配电网继电保护与自动化十篇

时间:2023-12-20 17:33:55

配电网继电保护与自动化

配电网继电保护与自动化篇1

【关键词】继电保护 配电自动化配合 配电网故障 处理对策分析

配电自动化作为现代化智能电网的关键部分,对电网的稳定运行、高效控制具有重大意义,需要加强配电网的自动化控制。现阶段,配电网故障状况作为电力行业的重大问题,给生产运营、经济效益、工作效率带来了诸多负面影响,已经引起相关领域学者的重视,需要加强配电网运行效率的控制,加强各个部门的控制配合,保证电网安全稳定、长期高效运行。

1配电自动化和继电保护分析

配电网的运行中,由于涉及范围较广,易发生各种影响状况,为了避免电力系统的不稳定运行,需要充分进行故障处理及相关技术分析,保证电力设备的使用安全。

1.1配电自动化

配电按自动化至电力系统中借助现代设备对配电网络进行时时检测,根据各设备原件的实际运行状况进行故障分析,第一时间解决各种故障问题。随着配电自动化系统的逐渐完善,可实现将故障段进行及时隔离,非故障段的正常供电。借助合理的方案进行监控系统的规划落实,保证电网的设备、运行、负荷状况等满足现代化管理需求,提高配电网的高效稳定运行。

1.2继电保护

配电系统运行中,受到各方因素影响,会导致系统发生故障,对电力系统的安全稳定运行产生负面影响。相关领域学者在对配电系统的保护措施分析中发现,有触点的继电器可以有效保护电力系统及相关电力设备等免受故障损害,故而将这种继电保护装置保护电力系统的过程叫做继电保护。

1.3故障分析

实际电网运行中个,各级开关相关保护器存在诸多状况,导致故障发生时易发生跳闸现象,无法保证充分对跳闸进行处理,电力行业利用负荷开关进行馈线开关设置,这样可以解决跳闸、多级跳闸等故障,维持电网正常工作。主干线路中,电缆化、绝缘化状况较多,需要进行充分的故障分析控制,及时隔离支路故障状况,避免对主干线造成负面影响。

2配电自动化和继电保护的应用分析

配电系统中存在诸多安全隐患问题,需要有效处理配电自动化、继电保护故障问题,针对现阶段二者的实际应用分析如下。当配电系统故障出现,导致自动化系统、继电保护系统等出现安全隐患问题时,需要加强预警系统控制,保证警报信息及时传到操作、维护人员处,便于第一时间进行维护处理,保证配电系统的安全运行。

配电系统故障状况想,自动化装置可进行故障点分析定位,对故障处隔离处置,继电系统可以保证电力设备脱离配电网络,从而实现电力设备安全控制的目的。实际应用中,由于故障位置不同导致处理方法略有不同,根据对应类型分析如下。

2.1主干线故障

当配电自动化系统的故障状况发生于主干线状况下,需要对故障类型进行分析判断。故障发生状况下,断路器跳闸,切断故障处的电流,延时一定时间后会重新恢复通电,即断路器闭合保证线路正常工作,这一状况为暂时性故障,若延时后断路器仍处于跳闸态,则定义为永久性配电网故障。

故障发生的状况下,继电保护可以保证电力设备与原有配电网分离,保证相关设备免受故障负面影响。暂时性故障发生状况下,操作人员需要根据馈线终端的实际异常状况进行分析处理。配电开关中的馈线终端设备会持续检测并记录下开关状态,确定出最终的线路电流、线路电压、功率等运行参数。现场操作中,管理人员需要随时对模拟量的实际参数进行查询、控制。当发生永久性配电网故障时,馈线终端会自动将异常信息传输到主站DMS系统,而主站DMS系统会定时的对馈线终端进行轮询,将定期更新数据上传,充实数据库内容,借助显示器表现对应结果,管理操作人员可借助显示器进行查询、处理、控制,保证供电网的运行状态稳定。

2.2分支线或用户处故障

当配电自动化系统的故障发生在分支线路、用户处时,需要先进行故障分析,分支线路或用户处的断路器会跳闸断电。故障位置所在线路属于架空线路,在经过相应的延时之后断路器又会重新合上,成功则判定为暂时性配电网故障,失败则判定为永久性配电网故障。故障发生后,继电保护设备脱离电网,从而保证电力设备免受损害。永久性故障状况下,需要控制故障位置处的开关影响,将故障区域隔离后进行处理。

3配电自动化和继电保护配合对配电网故障处理的意义

经过上述分析,若发生永久性故障,需要充分注重检修处理环节工作,首先继电保护作用下,会对电力设备、配电系统形成及时控制保护。同时,配电自动化可以借助定位功能、检测功能实现相关故障位置的预警控制,对维护操作人员来说可以第一时间做出对应处理。继电保护装置充分保护了配电网系统,另一方面配电网自动化可以保证电网故障排除顺利,通过二者的有效配合实现配电网的稳定运行,提高了供电质量、供电安全,具有良好的经济效益、社会效益,是电力行业发展的重要支撑。

4结语

综上,配电自动化和继电保护对电网长期稳定运行具有重大意义,电网运行中对安全性、长期稳定性要求较高,由于电网涉及范围广,易发生各种故障,需要充分注意故障排查及处理问题,是配电系统长久运行的基础。随着智能化电网的普及应用,电网智能配合充分提高了整体供电质量,对电力系统的发展起到了重大推动作用,可以充分保证社会效益、经济效益的快速实现。此外,需要注重维修维护相关技术工作的落实,加强电力系统的理论了解,从根本角度解决实际运行故障问题,从而提供更好的供电服务。

参考文献:

[1]刘健,张志华,张小庆 等.继电保护与配电自动化配合的配电网故障处理[J].电力系统保护与控制,2011(16):53-57+113.

配电网继电保护与自动化篇2

关键词:配电网;自动化;继电保护技术;电力系统;电网故障 文献标识码:A

中图分类号:TM76 文章编号:1009-2374(2016)04-0140-02 DOI:10.13535/ki.11-4406/n.2016.04.070

近年来,我国经济快速发展,各个领域的用电量大幅上涨,配电网设计规模越来越庞大,线路也日益复杂,这对于配电网的运行提出了更高的要求。自动化继电保护是配电网系统的重要组成部分,当前继电保护技术越来越完善,可及时判断配电网故障,快速隔离电网故障区,优化和改进电网结构,保障可靠稳定地供电。

1 配电网自动化系统概述

1.1 类型

配电网自动化系统主要是基于监控技术、网络通信技术、计算机科学技术等,对各种配电设备进行有效的控制、调配和远程监控,极大地推动了电力系统的快速发展。我国配电网自动化系统包括分散智能和集中智能,分散智能配电网利用重合器和分段器之间的相互配合,改变重合器的重合系数,并且结合重合时间自动隔离配电网馈线,恢复配电网故障区段供电。集中智能配电网重点应用在配电网故障后的网络恢复供电、结构隔离和充足,基于集中智能模式,通过电网调度实现电网的故障恢复和隔离,这种配电网应用模式对于网络通信的要求较高。

1.2 系统构成

配电网自动化系统主要由主控站系统、通信系统、一次设备系统、故障自动定位系统等组成,主控站系统包括操作平台和主控站软件,利用主控站系统,管理和维护配电网系统,实现配电网各种资源的交互、共享和传输。配电网自动化系统通信具有信息量小、通信速率低、通信点分散、通信距离短等优点,为了保障配电网的安全稳定运行,通信系统的可靠性和抗干扰性能较强,可以适应复杂恶劣的运行环境。故障自动定位系统主要用于配电网线路和设备故障的自动、准确定位,并且将故障信息发送到配电网控制中心,实现故障信号信息和GIS的相互结合,对于及时掌握配电网故障位置和时间发挥着重要作用。一次设备系统包含环网柜、重合器、重合分段器等,具有智能性和自动化的特点,通过通信系统实现一次设备的通信,用于远程调控。

2 配电网自动化继电保护常见故障

2.1 继电保护配置不科学

我国不同地区的天气环境差异明显,而配电网线路设计具有统一性和一致性的特点,使得继电保护装置运行过程中容易受到多种因素的影响而发生运行故障。近年来,我国经济快速发展,电子信息技术和计算机科学技术被广泛地应用在电力行业。但是在配电网自动化系统的运行过程中,由于一些偏远地区无法满足计算机网络技术对于继电保护装置的有效控制,使得配电网继电保护配置不科学,影响了继电保护装置的安全、稳定运行。

2.2 调度人员的应急能力不强

配电网调度运行过程中,很容易发生各种突发事故,而调度人员的应急能力不强,缺乏独立的现场指挥能力,使得配电网发生故障后无法得到及时处理和解决。在配电网自动化继电保护技术正常应用过程中,电力调度人员必须具备良好的专业素养和丰富的调度实践操作能力,确保配电网自动化系统的准确调度。同时,配电网自动化继电保护装置运行时,经常发生各种土方状况,若现场电力调度人员的综合素质较低,无法及时、有效地处理这些故障。

3 配电网自动化继电保护应用的重要性

配电网运行过程中,一旦继电保护装置元器件发生故障,相邻断路器会自动跳闸,及时隔离配电网系统和故障元件,可有效保护配电网自动化系统,并且降低对配电网元器件的损害。同时,配电网处于异常运行状态时,继电保护装置会自动发出报警信号,结合配电网不同异常情况,发送不同指令信号,自行调整配电网自动化系统的运行状态。当配电网自动化系统发生运行故障时,可自动隔离配电网自动化系统和故障部分,确保非故障区域安全、稳定运行,缩小配电网系统事故范围。另外,配电网自动化系统中继电保护装置还可以发挥监控作用,实时监控电气设备的电压和电流情况,从而分析配电网运行状态,因此继电保护装置在配电网自动化系统中发挥着非常重要的作用。而随着继电保护装置在配电网自动化系统中的应用越来越广泛,继电保护装置故障发生率越来越高,严重影响了配电网的安全、稳定运行,给国家、社会和电力企业造成巨大的经济损失,因此应高度重视配电网自动化继电保护故障维护检修、

4 配电网自动化继电保护故障的解决处理方法

4.1 直观法

在检修配电网自动化继电保护故障时,采用专门的测量仪器进行处理。若继电保护装置相关元器件发生故障,但是又无法使用元件进行替换,而继电保护装置合闸后,接触器和跳闸线圈还可保持正常运行,说明配电网电气回路正常。若继电保护装置内部元器件出现冒烟或者烧焦气味,应迅速确认配电网自动化机电保护故障,及时更换内部的元器件。

4.2 参照法

参照法是指通过对比故障设备和正常设备的相关技术参数,根据不同技术参数的区别,查找配电网自动化继电保护故障,做好维护修复。参照法适用于配电网接线错误、定值校验时测试值和目标值相差较大的情况。同时,改造和更换继电保护装置时,若二次接线无法恢复,采用参照法,校验继电保护装置定值时,如果整体定值和测试值的差异比较明显,可参照其他同类型继电保护装置,分析故障原因。

4.3 短接法

查找配电网自动化继电保护故障时,根据实际情况,短接回路中的部分线路,检查短接线范围内是否存在故障,逐渐缩小故障查找范围。应用短接法时,切断配电网继电保护装置,检查控制开关结点,适用于配电网自动化继电保护的电流回路开路、电磁锁失控等情况。

4.4 替换法

替换法是指使用同类型、正常的元器件替换配电网自动化继电保护装置的故障元器件,判断继电保护装置是否存在运行故障,替换法是一种常见的继电保护装置故障处理方法。当配电网自动化系统继电保护装置内部的元器件发生故障,工作人员可以采用备用元器件进行替换,从而逐一排除继电器故障。

5 配电网自动化继电保护技术的应用

5.1 科学配置配电网继电保护装置

当前,我国配电网自动化系统中,继电保护装置的应用功能比较单一,但是在实际应用中继电保护装置无法全面、有效地保护配电网自动化系统,造成配电网运行容易发生多种故障。因此为了保障配电网的安全、稳定运行,不仅要设置有效的继电保护装置,还应科学合理地配置继电保护装置,定期修理和维护继电保护装置。若继电保护装置无法正常发挥作用,很容易造成变压器烧毁问题。基于配电网的安全运行,电力调度人员应选择多样化的继电保护措施,优化继电保护装置配置,坚持先进的管理理念,编制继电保护技术的运行时间表,严格落实,加强继电保护装置应用监督。一旦配电网自动化继电保护发生问题,在最短时间内进行检查维护,采用科学合理的处理解决措施,保障配电网自动化继电保护技术应用的安全性。

5.2 发电机继电保护

发电机是配电网自动化系统的重要设备,为了保护发电机的安全运行,应做好发电机继电保护的重点保护和备用保护。对于配电网发电机的重点保护,主要用于保护发电机的失磁问题,根据发电机的相位、电流和中性点,采用纵联差动保护模式,保障发电机的安全性。若发电机单相接地电流超出限值,可设置接地保护装置,做好配电网自动化继电保护。如果发电机的定自绕组匝间发生短路故障,造成发电机故障部件快速发热,很容易烧坏绝缘层,严重影响发电机的安全运行,因此发电机实际应用中做好发电机定子绕组的匝间保护,处理定子绕组故障,保障发电机的稳定性和安全性。

5.3 母线继电保护

配电网自动化系统运行过程中,母线继电保护主要包括差动保护和相位对比保护,母线继电保护装置的相位对比保护主要是通过相位对比方式,有效保护配电网自动化系统母线,在配电网大电流接地设置中,通过三相连接可以实现母线保护。对于小电流接地设置,在配电网自动化系统相间短路上设置母线保护装置,通过两相连接方式,保护配电网自动化系统母线。

5.4 变压器继电保护

变压器是配电网自动化系统的重要组成设备,其运行状态直接关系着电力系统的安全、稳定运行,因此配电网自动化系统应做好变压器继电保护。针对配电网自动化继电保护短路故障,变压器短路保护包括过电流保护和阻抗保护,过电流继电保护是指在变压器两侧元器件设置保护装置,变压器电流元器件运行过程中很容易发生跳闸问题,并且切断电源。阻抗继电保护主要是应用变压阻抗元件,在配电网自动化系统变压器继电保护中,阻抗元件运行一段时间后及时跳闸保护变压器。同时,一旦变压器油箱发生故障,电弧以内的油液和绝缘材料会分解产生有害气体,瓦斯保护可保护变压器的安全运行,如果油箱出现运行故障,可快速启动保护装置,发出报警信号,及时切断电源。另外,做好配电网自动化系统接地保护,对于变压器直接接地,利用零序电流有效地防范和保护变压器,在变压器两侧安装零序保护设备,利用电流互感器,形成零序电流,保护不接地的变压器,通过零序电压做好有效保护。

6 结语

继电保护技术在配电网自动化系统中发挥着非常重要的作用,结合配电网自动化继电保护常见故障,采取科学合理的解决方法,减少对配电网自动化系统的损坏,推动配电网自动化系统的快速发展。

参考文献

[1] 钟循志.配电网自动化继电保护技术探究[J].科技风,2014,(24).

[2] 刘鑫.配电网自动化继电保护技术实践探究[J].科技风,2014,(5).

[3] 李豪.配电网自动化继电保护技术实践[J].中国高新技术企业,2014,(28).

[4] 黄宁生.浅谈配电网自动化的继电保护技术应用[J].企业技术开发,2013,(21).

配电网继电保护与自动化篇3

关键词:10 kV 配电网 继电保护

中图分类号:TM77 文献标识码:A 文章编号:1674-098X(2016)10(b)-0021-02

我国电力系统主要包括发电、变电、输电、配电和用电等五大板块,主要由大量不同类型电气设备和电气路线紧密联结组成。配电网中,各种电气故障时有发生,因此只有做好电力系统各个环节的安全运行管理,才能够避免电力出现故障。10 kV配电网就是电力系统中的一部分,只要电力系统有风吹草动或者故障,就会对配电网运行造成影响,因此10 kV配电网的安全可靠运行直接与电力系统正常运行及用户安全用电相关。一般10 kV电力系统有一次系统和二次系统,前者配置与设置都简单方便,而后者则由继电保护装置、自动装置及二次回路构成,其中继电保护装置能够测量、监控以及保护一次系统,因此10 kV配电网继电保护就必须要全面考虑所有因素,科学设置其继电保护装置。

1 10 kV配电网中继电保护的有效配置

10 kV配电系统运行主要有3种状态,也就是正常运行(各种设备以及输配电线路、指示、信号仪表正常运行)、异常运行(电力系统正常运行被破坏,但未变成故障运行状态)以及发生故障(设备线路发生故障危及到电力系统本身,甚至会造成事态扩大),按照10 kV电力系统和供电系统设计规范要求,就必须要在其的供电线路、变压器、母线等相P部位布设保护设施。第一,10 kV线路过电流保护。一般10 kV电路上最好要设置电流速断保护,它是略带时限或无时限动作的电流保护,主要有瞬时电流速断和略带时限电流速度,能够在最短时间内迅速切断短路故障,从而降低故障持续时间,有效控制事故蔓延,因此电流速断保护常常被用到配电网中重要变电所引出线路里,如果有选择性动作保护要求,就可以采取略带时限的电流保护装置。第二,10 kV配电网中变压器的继电保护。一般配电网供配电线路出现短路,其电流很高时,也可以采用熔断器保护,这种保护装置有一定条件。如果在10 kV配电网中,其变压器容量小于400 kVA情况下,就可以采用高压熔断器保护装置,该装置能够几毫秒内切断电力,如果其变压器容量在400~630 kVA区域内,且其高压侧采用断路器的情况下,就要设置过电流保护装置或者过流保护时限大于0.5 s的电流速断保护。第三,10 kV分段母线的继电保护。10 kV的分段母线也要运行电流速度保护,因为断路器合闸瞬间,其电流速断保护就发挥其应有作用,断路器合闸后,电力速断保护就会解除保护作用,主要为了防止合闸瞬间电流过大损坏电力设备和线路。此外,10 kV分段母线也要设置过电流保护装置,要解除其瞬间动作(反时限过电流保护中)。

2 10 kV配电网继电保护装置要求

10 kV配电网的继电保护装置也有诸多原则,主要要符合选择性、可靠性、速动性、灵敏性等要求。第一,选择性原则。电力系统发生故障时,继电保护装置必须要发挥其及时断开相关断路器的功效,而选择性则是指断开的断路器必须距离故障点最近,才能确保切断隔离故障线路,使得其他非故障线路能够顺利正常工作。10 kV配电网电气设备线路中的短路故障保护(主保护和后备保护)就是遵循了选择性原则,其主保护能够最快有选择切除线路故障,后备保护则是在主保护/断路器失效时,发挥效用切除故障,两者同样重要。第二,灵敏性原则。继电保护范围内,一般不管哪种性质、那种位置短路故障,保护装置都要快速反应出来,如果故障发生在保护范围内,保护装置也不能发生误动,影响系统正常运行,因此继电保护装置要想其保护性能良好,就必须要有极高的灵敏系数。第三,速动性原则。继电保护装置切断故障时间越短,其短路故障对线路设备造成的损坏后果就越小,因此继电保护装置通常都被要求要能用最快速度切断线路,也就是要有很高的速动性,目前我国断路器跳闸时间在0.02 s以下。第四,可靠性原则。继电保护装置必须要随时待命,处于准备装好的状态并在需要时做出准确反应,因此保护装置的设计方案、调试和整定计算要求就很高,且其本身元件质量过硬,运行维护要合适、简化有效,因此继电保护装置效用发挥才能可靠。

3 10 kV配电网继电保护效能及注意事项

不论10 kV供电系统是处于正常运行状态,异常状态还是发生故障状态,其继电保护装置都必须要充分发挥其相应功效,供电正常时,继电保护装置就必须要监控所有设备运行状况,及时为相关工作人员提供完整、准确、可靠设备运行信息;发生故障时,继电保护装置就必须要迅速、有选择性切断故障线路,保护其他线路顺利正常运行;供电异常时,继电保护装置就要快速警报,以便相关人员及时处理。要想10 kV配电网中继电保护装置能够充分发挥效用,其保护装置的相关配合条件就必须要满足要求,如果搭配条件不符就很容易造成其保护装置做出非选择性动作,如断路器越级跳闸等。当然除了上述外,零序电流保护也是一种继电保护方式,系统中性点不接地系统如果一相接地就可以采用零序电流保护。不同线路和保护要求,工作人员就要科学设计不同保护装置,综合灵活运用才能够达成高效保护10 kV电力系统正常稳定运行的效果和目的。

4 结语

现在已经进入了全面电能时代,人们工作生活各方面都离不开电力的支持,因此当前人们对电力需求量、电力系统质量、电力安全可靠性要求也日益提高。10 kV配电网作为电力系统中重要的基础成分,由于其电网覆盖广、分布散乱、设备线路走径复杂等特点,使得其继电保护难度也较高。然而10 kV配电网继电保护作为一种自动化保护设备,能够有效维护保障电力系统安全稳定且有效运行,有效避免电力危险事故,因此做好10 kV配电网继电保护工作十分重要。

参考文献

[1] 王育武.浅析10 kV配电网的继电保护分析[J].工程建设与设计,2011(3):92-94.

[2] 孙志.10 kV配电网继电保护探析[J].现代制造,2012(36):

24-25.

[3] 荣芳.城市10 kV配电网继电保护配置常见问题及对策分析[J].科技与创新,2014(15):44.

[4]黄美华.10 kV配电网继电保护研究[J].无线互联科技,2015(9):34-35.

[5] 张敬.电子信息技术在电力自动化系统中的应用研究[J].中国电力教育,2010(9):259-260.

[6] 王喜.配电自动化发展现状及规划[J].电气时代,2010(9).

[7] 焦玉振.10 kV继电保护装置的运行研究[J].华电技术,2008,30(12):73-74.

配电网继电保护与自动化篇4

众所周知,配电网系统规模较大、信息聚集点众多、结构组成复杂,因此与其相配的继电保护装置也随之分布在配电网系统中不同的位置,其应用范围上至变电站下到变电站内部与配电系统直接相关联的设备,以及在电网中开闭所、中压配电馈线、低压配电网以及配变站等。继电保护装置长久以来就是配电网中的重要组成部分,其发展经历与电力系统中的继保装置是完全相同的,由最初的电磁型继电保护装置,发展至晶体管型继电保护装置,在电力电子器件广泛应用后又出现了集成电路型继电保护装置。时至今日,伴随计算机技术的日新月异,所使用的继电保护装置多数属于微机型继电保护装置,但仍有各种类型的继电保护装置应用于不同的配电网系统中以适用不同层次电网的要求。伴随着微机系统继电保护装置性能更加优良、操作更加方便、维护更加简单,其在高压特高压电网中的推广逐渐成功,其应用日益广泛,更加深得人心。越来越多地适用于中低压配电网的继电保护装置也被不断开发应用。

2配电网保护存在的问题

电力系统继电保护的主要工作任务是切除系统中的故障设备以保障系统的正常运行。由于技术等各方面的原因,由常规继电保护装置构成的继电保护系统是一种非自适应继电保护系统,其动作特性不能随着电力系统的运行方式的变化而自行改变。常规继电保护的整定值是按照离线最严重的情况进行的,而且在运行中基本保持不变。因此,在常规继电保护整定计算过程中不得不按照每套保护对应的电力系统最大运行方式来计算保护的动作值,按照每套保护对应的电力系统最小运行方式来校验保护的灵敏度。这种按最严重的运行条件确认保护整定值的方法,虽可保证在电力系统各种运行方式下发生故障时,继电保护能正确动作,但同时存在着两个缺点:一是按照该方法确定的继电保护整定值,对电力系统其它运行方式来讲不是最佳的整定值;二是在电力系统最小运行方式下最不利的故障时,继电保护系统的性能会严重变坏甚至导致拒动现象。这两个缺点不但限制了电网运行的灵活性,而且也降低了电网运行的稳定性。正是在这样的背景下提出了自适应保护的概念。自适应保护是指根据电力系统运行方式和故障状态的变化能实时改变保护性能、特性或定值的保护。随着具有高速运算和逻辑判断能力、强大的记忆能力以及其固有的可编程性的微机保护在电力系统中的广泛应用和通信手段与通信技术的不断发展与进步,实现自适应继电保护已成为可能。

3遗传算法的配电网自适应保护

自适应继电保护是在上世纪80年代提出的一个较新的研究课题。它的最主要任务就是解决目前继电保护装置中所无法解决的问题,使得继电保护装置更趋于完善,现在所研制的适用于输电线路和配电系统元件的各类型微机继电保护装置,已经具备完全取代传统装置的能力,能够迅速将电力系统中发生故障的电气元件进行切除,使其免于遭受损坏,并使得其它无故障线路迅速恢复正常运行。遗传算法,是建立于达尔文的生物论以及孟德尔遗传学说基础之上的一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,具有坚实的生物学基础。遗传算法强调从生物群体观点出发,看待种群优化问题。依据遗传算法的思想,我们把所求问题中的每一个点都看做是一个个体,这些个体组成了群体,正因为如此,种群中的每一个个体都可以代表一个优化问题的可行解。本论文提出的基于遗传算法的配电网自适应继电保护,该保护是利用电网全局信息、保护定值在线整定的新型保护。

4基于Matlab算法的仿真和分析

配电网继电保护与自动化篇5

关键词:电力系统;整定计算;继电保护;危险点;辐射型电网

中图分类号:TM771 文献标识码:A 文章编号:1009-2374(2011)34-0146-03

一、继电保护的特点

(一)电力系统中继电保护和安全自动装置的重要性

在电力系统中继电保护和安全自动装置是保证系统安全运行的重要组成部分,当高压设备进投入使用时,继电保护和安全自动装置必须投入运行。

(二)继电保护的原理

继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、功率、频率等)的变化,构成继电保护动作的原理。应用于电力系统中的各种继电保护绝大多数都是反映电力系统故障时的电流增大、电压降低,以及电流与电压间相位角变化,与正常运行时各物理量的差别来实现的。

(三)继电保护和安全自动装置的作用

在电网运行过程中继电保护和安全自动装置能实现变电站实现无人值班及综合自动化。它的作用主要体现在以下三个方面:

1.反映故障。它可以在电网发生能够损坏设备或者危害电网安全运行故障时使被保护设备快速脱离电网。

2.反映异常。当电网中的设备出现非正常状态时能发出报警信号,使值班人员迅速采取解决措施使其恢复正常。

3.实现变电站的自动化。它可以使继电保护和安全自动装置直接与高压设备配合。

(四)电力系统运行对继电保护装置的要求

快速性、可靠性、选择性和灵敏性这“四性”是电力系统对继电保护装置的基本要求。快速性是对继电保护装的最根本要求,强调的是有故障就必须动作。因为时间越长故障对电力系统的危害就随之增大。可靠性是指继电保护装置发生故障时也要可靠动作而不能拒动。因为拒动的危害远大于误动。选择性强调的是保护装置不能误动,不能产生误操作。灵敏性则要求保护装置反应灵敏、动作范围准确,正确反映故障范围,减少停电面积。

二、继电保护整定计算的工作内容

(一)确定保护方案

我们整定计算人员必须结合电网的实际情况,针对变压器的特点对保护功能进行选择。现今市场上的微机都已经配了十分齐全的功能保护块,但是不是每一项功能在实际保护装置中需要应用,所以必须对保护功能有所取舍。

(二)各保护功能之间的配合关系的确定

1.装置内部各功能单位之间的配合关系。在由几个电气量组成的一套保护装置内部,各元件的作用不同,其灵敏度和选择性要求也不相同。对于主要元件的要求是既要保证选择性又要保证灵敏性,而作为辅助元件则只要求有足够的灵敏性,并不要求有选择性。在整定配合上,要求辅助元件的灵敏度要高于主要元件的灵敏度。辅助元件在保护构成中,按作用分为以下三种:(1)判别作用。为了保护的选择性而装设的。如方向过流保护中的方向元件;(2)闭锁作用。为了防止正常负荷下拘误动而装设的。如母差保护中的电压闭锁元件;(3)起动作用。为了在故障情况下,将整套保护起动起来进行工作而装设的。当继电保护装置还处于采集模拟电气量阶段时,上述元件往往由一个个独立的硬件实现,而目前微机保护装置反映的是离散化的数字量,以上功能均由软件实现。虽然,微机保护装置中各元件的意义与过去不尽相同,但它们所起的作用却无本质上的区别。

继电保护整定计算人员必须认真分析各功能块的动作特性,各功能块之间的逻辑关系,并结合被保护设备的故障特征来综合进行考虑,确定保护装置内部各功能块之间的配合关系,并以整定值的形式将配合关系实现。

2.装置之间的协调配合关系。这也就是我们一般意义上的继电保护整定计算需要做的工作。通过短路电流计算,将某一保护装置与相邻的保护装置在灵敏度与动作时间两方面相配合,从而保证选择性。即当电力系统发生故障时,故障线路的保护必须比上一级相邻线路更灵敏,动作更快,两者缺一不可。若要提高灵敏度就要延长动作时间;若要提高动作速度就要限制其灵敏度,这实际上是在遵循反时限的原则。

随着电网规模的不断扩大,特别是现代超高压电网要求保护装置不但要做到不误动,更要做到不拒动。要达到继电保护四性的要求,不应由一套保护来完成。就一套保护而言,它并不能完全具备四性的要求,而必须由一个保护系统来完成。我们在进行整定计算时,必须树立系统保护的概念,多角度、全过程地考虑各个功能块之间的配合关系。

(三)保护方案的准确表述

编制继电保护整定计算方案及给出保护定值并不是整定计算工作的最终目的,整定计算工作的最终目的在于通过保护定值使得继电保护装置在系统故障或异常状态下能按预定的行为进行动作,从而保证电网的稳定运行,将被保护设备的损害降至最低以及缩小停电范围。因此,在确定好了保护方案及各保护功能的配合关系后,如何将保护方案准确的表述也是整定计算工作者的一项十分重要的工作。

这其中除了包括编制整定计算方案和给出继电保护定值,还有一项就是编制运行规定。整定计算工作者往往十分重视前两项工作,而忽视编制运行规定。需知,用准确的语言告诉运行人员某个保护功能块在什么情况下用,做什么用,这也是十分重要的。

三、整定计算的危险点分析

(一)系统建模

一个符合电网实际的、描述完整、正确无误的电网数据模型,是一切计算的基础。目前,我们电网应用的RCMBase2000是一个通用性和实用性非常强的软件平台,利用对RCMBase2000的二次开发,我们可以完成继电保护计算及管理的大部分工作。对于日常的整定计算工作不需要我们去重新开发软和构建网络扑连接,只需要我们把每一项基础数据搞准确,严格按《3~1lOkV电网继电保护装置运行整定规程》上的要求进行电气设备的实测,并正确的将数据填充到RCMBase2000中,就能够做到建立一个完整的符合电网实际的数据模型。但是,在实际工作中,往往会有各种各样的原因使得我们的基础数据管理出现漏洞。所以,我认为电网基础数据管理这一环节是继电保护整定计算工作的危险点。

(二)故障计算

短路电流计算是整定计算工作中非常重要的基础性工作,它的正确与否决定着整定计算的正确与否。而短路电流计算的正确与否又取决于合理地选择运行方式和变压器的接地方式。

合理地选择运行方式是改善保护效果,充分发挥保护系统功能的关键之一。但选择运行方式应与运行方式专业进行充分沟通,考虑各方面的因素才能决定。

变压器的接地方式是由继电保护整定计算人员来确定的。合理地选择变压器的接地方式可以改善接地保护的配合关系,充分发挥零序保护的作用。由于接地故障时零序电流分布的比例关系,只与零序等值网络状况有关,与正、负序等值网络的变化无关。零序等值网络中,尤以中性点接地变压器的增减对零序电流分布关系影响最大。因此,合理地选择变压器的接地方式应尽可能保持零序等值网络稳定。

在进行故障计算时我们还应注意以下两点:(1)就是我们假设电网的三相系统完全对称。若系统是不对称的,那么不能用对称分量法来分析化简,进行计算;(2)除了母线故障和线路出口故障外,故障点的电流、电压量与保护安装处感受到的电流、电压量是不同的。我们分析的是保护安装处的电气量的变化规律。

(三)配合系数的选择

配合系数包括了零序网络的分支系数和正序网络的助增系数。分支系数(或助增系数)的正确选取,直接影响零序保护(或距离保护)定值和保护范围的大小,也影响保护各段的相互配合及灵敏度。分支系数(或助增系数)的计算与故障计算无关,而与电工基础有关,即电路的串、并联关系决定了电流的分布,决定了分支系数(或助增系数)的大小。下面分三方面来概述分支系数(或助增系数)的计算。

1.辐射型电网。如图1所示,电流分支系数Kf是相邻线路发生短路故障时,流过本线路的短路电流占流过相邻线路短路电流的比值。对于距离保护,助增系数等于电流分支系数的倒数。

为了简化计算,将上式中电流、阻抗取其绝对值,对分析结果的影响很小,可忽略不计。

对于辐射型电网来说,分支系数只与保护支路的阻抗分支线路的阻抗有关,而与配合支路的阻抗无关。所以,故障点的位置对分支系数没有影响。若要取最大分支系数,只需选本线路侧电源为最大运行方式,分支线路侧的电源为最小运行方式,即母线B上剩余电源支路采取小方式即可。

2.单回线与相邻双回线保护配合(如图2)。

单回线与相邻双回线配合时,应采用双回线并列运行,故障点在相邻双回线末端零序分支系数最大。随着故障点在配合支路上由母线B向母线C移动,零序分支系数由小于1的数到2之间变化。

3.双回线与相邻单回线保护配合。

双回线与相邻单回线配合时应断开双回线其中一回,电源A应取大方式,电源B(Z3)应取小方式,可得最大零序分支系数。此时,故障点在配合支路上任一点对分支系数的大小无影响。通过以上分析可以看出,配合系数的选择也是继电保护整定计算工作的关键点。

(四)微机保护小量的选择

随着电磁式保护和晶体管、集成电路型保护的逐步退出运行,微机型继电保护装置在电力系统中发挥着愈来愈重要的作用。不同的保护厂家生产出的微机保护原理不同。对于整定计算人员必须熟悉自己电网所装设的保护装置,不但要熟悉这些保护装置的原理,更应该注意保护装置中控制字的正确设置,否则将无法使保护装置正确地发挥作用。要做到正确设置控制字,一定要认真研究说明书,如果说明书不能够讲明白,我们应找到该保护装置的研发人员,将该保护功能的设计意图讲明白。

配电网继电保护与自动化篇6

关键词:保护;区分;电气;仪表

所谓微电网,指分布式发电、能量变换装置、储能装置以及有关负荷等组成的发电系统。当微电网接入后,会引发电力系统保护新问题。微电网会随着渗透率和DG数量的不断增加,内部潮流的方向有可能发生改变,进而影响了整个电力网络。微电网在并网运行过程中,其潮流是呈双向流动的状态的,而常规配电网的流动特征会受到并网时双向流动的影响发生改变。另外,在进行微电网接入时,必须要运用到电力电子技术,并以“柔性”的方式进行微电网的接入。由于微电网的电源特征不同于平常发电机,在接入微电网后,配电网的继电保护与低压配电都将受到微电网的影响。

1 微电网接入影响

1.1 对常规配电网保护的影响

当微电网与配电网接入时,会改变配电网原有的电流量及流向,从而降低其保护的灵敏度、拒动以及误动。针对灵敏度,并非全部降低,部分保护灵敏度会得到增加。

如图1所示,当K3出现接地故障时,受MG分流作用影响,B3所受故障电流减小,并且灵敏度出现降低。但K2出现接地故障时,B4将会顺着MG的故障电流流动,增加保护B4的灵敏度。

1.2 对配电网继电保护影响

常规配电网一般是10kV,其运行方式有两种,分别是单向辐射型网络式和环网型开环式。传统的单端电源过流保护没有方向元件,当DG接入后,配电系统会发生转变,成为多电源网络,配电网的潮流分布在运行过程中会出现变化,同时,故障后短路电流量及流向与分布都会受到影响而产生不同程度的变化,打乱传统保护的配合关系,新的需求将无法从保护行为与性能上得到满足。随着DG的接入,形成两侧电源,这等于在配电网接入了一个常规发电机,所以,会像传统两侧电网那样,对继电保护的影响依然是相邻线路保护误动问题,重合闸无法顺利熄弧,导致重合失败问题。

2 微电网接入配电网的保护对策

2.1 配电一次设备与继电保护要求

由于微电网接入后,快速的故障隔离要求无法从传统配电一次设备上得到满足,所以,需要将配电网一次设备进行以下调整:对每个10KV以上的配电网都设置断路器。对0.4KV低压配电网全部配置可支持外部遥控功能的断路器。最后在进行微电网的接入时,不要改变原来原来0.4KV低压配电网的接地方式,结合DG接地情况再进行施岛运行。

2.2 区域差动下的继电保护方式

(1)区域差动主保护。可以根据差动保护对象将10kv电压配电网分化成多区域,然后再进行保护。区域差动保护主要通过启动判据和比率制动判据组成与门出口。考虑到微电网中只能采集单元的局部控制层、配电网调度层配电网调度系统与中央控制区域差动保护这三层结构的区域差动保护,应考虑网络构建的一致性。为了使其可靠性能有所保障,区域差动保护集中控制层采用双冗余配置。实质上差动保护网络指的就是通过收集和分配系统以及状态信息区域中的每个节点的电流差动保护,最终实现以最快的速度完成故障自动定位与故障隔离;(2)后备保护。在区域差动保护过程中,如果配置发生故障而失灵,此时后备保护会从临近断路器将故障隔离。对超过10KV(包括10KV)的配电网系统实施双套区域差动保护,可以使其灵敏性、可靠性及运作性得到保障。从“对主保护进行强化、对后备保护装置进行简化”这一原则来看,可以用简单的带时限过流对配电网系统进行配置,然后通过智能采集单元来实现预防主配电网丧失防护的作用。

实时智能采集单元配置后备保护功能,线路就地采集单元配置距离是线路与母线的后备保护,然后为了使变压器具备后备保护,可以将过流保护装置在变压器就地采集单元。将定值限方向过流保护配置到配电升压变压器的高压侧。变压器内部故障有了后备保护,低压母线故障的灵敏性也有了保障。装置定时限过流保护的配电降压变压器可以按躲过最大负荷电流整定。

2.3 如何对反方向阻抗继电器的低压配电网实施继电保护

DG馈线单元配置对低压配网系统是非常重要的,尤其在低压配网系统具备微电网的条件下,缺少DG馈线单元配置就会形成负荷出线,就会导致正方向阻抗继电器丧失延迟出口,最终使保护线路发生故障。若有DG馈线单元配置器、反向配置时,延时现象没有在正方向抗阻继电器中出现,反方向抗阻继电器将延长0.5秒释放,其对低压母线故障有较好的保护作用。正方向阻抗继电器根据避免设置最大负荷设定值,当线或白色出现短路时,此时继电器动作的延时将为0秒,出口跳跃线路断路器。

在相反方向的阻抗继电器,按躲过变压器高压侧短路,或者根据避免高压侧出口速度故障保护终端短路的设定值,设定值小,其保护变压器内部部分范围(或高压线,低线),固定值不能太大,避免误操作时,高压侧短路。这个距离保护配置,在微电网投入运行是电网运行和关闭,可以起到保护的效率,是一种微电网在离网运行时的保护,在微电网并联运行时,0.4 kV低压系统可以跳机保护断路器。

3 工程实践

通过用微电网来接入配电网集中保护控制装置,可以将继电保护功能大幅度提升,使其在定位、故障识别与故障隔离等功能上都得到了保障,另一方面,为了使分布式电源能够在多电源及运行状态下将微机保护作用发挥出来,应根据微电网系统制定一系列处理措施。除此之外,微电网保护配置方案已经得到国家电网的许可和认证,证明该项目含有微电网的智能配用电系统控制保护功能。

配电网继电保护与自动化篇7

【关键词】广域继电保护;故障元件;判别机制;原理分析

继电保护作为电网安全运行的重要防线,广泛应用于电网建设中。随着电网建设规模的不断扩大,传统的继电保护依靠离线整定的固定定值工作方式,已不能满足现在电网系统的建设需求,尤其在电网运行方式变化时难以满足各继电保护装置之间相互配合。为了保障电网安全运行,研究快速识别与隔离故障,简化保护整定计算的广域保护原理及配置方案,成为重要内容。

1.传统继电保护应用于现代电网中面临的难题

继电保护以切除电网故障为己任,但在现代复杂的电网保护过程中往往因其动作不当而导致事故扩大。其主要表现为:

1.1定值整定与配合困难

对于现在高速发展的大电网而言,结构和运行方式复杂多变,各个相关后备保护之间动作整定值的配合非常复杂,且通过就地检测量和延时实现配合的方式在很多情况下难以确保选择性,致使人们愿意形成采取“加强主保护,简化后备保护”措施的趋向。例如:取消保护Ⅱ段、简化保护Ⅲ段定值等。值得注意的是,在大电网发生高阻故障的时候,即便采用双套主保护也不能完全杜绝其拒动发生。当主保护因灵敏度不足等原因发生拒动时,容易造成延时过长及扩大范围的跳闸,增加紧急状态下发生局部电网瘫痪的风险。

1.2远后备保护延时过长

多级阶梯延时配合可能导致远后备保护延时过长,对于电网系统安全极其不利。

1.3缺乏自适应应变能力

传统的后备保护整定配合运行方式有限,缺乏自适应应变能力,在电网网架结构及运行方式因故障而发生频繁和大幅改变时,易导致后备保护动作的性能失配而可能造成误动或事故扩大。

1.4存在潜在的误动风险

在电网结构或运行工况突发非预性改变而出现大范围的大负荷潮流转移时,极易造成距离保护Ⅲ段非预期连锁跳闸,甚至导致系统解列或大范围停电事故。出现这种问题的主要原因在于传统继电保护的动作依据仅仅是靠保护安装处设备本身的信息。若后备保护可以获取当前系统运行方式变化及远方被保护设备相关区域的信息,就能产生更加有效的故障判断和动作,那么基于广域信息有可能解决传统继电保护的一些难题,从而对电网运行进行更有效的全面保护。

2.广域继电保护原理分析

2.1广域电流差动保护和广域方向比较式保护

电流差动保护和方向比较式保护是传统继电保护中最常用的保护原理,被广泛应用于各种电力主设备和输电线路的主保护中;而方向比较式保护动作速度快、选择性好、灵敏度高,也是输电线路常用的主保护。然而这两种保护方式性能虽然优越,但只能作为主保护,无法提供后备保护,一旦主保护误动,就只能依靠延时长、选择性差的其它原理后备保护来切除故障,这对电力系统的稳定运行产生不利影响。随着电网系统环网和短线路大量出现,造成后备保护之间的整定配合非常困难。当短暂的通信数据不正确或者中断后,差动保护闭锁较长时间才能重新运行。此时如果发生区内故障保护拒动,方向比较原理的广域继电保护在通信短暂中断恢复后仍能正确判别故障。因此,在实际的广域继电保护装置中应同时配置这两种保护原理,并根据实际情况进行实时切换,实现最佳保护。

2.2基于广域信息的自适应继电保护

广域电流差动保护和广域方向比较式保护,只能提高后备保护的性能,但是对于电网系统安影响最大的还是主保护的性能。为了满足系统选择性和灵敏性的要求,必须对最不利的运行方式进行定值整定和定值校验,并采取各种措施防止继电保护在极端运行状态下拒动或误动,使保护装置的逻辑变得复杂,且降低了保护动作速度、动作可靠性等。传统电网保护一套定值要适用于多种运行方式,很难同时满足系统对保护选择性、速动性、灵敏性和可靠性的要求。利用广域信息进行自适应优化整定,在电网运行方式发生变化的情况下,保护系统能够及时更正与其不相适应的保护定值,重新优化整定从而提高保护适应电网运行方式变化的能力。例如保护定值在线预警系统能通过广域信息获得电网的实时运行方式,实现定值校核功能,对不正确的保护定值进行预警。

3.故障元件判别机制

实现故障元件判别原理(FEI)的广域继电保护的关键是故障元件判别机制。主要表现为以下三种形式:

3.1基于故障电压分布实现故障元件判别

利用一侧的电压故障分量的测量值对另一侧的电压故障分量进行估算,可以同时获得线路两侧的电压故障分量的测量值和估算值。线路发生外部故障时,任意一侧的电压故障分量的测量值和估算值是一致的,若发生内部故障,至少一侧的测量值和估算值会产生较大差异,通过这种差异构成故障元件的识别判据。结合零序分量、正序分量、和负序分量三种判别元件,综合利用线路两侧的元件形成组合判据,实现对接地故障、不对称相间故障和三相短路故障的判断。

3.2基于广域综合阻抗实现故障元件判别

基于综合阻抗的纵联保护能克服分布电容的影响,灵敏度较高,利用综合阻抗实现故障元件判别,克服广域电流差动保护的缺陷。该原理利用区域多端电压和电流构造综合阻抗,定义公式为:

Z==

式中M、N分别广域继电保护区域边界母线数及进出线路数。当N=M=2时为两端输电系统,当N=M=3时为三端输电系统。

3.3基于遗传信息融合技术实现故障元件判别

该方法基于故障方向的广域继电保护原理,利用遗传算法的信息融合数学模型求解各保护状态的期望函数。根据状态值与期望值之间的差异构造适应度函数。通过遗传算法的种群建立快速搜索运算寻找最优解,达到故障方向决策和故障元件判别。

4.总结

自上世纪80年代以来,广域继电保护是我国电力系统一直研究的重点课题,本文提出几种通过故障元件判别原理实现继电保护的方法,从不同角度解决了传统继电保护中所面临的难题,为我国电力系统的发展奠定了基础,促进我国大电网的发展与完善。 [科]

【参考文献】

[1]丁伟,何奔腾,王慧芳.广域继电保护系统研究综述[J].电力系统保护与控制,2012,40(1):145-146.

[2]苏盛,段献忠,曾祥军.基于多Agent的广域电流差动保护系统[J]. 电网技术,2005,29(14):15-19.

配电网继电保护与自动化篇8

【关键词】配电继电保护;优化;发展;影响

近年来,随着科学技术的发展,微机型继电保护装置和故障录波器逐渐在电网中得到了广泛的应用,尤其是在发生故障的时候,保护装置与故障录波器都实现了通过数据方式来向电网调度中心传递信息的可能性。配网系统继电保护及故障信息管理系统的设计与应用中,不仅提高了配电系统电网运行的安全、优化和可靠性,而且提高了配网系统继电保护的水平和故障处理问题。因此,实现配网系统继电保护保护及故障信息处理系统在配网系统中的应用是电网发展的一大飞跃。继电保护作为一项技术高、知识密集、涉及较广的技术,已经在我国部分电力系统中得到应用,为了使配网系统继电保护的作用得到更好的发挥,就需要电力方面的专业人员对其进行深入研究,不断的探索继电保护的各项工作,加大配网系统电网对继电保护发展的作用和影响,这样才能使配网系统继电保护的作用得到最大程度的发挥。

一、配网系统继电保护优化发展的重要性

(一)随着我国社会的进步和人口的增加,人们生活和工作的各个方面都需要用电,这就使得我国对电力的需求量也在不断增长,由于一定时期的电力供应速度有限,因此我国大部分地区都出现了电力供应紧张的情况。为了缓解电力紧张给人们的生产生活带来的不便,我国有部分地区在用电方面采取了定时停电和限电的措施。但由于我国的电力供应系统十分庞大,在采取用电节约措施的同时,必须要保证电力系统的运行安全,这样才能保证电力的正常供应。为了实现这一目的,就需要做配网系统继电保护工作。目前我国大部分地区都采用了配网系统继电保护方法来维护电力系统的安全,配网系统继电保护也具有十分重要的意义。

(二)在维护电力系统安全的过程中进行配网系统继电的优化,能够有效的消除电力系统中存在的故障和问题,使人们的社会生活秩序正常化,保证经济发展的正规化,还能对我国经济和社会生活的正常运行提供必要的保障,进而维护了我国人民的生命和财产安全;在配网系统继电保护优化过程中,能够保证电力系统的正常运行,并保护电力系统运行的安全。当电力系统在运行的过程中出现突发故障时,配网系统继电保护能最短的时间内准确的查找出电力系统中存在故障的具体设备,还能够直接向电力监控系统中传输故障信息,这样电力维护人员就能够发现电力系统中的故障,并及时排除设备故障,这样就能有效的避免因电力设备烧毁或损伤造成的电力系统故障。如果继电保护工作能够有效的落实,就能够有效的降低其周围地区电力系统故障出现的概率;在电力系统中开展配网系统继电保护工作,还能够避免由于电力系统的故障造成的大范围、长时间的停电现象。

二、配网系统继电保护发展所具有的性能

(一)灵敏性。在电力系统运行的过程中,当受到保护的范围内出现线路故障或者设备出现不运行的情况时,优化配网系统继电保护装置能够及时的发出指令。判断继电保护装置反应能力,主要是通过配网系统继电保护装置的灵敏系数来判断的。在使用继电保护装置时,一定要保证其灵敏度,这样才能使整个电力系统在安全的状态下运行。

(二)可靠性。配网系统继电保护能够有效的保证供电系统的安全,在继电保护范围内如果出现了线路故障,电网就会发出相应的指令,并作出相应的反应。这样就能对电力系统起到保护作用,从而保证了电力系统运行的安全性。

(三)快速性。配网系统具有快速性特征是指,在允许的范围内,配网系统对继电保护用最快的动作使断路器跳闸,从而将故障断开,或者将存在异常的状态终止。配网系统的这种快速性特征能够有效的降低故障元件出现损坏的几率,也能够有效的提高线路故障自动重合闸的几率,还能够保证当故障出现时,电力系统能够保证运行的稳定性。

(四)选择性。配网系统对继电保护的模式具有一定的选择性,当配网系统的部分线路出现故障时,为了保证其他线路能够正常供电,就需要保证能够在最小区间切除故障,从而保证其他电力线路能够正常运行。当出现故障的设备或者线路本身拒动时,其他相邻的设备才能进行故障的切除。在这个过程中,距离故障点最近的断路器会将有故障的线路切除,从而保证其他没有故障发生的线路能够正常运行。

三、配网系统继电保护发展中的运用策略

(一)应用计算机技术。计算机和网络技术的发展,为各行各业的发展都提供了重要的技术力量,同时也被大力推广和应用,计算机的开发和利用是促进时展的重要动力。在配网系统继电保护中,继电保护装置也要紧跟时代的潮流,不断向智能化方向发展。继电保护中应该应用最先进的计算机技术,并适当的引进软件技术和硬件技术,不仅要将继电保护的功能体现出来,还应该体现其智能化,这样才能使继电保护的整体水平得到提高。为了实现这一目的,就要求系统一定要提供各种运行状态下的具体信息,这样才能为控制系统的判断工作提供依据。这些信息主要包括安全数据的保存空间、运行故障参数、计算机处理能力和正常运行参数等。就计算机发展的情况来看,现阶段计算机技术的发展已经处于比较成熟的阶段,技术的更新周期也在不断缩短,计算机已经基本实现了体积小型化、信息储存量大和运行高速化的特点。所以说,在优化配网系统继电保护中,要想更好的实现继电保护的自动化,就需要充分利用计算机技术,这样才能在实践中优化配网系统继电保护。

(二)在继电保护中建立配网模式。计算机网络技术的发展已经成为信息时代的重要标志,这一发展也使得人们的生活和社会的生产发生了巨大的变化,也对工业的发展和变革起到至关重要的作用,计算机网络技术也能够为各个领域的发展提供强有力的通信支持。在配网系统继电保护优化中,单个继电保护装置不能对整个继电保护进行有效的控制,不能满足电网发展的需要,这就需要对其进行淘汰,并相应的建立继电保护模式,这样才能使配网系统继电保护成为一个有机的整体,从而达到资源共享的目的,也能保证整个电力系统运行的安全性和平稳性,同时充分发挥网络资源的优势来开展继电保护工作。

(三)实现保护、控制、测量、数据通信的一体化。当继电保护实现了配网系统以后,整个保护装置就变成了一个类似于计算机的多功能装置,也可以将其当做电力系统计算机网络化终端。所以说,当在电力系统中优化配网系统继电保护,不能能够及时的通过网络来获取电力故障信息,也能够将被保护元件的信息传输给网络控制终端,从而实现了保护、控制、测量和数据通信的一体化。这样就能保证每个微机保护装置都能够充分发挥其功能,并且能够在电力系统正常运行的情况下发挥测量、数据通信、控制等功能,在科学技术不断应用和完善的过程中,智能化、数字化网络化和一体化的智能电网在不断的形成,从而使继电保护的效率也在不断提高,这也是今后我国电力继电保护发展的主要方向。

四、总结

随着配网系统继电保护的不断优化和发展,已经成为我国电力系统的主要发展方向,在向这一方向迈进的过程中,电力企业一定要不断的优化配网系统继电保护模式,并深入研究继电保护的智能化过程,确保我国电力系统的供电量和供电水平都能有所提高,从而保证了我国电力系统的安全性,也能够为我国的电力提供不竭的动力。随着配网系统继电保护的规模不断扩大,加强经验的积累,以及各种配网系统继电保护在电力系统中的应用,能有效地促进配网系统继电保护的健康发展。

参考文献:

[1]黄丽华.电网继电保护运行及故障信息管理系统的探讨[J].中国新技术新产品.2010(06).

[2]刘志超.黄俊.承文新.电网继电保护及故障信息管理系统的实现[J].电力系统自动化.2003.27(01).

[3]燕京.陈政.电网继电保护及故障信息管理系统设计[J].电力自动化设备.2006.26(12).

配电网继电保护与自动化篇9

【关键词】智能电网;变电站;继电保护

1、智能继电保护的机遇

随着智能电网发展,传统型继电保护配置不足逐渐显现出来:传统继电保护配置中,不同配置间没有统一协议,只能靠特定参数值相配合。为了保证保护动作选择性,不可避免要对多种继电保护设备多次调试,相互迁就。但是我国电力供求状况呈逆向分布,发电站主要分布在西、北部,用电大户集中在中、东部和南部沿海地区,供求两地相距甚远,要求采用远距离,超高压或特高压的输电方式来达到供求关系平衡。在这样复杂的现代电网运输中,依靠固定参考值配合的分段继电保护配置无法保证可靠的动作选择性,且在长距离运输中,各段变电器的相互定值配合也不能发挥各自最大作用,造成浪费。智能电网时代要求建立与其匹配的智能继电保护,而广域信息交互技术的出现为智能继电保护发展提供了可能性。从目前技术发现和应用来看:(1)变电站设立局域以太网,高压变电站间铺设的 SDH电力光纤网等为继电保护系统提供了信息共享平台。(2)全球定位系统和互联网的应用,实现了电网多点实时监测(3)在IEC61085通讯标准基础上建立起来的智能变电站,使得变电站所有工作数据数字化。这些应用都为智能继电保护提供了技术帮助。

2、现有继电保护方案存在的局限性

随着我国西电东送、特高压等大规模电网的建设,电网短路电流大幅度攀升,在出现故障时容易发生连锁反应,对电网安全带来很大威胁,现有的继电保护配置方案已经不能适应电力系统发展的要求,主要问题如下:继电保护系统以切除故障为目标,对故障切除后电力系统的运行情况不予反映,无法起到保护故障后电力系统的作用,可能出现因为继电保护装置正确动作而造成其他元件的工作异常,甚至有时保护装置正确动作,但电力系统却出现瓦解。保护动作判据都是基于本地测量数据,其选择性要求继电保护只能保护本地网络,没有考虑故障对整个电网的影响,难以对运行方式不断变化的客观系统做出全面的反映。保护装置相互之间缺乏有效的协调,难以实现系统全局的安全稳定运行,在某些情况下(如发生联锁故障)会恶化系统的运行状况。常规的后备保护虽然有比较大的保护范围,但其选择性的获得要以牺牲快速性为代价,动作时间过长,有时候难以发挥应有的保护作用。现有的继电保护配置当中,后备保护的时限整定遵循阶梯时限原则,为了保证选择性,后备保护的动作时限可能高达数秒。在电网规模和复杂程度越来越大的情况下,要作到后备保护之间的相互配合越显困难,至今仍无法很好的解决。

3、智能继电保护配置的主要内容

智能电网的迅猛发展,给智能变电站继电保护配置带来了挑战和机遇,研究和提升智能继电保护配置主要从硬件和软件两方面入手,硬件是指研究智能继电保护配置的元件保护,软件是指继电保护配置中的广域保护系统。

3.1智能继电保护配置的元件保护

3.1.1主设备保护

继电保护装备的主设备保护应该注意保护发电机和变压器:要防止发电机内部短路,要特别注意匝与匝之间的绝缘,深入精确化校对电压器灵敏度,整定计算等;发电机接地保护要可靠;后备保护中的反应限过流等要与发电机的承受力相统一;变压器保护的重点仍然是识别励磁涌流,研究和发现变压器故障计算新原理仍是保护研究的重心。

3.1.2线路保护

智能继电保护的线路保护分为交流线路保护和直流线路保护两方面:在远距离保护下,交流线路易受到高电阻接地影响,回避负荷能力差,在系统震荡时发生短路,同时在同杆架设双回线中。

3.2智能继电保护配置的广域保护

以数字化信息技术为基础,借鉴于广域式信息交互技术的广域电网保护,在智能继电保护配置中大放光彩。广域电网保护是指在智能变电站一级配置数字化和二级配置网络化的前提下,把整个电力网络看做一个整体,利用全球定位、网络通信、实施监测、分析判断等技术,选择最适合的方法控制或隔离发生故障的设备。

3.2.1广域电网保护的内涵 广域保护融汇电力系统多点、多角度信息,运用微型处理器对信息进行精确判断分析,对故障做出快速、可靠和精确的隔离或切除保护。

3.2.2广域电网保护的特点 通过上述广域保护的定义得出广域保护系统的特点如下:实时可靠地采集电力系统多点信息。全球定位系统技术、数字化信息技术的发展,为电力系统的广域测试提供技术支持,基于相量测试单元的广域测试系统为电力系统实现实时可靠测试提供了可能,满足智能电网大空间和同时间要求。支持多种电源接入电网,广域保护将电力系统看做一个统一的整体,可以实时保护接入的多种电源,并依据程序准确判断调整以期适应多电源接入电网。自我控制能力。广域保护具有自我控制能力,可以在故障出现并隔离后,系统依据现实做出自我调整以期实现电力系统安全稳定运行。广域保护自我控制能力是为了防止大范围连锁故障出现。

4、智能继电保护配置的主要方式

根据保护范围不同,智能继电保护系统可分为三种保护方式,即广域电网保护,站域电网保护和就地化间隔保护相互配合的组成方式,这三种保护方式各自有着不同特点。

4.1广域电网保护,可以保护包括中心站在内的十几家变电站。中心站利用决策主机收集所包含的所有厂站信息,以其保护的单位元件为主要保护对象,通过分析判断所收集到的信息进行故障保护。区域保护可靠性最强,故障检测角度最为全面,同时对决策主机处理能力要求也最高。

4.2站域电网保护,主要是作为一个变电站的后备保护,保护范围小于区域电网保护,是站域中心机利用收集到的变电站各个元件的信息,分析判断其存在故障完成保护。站域电网保护对主机计算能力,处理能力要求低于广域电网保护。

4.3就地化间隔保护,主要是保护相应的具体一次设备。保护装置根据主接线方式、电压等级等具体方案,安装于GIS汇控柜或智能控制柜中,柜体按间隔散布在具体设备附近。分布在设备附近的保护装置各自采集本地信息并与其它信息互相分析交换完成保护动作。就地化间隔保护方式灵活,对单一决策依赖小。但是信息庞杂,重叠率高,交互性差。

5、结语

综上所述,随着信息技术和网络技术发展,智能电网成为我国电网技术改革的重要方向。作为智能电网的第一道保护防线,变电站继电保护作用不可小觑,为与智能电力大环境相和谐,变电站继电保护配置也需进一步升级为智能保护配置,全面实现电网智能化保护。本文通过整合以往继电保护配置原理,结合目前智能电网改进和发展过程中继电保护的经验教训,对未来智能变电站继电保护配置进行展望和探讨。

参考文献

[1]卢孟杰.新一代智能变电站继电保护的研究和探讨[J].科技风,2013(01).

配电网继电保护与自动化篇10

【关键词】 电气自动化 系统选型 自动化原则

随着科学技术的不断发展和计算机技术的进步,电气自动化系统在电力系统中得到广泛的应用。各地区的电网改造和建设中应用自动化新技术,取得了一定的成功。在我国电气自动化系统的实施过程中,采用了配变电站监控以微机保护为数据采集和控制的基础,将保护、控制以及测量结合在一起的方式。

1 方案设计的思想

随着计算机和通信网络技术的发展,RTU和LTU以及保护监控单元将直接上网,并且通过网络和工作站进行通信,这样可以取消前置处理环节,从而消除通信的瓶颈现象。变电站自动化系统和无人值班运行模式的实施,可以提高电气主设备的可靠性。从信息流的角度出发,保护和控制、测量的信息来自现场TA、TV二次侧输出。保护主要采集的是一次故障的信息,对于TA、TV测量范围比较宽,需要按照10倍的额定值进行考虑,但是对于测量的精度要求比较低。对于控制和测量主要采集运行状态信息,他们对于TA、TV测量的范围比较窄,通常在测量值附近波动,而且对测量的精度存在一定的要求[1]。总控单元主要接收来自远方的控制输出命令,在经过一定的审核后,需要在校核后可以直接动作直到保护操作回路,这样就简化了设备,提高了可靠性。从无人值守角度看,需要对主接线、主设备、二次回路以及设备进行简化,这就需要保护、控制和测量实现一体化,这样有利于简化设备以及日常维护的工作量。对于110kV以及以下的配电站,电量计费、功率总加等需要接量测TA、TV来满足测量的精度要求,对于其他的测量可以监视设备的运行状态。在局域网上各种信息可以实现共享、这样控制和测量不需要配置各自的数据采集硬件。对于10kV配电站来说,由于接线简单,对保护的要去相对比较低,因此可以采用RTU完成线路的保护以及母线的切换等功能,但是需要在RTU中增加保护运行判断功能。

2 设计说明

2.1 系统的选型

变配电站自动化包括继电保护、变配电站集中监控以及远方调度管理。智能化、综合化的变配电系统的使用需要依据工程的实际需求进行选择。在继电保护的选择,对于10kv变配电所是电力系统的开闭以及用户变配电站,一次接线比较简单,因此采用常规继电保护。在选用价格比较低、性能良好的智能化开关、智能化开关柜后,需要取消常规继电保护。对于35kv以上的变配电站,具有变压保护,因此应该选择微机保护。对于配电站的集中监控和远方调度,需要采用集中式和分散于的开关柜内的集散系统两种形式。变配电综合自动化系统是一种先进的系统,它安装在开关柜内,而且是变配电站内集中监测和远方调度系统。对于集中式的变配电计算机监测与远方调度系统,需要安装各种电量变送器。由开关柜引出测量、信号、控制电缆等,而且施工的工作量比较大,不适宜推广使用。在开关柜内安装变配电自动化系统的末端数据采集与控制单元,这样交流采样可以从电压互感器直接进行测量,从而省掉了电量变送器的使用,甚至可以省掉开关柜的指示仪[2]。对于变电站电气自动化系统来说,外部电缆仅有一根供电电源和通讯电缆,这样的设计的简单,因此适宜大范围的推广。对于智能化的开关和智能化的开关柜来说,需要设计通信电缆,并且引至到调度室的中央控制站计算机上,这样就可以实现集中监测和远方调度的功能。另外由于厂家的产品的通信协议不同,因此实现联网比较困难。

2.2 电气设计原则

在变配电自动化系统的设计中,需要充分的充分的考虑一次系统和二次系统。在一次系统的设计中,变配电站采用计算机监测和控制,这对一次系统接线没有影响,而一次系统的接线方式和供电方案需要依照相关的规定进行,变配电站在采用计算机监测和控制后,可以简化模拟盘,这样能够充分的发挥计算机的图形显示功能,从而可以实现无人或者少人值班。二次系统的设计原则是变配电站采用计算机监测与控制,可以取消值班室的中央信号,保留集中保护的继电保护屏。在二次系统的设计中,需要做好下列的工作:值班室继电保护屏与中央信号系统、开关柜内的继电保护、信号与控制回路设计等保持不变,需要设计出一套重复的计量、信号与控制回路计算机监测与控制系统[3]。对于开关柜的继电器保护、计量、信号与控制回路设计保持不变,把中央信号系统取消,而对于集中保护的继电保护屏进行保留,接着将计量、信号与控制回路进入计算机监测与控制系统。开继电关柜内的保护、计量、信号与控制回路设计保持不变,而值班室的中央信号系统仅仅是指电源进线和母线联络开关柜,出线开关柜不进入到中央信号系统中,而母线联络开关柜、出线开关柜的中央信号系统会全部进入计算机监测与控制系统。

2.3 电气设计

对于一次系统的设计中,对于电气的主接线方式保持不变,而在单线系统图的设备型号中,应该注明采用计算机监测与控制系统后,增加的设备型号与数量。在开关的设置中,对于需要通过计算机监测与控制系统进行远方遥控操作的开关,应该选用具有远方分配、合闸功能的开关。对于进入到计算机监测和控制系统的开关,需要具备独立的接入点,这样才能够确保计算机监测与控制系统的接入。对于二次系统继电保护设计来说,35kv以上的供电系统可以选用微机保护,并且需要考虑变配电站综合自动化单元。10kv供配电系统通常以常规继电器继电保护为主,设计含有监控功能的变配电综合自动化单元。而对于220kv和380kv的低压配电系统,需要以自动开关和熔断器为保护。在测量回路的设计中,对于测量参数的确定,需要在计算机监测与控制系统中依据用户的需求和相关的规定进行确定。

3 结语

随着电网的建设,电气自动化系统的应用逐渐的广泛,可以实现高效、经济的变配电站的建设。智能化电网的建设需要从设计阶段进行优化,做好电气自动化系统的设计,能够促进电网运行的安全性和可靠性。

参考文献:

[1]王仓继.变电站电气自动化研究分析[J].科技资讯,2012(4):76-79.