耗少,污染负荷得到及时控制的优点,因而它是城市污水处理中发展最快的一种处理技术。同时此项技术操作比较简便和灵活,并且处理结果相对稳定,故而其很快的在诸多中小城市当中得到了推广和大范围的应用。此项技术可以分为两大块,第一大块就是一级处理工艺,第二大块就是生物强化一级处理工艺。在这当中,CEPT的处理有着不小的成效。但是,就此项技术来说,目前也面临一些考验,就是处理难度较大,处理的费用也相对较高,同时,在此项技术当中因为絮凝剂的使用也伴随一些问题 ,因为此物品容易给环境造成一定的污染。

(三)生物处理技术

(1)生物处理技术之厌氧处理法

此处理法在处理城市污水中有着不少优点,诸如其反应时的体积较小,同时耗能不多,操作过程较为简单,因而此法是生活污水处理应用较多的法子之一,当然此法在应用中也难免伴随一定的问题,因为在城市污水中,污染物的浓度大多的时候并不是很高,因而,人们在处理的过程中不断积累经验并对此项技术进行创新和改进,就目前来说,也取得了很大的进展。

(2)生物处理技术之生物膜法

此项技术一般都是用来处理生活污水的一些深水上,有人通过研究发现,如果在氧气充足的情况下,此项技术也可以对有机物与氧进行及时的处理,因而此法在未来当中有着较好的发展前景。

二、城市污水处理工程常见问题分析

(一)难以控制时刻变化的污染负荷

就当前来看,人们的生活方式逐渐丰富,随之的对水需求也是与日俱增,于是,生活污水的组成成分也难免逐渐丰富而复杂,而加之四季的气候变化,给污染负荷的控制工作提出了极为严峻的考验,在这样的情况下,不论是处理方法的选择还是处理计划的设定都存在一定的难度。

(二)处理技术受外界影响很大

就目前的很多城市污水处理技术来说,它们都是来自于前人的经验和实验总结,然而,不同的环境影响可能会有不同的处理结果,也就是说操作过程受外界的影响不可避免,同时,不同地区的文化经济以及习惯也有着不同,也难以避免对处理技术结果造成一定的影响。

(三)传统处理技术成本相对较高

对于生活污水的处理来说,其主要技术是通过对污泥的厌氧消化来对其中一些能源进行回收从而实现对其的二次利用,但我国的厌氧消化厂为数并不是很多,因而节能消耗在很短的时期之中是难以实现的。而传统的处理技术却需要相对较多的能量,同时也就摆出了一个现实的问题,成本相对较高。

(四)污水处理技术难以满足当前可持续发展的需求

就我国当前的污水处理技术来说,与国外很大的差别,国外倾向于对生活污水的处理与再回收和再应用同时对污水中的处理物如氮、磷等也进行回收并对其进行合理应用,而我国目前却仅仅处于处理生活污水的阶段。可以说,我国的污水处理技术目标就是采用较低的消耗对污水处理进行合理的处理并且尽量达到污染物的零排放,可以看出,我国的技术空间在这方面仍然有待进一步提高。

三、城市生活污水处理工艺优化措施

(一)优化硬件设施

对于城市生活污水处理工艺来说,城市生活污水处理工艺的优化需要硬件设备的支持,而目前我国在城市生活污水处理的硬件措施保障上还是不是十分的全面,我国应结合不同城市对于生活污水处理的要求,研发并引进一些先进的硬件设备,为城市生活污水处理工艺的优化提供良好的硬件保障。同时,要为城市生活污水处理工作提供相应的场地支持和援助,要选择有助于城市生活污水处理的场地来进行城市污水处理。

(二)优化技术工艺

无论任何工作,技术的支持都是十分必要的,尤其是在现代社会环境中,良好的技术支持是体现工艺性的关键,因此,对于城市污水处理工作来说,其需要创造与城市生活污水处理相适应的技术工艺,并结合不同的生活污水处理方法使其的效果达到最大化和最优化。

(三)优化设计工艺

在不同的城市中和不同的环境中,城市生活污水处理的设计是不同的,结合不同的城市生活环境和城市的经济发展速度而言,生活污水的处理需要不同的设计工艺。因此,我国在优化城市生活污水处理工艺的过程中,要选择切合实际的处理工艺,结合生物法和化学法来制定相应的设计工艺,力求在设计环节保证整个污水处理过程的合理性和科学性。

(四)优化回收工艺

在污水的处理过程中污水的回收再利用是一个关键性的环节,在我国城市生活污水的处理过程中,同样需要回收工艺的支持,对处理好的污水进行回收再利用,实现污水处理的可持续性,进而达到节能、节水,这是城市生活污水处理的较高要求。在回收工艺上来说,我国要借鉴国内外一些先进的回收工艺。

(五)充分体现污水水质的特点

无论何种污水,都必须符合国家相关标准才可以在污水处理厂进行处理,决不允许对有毒、有污染的废水进行污水处理。对污水处理工艺进行评价时,一定要对污水水质的特点、污染物的构成给予详细的分析。

(六)合理选择污水处理工艺

(1) 活性污泥的方式。它是目前全球各国使用最普遍的一种方式。通过一定的方式变成回流污泥,回流污泥是为了让曝气池里具备一定的悬浮固体浓度;(2) 生物膜的方式。此方式为正在发展中的处理工艺,主要特征是微生物处于介质滤料表层,构成生物膜,污水在同生物膜接触后,被溶解的有机污染物通过微生物的吸附转变成其他物质以及微生物细胞物质,使得污水被净;(3) 氧化的方式。此法是当前广泛使用且非常具有发展潜能的污水处理方式之一。通过氧化剂的类型和反应器的分类,氧化法能够分成化学氧化法、湿式氧化法、超临界氧化法、催化氧化法以及光催化氧化法等。

结语

综上所述,为了更好的提升污水处理厂的处理效果,需要不断的创新设计人员的专业素质,在现有城市污水处理技术的基础上,创新污水处理的程序,控制污水处理的水平。

参考文献:

[1]赵高伟,康雅.先进污水处理工艺节能减排效果比较与分析[J].山西建筑,2014,03:140-142.

污水处理流程篇4

【关键词】污水处理;原理;流程改造

海洋采油厂年产291.5万吨原油,年处理水量约为150万吨。海三联合站承担70%集输处理任务的集脱水处理、天然气脱水处理和全部污水处理为一体的联合站库。

1 海三联现有污水处理系统简介

海三联污水岗投产于2011年12月,设计处理能力2.2万m3/d(预留至3.4万m3/d),设计处理后含油≤10mg/l,悬浮物≤10mg/l。目前日均处理污水量1.2万m3/d。污水岗现有5000方一次沉降除油罐1座(另在建1座即将投运)、2000方截矮缓冲罐2座、2000方外输罐2座、1000方反冲洗罐2座、压力滤罐10座、ADNF-750气浮装置2座、100方污油池1座、200方污水池2座和250方污泥池2座。

2 现有污水处理流程介绍

2.1污油池流程(如下图):由计量岗的进站游离水脱除器和5个5000方储油罐所放底水全部进入污水岗的一次除油罐,除油罐通过重力分离原理除去漂浮油(以连续相漂浮于水面,形成油膜或油层. 这种油的油滴直径较大,一般大于100μ)、部分分散油和固体杂质。其基本原理为:利用油水密度差和油水不相溶性进行油水分离,在重力作用下驱使油膜上富集的油移动,当此机械力超过油膜的内聚力时,大油滴就会从固体表面上脱落下来。按照斯托克斯定律,这些大油滴能比初始的小油滴更快地从水中分离出来;油层在上部聚集到1米以上到达11米收油管时开始收油,水层在下部高于4米外输口时出口进气浮装置。在海三联的气浮装置型号是ADNF-750,属于压力溶气气浮装置,处理量是750m3/h。从气浮装置中出来的污油(主要是浮油和分散油)直接进污油池,而含油难脱水处理的乳化油溶解油的大量污水进入截矮缓冲罐进行二次除油,油层在上部到达6米收油管时开始收油直接进污油池,水层在下部3~4米外输管进提升泵。含油污水从提升泵出来进入双滤料过滤器(SFX型金刚砂双滤料),在润湿聚结、碰撞聚结、截留、附着作用下油珠由小变大,微小油滴聚结到一定的粒径后将在浮力的作用下离开滤料,浮到水体的表面而达到油水分离的目的。经过双滤料过滤器后,达标污水进入外输罐,通过外输泵回注海上井组。

2.2污水池流程:从计量岗储油罐放底水直接进污水池,污水回收去气浮装置后,和上述流程一样。

2.3 反冲洗流程:从外输罐通过反冲洗泵将达标污水抽到双滤料过滤器,将流程①中双滤料过滤器中分离出的污油在水洗作用下输到1000方反冲洗回收罐,再通过反冲洗回收泵返输,到气浮装置后和流程①一样。

3回注水质要求及注水指标

注水水质主要控制指标:(1)溶解氧。水中含溶解氧时可加剧腐蚀,当腐蚀率不达标时,应首先检测溶解氧浓度。一般情况要求,油田污水溶解氧浓度小于0.05mg/l,特殊情况不超过0.1 mg/l,清水中的溶解氧含量要小于0.5 mg/l。(2)Fe。当水中含亚铁离子时,由于铁细菌作用可将二价铁离子转化为三价铁离子,生成氢氧化铁沉淀,当水中含硫化物H2S时,可生成Fe2S沉淀,使水中悬浮物增加。(3)H2S。油田污水中硫化物含量应小于2.0 mg/l。(4)侵蚀性CO2。水中侵蚀性CO2含量等于零时,稳定;大于零时,可溶解碳酸钙垢,并对设施有腐蚀作用;小于零时,有碳酸盐沉淀析出。一般要求侵蚀性CO2含量≤1.0 mg/l。

4改进设想

4.1 5000方进水水罐改进设想将氮气通过溶气泵打入5000方水罐,加快悬浮原油上升速度,提高出水水质,减轻气浮工作强度。

4.2污水流程的改进设想。针对气浮到滤罐流程重复利用率超高的问题:现有流程中污水池与污油池是隔离非直接连通的两个方形池,当污水静置到一定时间后,污油池启动收油泵去计量岗的储油罐,而污水池产生的油层通过污水回收泵重新打入气浮装置,重新进入流程。为此,我们设想将污水池连通阀关闭形成两个单独的污水池,将气浮和截矮罐收油直接进一污水池,增加污油回收池容量,便于快速收油。将原来污水回收泵出口加装管线连接到现污油回收管线上,由原来20 m3/d螺杆泵改为150m3/d的螺杆泵,提高了污油回收速度。

4.3污水池的处理原理改进设想

针对污水流程末端的处理原理单一的问题:海三联现将200m3污水池,为露天池,自然静置沉降脱水,脱水率低而且有时因为酸化油不好处理导致来水含油量极高。为保证污水池的水质达标,设想将露天污水池改进为厌氧(水解酸化)――好氧(接触氧化)处理工艺,两种原理介绍如下:采用厌氧(水解酸化)――好氧(接触氧化)处理工艺。厌氧停留时间10h,好氧停留时间12h,每天投加0.5kg菌种,定期投加尿素作营养素。水解酸化池主要是针对BOD5/CODcr值低,污水可生化性很差的特点,通过厌氧菌的作用使污水中的大分子、难降解有机污染物转化为小分子、易降解的有机物,提高污水的可生化性,确保好氧处理单元的正常运转。通过厌氧菌的作用,去除水中的部分S2-,并吸附降解部分油,降低对后续好氧工艺的冲击。接触氧化工艺综合了曝气池和生物滤池两者的优点,是一种具有活性污泥法特点的生物膜法处理构筑物。它采用与曝气池相同的曝气方法,提供微生物氧化有机物所需的氧量。又相当于在曝气池中添加填料,供微生物栖息。具有微生物浓度高,生物活性高,容积负荷高,有机物去除效果好,污泥产量低不需污泥回流,运行管理简单和占地面积小等优点。在好氧池内,可溶的小分子有机物作为好氧菌的营养物质,在好氧细菌的繁殖生长过程中,有机物最终被转变为CO2和水,达到无机化的目的。氧化塘出水可以稳定达到国家二级综合排放标准。

4.4收油设备的改进设想。针对收油设备能力不足的问题,可以用无极变速螺杆泵代替现有普通螺杆泵,螺杆泵因其有可变量输送、自吸能力强、可逆转、能输送含固体颗粒液体的特点,在污水处理中被广泛应用。

4.5气浮装置的改进设想。(1)气浮装置的电动出口阀加装UPS延迟断电时间,发出停电警报,留有30分钟操作时间,避免溢罐的事故。(2)现有气浮装置制气泡的原料是氮气,如果加电解法改进装置就可以用水做原料产生气泡,电解法气浮原理是:该法用小间隙、高流速旋转电极装置对废水进行处理,对于去除乳化油及一些高分子有机物质的效果良好。电解法主要有电解气浮法和电解絮凝法。前者利用电解水产生的氧气和氢气形成微气泡,进行气浮。由于气泡微小,能够去除较小的油珠和悬浮粒子,废水处理后可用于回注。后者采用消耗性电极,外加电压使电极氧化释放出金属离子,释放出的金属离子的水解产物具有混凝作用,要求被处理的废水有足够的导电性,以使电解池能进行正常工作,并防止电极钝化。(3)气浮回收槽管线加装管道泵,提高污油回收速度。

污水处理流程篇5

    关键词:水解酸化 抗生素废水 序批式活性污泥系统(SBR)

    中图分类号:X78 文献标识码:A 文章编号:1674-098X(2011)01(b)-0103-01

    抗生素的工业产生的废水它的最大特点就是污染物浓度高、残留的抗生素大都具有很强的生物毒性,加上它的色度大、组成成分比较复杂,很多年以来一直困扰着工业废水处理行业,它属于典型的难以处理的污水类型。本文总结了北京万邦达环保技术股份有限公司在一些重大污水处理工艺中的具体案例,采用气浮-水解酸化-UBF-SBR工艺处理高浓度抗生素废水,分析了在不同的工艺处理条件下的处理效果。

    1 工艺流程

    在工艺流程中为了确保生物处理环节的有效性,再加上工业污水的水质复杂不均以及pH值变化过大,所以在工艺设置上,多采取中和调节-沉淀-气浮预处理的工艺流程来降低SS浓度和调节pH值的大小。通常还根据工业废水的污染物杂质的浓度过高,导致了可生化性逐渐降低的趋势,我们选择了水解酸化的工艺流程以便有效地提高废污水的可生化性,为提高后继的处理环节中污染物的除去率目的。

    2 工艺选择

    2.1 气浮药剂用量

    经过一些学者的实验和研究,目前已经出现了很多种的气浮药剂,据试验的数据显示,这些药剂处理高浓度的抗生素工业废水的能力都得到了很高的SS与CODCr去除率,国内的有些学者才用分散型水介质阳离子PAM处理SS浓度68500mg/L,CODCr浓度50000mg/L硫酸庆大霉素制药厂所产生的废水,SS与CODCr的去除率分别高达到98.7%和75.9%。与它不同的是本工艺流程处理中对气浮药剂的选用是采用聚合氯化铝和阳离子型的PAM。聚合氯化铝配制浓度为1%,PAM配制的浓度为0.03%,将配置好的聚合氯化铝分别加入浓度200mg/kg, 150mg/kg,100mg/kg,把PAM分别加入浓度为10mg/kg,5mg/kg,3mg/kg,然后进行气浮药剂的实验,测定出、进水中SS和CODCr浓度。

    2.2 水解酸化

    水解酸化工艺流程主要是通过对控制污水的酸度、停留时间将厌氧消化反应控制在酸化和水解阶段。它是利用产甲烷菌与产酸菌的世代周期、pH值以及生存环境等条件的不同,经过水解酸化的不断处理,流出的工业污水中那些较为难以分解的一些大分子就会逐渐降解为一些比较容易分解的小分子颗粒,从而确保了抗生素生化毒性的降低,保证了废水的可生化性提高的可能。本文阐述的水解酸化的工艺流程中设置了2个5m×5.3m×5.3m的反应器,他们的有效容积达到120m2;每一个反应器底部3.4m~1.5m处设有XY型弹性的药剂填料层,填料占空间占整个反应器容积的40%左右,当水解酸化的反应器里面布设了填料,既可以通过挂膜的方法,进行废水的上流过程中所产生的水解酸化程度的不断提高;同时还可以阻留和过滤细小的轻质杂质污泥,从而大大降低了出水COD浓度、SS以及污泥的流失率。然后通过2台抽水泵的运行,不断地向2个反应器中注水,让气浮后的工业废水能够在水解酸化的反应器中长时间的停留,停留最佳时间为分别为26h、13h、6.5h。然后在测定出、进水中的NH3-N、BOD5、CODCr浓度以及出水中的所有的有机挥发酸(VFA)的浓度。

    2.3 SBR负荷

    SBR工艺流程具有厌氧与好氧两个过程不断交替进行,它的优点是耐冲击负荷性能强、脱氮除磷处理效率高、各工序可根据水量、水质灵活调整,无须二沉池、占地省、工艺流程简单、造价低等特点。它主要是用于那些间歇排放以及小流量污水处理工程。高浓度的抗生物废水通常都是采用好氧-厌氧等多种方法进行联合处理,好氧性反应器的主要作用就是进一步地处理那些在厌氧环节中出水,使其能够达标排放标准。本工艺流程中对SBR采用了2个5.2m×6.3m×5.4m的反应器,他们中最大的有效容积为125m3;污泥的浓度高达2000mg/L;排出比为35%。排水1h,沉淀1h,进水1h,通过不断地加入自来水或调节池的储水,就可以调节进水COD浓度分别为1500mg/L,1000mg/L,通过调整操作的时间分别是8h,6h,4h,可以调整污泥负荷0.05kgBOD/kgSS·d~0.2 kgBOD/kgSS·d,测定在不同条件下出、进水的NH3-N、BOD5、CODCr浓度,以确定SBR对负荷的承受能力。

    3 结论

    运用气浮-水解酸化-SBR工艺处理硫酸卷曲霉素是切实可行的,不同负荷处理结果表明系统抗冲击性能较好。本工艺较适宜的运行条件为:气浮工艺PAM浓度5mg/kg、聚合氯化铝浓度100mg/kg;水解酸化反应器废水停留时间13h;SBR反应器污泥负荷为0.14kgBOD/kgSS·d。在此参数下运行,出水水质能够达到COD<150mg/L、BOD5<50 me,/L、NH3-N<20mg/L。

    参考文献

污水处理流程篇6

关键词:污水处理厂;排水体制过渡期;污水收集;深圳市

中图分类号:U664.9+2文献标识码: A 文章编号:

1 污水处理厂现状及存在问题

1.1 污水处理厂现状

深圳自1979年建市以来,在原特区内城市开发建设的同时,先后建成了滨河、罗芳、盐田、南山等污水处理厂及其配套管网系统,初步建立了分流制排水体系,为水污染治理工作打下了良好的基础。而占全市80%以上的原特区外区域,由于城市化进程不同,行政管理模式不同等原因,致使其城市基础设施相对滞后,污水管网相当部分仍为合流制排水体系。

为了有效治理深圳市水污染状况,改善水环境质量,保护水资源,实现深圳市经济与社会可持续发展战略目标,加快原特区外区域的水污染治理步伐,深圳市政府于近年决定采用BOT模式[1]兴建原特区外的福永污水处理厂、公明污水处理厂、燕川污水处理厂、鹅公岭污水处理厂、埔地吓污水处理厂、平湖污水处理厂扩建工程、横岗污水处理厂二期工程、龙田污水处理厂扩建工程、沙田污水处理厂和上洋污水处理厂共十座污水厂(以下简称福永等十座BOT污水处理厂)。

1.2 存在问题

福永等十座BOT污水处理厂所在区域的现状污水收集系统处于分流制与合流制排水体制并存状态,且短期内难以完全实现分流制排水体制。污水处理厂建成后,主要存在以下问题:

⑴污水收集系统中主干管建设完成后,涉及到千家万户的支干管却短期内难以完善;致使污水进水总管中收集到的污水量往往非常小,难以满足污水厂的正常运营。

⑵未收集到的部分污水仍然沿着合流制雨水管网、排水沟渠排入河道,致使大部分河流存在不同程度的污染。

通过分析可以预测,由排水体制合流制与分流制并存过渡至完全分流制尚需较长的时间,或许10年甚至更长。那么,如何收集过渡期的合流制污水就成为深圳市水污染治理的难点。同时,也成为污水处理厂能否正常运行的“瓶颈”,充分利用污水处理厂处理能力、减少污染物排放的关键环节。

一般过渡期合流制污水收集可采取河道总口截污和河道排污口点式截污两种型式。点式截污工程实施周期长、难度大,且往往牵扯到河(渠)道两岸的征地拆迁;而总口截污工程施工周期短、污水收集效果立竿见影。因此,在排水体制过渡期,具有排污功能河(渠)道往往采取总口截污型式进行污水收集。

2 实例分析

2.1 基本情况

福永等十座BOT污水处理厂包括珠江口流域的福永污水处理厂(12.5万吨/日)、茅洲河流域的公明污水处理厂(10万吨/日)、燕川污水处理厂(15万吨/日)、观澜河流域的鹅公岭污水处理厂(5万吨/日)、埔地吓污水处理厂(5万吨/日)、平湖污水处理厂扩建工程(5.5万吨/日)、龙岗河流域的横岗污水处理厂二期工程(10万吨/日)、龙田污水处理厂扩建工程(5万吨/日)、沙田污水处理厂(3万吨/日)以及坪山河流域的上洋污水处理厂二期工程(18万吨/日)。设计污水处理总规模89万吨/日,污水处理厂出水标准全部达国家一级A排放标准。

为保障上述污水处理厂的正常调试和运营,污水收集均采用在污水处理厂上游河道进行临时取水的工程措施。河道临时取水措施通过拦河堰(闸)壅水使河道污水汇入污水进水总管中,最终排入污水处理厂处理。

2.2 工程实例分析

本文取埔地吓污水处理厂河道临时取水工程、鹅公岭污水处理厂河道临时取水工程和上洋污水处理厂河道临时取水工程三座较为典型的临时取水工程从工程布置、污水收集效果和运行管理情况进行分析。

2.2.1 埔地吓污水处理厂河道临时取水工程

埔地吓污水处理厂位于深圳市龙岗区下李朗东区的埔地吓,东临白泥坑水、南靠李朗河。设计规模为5.0万m3/d。

⑴临时取水工程布置分析

本工程系简易取水方案,在临时取水口下游位置设置拦河闸坝和控制闸门等设施,新建取水口和污水管道。其工程布置见图1。

图1埔地吓污水处理厂临时取水工程布置图(据[2])

本取水口位于李朗河最下游,为避免上游出现洪涝,拦河闸坝的坝顶高程不能设置过高,取水口管道底高程与河底高程基本相平。为防止拦河闸坝阻水,设置闸门拦水,洪水期间开启闸门泄洪。

⑵污水收集效果分析

埔地吓污水处理厂2011年9~2012年12月的各月污水处理量运行参数见表1。埔地吓厂河道临时取水工程于2012年3月底竣工并开始取水。

表1埔地吓污水处理厂污水处理量各月运行参数表*

*: 表中数据来源于埔地吓污水处理厂水量监测数据

对比表1中两年的10月份、11月份和12月份污水处理量,可知从河道拦河取污水入污水处理厂后,埔地吓污水处理厂处理量增加约2万m3/d。

⑶运行管理情况分析

①本工程建成后,达到了预期效果,旱季污水全部收集至污水处理厂处理,运行状况良好。

②取水口淤积较快,清淤频率高,运行数月后仅剩污水基槽过流。由于取水口管底与河底基本在同一高程,雨季时控制闸门关闭不及时污水管道淤积严重。

③考虑到临时工程和经济的原因,闸门为人工控制木闸门,在洪水期间操作时既不方便也不安全。

④管道及接驳井清淤时,由于接驳井井筒、井盖均采用标准化井筒、井盖,仅能进行人工清淤。接驳井井深为5m,且布置于边坡上,造成清淤难度很大、进度缓慢。

2.2.2 鹅公岭污水处理厂河道临时取水工程

鹅公岭污水处理厂位于龙岗区鹅公岭工业区雁田水库溢洪道下游,北侧为鹅公岭河。设计规模为5.0万m3/d。

⑴临时取水工程布置分析

本工程在取水口上游设置截污格栅堰、积沙斗,下游设置截污闸堰;在取水口位置设置截流槽、控制闸门等设施;新建取水口和污水管道。其工程布置见图2。

图2鹅公岭污水处理厂临时取水工程布置图(据[3])

本取水口位于鹅公岭河下游区间,为避免上游出现洪涝,截污闸堰的坝顶高程不能设置过高,取水口采用下沉式截流。上游设置截污格栅堰拦截漂浮物,设置积沙斗沉积泥沙;取水口位置河道截流槽导流污水入污水管网;下游设置截污闸堰拦截污水。为防止拦河堰阻水,设置活动式的闸门(格栅)拦水,洪水期间开启闸门(格栅)泄洪。

⑵污水收集效果分析

鹅公岭污水处理厂2011年9~2012年12月的各月污水处理量运行参数见表2。鹅公岭厂河道临时取水工程于2012年5月中旬竣工并开始取水。

表2鹅公岭污水处理厂污水处理量各月运行参数表*

*: 表中数据来源于鹅公岭污水处理厂水量监测数据

对比表2中两年的10月份、11月份和12月份污水处理量,可知从河道拦河取污水入污水处理厂后,鹅公岭污水处理厂处理量增加约2万m3/d。

⑶运行管理情况分析

①本工程建成后,运行状况良好,旱季污水能全部截流。

②截污格栅堰前漂浮物不及时清捞容易堵塞。

③洪水期间,截流槽容易淤积;闸门关闭不及时污水管道容易淤积。

2.2.3 上洋污水处理厂河道临时取水工程

上洋污水处理厂(一期工程)设计规模为4万m3/d,于2005年建设完成,出水标准达国家一级B排放标准。在满足出水水质达国家一级A排放标准要求的前提下,上洋污水处理厂(一期工程)仅可处理污水水量2万m3/d。

上洋污水处理厂(二期工程)设计规模为18万m3/d,一期工程分流的2万m3/d和新增的16万m3/d的污水。

上洋污水处理厂总设计规模为20万m3/d。

⑴临时取水工程布置

本工程在取水口下游设置拦河闸堰;利用原有的污水溢流口作为取水口。其工程布置见图3。

图3上洋污水处理厂临时取水工程布置图(据[4])

本取水口利用原有的污水溢流口进行相应的改造,取水期间吊起溢流口拍门,洪水期间放下拍门。由于石溪河该段河势低洼,且周边为滞洪区,拦河闸堰未设置泄洪闸门,仅设置检修闸门。

⑵污水收集效果分析

上洋污水处理厂2011年9~2012年12月的各月污水处理量运行参数见表3。上洋污水处理厂(二期)河道临时取水工程于2012年5月底竣工并开始取水。

表3上洋污水处理厂(二期)污水处理量各月运行参数表*

*: 表中数据来源于上洋污水处理厂水量监测数据

对比表3中两年的10月份、11月份和12月份污水处理量,可知从河道拦河取污水入污水处理厂后,上洋污水处理厂处理量增加约4~7万m3/d。

⑶运行管理情况分析

①本工程建成后,运行状况很好,旱季污水能全部截流。

②运行期间管道无任何淤积。拦河闸堰前淤积每年清淤一次即可,管养简单。

3 河(渠)道取水的实施原则

根据已实施的工程实例及运行情况,归纳出河(渠)道取水的实施原则主要如下:

⑴拦河闸堰的布置与规模需经防洪影响评价论证及优化,且通过水利主管部门的审批通过后实施,以确保河道安全与截污取水的合理性。

⑵进水管道与原有污水总管或污水厂集水井接驳时,为不影响污水厂正常运营,须制定可行的接驳施工组织方案,尽量结合污水处理厂检修期间实施。若在不停水期间施工,必须与污水处理厂密切联系,尽量加大泵站抽排力度以降低水位。

⑶河道取水口的高程应适当高于河底主槽,并根据河流泥沙情况取值,建议一般高于河底0.5m以上,以防止进水管道的淤积。

⑷进水管与污水总管接驳井的埋深一般较深,其检查井的尺寸应以清淤机械和人员能便利地操作为原则。

⑸拦河闸坝的泄洪闸宜设置为自动控制闸门,以洪水期间能安全、方便地操作为原则,建议采用橡胶坝作为主要闸坝型式。

4 结语

排水体制过渡期污水收集是项艰难的任务,需根据当地实际情况采取多项工程措施后才能妥善解决。深圳多座污水处理厂河道取水工程实例表明:排水体制过渡期,污水处理厂从河(渠)道内采取总口截污取水系污水收集有效、快捷途径之一。通过河道取水的实例分析,归纳出河道取水的实施原则,供未来同类工程实施时借鉴。同时也论证了污水处理厂从河(渠)道内取水方案可在少雨地区进行推广。

参考文献

[1]中共深圳市委员会. 深圳年鉴(2010)[M]. 深圳:深圳市史志办公室,2010.

[2]深圳市水务工程建设管理中心,深圳市水务规划设计院. 埔地吓厂外配套工程―进水临时接驳工程施工图. 2011.

[3]深圳市水务工程建设管理中心,深圳市水务规划设计院. 鹅公岭污水厂厂外配套工程―进水临时接驳工程施工图. 2011.

[4]深圳市水务工程建设管理中心,深圳市水务规划设计院. 上洋污水厂厂外配套工程―进水临时接驳工程施工图. 2011.

污水处理流程篇7

关键词: 金平 污水处理改良型Carrousel氧化沟

中图分类号:TE08文献标识码: A

1、工程方案

a、工程规模

一期(2013年):0.8万m3/d,二期(2020年):1.2万m3/d ,总变化系数Kz=1.6

b、设计进水水质

根据业主提供的水质基础资料及《金平县城市污水处理厂及配套管网工程可行性研究报告》及批复,本工程设计进水水质确定为:

BOD5=130mg/LCODcr=250mg/LSS=180mg/L

T-N=30-35mg/L T-P=4mg/LPH=6~9

c、设计出水水质

污水厂出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级标准的B标准,即

BOD5≤20mg/LCOD≤60mg/L SS≤20mg/L

T-N≤20mg/LNH3-N≤8mg/L T-P≤1mg/LPH6~9

d、污水处理厂厂址

拟建污水处理厂位于云南省红河州金平县城规划区末端,金平河西岸的双金桥附近,紧靠金平县城至金水河口岸的公路旁东侧。厂区总占地面积约21.12亩,同时考虑长远规划,预留了二期(2020年)1.2万m3/d规模控制用地。绿化率43.92%。

e、尾水排放水体

污水厂尾水就近排入金平河。

f、污水、污泥处理工艺方案

根据可研报告的方案比选及可研报告的批复文件,污水处理方案按改良Carrousel氧化沟生物脱氮除磷工艺进行设计。污泥处理方案推荐按机械带式浓缩脱水一体机进行设计。

g、主要生产构筑物

节流井、粗格栅及提升泵房、细格栅渠及旋流沉砂池、改良Carrousel氧化沟、加药间及鼓风机房、紫外线消毒渠、污泥储池及回用水池、污泥脱水间。

h、设备选型

污水处理生化池的曝气机、潜水搅拌机和潜水泵、紫外线消毒设备、污泥脱水系统设备拟从国外进口,其余设备采用国产优质产品。

i、运行管理

采用国内外先进的PLC计算机系统进行自动控制和管理。控制系统由中心控制室和现场PLC子站组成。

2、方案特点

a、工艺方面

・推荐改良Carrousel氧化沟污水处理工艺,其技术先进成熟、处理效果好、出水水质稳定、运行稳妥可靠、灵活性强、操作维护管理简便、运行成本低、投资省。

・污泥处理采用技术先进的机械带式浓缩脱水一体机,不设重力浓缩池,避免磷的厌氧释放,确保生物除磷效果,同时减少了占地面积。

・工艺流程中不设初次沉淀池,节约占地。

b、设备选型

・污水泵、污泥回流/剩余泵采用潜污泵,可靠性高,维护工作量小,寿命长,且效率高。

・曝气采用先进的爱尔氧曝气搅拌一体机,可根据池内溶解氧的情况调节运行方式,运行能耗低。

・污泥浓缩脱水机采用一体化带式机,具有脱水效果好、运行能耗少、价格低等优点。

c、总平面布置

・厂区功能分区明确、布置紧凑、管理方便、占地面积小。

・进、出水方便、工艺流程顺畅、管道迂回少、水头损失小。

・全厂绿化面积43.92%,污水厂四周围墙边设有绿化隔离带,污水厂对周围环境影响较小,通过厂区环境和绿化设计,使污水厂成为一个园林式的工厂。

3、地震设防烈度

本工程所在地为云南省红河州金平县,地震设防烈度为7度。

4、防洪标准

本工程位于藤条江的一级支流金平河旁,防洪标准按高于50年一遇洪水位标高(1148.10m)设计场地高程为1154.00m。

5、工程合理使用年限

本工程根据国家有关规范、标准,合理使用年限为二十五年。

6、设计范围

本工程项目设计范围:污水处理厂1座和约30.19km配套管网系统。

污水处理厂包括围墙范围内的污水处理、污泥处理、尾水排放及其它附属构(建)筑物。城区配套管网包括金平河两岸截污干管(含一座厂外提升泵站)及河西城区二级管网。

7、工艺流程分析及说明

(1)方案工艺流程

根据改良型Carrousel氧化沟工艺的特点,预处理不须设初次沉淀池;根据建设部《城市污水处理》(JB99-103)中有关条文规定,污水经二级处理后应消毒后方可排放。本工程设有消毒紫外线消毒渠。

针对T-P出水指标,在设计中考虑了投加Fe+盐进行化学辅助除磷的工程措施, 加药装置设于加药间内,投加于氧化沟出水管。

(2)工艺流程阐述

城市污水首先经过节流井,再自流至进水泵房前的粗格栅,由提升泵房抽升后送至旋流沉砂池,池前的进水渠道上设置反捞式细格栅,以保证后续处理构筑物的正常运行。以上部分主要去除水中的悬浮物或漂浮物以及砂粒,为污水的预处理阶段。

污水经沉砂后配水到改良型Carrousel氧化沟,该池由预反应区(选择区),厌氧区,兼氧区和主反应区组成。回流污泥泵和剩余污泥泵安装在氧化沟出水端的污泥井内。污泥回流至选择区。出水经沉淀池泥水分离后直接进入紫外线消毒渠消毒后,排入金平河。剩余污泥由泵送入储泥池,然后进入污泥浓缩脱水机房进行机械浓缩脱水、泥饼外运、卫生填埋。

8、构筑物及设备选型

(1) 粗格栅及提升泵房

机械粗格栅按驱动方式分为臂式、链式、钢索牵引式和回转式。本工程推荐采用回转式格栅除污机系列的反捞式格栅除污机,其特点是构造简单,运动部件位于地面,维护简单,运转稳定可靠。

进厂污水需经提升至处理系统,处理后重力排放。污水提升泵选用潜污泵,湿式安装,因其具有节省土建费用、安装方便、操作简单、运行可靠、易于维护等优点,故推荐采用潜水泵形式。泵房为矩形。

(2)沉砂池

沉砂池主要去除污水中密度为2.65t/m3、粒径大于0.2mm的砂粒,使无机砂粒与有机物分离开来,便于后续生物处理。

沉砂池有平流式、竖流式、曝气式和旋流式四种形式。平流式沉砂池具有构造简单,处理效果较好的优点;竖流式沉砂池处理效果一般较差,而且仅适用于规模很小的污水厂;曝气沉砂池通过向池中鼓入空气而产生旋流,使砂粒间产生摩擦作用,可使砂粒与悬浮性有机物得以分离,且不使细小悬浮物沉淀,便于砂粒和有机物的分别处理和处置;旋流沉砂池是通过机械搅拌产生水力旋流,使泥砂和有机物分离,以达到除砂目的。四种形式沉砂池有各自不同的适用条件,其选型应视具体情况而定。从效果看,曝气和旋流式要优于平流式和竖流式,由于本工程二级处理采用改良型Carrousel氧化沟工艺,其对预处理部分无特殊要求,为避免增加设备,减少运行管理工作量,本设计推荐采用旋流沉砂池。

沉砂池进水渠道上设置的细格栅有弧形、齿耙式、阶梯式、转鼓式等形式,虽然转鼓式细格栅具有过水断面大、栅条间隙小等优点,但考虑到价格较贵,故本次设计推荐采用齿耙式细格栅,栅条间隙采用4mm。

(3)氧化沟

氧化沟是污水处理厂内的主体构筑物,改良型Carrousel氧化沟采用选择区、厌氧区、缺氧区和主反应区组合后在一起的跑道形水池。表面曝气,充氧动力效率为2.1kgO2/kw.h。

(4)沉淀池

沉淀池选用周边进水周边出水辐流沉淀池,根据池径选用中心传动刮泥机。

(5)消毒

城市污水经二级处理后,水质改善,但仍可能含有大肠杆菌和病毒。根据《城镇污水处理厂污染物排放标准》(GB18918-2002),污水处理厂出水粪大肠菌群须小于10000个/L。因此,排入受纳水体前需消毒。消毒选择经济适用的紫外线消毒。

污水处理流程篇8

【关键词】城市工业;污水处理;回用规划

1 城市工业的基本污水处理方法

工业污水的水质和回用目的确定以后,可以选择不同的处理方法,使工业污水达到不同的处理程度。每种污水处理方法都有各自的特点和适用条件,在实际应用中,单纯使用某一种处理方法通常难以使污水中的全部污染物都被除去。为了达到预期效果,往往是几种方法配合使用而构成一个较大的系统。这些系统可以分为以下几种:一级处理:去除污水中较大的悬浮物质。一级处理主要使用物理法,一般污水经一级处理后仍达不到排放或回用要求,须进行二级处理。二级处理:去除污水中溶解的和呈胶体状态的有机物质。二级处理通常使用生物法,所以也被称作生物化学处理。经二级处理后的污水基本上可以达到排放要求,也可以满足部分用途的回用需求。三级处理:也叫深度处理,可进一步去除污水中的营养物质(氮和磷)、生物难降解的有机物质和溶解盐类。经深度处理后的污水水质较好,可直接回用于工业,是进一步去除常规二级处理所不能完全去除的污水中杂质的净化过程。有一些污染物质,如营养型无机盐氮磷、胶体、细菌、病毒、微量有机物、重金属以及影响回用的溶解性矿物质是二级处理不能完全去除的。因而需要选择一些单元技术进一步对二级出水进行后续处理。为了满足回用的水质要求,或者为了满足排放标准中某些指标(如对磷)的要求,深度处理提上了议程,它已是污水处理整套技术的重要组成部分。

城市污水深度处理的基本单元技术有:混凝(化学除磷)、沉淀(澄清、气浮)、过滤、消毒。对水质要求更高时还可以采用活性炭吸附、 反渗透、除氨、离子交换、折点加氯、电渗析、臭氧氧化等,或者使用一种或几种的组合。

2 城市工业的污水回用

2.1 工业用水

城市污水处理厂二级处理出水回用于工业循环冷却用水的主要处理工艺流程如下:①城市污水处理厂二级处理出水混凝沉淀 过滤消毒回用;②城市污水处理厂二级处理出水生物接触氧化法混凝沉淀过滤回用;③城市污水处理厂二级处理出水 微絮凝过滤消毒回用;④城市污水处理厂二级处理出水淹没式生物滤池消毒回用。

2.2 城市杂用水

城市污水处理厂二级处理出水回用于城市杂用水的主要处理工艺流程如下:①城市污水处理厂二级处理出水微絮凝过滤消毒回用;②城市污水处理厂二级处理出水混凝沉淀过滤消毒回用;③城市污水处理厂二级处理出水淹没式生物滤池消毒 回用;④城市污水处理厂二级处理出水生物接触氧化法混凝沉淀过滤回用。

2.3 河道生态用水

针对河流污染严重,且河流湖泊常出现缺水断流现象,影响城市美观与居民生活环境。回用水用于景观水体时要注意水体的富营养化及回用水中存在的病原体和优先毒性有机物对人体健康和生态环境的危害。目前用于河道的回用水主要处理工艺流程如下:

①城市污水处理厂二级处理出水砂滤消毒排放;②城市污水处理厂二级处理出水微絮凝过滤消毒回用;③城市污水处理厂二级处理出水混凝沉淀过滤消毒回用;④城市污水处理厂二级处理出水淹没式生物滤池消毒回用;⑤城市污水处理厂二级处理出水生物接触氧化法混凝沉淀过滤回用。

3 城市工业污水回用规划

3.1 回用方式

污水回用的方式大致可分为两种,即分散回用和相对集中回用。分散回用是指在单个或某几个建筑物中设置中水系统,将自身排出的污水经处理后再回用。相对集中回用是指以全市为区域,利用城市污水处理厂处理后的出水,再作适当深度处理 ,送入城市中水管网,分配到各个用户。分散回用最大的优点是可根据不同的回用对象,不同的水质要求,确定灵活的处理工艺,节约费用;另外,就地回用可以大大节约输水管线。而集中回用,主要是可提高规模效益,便于宏观管理。目前,国内一些试用过中水的城市,北京、青岛、大连、广州、深圳等地基本上是以单个建筑物设置中水回用系统为主。采取两种方法相结合的方式,中水系统从服务范围可分为以下三类:①建筑中水系统,是在大型建筑物或建筑群中建立的中水系统。建筑中水系统多收集杂排水,处理站一般设在裙房或地下室,中水作为冲厕、洗车、道路保洁、绿化等使用。②区域中水系统,是在建筑小区或院校、机关大院内建立的中水系统。小区中水可采用多种原水类型(就近污水处理厂出水、工业相对洁净排水、小区内杂排水、生活污水、雨水等)。针对雨水系统,通过建筑屋面、绿地、路面、运动场地、停车场等对雨水进行收集。对于屋面雨水可以采用以下处理工艺流程:屋面雨水滤网初期雨水弃流景观水面。而当对水质有较高的要求时,应增加如下的深度处理措施:混凝、混凝过滤、浮选、生物工艺、深度过滤。此外,回用雨水应设有消毒工艺,最常见的为氯化消毒。这样处理工艺流程就变为:屋面雨水滤网初期雨水弃流蓄水池自然沉淀混凝过滤消毒供水调节池。对于路面径流,因其水质较之屋面雨水更差,应进行实地雨水水质调研,在上述工艺流程的基础上增加相应的深度处理以达到城市杂用水水质标准。同时,可以考虑通过绿地植被对雨水水质进行净化。③城市中水系统,我国称污水回用系统,是在整个城市规划区内建立的污水回用系统。城市污水回用系统以生活污水为原水,经过污水处理,再进行深度处理,回用于城市工业冷却、城市河湖补水和城市清洁道路绿化等用水。以上三种类型,第一种和第二种即为分散回用方式,第三种属于相对集中回用方式。

3.2 分散回用规划

单独循环方式是指在单体建筑物中建立污水处理和回用设施,将单体建筑物产生的一部分污水处理后作为中水进行循环利用。这种方式不需要在建筑物外建立污水管道,容易实施,但其处理费用较高。如在小区内、工厂内等,均可以采取这种回用方式。随着经济的不断发展,城市面积的不断扩大,小区或工厂污水排放也随之增加,利用大型污水管道截流至城市污水处理厂集中处理的要求也越来越高。而建立大型污水管道截流工程投资大、工期长。现有的市政管网大部分还远远没有达到这种截流要求。因此,现有的住宅生活小区或工厂自建生活污水站,处理生活污水达标后,排放至市政管网或回用是解决现有污水排放和污水资源回收最行之有效的手段。

污水处理流程篇9

[关键词]石化行业;节水减排;源头控制;污水回用

中图分类号:X741.035 文献标识码:B 文章编号:1009-914X(2016)28-0358-01

1 石化污水的特点及处理流程

1.1 污水排放量大

石化企业是工业耗水量较大的行业之一,约占全国工业取水量的5%左右,而废水排放量约占全国工业废水排放量的4.2%。伴随着企业生产规模的日益扩大,污水排放量大成为石化企业污水的特点之一。

1.2 污水水质复杂

石化企业由于生产的产品流程较长,生产装置又多,在生产过程中因切水、设备泄漏等排出的污水中含有的有机污染物众多,且含有一定毒性。根据成分不同,污水可分为含油污水、含硫污水、含碱废水、含盐污水、含酚废水、生产废水和生活污水,污水的多样性给后续处理带来了一定的难度。因此,石化企业废水是工业污水中比较难处理的水质之一。

1.3 污水水质变化大,冲击性强

由于石化企业污水具有量大、变化快、水质复杂且具有毒性的特点,因此任何水量、水质的波动都有可能给后续处理设施造成冲击,导致污水处理系统瘫痪(尤其是生化系统污泥大量死亡),需要一定的时间来恢复。

1.4 主要的污水处理流程

随着石化企业生产规模日益扩大,为降低生产成本而导致的原油劣质化趋势越来越大,造成石化废水水质不断恶化,传统的“老三套”处理流程(即隔油-浮选-生化)已难以满足处理需要,而国家污水排放标准的不断从严和环保执法力度的逐步加大,造成企业外排污水达标困难,因此石化污水处理流程通常采取大马拉小车―通过加大设计能力来提高污水处理系统的耐冲击能力,加长处理流程―有些企业甚至采用三级生化来提高处理深度,确保外排废水达标。石化企业污水处理系统一般分为预处理和生物处理。为了确保生化处理的平稳性和效果,预处理非常重要。

2 污水资源化探讨

2.1 持续推行清洁生产,加强源头控制

采用源头控制是实现污水资源化的重要措施,不仅可以节约新鲜水,而且可以减少污水的产生量,减轻污水处理系统的压力,提高处理合格率,为污水回用创造良好的条件。目前,国内一些石化企业在清洁生产以及源头控制方面已经取得了很好的效果。例如:用加氢精制工艺取代传统的碱洗电精制工艺,以柴油产品精制为例,传统的柴油碱洗电精制装置的污水产生量为0.1t(水)/t(油),而采用加氢精制工艺后,污水产生量仅为0.025t(水)/t(油),削减率达到75%,减排效果明显;采用间接冷却和空冷技术代替直接冷却和水冷技术,可以减少水冷设备的蒸发损失与飞溅损失;实现装置间的热联合,回收低温余热,可以减少冷却设备,进而减少循环水的使用量。

2.2 做好污水的污污分流和分治工作,减轻污水

集中处理系统的压力石化企业基本上已做到清污分流,而污污分流和分治工作还需不断加强,后者不仅是污水达标排放的保证,更是污水资源化的需要。将含硫污水、碱渣污水、含盐污水和低浓度的含油污水进行彻底分流,并实现专线专输、专罐贮存、分质限量处理。特别是在装置停工期间,对于清洗容器排出的高浓度溶剂冲洗水,用槽车运至污水处理场专罐贮存设施,避免对污水处理系统的冲击。通过上游环保装置、设施的预处理(如污水汽提装置、湿式氧化装置以及电脱盐污水的预处理设施等)来降低污水处理系统的负荷,确保外排废水的净化深度,为污水资源化创造良好的条件。

2.3 合理应用水夹点技术,加深污水资源化程度

2.3.1 含硫污水的串级使用

石油炼制企业含硫污水的串级使用就是一个很好的水夹点技术应用的实例。以镇海炼化为例,该公司结合生产工艺注水水质的需求,将催化裂化装置分馏塔顶的含硫污水串级使用于富气洗涤水的注水,将常减压或其他非加氢型装置的含硫污水,串级使用于延迟焦化装置富气洗涤水的注水。通过含硫污水的串级使用,该公司不仅减少软化水的使用量将近30t/h,而且减少相对应的含硫污水的产生量。

2.3.2 汽提净化水的回用

含硫污水汽提装置是石化企业处理酸性水的唯一装置,通过加强酸性水的预处理如增设罐中罐+旋流除油器的组合工艺,降低酸性水中的油含量,为污水汽提塔的稳定高效运行打下好的基础,确保汽提净化水的各项指标稳定达标。目前石化企业已普遍将污水汽提净化水回用于电脱盐注水、加氢精制装置的空冷注水等,某些先进企业的回用率甚至可达85%左右,某些大型的石化企业一年的回用量可达到上百万吨。回用净化水不仅达到了节水的目的,而且直接减少了废水的排放量。

2.3.3 达标外排废水的回用

要最终实现外排污水的回用,必须提高外排污水水质。水质越好,回用的后续处理流程就越简单,回用成本越低。因此,石化企业要在抓好污染源头控制,减少上游装置污水产生量,做好污污分流、分质的基础上,努力提高污水处理场的净化能力和深度,降低外排废水的污染物浓度,为污水回用提供合格的水源,真正实现外排废水的资源化。根据目前石化企业的现状,达标外排废水回用可分为直接回用于机泵冷却水和焦化冷焦水,按外排水质情况选择经适度或深度处理后回用于循环水补水,以及经深度处理后回用于锅炉用水三类。适度处理主要用于处理丰水地区企业的达标污水,特别是水质较软的南方地区。一般经过强化生物处理,如膜生物反应器(MBR)、曝气生物滤池(BAF)等,再经过过滤、杀菌等后续处理,主要是进一步降低污水中的COD、氨氮、油类以及悬浮物,使水质达到《循环水水质控制标准》中规定的COD≤60mg/L,NH3-N≤10mg/L,石油类≤2mg/L以及SS≤10mg/L的指标,满足循环水补水的水质要求。

深度处理主要用于处理缺水或水质较硬地区企业的达标污水,主要目的是去除水中的盐分,降低电导率。根据目前的现状,通常采用预处理―超滤―反渗透脱盐的处理流程,因为流程比较复杂,处理费用较高。处理后的水质好于自来水,一般回用至锅炉用水。水质较硬的企业也可考虑将深度处理的污水部分回用到循环水补水,以降低补水中的盐浓度,提高循环水的浓缩倍数,减少排水量,达到节水减排的目的。目前一般深度处理的成本费用为5元/t,而水质较硬企业制取除盐水的费用达到6~10元/t,因此污水深度处理回用在北方还是有一定的经济效益,对于缺水地区而言,其社会效益和环境效益更大。

3 结论

实现石化企业节水减排,必须加强节水减排的宣传力度,提高全员的节水减排和水的忧患意识;通过制定切实可行的节水减排措施和管理制度,提高用水管理水平,将用水与排污作为一项重要的生产指标进行考核;企业在实行节水的同时要减排减污,否则随着污染物浓度的提高会使外排污水无法达标,污水回用亦无从说起。总之,要将优化污水处理系统与水资源化有机地结合起来,真正达到节水减排的目的。

参考文献:

污水处理流程篇10

关键词:污水处理厂 处理厂设计 技术要点

建设咸阳路污水处理厂是海河流域天津污水治理项目的重点工程.对于改善天津市西部地区和大沽口渤海海域的环境质量,对于开发利用污水资源,促进工、农、渔业的健康发展,具有重要作用,将会产生显著的社会效益和经济效益。

工程的内容包括厂内和厂外两部分。厂内工程的主体是规模为45万T/d的二级污水处理厂,配套一座720m3/d的污泥填埋厂;厂外工程包括雨污水管道21km和两座2.0T/S的污水泵站。工程估算12亿人民币,部分建设资金利用日本政府贷款。

进水水质指标,根据多年监测资料综合分析定为:

CODCr:400mg/l

BOD5:220mg/l

SS:220mg/l

NH3-N:40mg/l

TP:3.5mg/l

出水水质标准,根据出水满足农灌水质指标和排入渤海口达到三类海域的要求,执行国标〈污水综合排放标准〉中二级水质的规定。即:

CODCr:120mg/l

BOD5:30mg/l

SS:30mg/l

NH3-N:25mg/l

磷酸盐(以P计):1mg/l

1 污水处理工艺方案的选择

目前城市污水生化处理技术发展很快,工艺类型较多。除广泛采用的传统活性污泥法外,近年来国内外应用较多的有氧化沟法、A/A/O法、A/O法、A-B法、SBR法等。为了使咸阳路污水处理厂能够选择到最合适的处理工艺,按照因地制宜的原则,先排除不适用的处理工艺后,再对可以采取的处理工艺方案进行对比和优选。。

咸阳路污水处理厂具有处理规模大,地处天津市西郊区冬季气温低,且收水范围是已建成区,水量和水质比较稳定,冲击负荷不大的特点,按照各种处理工艺的适用条件,可以将SBR法、氧化沟法和A-B法排除,从而拟定出三个处理工艺方案。

第一方案:采用“以传统活性污泥法为基础的生物硝化方法,降解有机物和NH3-N,同时采用以化学法除磷”的综合处理工艺方案,简称“传统法”或“生物硝化法”。

生物硝化的工艺流程与传统活性污泥工艺流程一样,只是以去除BOD5为主的传统活性污泥工艺是中等负荷,而生物硝化工艺系低负荷或超低负荷。在曝气池内,BOD5被分解转化,有机氮同时被氨化成NH3-N,再与进水原有的NH3-N一起被硝化成NO3-N。

同步的化学沉淀法除磷,是在含磷污水中投加溶解度大、渣物少、易于控制的硫酸铁作为混凝剂,使正磷酸盐被置换成难溶的磷酸铁盐,沉淀后随剩余污泥排出,反应方程如下:

Fe(SO4)3+2PO3-42FePO4+3SO42-

化学法除磷运转控制灵活,可根据污水中磷的超标程度随时调整铁盐投加量,从而既保证出水中磷的含量达标也能节约污水厂运行成本。工程中一般按去除lg磷投加12g硫酸铁控制。

第二方案:生物除磷脱氮工艺(A2/O工艺)

以厌氧/缺氧/好氧即A/A/O系统为特征的生物除磷脱氮工艺。其中除磷是通过磷的厌氧释放和好氧吸附两个过程完成的,脱氮是通过好氧硝化和缺氧反硝化两个过程完成的,有机物的降解是在好氧曝气阶段完成的。

A/A/O工艺具有处理效率高,污泥沉降性能好,可以不设沉淀池和污泥消化池等优点。

第三方案;"A/O生物法除磷、生物硝化法脱氨、化学法降解滤液与上清液余磷"的处理工艺,简称A/O法。

表1 三个方案主要设计参数对照表 参数 方案 第一方案 第二方案 第三方案 污泥负荷(kgBOD/kgMLSS.d) 0.14 0.105 0.18 泥龄(d) 12 28 10 回流比 75% 100%(内回流比300%) 75% 水力停留时间(h) 6.6 14 7.5 MLSS(mg/L ) 3.0 4.0 3.0

以上三种工艺方案均能满足处理达标的要求,都是可靠的。剖析三种方案的机理,有机物的降解都是在好氧曝气阶段完成。污染因子氮的降解,在第一和第三方案中是通过生物硝化反应,利用它能自养微生物将污水中氨氮氧化成硝酸盐的过程。在天津东郊污水处理厂已经多次试验证明,在曝气池中只要污泥负荷降到0.2kg BOD/kg MLSS.D以下,曝气时间延长到4.5h以上,有机氮和氨氮氧成化NO3-N的效率可以达到50%~60%以上;第二方案则是在硝化作用的基础上增加了反硝化的生化过程,利用缺氧池将硝态氮还原成氮气溢出,使得生物脱氮反应进行得更加彻底;另一个污染因子磷的去除,在第一方案是采用化学法,利用投加硫酸铁等混凝剂,将污水中正磷酸盐置换成难溶解的磷酸铁,随即在二沉池通过剩余污泥排除;而第二和第三方案则是以生物法为主,设置厌氧池,先使混合液中的聚磷菌处于压抑状态,释放细胞内的聚磷而蓄存能量,再在后续的好氧池中通过聚磷菌贮存的能量大量吸收污水中的磷,并在细胞内将磷转化为聚磷酸盐,最后以剩余污泥的形式从污水中排出,从而完成除磷过程。在污泥处理过程中产生的含磷滤液与上清液则通过化学法进行再处理。

脱氮工艺的选择是只依靠硝化作用还是后加反硝化作用来完成,除磷工艺的选择是依靠化学法还是生物法来完成,两者各有利弊。根据天津市已建污水处理厂的运行经验,必须把降低运行管理费用作为污水处理方案选择的主要因素,因此推荐第三方案。采用生物硝化脱氮,既可以不设缺氧池,减少占地和工程造价,又能节省提升回流液的设备和能耗,出水也能达标;采用以生物法为主除磷,可以节省能源,节省投药量,减少运行费用。在投产以后,还应该根据不同情况及时调整运行工况,如出水用于农灌时,对氮磷的指标可以放宽,有进一步降低运行成本的余地。第三方案污水处理流程如下图。

2 污泥处理和处置工艺方案的选择

污水处理过程中产生的大量活性污泥必须通过适当的工艺措施,降低其有机物含量及含水率,减少污泥体积,同时杀灭大部分致病菌和寄生虫卵,达到化学性质稳定和卫生防疫无害化,避免形成二次污染,保证污水处理厂的正常运行。污泥处理方案流程如下图。

污水处理厂建成投入正常运行后,每天要产生相当数量的剩余污泥,从目前东郊和纪庄子污水处理厂的情况看,传统的用作农肥的处置方法,已无可靠出路,所以污泥的最终处置也成为国内多数污水处理厂的重大难题。处置是否妥当直接关系污水处理厂能否生存的问题。矛盾相当突出。综合国内外情况,采用污泥填埋手段处置市政污泥,在国外已得到较为广泛的应用,但在我国还没有起步。设计中经过对污泥处置的各种方案,包括堆肥、焚烧、填埋进行反复比较后,决定了采取卫生填埋的方案,填补国内空白。为此随咸阳路污水处理厂工程同时建设市政污泥填埋厂一座,日处理规模720T,计划连同扩建后的纪庄子污水处理厂及拟建的北仓污水处理厂的污泥一并在此进行填埋处置。

转贴于 3 工艺处理设计的技术措施

为了使咸阳路污水处理厂建成后能具有二十世纪现代化的水平达到国内一流,国际先进的标准。除了精心设计,精心施工,精心管理外,还要在设计中采取一系列先进技术措施。

1、进水泵房及回流污泥泵房,采用变速拖动技术,既能适应进厂污水量和回流污泥量不时变化的特定条件,保持前池水位的稳定,同时水泵维持在最高效率区工作,实现最大限度的节能运行。

2、沉砂池在总结天津东郊和纪庄子两座污水处理厂现有沉砂池使用经验的基础上,咸阳路采用了具有简单、可靠、管理方便的旋流沉砂池。通过自动沉砂、吹砂、洗砂、提砂、输砂以达到既能高效率除砂,同时也能够彻底分离砂粒上的有机物送至后续处理的效果。但是如此大型处理厂采用旋流沉砂的方法,国内没有先例。经过精心设计,将六旋流沉砂池精巧紧凑地布置成梅花形:配水井置于中央,保证进出水顺畅、配水均匀。

3、为了保证厌氧/好氧工艺的除磷效果,吸收国外先进经验采取了活性污泥分段回流的崭新工艺。即:约25~30%回流污泥可回流到厌氧池,以保持池内理想的厌氧工况,提高除磷效果,其余回流污泥回流到曝气池,同时提高生物硝化处理效果。目前这种工艺在国内还只处在起步阶段。

4、由于市政污水的水量和水质具有不稳定的特点,设计的处理工艺流程也具有相应的可调整性,以便同来水的变化相适应。当来水有机物指标偏低时,为保证除磷脱氮效果可以超越初沉池;当初期雨水量偏大时,部分来水可以超越二级处理设施;当受纳污水河道在枯水季节时,可以超越二级泵房自流排出厂外。

5、由于天津市是严重缺水的城市,污水回用势在必行。厂内经二级处理的出水,除大量用于农业灌溉外,还设置规模2万T/d的深度处理设施,计划采用先进的流动性砂过滤器,达到市政杂用水以上的标准,为市政和工业用水提供水源。

6、随着咸阳路污水处理厂工程的建设,将建成国内第一座市政污泥填埋场。污泥填埋的操作需要在实践中逐步规范化。目前已经注意到污泥填埋技术的关键是保证污泥有足够的含固率。根据国外资料介绍污泥含固率必须在30%以上、有机成份应该尽量降低、污泥抗剪强度应≥25KN/m2才适合于填埋。所以填埋的污泥需要经过良好的污泥消化,使用高干度的机械脱水,必要时还得添加石灰进行卫生处理。为了保证污泥填埋场能够正常工作,先期将进行试验研究。

7、为了探讨采用填埋以外的其他办法处置污泥,也为了延长污泥填埋场的使用年限,并且给污泥资源化奠定基础,将对100T/d的污泥采用干燥方法处置,将经过消化、机械脱水后的污泥在多重盘式干燥炉中干化后,使含固率达90%以上,可以用作装袋的高级农肥,也可以作为建筑材料的辅料利用。

8、充分利用消化池产生的沼气能源,配置闭路的沼气搅拌、沼气锅炉、污泥热交换器和沼气驱动鼓风机。使沼气能源的综合利用率达80%以上。根据沼气发电时能源利用回收率低、发电并网困难的经验,暂不采取沼气发电的方法。

9、各主要的处理单元作到准确、可靠的闭路自控。包括沉砂池与砂水分离机自动按程序操作;鼓风机根据各曝气池内工况变化、自动调节供风量,保证曝气池稳定的溶解氧值。以及消化池的污泥搅拌、加热系统的全自动控制。

10、中央控制室采用模拟屏和投影仪相配合的显视设备,达到静态与动态的有机结合;自动控制系统采用总线型拓朴结构,提高布线和扩展的灵活性。