离散数学论文十篇

时间:2023-03-24 22:13:36

离散数学论文

离散数学论文篇1

关键词:离散数学;实验教学;实践能力

离散数学课程所涉及的概念、理论和方法,大量地应用在计算机科学体系中,数理逻辑是计算机中的逻辑学、逻辑电路、人工智能的基础课程,集合与关系是数据结构、数据库系统的理论基础,而代数系统则是现实世界的缩影,直接模拟了现实系统,图论知识更是直接应用在计算机网络、数据结构、编译原理等专业课程中。但传统教学中过于注重理论教学而忽略实践,学生普遍认为枯燥难懂,认为是纯粹的数学课程,对计算机编程用处不大。因此教师在授课过程中要注重理论联系实践,培养学生的专业素养,我们将从以下方面循序渐进加强教学理论与实践。

1课程教学注重教学方法与教学实践的改革与创新

加强理论联系实际,从提高计算机编程思想的角度对学生展开教学,教师在讲解理论的同时,要注重其实际应用与算法描述。例如在讲解最短路径时,就要介绍Dijkstra算法,单源最短路径的基本思想如下:设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。

①初始化:只有源点s的最短距离是已知的(SD(s)=0),故红点集S={s},蓝点集为空。

②重复以下工作,按路径长度递增次序产生各顶点最短路径:在当前蓝点集中选择一个最短距离最小的蓝点来扩充红点集,以保证算法按路径长度递增的次序产生各顶点的最短路径。当蓝点集中仅剩下最短距离为∞的蓝点,或者所有蓝点已扩充到红点集时,s到所有顶点的最短路径就求出来了。

我们通过实例给学生模拟算法执行过程,验证算法的正确性,但细心的学生会发现前面加进去的点并不一定是后期考察路径的必经点,例如有三个点A,B,C,AB、BC、AC间权值分别为1,2,4,如果设A为源点,则第一次加进来的点是B,到C的最短路径应该是A-B-C,如果BC权值为4,则到C的最短路径应该是A-C,这里就要注意红点集加入的点不是其他点必经点,这是因为集合元素是无序的,不是联结已有的点作为最后点的路径的。

我们给出求解的动画演示过程,加深学生的认识,实际多应用在交通网络中路径的查询中,两地之间是否有路径以及如果有多条路径时找最短路径等,最后再对算法进行扩展解决单目标最短路径问题、单顶点对间最短路径问题等,扩展学生对算法的理解等。

在讲解逻辑推理时,建议学生使用Prolog语言可以轻松实现命题和联结词表示以及逻辑推理,代数系统则是无处不再,自动售货机、电梯系统、自动取款机等都是一个代数系统,有自己的运算关系,鼓励学生定义一些运算,完成一个具有输入输出的可交互的系统。

2建设完善实验课程体系,加强学生实验实践能力

挖掘课程内容,建设完善的实验课程体系,实验课程的主要目的是,培养学生的数学建模能力、算法设计能力、编写程序能力和应用创新能力,使学生养成良好的数学素质。学生可以有选择地做。

(1)基础实验如表1所示,基础实验设计一些离散数学基本问题,要求学生利用所学基础知识,完成相应的算法设计和程序实现。如在集合论部分,设计有限集基本运算算法设计实验,要求学生利用熟悉的程序设计语言完成有限集合的数据结构、集合间的交、并、差、迪卡尔积、子集判断等基本运算。学生可以在每部分中自由选部分题,完成一定的基础实验。这样的设计使得学生学会基本操作,巩固程序设计基本调试方法的掌握。

(2)综合性实验如表2所示,设计一些比较复杂的离散数学问题,要求学生综合运用各章知识或多学科知识,完成问题的分解与求解、综合和整体实现。例数理逻辑部分的命题真值表计算实验中,要求学生设计实现命题数据结构、五种基本逻辑运算的代数运算转换、表达式求值等;学生需要综合运用命题逻辑、数据结构等知识,完成实验各个环节,实现运算结果的显示。可由几个同学组成一个学习小组完成实验。

(3)设计性实验如表3所示。这一层次要求较高,对那些学有余力、兴趣浓厚的学生,给出一些难度较高的课题,要求他们自行设计问题描述模型和实验方案,开发实现小型应用软件。例如,要求学生针对某景区内景点的分布情况,设计可满足旅游者不同需求(如费用最省、线路最短、重复较少、景点最全等各种要求)的实用小软件。教师检查实验现象和实验结果。学生对实际程序的运行结果应能进行分析并提出改进方法,每完成一个实验,都要求写一份实验报告,挑选出好的作品,做成精品演示系统。

3发现实际应用点,扩大学生知识面

让学生了解离散数学在现实生活中的主要应用,有意识地引导学生运用所学理论去分析问题、解决问题,从而让学生充分感受到离散数学这门课程的魅力和实用价值。部分实际应用如表3所示。鼓励学生按照如下流程操作:发现问题,然后构思一个可能求解该问题的算法过程,再设计算法并将其表达为一道可执行程序,最后精确地评价这个程序,考查其作为一种工具去求解其它问题的潜能,锻炼学生数学建模能力,提高分析问题,解决问题的能力。

4建设开放式教学环境,丰富网络教学资源

充分利用网络学堂、课程学习网站等丰富的教学资源,构建了开放式的教学环境,我们开发了离散数学教学网站,模块包括:实验、实验申请、已审核实验、成果展示、精品展示、在线解答(前台如图1所示,后台如图2所示)、资料下载等模块,实验项目可选或自拟,增强了师生间互动,也为学生个性化学习提供了良好的条件。

学生可以在任何时间远程登陆,发表咨询,下载资料,参与实验项目,申请实验项目,获得批准后,我们开放实验室免费提供设备,实验项目结题后提交成果,我们从中提炼出精品,做成精品演示系统,学生还可以对已有成果做深入研究。

总之,鼓励学生吃透书本,挖掘理论的应用领域,鼓励学生改进算法、挖掘应用点,从抽象的理论到实际应用,再扩大应用,抽象到一般情况,让学生感觉到学习离散数学的重要性,理论与实践相结合,互相促进,切实提高大家学习离散数学的兴趣,能够达到学生积极主动为了实现应用而吃透理论,发挥主观能动性。采用项目训练为主的教学理念,切实提高学生的实际动手能力、创新能力和自学能力。

参考文献:

[1]耿素云,屈婉玲.离散数学[M].北京:高等教育出版社.

离散数学论文篇2

《离散数学》是以一切离散量为研究对象的一门学科,包括数理逻辑、关系代数、罔论、集合论等多方面内容。这门学科在计算机科学的发展和研究中起着重大的作用,比如在编译原理、数据结构、数据库系统、人工智能、计算机网络等专业课中都大量涉及了离散数学中各个分支的基本概念、基本理论和基本方法。所以它还有一个专业的名字――组合数学。离散数学是掌握和研究计算机学科的必要理论基础。

有时人们也把离散数学和图论加在一起算成是离散数学。离散数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是离散数学。离散数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的离散数学。离散数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而离散数学的发展则奠定了本世纪的计算机革命的基础。计算机之所以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了离散算法才使人感到计算机好像是有思维的。

离散数学不仅在软件技术中有重要的应用价值,在企业管理、交通规划、战争指挥、金融分析等领域都有重要的应用。在美国有一家用离散数学命名的公司,他们用离散数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名离散数学家利用离散数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。

在1997年11月的南开大学离散数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,离散数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而离散数学则将显示出它的重要作用。杨乐院士也指出离散数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力、很有前途的,中国应该倡导这个方面的研究工作。万哲先院士举例说明了华罗庚、许宝禄、吴文俊等中国老一辈的数学家不仅重视离散数学,同时还对离散数学中的一些基本问题作了重大贡献。迫于中国离散数学发展自身的需要,以及中国信息产业发展的需要,在中国发展离散数学已经迫在眉睫,刻不容缓。

2.《离散数学》与计算机软件

随着计算机网络的发展,计算机的使用已经影响到了人们的工作、生活、学习、社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化、管理水平、教育水平、思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而解决这一问题决不是这么简单,信息技术的发展已经涉及了很深的数学知识,而数学本身也已经发展到了很深、很广的程度,并不是单凭几个聪明的头脑去想想就行了,更重要的是需要集体的合作和力量,就像软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析、信息压缩、网络安全、编码技术、系统软件、并行算法、数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划、金融工程、计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和离散数学基础,这可能也是印度的软件产业近几年有很大发展的原因。

3.离散数学在国外的状况

纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究离散数学出身的,美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,...)都有第一流的离散数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。离散数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM、AT&T都有全世界最强的组合研究中心。Microsoft的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是不会对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对离散数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学、Rutgers大学、AT&T联合创办的,设在Rutgers大学),该中心已是离散数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了离散数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和离散数学已是他们重要的研究课题,该中心主任R.Tarjan即是离散数学的权威。美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世)从曼哈顿计划以来一直重视应用数学的研究,包括离散数学的研究。有关离散数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实离散数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究离散数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与离散数学有密切的联系,各国对生物信息学的研究都很重视,这也是离散数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是离散数学中的一个序列结构,美国科学院院士,近代离散数学的奠基人Rota教授预言,生物学中的组合问题将成为离散数学的一个前沿领域。

最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,离散数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言离散数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。

加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化、算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。

今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法和数学的机械化。另外的一个有说服力的现象是,离散数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的离散数学家自然就是一个优秀的计算机科学家。

离散数学论文篇3

关键词:离散数学;计算机科学;人工智能

离散数学是计算机科学的基础理论,也是现代数学的一大分支。离散数学将离散性的结构和相互间的关系作为主要研究对象,目前计算机学科的多个方面都已经提出并使用了离散数学理论。数学为计算机的优化和程序编写起到了积极作用。如人工智能技术、信号处理以及数字电视等媒体技术。

1离散数学应用于计算机数据结构

计算机具体问题的解决依赖于数据机构的建立。从数学角度,就是通过建立严格数字模型,然后解开此模型的过程。是通过数学知识和计算机程序编写的过程,而数学模型的构建就是数据结构研究的内容。寻求数学模型的过程就会提出操作对象,分析操作对象的过程,找到数学语言与计算机语言之间的契合点是研究的起点。一般情况下,数据结构主要分为树形结构、线性结构、图状结构、网状结构四种。数据结构可用于企业结构员工工资的发放问题,还可以解决一系列的距离问题,其具有广泛的应用。

2离散数学应用于计算机数据库

数据库技术已经成为社会认可并广泛应用的计算机技术,笛卡儿积是离散数学中的一个重要理论,它在计算机数据库的建立中起到了明显的作用。代数理论是关系数据模型建立的理论基础,在这一基础上建立了由行和列共同组成的二维表,我们称之为二元关系理论,这一理论主要可应用于表结构设计、域和域间关系、关系操作数据查询与维护功能等。

3离散数学应用于人工智能

离散数学中的逻辑推理是人工智能研究的基础理论之一,谓词逻辑语言的使用使我们了解了推理的子命题。逻辑规则将数学进行了更准确的定义,人工智能研究最初,就应用了离散数学理论的数学推理和,尤其是布尔代数。因此,在人工数学定理证明是人工智能所采用的理论,在现实设计中有很广泛的应用,如推理机的设计与应用。推理机以逻辑推理和产生式推理为主,推理机主要以数据库中的知识解决问题,是专家思想的一种体现。因此我们也可以将人工智能视为一种专家系统,是应用离散数学理论应用于数学问题分析、解决问题的方法。

4离散数学应用于计算机体系结构

离散数学主要应用于计算机体系结构设计中的指令吸引设计及其内容改进,对计算机整体性能的发挥具有良好的作用。指令系统优化方法以指令格式化为主。其主要作用是它能够以操作码与地址码共同实现以最短的位数来操作地址信息和操作信息。目前,主要应用哈夫曼的压缩概念来解决这一问题。这种方法是数学方法之一,是一种无损压缩法。哈夫曼的压缩概念主要是应用了数学中概率不均等原理,将最大概率事件以最短的位数来处理。相反,发生概率最低的事件则以最长的位数来处理,这样平均位数得以缩短。其基本原理是使用哈夫曼算法构造出哈夫曼树。利用哈夫曼树来对系统指令中的使用数据频度进行统计,将其以从小到大的顺序进行排列,将两个最小频度合并成一个大的频度并形成新的结合点,按照同样的原理降低进行从小到大的排列,按该频度大小插入其他未参与结合的频度值中指导所有频度完成结合。将节点能够向下延伸的分支分别标注“1”或“0”,沿着根结点开,沿线到达各频度结点所经过的代码序列就构成了所谓的哈夫曼编码。所得到的编码系列与指令使用概率低的指令编以长码相符合,即指令使用概率高的指令编以短码的目的。

5离散数学在计算机中的应用发展趋势

基于计算机中的离散数学理论应用逐渐广泛,数学理论应用于计算机也逐渐完善。当然,除了上文中提到的离散数学的基础作用外,它还在计算机的其他方面具有重要作用,具有发展前途。未来,计算机硬件的性能将进一步提高,而设计者的离散数学知识则是这一技术发展的基础,数学逻辑的应用将为计算机的软件设计提供理论基础。另外,数学中的关联词概念可用于计算机高低电平的信号运算通二进制数据之间的运算,这就是数学在电路设计中的作用,应用数学理论,设计过程更加清晰化、直观化。数学集合论概念主要应用于数据结构和算法分析,这一理论主要应用于软件工程及计算机数据库的设计,确保了计算机数据库的更新速度。代数结构作为数学的基本理论,对计算机甚至对多个领域具有重要作用,计算机程序设计时,要区分其可计算性和不可计算性,在这一前提下,形式语言与自动机、网络与通信理论、密码学、程序理论或形式语义学都成为数学对计算机的指导项目。最后,代数中的格与布尔理论为计算机硬件的设计以及网络通讯系统的设计提供了基础,这一数学理论应用计算机制度、计算机操作系统以及C语言程序进行编译、研究和检索,在多个领域如树的结构对于集成电路的布线、电子信息网流量上都能够具有一定的发展。人工智能也将成为未来离散数学理论应用于计算机更新、设计和发展中的重要理论。

6总结

总之,离散数学理论在计算机人工智能,数据库建立中都具有指导意义。计算机在科技领域、工业领域以及人们的生活中的应用以及普及,离散数学是以离散性的结构和相互间的关系作为主要研究对象,其在计算机中的应用帮助减少计算机漏洞并提高计算机运行效率。离散数学是计算机技术的基础,缺乏对离散数学的了解,计算机更新和发展无从谈起。无论是信息处理还是理论对于计算机科学,都有着密切的关系,因此如何离散数学理论应用于计算机发展中是本文研究的重点。

作者:周菲苹 单位:海南师范大学

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18).

离散数学论文篇4

关键词:离散数学;计算机系统能力;教学改革

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)30-0160-02

The Teaching Reform of Discrete Mathematics based on Cultivation of Syetem Capabilities

WU Li-chun

(Department of Basic Computer,College of Science,Ningxia Medical University, Yinchuan 750004, China)

Abstract: Discrete Mathematics is a fundamental course which is important for students who major in computer science, and it is closely related with other professional courses.This article associates the knowledge about computer hardware and software with expertise of Discrete Mathematics. At the process of teaching, appropriate cases are proposed firstly. Secondly, the required knowledge to solve problems is explained. Finally, the corresponding expertise of Discrete Mathematics is listed to teach. Through the study of this subject, the ability of the student has been greatly improved. Practice proves that teaching reform has achieved initial success. It achieves the goal that develops computer professionals with good system capacity.

Key words: Discrete Mathematics; Computer system capability; Teaching reform

1 引言

各学科学生,特别是理工科学生人才培养目标之一是应具有本领域系统特征的知识体系,一个合格的毕业生应能够在系统各个层面上进行抽象和考虑问题。计算机科学与技术专业学生的系统能力[4]包括抽象思维能力、系统分析与设计能力、系统实现能力。

离散数学[2]是研究离散量的结构及其相互关系的数学学科,是信息和计算机专业的一门重要专业基础课,它在信息与计算机科学中有着广泛的应用背景,是集[3]数理逻辑、集合论、关系论、函数论、组合数学、数论、代数结构、图论等领域汇集起来的一门综合学科,它跨越了数学的诸多分支,并与整个计算机科学紧密联系,是学生掌握处理离散结构所必需的描述工具和方法,离散数学是在学生学习了程序设计课程后的一门专业基础课程,它是后续学生学习多门专业课程的重要基础和支撑。

2 离散数学教学存在的问题

经过多年实际教授离散数学课程,我认为离散数学教学存在下列问题:(1)离散数学课程内容、教材内容全部是数学理论,教学一般采用“定义―定理―证明―习题”的教学方法,这门课程一般没有与计算机专业课程相结合的实验课程,学生认为这是一门数学课,无法将这门课程与计算机专业课程相联系,无法将数学理论与具体实际计算机系统相结合,无法建立离散数学课程内容与实际计算机系统之间的关联,学生学习缺乏兴趣。(2)离散数学知识繁杂,涉及数学理论的多个领域。多领域众多的内容并不适合让计算机本科学生全部学习,如何在众多的离散数学内容中精选出适合计算机专业本科生学习的内容,是需要解决的一个问题。

3 解决的方法与对策

如果能将离散数学教学中知识的每个环节和计算机硬件和软件关联起来,使学生初步建立计算机系统体系的层次结构框架,了解计算机系统的相关知识,以培养学生的系统能力为目标,既能提高学生学习离散数学的兴趣,又能为后续计算机专业课程打下坚实的基础。

因此我们首先改革传统的教学方法,在教学中我们不使用学习数学的教学方法,而是为离散数学每一部分的相P知识找到计算机专业领域的实际例子,我们通过离散数学在计算机软硬件方面的实际应用,把计算机专业知识与离散数学知识相对应,通过离散数学的学习,使学生能够将数学理论与具体实际计算机系统相结合,提升学生系统能力,提高学生分析问题解决问题的能力,并提高学生学习离散数学课程的学习兴趣。主要用以下三个方案对离散数学教学进行改革,改革初见成效。

3.1 精选教学内容,以够用为主,突出其应用性,突出系统能力培养

数理逻辑[1]是研究推理的形式结构和推理规律的数学学科,数字逻辑的部分理论建立在数理逻辑的布尔代数和时序机的理论基础上。我们在计算机中开关电路的设计可以使用布尔代数和范式的实例,可以让学生在课堂上利用布尔代数设计开关电路,开关电路的接通和断开用二个值的布尔代数来描述,并构造其真值表,求出主析取范式和主合取范式。使得我们的开关电路设计更加直观,也学习了数学理论。

数据库中的数据是按一定的数据模型进行组织的,早期的数据库是层次模型、网络模型,存储数据复杂。关系代数[2]是关系型数据库设计的基础,关系理论使数据存储变为关系模型,关系模型使数据存储的逻辑结构变得简单,数据的独立性强,数据操作简单。

代数结构[1]主要研究典型的抽象代数系统,格与布尔代数是设计计算机硬件设计的工具,在硬件体系结构设计中发挥着重要的作用。编码理论在通讯中发挥着重要的作用,有限域是它的数学基础。格论又是计算机语言的形式语义的理论基础。

数据结构研究数据的线形结构、树形结构和图结构,其中树形结构和图结构以图论作为它的数学基础。线形结构中的线形表、栈、队列是根据数据元素之间关系的不同而建立的对象,它以集合论作为它的数学基础。在计算机鼓轮设计问题中,如果使鼓轮旋转一周,触点输出一组二进制信号,需要使用图论的知识。进程之间的并发关系、网络路由算法要用到通路的知识。因此,本着够用的基本思想,我们在众多离散数学内容中选取数理逻辑、集合论、代数系统、图论作为授课内容。

3 .2改革教学方法和教学手段,引导学生应用所学知识去分析和解决实际问题

首先,在教学方法和教学手段上进行了改革,让学生把离散数学的知识与计算机软、硬件应用相关联,意识到计算机专业学生离散数学课程的价值。例如:图论中集成电路板的布线与平面图结合,最短路径搜索和最小交通费用应用与带权图的最小生成树结合,计算机通讯与根树中求最优树的方法结合,使信息在传输过程中,既能节省二进制位,又能准确无误地传递。集合论部分,工厂的任务调度应用到偏序关系上。数理逻辑中逻辑开关电路的设计应用真值表。在讲解关系代数时,选取教务管理系统里相关表,如学生基本信息和选课信息表,与数据库原理中表之间的运算联系起来,这两个表是相互独立,又有关联的表,那么如何实现两表数据的正确关联,形成一个稳定的数据库信息从而提高检索效率和检索准确性?方法:“笛卡尔积”关联。又如,可以通过C语言实验求解图论中最短路径和最优二叉树。使学生明白计算机专业课中软硬件知识是以离散数学知识为基础,激发学生学习离散数学的兴趣。

其次,在教学模式上:① 尝试“开课五分钟”,教师在每节课开始五分钟,通过给出问题,提出思考,让学生学会思考,督促学生对前面所讲的内容进行复习。 ② 采用“多循环”教学法,在每章讲解时,以一条知识为主线,本章各节课中内容的知识点与这一知识点关联,由前一知识点推出后一知识点。使学生通过表示知识点的图就能够理清每章内容之间的内在联系,使每章知识条理化和系统化。以图的基本概念为例,把各个知识点串起来,如图所示。③ 以课程“大作业”男女生分组强弱搭配法,尝试以强带弱、共同学习提高学生学习能力,以此改变期中、期末以“卷”为主的思路,重学生能力培养、重方法讨论、重实验报告训练、潜移默化地给学生灌输“软件工程”思想,培养学生的计算机系统能力。

3.3 开设实验课程,培养学生对计算机系统的认识

离散数学开设实验课有利用培养学生对计算机系统认识,通过开设实验课程,使学生从数学角度和计算机角度@两种方法来学习离散数学。因此研究离散数学各部分内容与程序设计整合模块的设计项目是重要的研究内容,我们在离散数学教学中开设了如下一些验证性实验。

4 结语

离散数学是计算机专业的一门重要专业基础课程,它与计算机科学技术的相关专业课程密切相关。本文提出基于系统能力培养的离散数学教学改革,从学习离散数学各相关内容入手,找出离散数学内容与计算机相关专业课程之间联系的实例,从计算机系统观出发,既培养学生的抽象思维能力,又培养了学生系统分析与设计能力、系统实现能力[4],实现培养具有良好系统能力的计算机专业人才的目标。

参考文献:

[1] 屈婉玲.离散数学[M].北京:高等教育出版社,2008,3.

[2]http:///link?url=kL2WvmOu3tuk8-0MuGjZ2lN ND0GnNLl1T2QXHsQuuUK3bCPW7TcvlhBAjgKQb3YQNS8q caDgaYK7SVMwda9y8dR0DPlCk95Z1kJ0QtBpMVy

离散数学论文篇5

关键词:高职院校;离散数学;教学改革;实施方法

《离散数学》是近年来产生的一门新课程,它是现代数学的一个重要分支,是计算机科学中专业基础理论的核心课程,它是以研究离散量的结构和相互关系为主要目标,主要介绍离散数学的各个分支的基本概念、基本理论和基本方法,给后继课程如数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程提供必要的数学基础。同时,该课程所提供的训练十分有益于培养学生的概括抽象能力、逻辑思维能力、归纳构造能力,培养学生逐步增强如何实施“科学理论—技术—生产力”转化的观念和方法,提高学生利用数学方法解决问题的技能,提高学生在知识经济时代中的适应能力。因此,离散数学在计算机科学与技术中的地位如同微积分在物理学和工程技术中的地位一样重要,它为计算机科学与技术的发展奠定了重要的数学基础,对学生后续课程的学习和毕业以后的科学研究和实践有重要意义。

《离散数学》教学现状分析

离散数学是建立在大量定义上的逻辑推理学科,该课程具有“概念多、内容散、理论强且高度抽象”的特点,因而对概念的理解是我们学习这门学科的核心。离散数学中的定义非常抽象,初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系,所以对于初学者来说学习离散数学确实比较困难。而且高职院校学生的数学基础薄弱,离散数学内容太散,学习时对内容的深浅难以把握。学生学习该门课程之后反映,一是抓不住知识的内在联系,不知道哪里是重点;二是对书上的例题一看就懂,但自己拿到题以后却不知从何处下手,没有解题思路;三是知道解题的大致思路,但不了解解题的规范与要求,不会表达,解答出来常常是漏洞百出,因而导致学生学习该门课程的兴趣不高,教学效果不理想。因此,如何组织课堂教学,挖掘学生的学习兴趣,充分调动学生的学习积极性,对于提高离散数学课程的教学水平和质量,为学生后续课程的学习和今后科学研究具有重要的意义。

以“三用”为原则,组织课堂教学

以“够用”为度,精选教学内容离散数学包括数理逻辑、集合论、代数结构、图论、组合分析初步和形式语言与自动机初步。本课程课堂教学中,应以“够用”为度,精选教学内容。由于高职院校学生的数学基础都比较薄弱,对于一些定理的证明都缺乏基本理论基础,学习起来比较困难,因此在教学中应淡化某些理论性的证明,注重介绍理论在实际中的应用。比如包含排斥定理,在课堂教学中一般只用文氏图形象地说明,不必做数学上的证明,只具体讲述该定理在实际生活中的应用。再如,在讲授图论这一章时,没有必要对欧拉图和哈密顿图存在的条件做详细的证明,只需对它们的实际应用做详细的介绍。另外,由于该门课程概念多,因此在课堂教学中,应通过多举例的方式让学生理解概念。如对极小项的概念阐述得很长,学生理解比较困难,因此,课堂教学时只需举例,让学生判断哪个是极小项就可以让学生对极小项的定义有深刻的印象。所以对于高职学生来说,精选教学内容是很必要的。

以“实用”为主,紧扣专业大量计算机专业课中都会用到离散数学的基础知识,教师必须了解离散数学这门课程与其他课程之间的关联,以及这门课程在整个计算机学科体系中的地位。如离散数学中的数理逻辑部分在计算机硬件设计中的应用尤为突出,我们可以用数学的方法来解决电路设计问题,使得整个设计过程变得更加直观,更加系统化;集合论为数据结构和算法分析奠定了数学基础,也为许多问题从算法角度如何加以解决提供了进行抽象和描述的一些重要方法,在软件工程和数据库中也会用到;代数结构的方法被广泛应用于许多分支学科,如可计算性与计算复杂性、形式语言与自动机、密码学、网络与通信理论、程序理论和形式语义学等,格与布尔代数理论成为电子计算机硬件设计和通讯系统设计中的重要工具;图论对开关理论与逻辑设计、计算机制图、操作系统、程序设计语言的编译系统以及信息的组织与检索起重要作用,其平面图、树的研究对集成电路的布线、网络线路的铺设、网络信息流量的分析等具有重要的实用价值。总而言之,离散数学提供的营养滋补了计算机科学的众多领域,学好了离散数学就等于掌握了一把开启计算机科学之门的钥匙.

以“应用”为目的,注意学生解决问题能力的培养学生在学习该课程时,往往看不到离散数学的知识在计算机科学中的具体应用,不重视离散数学的学习。在该课程课堂教学过程中可以帮助学生了解离散数学在相关专业课中的基础地位和重要性,可多讲解一些这方面的例子。如,命题逻辑知识在组合逻辑电路设计中的应用,在课堂教学中,可以采纳下面的例子达到很好的教学效果:设计一种保密锁的控制电路,锁上共有三个按钮A,B,C,当三个按钮同时按下,或只有A,B钮按下,或只有A,B中之一按下时,锁被打开,该控制电路的路线图怎样?在该问题中,如附加一个报警装置的控制电路,当出现不符上述开锁信号时,电铃报警,该控制电路的路线图怎样?通过这个例子,学生利用命题逻辑知识解决实际问题,帮助学生了解命题逻辑知识在相关专业课中的基础地位和重要性,从而体现出离散数学的作用。作为教师应多学习了解计算机其他专业课的内容,从中找到能应用离散数学的知识解决的实际问题,避免课堂的教学讲授陷入枯燥的泥潭。

改革教学方法,提高课堂教学质量

离散数学是由计算机科学与工程实践中所需要的数学理论和方法所组成,概念多、理论性强、高度抽象。因此在课堂讲授中不应依旧从理论到理论,从抽象到抽象。本课程课堂教学要突破传统数学教学思想方法与内容,弱化教学内容体系的系统性与严密性,强调在任务中学习的教育理念,以学习项目为驱动,以实际问题为导入,以学生应用为主题,突出应用能力的培养。

选取典型案例进行说明课堂教学中注意选取典型的案例来说明抽象的理论知识,使学生在轻松愉快的情境中领悟离散数学的精髓,达到对理论知识的真正理解。如讲授代数系统中的布尔代数时,为培养学生灵活运用布尔代数解决实际问题的能力,可根据教学内容设计出“每天教学安排问题”、“比赛名次问题”和“出国留学问题”等三个教学案例,以真实案例为切入点,通过分析讨论,给学生以强烈的印象,加深对所学知识的理解。

选取学生感兴趣的理论知识学生最感兴趣的理论知识与实际的项目相结合,如在设备更新的最优设计问题教学中,以如何制定设备更新计划,使某单位五年内购置新设备和维修旧设备的费用最少为工作任务。要求学生围绕该工作任务去收集数据和信息、完成优化指标的设计、实施对应优化指标下的设计方案并对该方案给出合理的评价。以实际工作任务为教学项目,绝大部分教学内容围绕完成工作任务的过程组织,突出知识的应用性,引导学生自主思考,训练学生的数学应用意识以及跨专业组织知识的综合能力。

采取多种形式的教学方法课堂教学中也可采用其他的教学方法,如在讲授中国邮路问题时,制作一个邮递员送报的Flash情景动画,通过采用案例、情景引导学生思考问题,进而寻求具体邮路问题的解法。也可以利用离散数学中的一些富于历史趣味的故事或富于启发性的问题加以介绍,比如图论中的七桥问题、邮递员问题、四色问题、周游世界问题等。比如在代数系统中介绍凯撒密码、棋盘密码、维吉尼亚密码、爱尼格玛、数字水印等。还可以介绍数学家的生平事迹如图灵、欧拉、狄克斯特拉等。离散数学中的典故,典型实例,历史人物这些有趣的内容可激发学生的学习兴趣,让学生享受学习的乐趣,提高课堂教学质量。

解决实际问题,注重学生创新能力的培养

从当今社会发展和人才需求的角度来看,社会对人才的评价标准发生了变化,不但要求知识渊博,而且要求具备创新意识、创新能力。兴趣、情感、求知欲、积极性和主动性是帮助学生形成与发展创造性思维能力的重要条件,但是它们不会自动涌现,这需要教师在课堂教学中注重学生创新能力的培养。

采取灵活多变的教学方式启发学生学习兴趣灵活多变的课堂教学方法是培养学生创新能力的崭新途径,教师从课堂教学中启发学生学习的兴趣。教师要采用灵活多变的教学方法,创设情境,着力营造一种轻松愉快的学习氛围,从而培养学生的学习兴趣和热情,用妙趣横生的数学问题吸引学生去思考、去探索、去创新。

掌握学生心理启发学生学习兴趣利用“学生希望解决未知的、力所能及的问题”的心理处理课本的例题、习题、专业课中的案例、项目,发挥智力,深入挖掘创新素材和其潜在功能,培养学生的创新兴趣。如代数系统中可以布置关于密码方面的案例,要求学生进行破译。这样引发学生浓厚的学习兴趣和求知欲,自觉地去学习、解决和创新。

注重人文内容和精神启发学生学习兴趣课堂教学是一个启发、培养学生创造意识的重要场所,教师不能满足于具体的学科知识,还要揭示知识背后所凝结的历史、观念、方法、精神等,特别是其中的人文内容和创造精神,以及科学史上创新过程的介绍,使得课堂教学成为“多维营养”的源泉,利用离散数学中历史人物、典型实例、数学中的美(简洁美、形式美、方法美、抽象美等)给学生强烈的感知,引发学生不断探索的欲望,驱动他们创新,维持长久的创新兴趣。

运用发散性思维方式启发学生学习兴趣离散数学中的一些概念、公式、定理,或因内容相似相近,或因形式相似相近,易造成混淆,在教学中,要积极运用对比分析教学,促使学生在错综复杂的事物联系中发现问题的实质,学会客观地评价事物,加深对事物本质的理解。因此,教师在课堂教学中要从知识的顺延、从属、引申、互逆、相似等方面考虑和发掘类比因素,进行类比创新,培养学生思维的灵活性。

教学有法,教无定法。教学是一门艺术,教学过程对学生和教师来说都是一种享受,教师在教学过程中传授知识、培养能力,学生在学习过程中获得知识并使自己的能力得以提高。愿每一位数学教师都成为优秀的厨师,奉献给学生每一顿都饱含营养的美味大餐。

参考文献:

[1]屈婉林,耿素云.离散数学[M].高等教育出版社,2006.

离散数学论文篇6

关键词:离散数学;教学改革;教学方法

中图分类号:G434 文献标识码:A文章编号:1007-9599 (2011) 12-0000-02

Study and Practice on Discrete Mathematics Course Teaching Reform

Zhang Yaliang,Zhang Yanfeng,Jiang Baoqing

(School of Computer and Information Engineering Henan University,Kaifeng475004,China)

Abstract:Discrete mathematics is in computer science and technology at the core of the professional course,well,this course of teaching,on the subsequent course of study for students and future research work are of great significance.This article combines teaching some knowledge on how to reform the traditional teaching mode,the use of modern teaching methods to improve the quality of teaching for a more in-depth analysis and discussion.

Keywords:Discrete mathematics;Education reform;Teaching methods

离散数学是现代数学的一个重要分支,是计算机科学与技术的理论基础,它以研究离散量的结构及相互间的关系为主要目标,其研究对象一般是有限个元素或可数个元素,因此它充分描述了计算机科学离散性的特点。

离散数学是计算机科学与技术各专业的核心、骨干课程,它不仅为后续课,如数据结构、编译原理、操作系统、数据库原理和人工智能等,提供必要的数学基础;也是组合数学、遗传算法、数据挖掘等计算机硕士研究生阶段相关课程的重要基础。无论从计算机学科发展的过去、现在和未来看,《离散数学》都是计算机科学与技术专业不可缺少的重要组成部分。这门课程有着其它课程不可替代的地位和作用,是一门承前启后的课程,既是基础,又有发展。而且通过学习离散数学,可以培养和提高学生的抽象思维与逻辑推理能力,为学生今后继续学习和科研工作,打下必备的数学基础。但是,在长期教学实践中,学生普遍认为该课程是一门很难学的课程。主要的困难是概念多、理论性强、高度抽象、不易理解,学生更看不到本课程的应用前景,没有学习兴趣。因此,本文结合笔者近年来从事离散数学课程教学的实践,从如何提高离散数学课程的教学水平,激发学生对本课程的学习兴趣,调动学生学习本课程的积极性出发,就教学观念、教学内容、教学方法、教学手段等方面的改革进行了一些探讨。

一、转变教学观念,树立理论应用意识

在以往的教学中,离散数学总是按纯数学的形式来讲授,把一个个概念、定理和证明很生硬的讲给学生,学生听起来觉得枯燥无味,更看不到它在计算机科学中的具体应用,总有学生问学习离散数学有什么用处。因此,有些学生不重视本课程的学习,只注重实际编程能力的训练,认为只要有较强的编程能力,以后就可以找到好的工作。这主要是教师没有起到很好的引导作用,不能与计算机学科很好地结合起来,使学生对离散数学这门课没有一个真正的认识,不能充分调动学生学习积极性。因此,首要任务是要求教师改变教学观念。

在教学中,要注重应用型人才的培养,注重理论和实际相结合,遵循“以教师为主导、以学生为主体”的原则,以提高学生素质为根本宗旨,把握学科教育本质和目的,以培养学生创新精神和学习能力、实践能力为重点,这也是由计算机科学知识发展更新快、学科交叉程度高、应用面广的特点所决定的[1]。这就要求教师积极引导学生注重基础理论的学习,在上第一堂课时,就要强调学习离散数学的重要性,告诉学生什么是离散数学,实际上它就是将计算机科学中所用到的数学知识抽象出来形成的一门理论。要给学生强调它的每一章内容与相关的哪一门后继课程有联系,如谓词逻辑在人工智能知识表示中的应用,关系数据库中要用到二元关系的相关理论,代数系统中的域在网络安全密钥加密中的应用,以及在数据挖掘中用到的格的知识,还有图论的相关理论在数据结构和计算机网络中的应用等。还可以举一些实际的例子,比如学生熟悉的图灵机就用到离散数学中的知识。这样可以使学生对离散数学首先有一个感性认识,引起他们思想上的重视,让他们认识到学好这门课是非常有用的。此外,在后续的教学过程中,应穿插介绍一些在计算机科学中的应用的知识点,将之与离散数学理论结合介绍给学生,使学生在后续的学习中逐渐体会到这一课程的重要性,产生学习兴趣,主动地进行学习。

二、教学内容的整合与优化

目前,教学内容改革常见的形式为对课程教学内容删减、压缩或整合,但要对传统的比较完善的离散数学教学内容进行合理的改革“手术”,使之具有较强的可操作性,从而,达到理想的效果有一定的困难。因此,保持离散数学的基本内容和特色,在概念描述、定理形式以及相互关系上进行提炼、凝结,既可以给常规教学结构的改革提供一个可行的时间空间,又可以使学生以精炼而有用的工具去进行创造性学习活动[2]。

传统的离散数学包括四个知识模块:数理逻辑、集合论、代数系统和图论。有个别书加上一章或每一章加上一节离散数学在计算机科学中的应用,也有个别书加上一些组合数学和形式语言与自动机的内容,但核心内容还是四大块。这四大块实际上可以分别对应一门独立的课程,但如果分开来讲,容易造成教学内容繁多与教学课时数偏少相矛盾的问题,使教学过程具有很大的难度,同时为兼顾计算机科学和计算机应用所涉及的两个方面的离散结构数学模型,对传统教学内容进行筛选、组合是必要的。可适当增加组合论和计算理论的基础知识,适度限制部分传统内容的深度,精简数理逻辑和集合论的部分内容,较大幅度地改革教学内容。同时对教学内容编排进行优化,把教学过程设计为精讲、略讲、讨论和自学四个层次。

此外,在讲每一部分时,可以先介绍相关的背景和历史发展,讲一些轻松的故事,提高学生的学习兴趣,比如著名的苏哥拉底三段论、哥尼斯堡七桥问题、周游世界问题、一笔画问题等等,但对于这些问题的介绍不能停留在故事的趣味性上,应当从故事入手,提出有思考性的问题,再促进和启发学生思维的积极性,这样就能达到较好的效果[3]。另外,在每一章后面还应增加一些编程的练习,比如上机实现通过求真值表判断公式的类型,利用矩阵判断关系的对称性、根据输入的代数系统运算表,求出幺元和零元,指出是否满换律等等,不仅能使学生提高动手能力,还能使学生对相关的知识有更好的理解。

三、教学方法与教学手段的改革

本课程教学致力于培养理论基础扎实、学习研究兴趣浓厚、具备计算机知识背景和研究能力的创新型人才。为此,在教学方法与教学手段上非常重视以多样化的教学方式提升学生的学习研究兴趣、鼓励学生开放式、自主学习,注重经典理论与计算机科学中具体应用的有机融合,真正使教师的引导、传授与学生的自主学习和研究紧密结合,使受教育者的知识学习与能力提高互动发展。

在课程设计上,结合课程特点突出离散数学的理论应用特色,将抽象的理论与相应层面上具体的、感性的问题结合起来,既可加深学生对理论的认识,又通过对具体问题的处理,培养学生应用理论分析解决具体问题的能力,有益于学生创造思维能力的训练和培养[2]。

在具体操作上,主要从以下几方面着手实施:

(一)基础理论与学科应用相结合

在离散数学课程的教学过程中,应该在讲解分析理论基础上结合学科应用,这无论从学科的本质特点,还是利于学生的学习掌握考虑,是均必须注意到的一点[1]。为此,我们结合当今计算机技术的最新发展动态,适当增加离散数学在计算机科学中的应用的内容,如谓词逻辑在人工智能知识表示中的应用,代数系统中的域在网络安全密钥加密中的应用等。并且在课堂上还引入了近年来在国内刚刚兴起的,备受大学生关注和欢迎的大学生程序设计大赛以及数学建模竞赛中的经典题目分析与实际案例,使得算法理论的证明和演算能和大学生程序设计大赛、数学建模竞赛相结合,使学生能较好地理解和掌握各种离散结构和离散数学模型,更好地解决实际问题。

(二)采用多媒体教学和网络辅助教学系统

我们自主开发的高水平多媒体课件和电子教案为课堂教学起到了很好的辅助作用。根据课程特点,采用行之有效的多媒体教学,通过文字、图像、动画、视频,激发学生的学习兴趣,不仅增加课堂信息量,还提高学生的形象思维及创新思维能力。当然,对于推理证明以及演算的部分,还是应该用板书的形式,只有将传统与现代手段有机的结合,才能更好地为教学服务。此外,已经建立的以教师为主导、学生为主体的自主学习的交互式网络教学环境,通过网络提供的大量资源,如教学大纲、电子教案、习题库、试卷库、实践指导、多媒体课件、教学录像、参考文献目录等,有效地拓展了理论课的教学空间,使离散数学教学内容更丰富,教学方式更灵活,教学手段更先进,更有利于调动学生学习兴趣及学生个性化发展。另外,网站设有师生论坛,可以促进学生通过网络环节交流学习心得,上传资料共享,并与老师进行网上讨论,提高了学生学习的主动性及学习的实效性。

(三)改革考试方式,增强学生学习的自觉性和主动性

为了更好地检验学生的学习效果,课程组通过长期对考试方式的探索和研究,采用理论知识考核、实践项目考核和创新能力考核相结合的方式,不断地引导学生改进学习方法。为避免学生考前临时突击,放松平时的学习的情形出现,我们采用闭卷考试、平时成绩和实验成绩相结合的方式进行考核,卷面成绩占总成绩70%,平时作业成绩占10%,实践和学生创新能力考核占20%。上述考核评价方式使学生成绩考核遍布整个教学过程,促使学生重视每一个教学环节,使学生的学习过程变成循序渐进的过程避免了学生突击应付考试的现象,同时提高了学生平时学习的自觉性和主动性。并且在学完每一部分后还增加了课堂小竞赛,采用分组抢答的形式,既能使学生对所学知识及时复习,又培养了团队合作精神,学生兴趣很高。

(四)增加实践环节

1997年之前,我们开设了离散数学实验课,设计了数理逻辑推演系统,辅助数理逻辑部分的学习。简单结合离散数学与其他计算机学科,通过学生的课程实践,能够培养学生对离散数学课程的兴趣和动手能力,经过一段时间的观察,我们发现这类传统实验并没有很好地锻炼学生的抽象思维能力,而主要是锻炼了学生的动手编程能力,为此我们对离散数学的实验内容不断建设、完善和更新,精心设计实践环节,将创新性综合实验、研究性大作业纳入该课程考核之中,这是离散数学教学中的创新性工作,是将枯燥的数学学习转化为兴趣学习的创造性工作。

近年来,我们注重培养学生的实际动手能力,在课堂上引入ACM、ITAT和大学生数学建模等样例,比如最短路径算法:dijstra实现及应用习题,floyd实现及应用,最小生成树算法:prim实现及应用习题,kruscal实现及应用习题(朴素实现及堆优化)等。根据学生自己的兴趣、爱好,知识结构的等自由结合为3人为一个小组,根据具体问题,利用相关理论知识建立数学模型,构思可求解问题的算法流程,再将算法编写成相应的可执行的程序,再编写一定的测试用例中来精确地评价程序的可运行性。教师主要引导学生发现问题,注重综合知识的灵活运用和边界条件的发掘,以及实践项目过程中引导学生能够对自己建立的模型质疑、解答和优化问题。通过这些实践项目的开设,让学生了解了离散数学在实际生活中的具体应用和重要性,充分体会到离散数学这门课程的无限魅力和应用价值,帮助学生提高了学习兴趣和研究兴趣。

(五)开设离散数学系列专题讲座

根据离散数学课程内容及在今后学科中的应用,可以邀请专家开设离散数学后续课程的应用领域系列讲座――计算模型与形式语言自动机理论、知识发现与数据挖掘的发展动向、神经网络应用领域等。通过这些课程讲座,使学生充分领略离散数学在后续课程和科学研究中的重要作用。

四、结束语

离散数学是计算机科学的一门重要的基础课程,要想教好这门课,就要及时转变教学观念,不断丰富教学内容,运用新的教学方法,并借助于现代化教学手段,不断提高自身的教学水平,充分调动学生的学习积极性,从而达到良好的教学效果。

参考文献:

[1]赵青杉,孟国艳.关于离散数学教学改革的思考[J].忻州师范学院学报,2005,21:5

离散数学论文篇7

关键词:离散数学;数据结构与算法;数学修养;计算机程序设计

中图分类号:G793 文献标识码:A

一、离散数学与计算机程序设计的关系

为了让计算机能解决某个问题,人类必须将解决问题的思路和方法通过计算机语言发出,使计算机按照人类的思路按顺序执行指令――编程。对于具体的问题实例,首先建立适当的数学模型,设计最优的算法以解决数学模型。数学模型的建立需要从实际问题中抽象出数据,寻求其关系,用数学的语言描述之,故算法设计和数据结构是计算机程序设计的两大支柱。此外完整的编程包括程序编写与调试,程序测试等多方面理论和技术,并不是一个简单的编写代码的过程。对于实际问题,可操作对象和数据是非连续的,寻求离散量之间的关系需要借助离散数学的思想方法和理论。因此,离散数学是计算机程序设计的数学工具,计算机编程是离散数学的实践应用。

二、离散数学对数据结构与算法中的作用

数据是现实的客观事物,关系是任意两个数据之间存在的一个或多个关系,利用计算机求解实际问题,必须将数据存储到计算机上,需要考虑数据的性质和存储结构(虚拟存储结构/逻辑存储结构)。数据结构主要研究数据、逻辑结构以及基本操作运算。离散数学中的图论思想主要体现在数据结构的四大主要结构――集合、线性表结构(一对一关系)、树形结构(一对多关系)、图形Y构(多对多关系)。著名的哥白斯堡七桥(一笔画)问题就是由瑞士数学家莱昂哈德・欧拉利用图论的基本思想解决了的,同时开创了数学新的分支――图论。图论将“点”由“边”构造关系,利用边加上权值可以解决诸如经济最小成本、交通网络的最大流、交通运输最小费用等问题。

数据结构与算法密不可分:数据结构都需要算法的支持,数据结构的选择直接决定算法的时间复杂度。通常情况下,选择合适的数据结构能够有效降低时间或者空间复杂度。解决实际问题,首先要分析问题,选择合适的数据结构。诸如公司存储管理员工资料问题,优先选择链表:登记注册新员工的资料(增加)、员工退出(删除)、核实员工资料(查找)、校正员工信息(更改)、增加(或删除)时间复杂度为0(1),而顺序表则为0(n);对于查找和更改,两者复杂度均为0(n)。

三、离散数学对编程者数学修养的作用

计算机需要学习离散数学,不仅是编程本身需要,同时也可以提高数学修养。程序本质是逻辑,程序运行结果就是逻辑推理演算的结果。将人类的思路翻译成计算机编程语言需要很强的逻辑性、精确性;不少编程初学者缺乏思维逻辑的锻炼,导致思维断断续续和不严谨,或者对一些稍难的程序无从下手。

数学修养包含程序员的数学观察力、数字敏感、离散抽象思维能力、逻辑思维能力、数学学习能力等,并不全在于储备数学知识的多少。程序与数学结合紧密,像数学归纳法在程序中的运用也比较常见――hanoi塔、Fibonacci数列、阶乘函数等问题递归的实现;学习离散数学不仅要会应用公式,透过现象看本质,学习知识的思想方法才是根本,遇到实际问题能够学以致用,运用数学思想方法进行抽象建模。程序员没有经过系统的学习数学虽可以解决问题,但大多存在三个主要问题:一则耗时;二则不利于软件周期内的交流,他们可以读懂每一行代码,但是预测不到大概结果,甚至对程序的功能一知半解;三则性能不佳――一个“好”的算法应该考虑算法的效率,预估算法的效率以降低软件工程的成本来符合软件工程标准化准则。数学学习能力建立在数学知识的积累基础之上,帮助我们学习更高深、更晦涩的理论知识――IT是一个时刻在更新的行业,需要不断扩充知识。

学习离散数学必须认识到离散数学的重要性,它不仅能在计算机程序中得到应用,更是培养程序员逻辑思维能力等隐性条件的工具。学好离散数学可为计算机程序设计奠定良好的数学基础。

参考文献:

离散数学论文篇8

关键词: 离散数学教学问题成因分析解决方法

随着人类社会的发展与进步,计算机技术日益成熟,已不断深入到人们生活的各个领域。许多高校开设了计算机科学与技术专业,离散数学作为专业必修课,其重要性日益显现。但由于课程特点、教学方法等多方原因,离散数学的教学并不尽如人意。我们只有加强教学研究,在教学过程中发现存在的问题,并及时加以解决,不断提高教学质量,才能充分发挥离散数学在人才培养中的重要作用。本文试就离散数学教学中普遍存在的问题进行成因分析,给出解决方法。

一、对离散数学课程的认识问题

一些学生对离散数学课程的重要性认识不足、重视不够,因此教师在课程讲授前一定要先解决“什么是离散数学?为什么要学习离散数学?”的问题,使学生对离散数学的特点和重要性有充分认识。

离散数学是现代数学的一个重要分支,其研究的对象是各种各样的离散量的结构及其关系,如自然数、真假值、字母表等。离散数学非常重视“能行性”问题研究,即要解决一个问题,首先要证明此问题解的存在性;其次要找出此问题解的步骤,而且步骤必须是有限的、有规律的。这些都与连续数学中的讨论方式形成了鲜明的差别。除此之外,一切以离散现象为其研究对象或研究对象之一的数学均可属于离散数学,如代数结构、数理逻辑、图论、组合数学、数论、离散概率等,因此离散数学可看成是由多门数学分支组成,各个分支相对独立,研究方法各异,研究侧重点也有所不同,故各有特色,但同时它们又相互补充、相互促进、相互渗透,共同形成的一门具有共性的综合的数学学科。

离散数学是数学类、计算机类各专业的必修课。一方面,它作为有力的数学工具,对计算机的发展、计算机科学的研究起着重大的作用。离散数学的思想、方法、概念已渗透到计算机科学的各个领域,学生如果不了解离散数学的基本内容,在计算机科学中就寸步难行。学生学习离散数学,可给后继课程,如数据结构、数据库原理、算法分析、计算机网络等课程提供必要的数学基础。另一方面,它是连接数学与实际问题的纽带,有利于培养学生对实际问题的提炼、抽象能力,逻辑推理能力,数学建模能力,以及计算机应用能力。学生学习离散数学,可以为后续发展打下坚实的基础。

二、形散神也散的问题

离散数学不同于其它数学课程,它不仅在研究对象和研究方法上与普通数学有较大差异,而且在内容结构上随计算机科学的发展而变化,不及连续数学课程完整与稳定,因而对已习惯于连续数学学习的师生而言教学难度大,其中最大的问题是形散、神也散。

所谓形散是指课堂教学中概念多、定理多,核心内涵难以突出;神散是指各知识点相对独立,相互关系不明显,学生难以内化成自己的知识结构。形散神也散的问题存在的原因有两个:一是离散数学课程本身就是由多门数学分支组成,每个分支基本上可看成一门独立的研究领域,这些分支一方面相互独立,另一方面相互联系,但联系不及连续数学中的关系明显;二是教师没有从学生的认知规律出发,去挖掘教学内容、揭示知识内涵,课堂教学中缺乏知识点间联系的“线条”。

解决形散神也散的问题的关键在于教师。教学中“以其昏昏,使人昭昭”是行不通的,离散数学教学更是如此。教师只有多角度、深层次地理解教学内容,才会有驾驭离散数学教学的能力,也才会在课堂教学中揭示知识内涵,从而达到好的教学效果。具体做法是:首先要分析每堂课的教学内容,选择知识点,用主线逐个将知识点串起来;其次在每个知识章节结束后要及时进行总结,点明各知识点间的关系,建立知识网络。

三、内容多课时少的问题

近年来,离散数学教师普遍受到课时太少、内容太多的问题的困扰,究其原因有两个:一是大部分高校开设离散数学课程的时间不长,没有适合不同专业学生学习的比较成熟的教学大纲与教材,教师经验不足、教法陈旧;二是由于高校扩招,学生素质下降,随着学分制的推行,很多高校都在进行课程改革,在普遍减少课时的情况下,却没有降低教学要求。由此造成离散数学教学中课时少、内容多的矛盾突出,课堂上出现了严重的“满堂灌”。

在离散数学的教学中,教师首先需要坚持少而精的原则,对教学内容深刻理解,分清主次,抓住精华,舍得割舍,在教学过程中“不要追求事无巨细的面面俱到,要给学生留下思考的空间和余地”(中国科学院院士李大潜语)。这样既有利于减轻教师负担,又有利于学生创新素质的培养。具体做法是:对基础性的知识、重点难点、解决问题的方法、知识点之间的联系要精讲细讲;对前面已出现过的类似的方法,基本定理推广的结果,一些繁琐的推导,以及学生可自学的内容要舍得放弃。其次,教师要根据专业需要或学生培养目标对教学内容合理取舍。如对数学专业学生的离散数学教学,集合论中的许多内容和代数系统中群、环、域等内容可以不讲或略讲,因为这些内容学生在高等代数、近似代数等课程中学习过;对计算机应用专业学生的离散数学教学,可舍去理论性过强、推理过繁的内容,强化基础,突出应用。最后,教师要坚决抵制盲目削减离散数学课时的行为。因为离散数学是专业课学习的基础,其中的基本定理和知识点必须由教师讲授和演算,要有时间保证;而且为了培养学生能力,必须在教学中展现“发现问题、发现问题、思考问题、解决问题”的全过程,也要有充足的时间的保证,因此不能盲目地减少课时。

四、重理论轻应用的问题

在离散数学教学的过程中,学生常常会感觉到“定义多、定理多、抽象性强、形式化程度高、实际应用少、学习枯燥无味”。这种现状存在的原因有两个:一是教师在教学中存在一种落后的思维偏好:重演绎、轻归纳,重理论、轻应用。在教学内容多、课时相对较少的情况下,不少教师舍弃应用,全力以赴于理论的讲授,致使学生不知所学何用,失去学习兴趣;二是离散数学中的理论抽象,不易与实际相联系,加之许多从事离散数学教学的教师来自数学专业,他们对离散数学在计算机科学技术上的应用并不十分了解,无法在教学过程中给出知识在相关方面应用的实例。

要从根本上解决这个问题,教师需从以下三方面入手:一要更新教学观念,充分认识应用在离散数学教学中的重要作用。教师在教学中把应用拒之门外,割断它与现实的联系,从理论到理论的教学,只能使教学变成无源之水,使学生无法领会抽象的理论和其中的思想方法。没有应用的教学不仅会挫伤学生学习的积极性,而且会弱化其在学生能力培养方面的作用。二要加强个人知识体系建设。教师不仅要熟知数学方面内容,而且要了解计算机科学及技术应用方面的知识,这样才能在教学中游刃有余,举出既与所学理论相关,又与计算机课程内容相联系的典型实例。三要选择适当内容设置实践环节。如在学生具有相关编程知识之后,选择离散数学的部分内容进行数学实验;或根据所学内容,布置思考题,要求学生用离散数学知识建模等。

综上所述,在离散数学的教学中,教师要对课程特点及其在人才培养中的重要作用有足够的认识;通过深挖教学内容解决形散、神也散的问题;通过抓住精华、合理取舍解决内容多、课时少的问题;通过更新观念、加强实践等方法解决重理论、轻应用的问题。教师做好了这一切,才能有效地改变离散数学教学的现状,使教学再上一个新台阶。

参考文献:

离散数学论文篇9

离散数学在生活中主要应用于工程领域和计算机领域,最常见的是密码学、通讯、软件工程、人工智能、多媒体技术等;

离散数学的范围相当广泛,凡是研究离散量值关系的数学分支都是离散数学,比如代数学的一多半都是离散的,所以离散数学的应用范围也就十分广泛;不过把“离散数学”作为一个整体称呼主要还是因为计算机科学的需要,在数学学科体系中离散数学分属于几个不同的大的分支,所以把离散数学的应用大致限定在计算机机关应用中比较合理;离散数学是一门理论兼实际应用的综合性学科,即具有严备的理论基础,又具备应用科学的特点。

(来源:文章屋网 )

离散数学论文篇10

摘 要:离散数学作为一门高度抽象的计算机专业课,为了激发学生的学习兴趣,本文系统地介绍了其关系理论中的实验设计,意在培养学生理解理论知识的同时锻炼学生的思维构架和计算机语言操作能力。

关键词:离散数学;关系理论;实验设计

中图分类号:G642 文献标识码:A

1 引言

离散数学是计算机科学与技术专业的一门重要学科,它以研究离散量的结构和相互间的关系为主要目标,所涉及到的一些概念、理论和方法被大量地应用于其他学科中。例如,数理逻辑在应用于人工智能理论研究的同时,着重培养了学生的概括抽象能力、逻辑思维能力、归纳构造能力;图论和集合论不仅为数据结构和算法科学奠定了数学基础,同时也为软件工程和数据库提供了抽象和描述的重要方法。

然而,由于这门课程具有概念多、理论性强、高度抽象等特点,学生普遍反应难于理解掌握,同时由于学生知识面的局限又导致学生认为该门课程对专业知识无用,致使学生学习兴趣不高,教学效果不理想等现象。因此,激发学生的学习积极性和主动性,培养学生的创新意识和创新能力成了离散数学教学的当务之急。而在离散数学的教学过程中适当的引入一些实验设计,不仅是对离散数学的基本理论的很好验证,也锻炼了学生计算机语言的操作能力,同时也为其他课程的学习做了一个很好的铺垫。

本文将以关系理论为基础,深入探讨离散数学实验设计的可行性。

2 关系理论的实验可行性

在离散数学中,关系理论是其一个重要的组成部分,它的知识点主要包括关系的性质、关系的复合、逆运算和闭包运算、关系的划分和覆盖,以及等价关系、相容关系、序关系几种特殊的关系,这些内容都可以建立在矩阵的基础上,因此本文以关系理论为基础,设计了一个系统的模型,在加深学生对理论理解掌握程度的同时,也有效地锻炼了学生的编程操作能力,激发了学生的学习兴趣[1][2]。

3 设计模型

离散数学中关系的表示可以采用矩阵法,矩阵在计算机中可以以二维数组来存储,而数组的建立和存储在计算机语言中都有介绍,因此这一部分在本文中将不再赘述,而以算法的实现为讨论的重点。这里,假定关系R1、R2均是集合X上的二元关系,其中X中有n个元素,将R1、R2的关系矩阵设为M1、M2。

3.1 关系性质的算法设计

关系的性质主要有自反性、对称性、传递性、反自发性、反对称性,其中除了传递性外,其它四个性质的判别方法都比较简单且易于实现[1[2]],因此,这里主要给出传递性的判别方法。从矩阵关系图上是不能直接得出的,因此可以通过求关系的传递闭包来实现传递性的判断,而传递闭包的实现需要借助于关系的复合运算,因此可以先给出关系的复合运算和闭包运算的算法设计。

3.2 关系的复合运算算法设计

给定关系R1、R2,计算R1和R2的复合关系R的关系矩阵M:

(1) 置i=1, j=1;

(2) 按逻辑乘和逻辑加计算 ;

(3) j=j+1,若j≤n,转(2),否则转(4);

(4) i=i+1,若i≤n,转(2),否则停止。

3.3 关系的闭包运算算法设计

从关系的已知理论可以方便地计算出一个关系的自反和对称闭包,因此我们这里重点给出传递闭包的算法设计。

若 ,则R具有传递性。这里, 表示R的i次复合运算。由此,可以通过调用关系的复合运算来实现。

(1) 置MR=M, M1=M, M2=M, i=1;

(2),调用3.2中算法计算M,按逻辑加计算;

(3) 若 , 置 ,转(2),否则转(4);

(4)为 的传递闭包,同时若 ,则 具有传递性,否则 不具有传递性。

3.4 等价关系与划分的判定算法设计

由等价关系的定义可知,等价关系具有自反、对称、传递性。其中,自反、对称性的判定可以直接通过矩阵得出,传递关系可以通过调用3.3算法验证。当验证了一个关系是等价关系后,就可以由该关系得到相应的划分。已知等价关系和划分是一一对应性的,因此可以通过等价关系来判断划分。设集合 上有一个等价关系 ,把与 的固定元 有等价关系的元素放在一起做成一个子集 ,则所有这样的子集就是由关系确定的一个划分 。具体算法如下:

(1) 设X中有n个元素,xi是X中第i个元素,置i=1,;

(2) 令 , ;

(3) 若 ,则 ;

(4) j=j+1,若i≤n,转(3),否则置 ,转(5);

(5) 若i≤n,则置i=i+1,转(2),否则结束;

3.5 相容关系与覆盖的判定算法设计

相容关系具有自反、对称性。因此一个关系是否是相容关系可以参照3.4中算法判定。

3.6 序关系中各个特殊元素的确定

一个偏序集合 ,且 是 一个非空子集,则 上一定有极大元、极小元,但最大元、最小元却不一定存在。设 中有 个元素,下面给出这几个元素的判定算法:

极小(大)元的判定:

(1) 设bi是B中第i个元素,置i=1;

(2) 令j=1;

(3.1)若 或( 且 ),则 ,转(3.1),否则转(4.1);

(3.2)若 或( 且 ),则 ,转(3.2),否则转(4.2);

(4.1)若 ,则 ,转(2),若 ,则 是 中极小元。

(4.2)若 ,则 ,转(2),若 ,则 是 中极大元。

最小(大)元的判定:

(1) 设 是 中第 个元素,置 ;

(2) 令 ;

(3.1)若 且 ,则 ,转(3.1),否则转(4.1);

(3.2)若 且 ,则 ,转(3.2),否则转(4.2);

(4.1)若 ,则 ,转(2),若 ,则 是 中最大元。

(4.2)若 ,则 ,转(2),若 ,则 是 中最小元。

4 小结

本文以关系理论为基础,重点讨论了其各个知识点的算法设计并给出了具体的算法设计思想。通过本文的算法练习,可以培养学生的想象能力、探索能力和知识迁移能力,使学生的思维具有发散性,激发了学生的学习兴趣,实验设计的成功也给了学生一定的成就感,同时使得学生在练习计算机语言操作的同时加深了对离散数学中理论的理解,可谓一举两得。

参考文献

[1] 涂建斌,周小强.离散数学课程教学改革初探[J].数学理论与应用,2001,(11),41-42.

[2] 何锋.离散数学教学中的命题符号化难点讨论[J].计算机教育,2007,(9).38-40.

[3] 左孝凌.离散数学[M].上海科学技术文献出版社,1998.

[4] 徐凤生.离散数学及其应用[M].北京:机械工业出版社,2006.

Systemic Experiment Design of Relation Theory in Discrete Mathematics

YU Hong-bin

(School of Computer and Information technology, Henan Normal University ,Henan Xinxiang 453007)

Abstract: Discrete Mathematics is a height abstract of the calculator professional lesson, give tremendous pressure when student's study it. In order to string up student's interesting, a systemic experiment about relation theory is introduced in this paper introduced, to toughens student's thinking frame and develop the ability in operate computer language, at the time to train students’ comprehension of theories knowledge.