结构设计论文范文
时间:2023-04-02 04:06:32
导语:如何才能写好一篇结构设计论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1.1地基与基础根据甲方提供地质资料,本工程办公楼A座、B座、C座及通道1,2,3拟采用CFG桩复合地基,基础底标高为-12.10m;地基处理范围:CFG桩的平面布置均在各楼座及通道内;经地基处理后基底承载力特征值(fspk)应大于350kPa;而地下车库部分采用天然地基方案,基底持力层为③粉土层或③1层粉细砂。地基承载力特征值为fak=120kPa。经计算,CFG桩桩径取400,桩顶标高为-12.570m,有效桩长18m,桩端持力层为⑧层粉细砂层,桩端进入持力层深度不小于1.0m。单桩承载力特征值大于600kN,施工桩顶标高宜高出设计桩顶标高不少于0.5m。CFG桩混凝土强度等级为C20。基础设计时,经过反复核算,我们在办公楼A座、B座核心筒部分采用筏板基础,其余部分为十字交叉柱下条形基础。筏基部分的基底反力约245kPa,条基的基底反力约232kPa,两者反力基本接近。基底标高约为-12.10m,条基宽度为3.0m。办公楼C座也采用柱下条形基础,基础宽度为3.0m,基底标高同A,B座,局部达到-14.0m。同样基底反力为230kPa左右。通道1,2,3部分为筏板基础,此处由于上部钢结构跨度大,柱下荷载相对较大,采用筏基后,基底反力均达346kPa左右,满足设计要求。采用分层总和法沉降计算,办公楼A座、B座、C座条形基础及筏基的沉降量计算均小于50m。相邻柱沉降差异及沉降总量计算均满足设计要求。地下车库部分采用天然地基,基础宽度3.0m,基底标高为-11.800m。在所有条形基础与筏板之间及条形基础之间设置钢筋混凝土防水板,防水板厚350。设计时地下水位的浮力按5m的水位进行设计,其中防水板抗浮计算中已考虑枯水期的水位变幅1m。防水板经计算构造配筋已满足设计要求。
1.2上部结构设计1)结构分段。整个建筑我们采用上分而下不分的原则,在办公楼A座、B座、C座及通道1,2,3在±0.000地面以下连为一体,在±0.000地面以上各相邻单体之间设置防震缝,使得将整个看似复杂的连体高层建筑的计算将划分为在±0.000嵌固的6个独立的计算单元进行计算,避免了因楼座之间高位连接所形成的超限问题。我们对整个结构进行了包络设计,即采用整体多塔分析与各单体的独立计算。施工期间,在楼座与地下车库之间设置用于沉降的后浇带,沉降后浇带在结构主体完成后浇筑。C座因为长度119.6m,属于超长结构,我们在设计时考虑了一定的温度应力,在框架梁柱外侧及屋面板面均设置一定数量的温度筋,抵御温度应力,且C座办公楼在长度1/3位置设置用于温度后浇带,温度后浇带在地下室结构完成后60d浇筑。2)结构体系。本工程办公楼A座、B座及C座均采用钢筋混凝土框架—抗震墙的结构形式;通道1,2,3采用钢骨混凝土柱、钢骨混凝土剪力墙、钢梁的框架—抗震墙结构形式;其中西侧通道2、东侧通道3跨度为20.9m,北侧通道1为29.8m~37.3m。楼面、屋面采用钢梁+钢筋混凝土板的组合楼面体系。地下室采用钢筋混凝土框架的结构形式。3)建筑物抗震等级。上部:办公楼A,B,C座,抗震墙抗震等级为一级,框架等级为二级;通道1,2,3抗震墙抗震等级为一级,框架等级为二级(按钢结构考虑)。地下部分:办公楼A,B,C座及通道1,2,3地下一层抗震墙抗震等级为一级,框架等级为二级;地下2层(含夹层)抗震墙抗震等级为二级,框架等级为三级。地下车库抗震等级为三级。与主楼连接的相关范围内其抗震等级同主楼的相应部位的抗震等级。对于地库与主楼连接处的错层部位,我们采取了提高一级抗震等级的构造措施进行包络设计,满足了规范要求。
2结构分析及结果
1)本工程设计计算所采用的计算程序。采用《多层及高层建筑结构空间有限元分析与设计软件—SATWE》(2012年6月)进行结构整体分析。2)主要计算结构如下。办公楼A,B座计算结果见表1,表2。
3设计总结
篇2
1.1贴楦及要求
中国的童鞋分为小童(3~6岁)、中童(7~12岁)和大童(12岁以上),大童的尺码已接近成年人,一般按成年人的尺码进行设计,但在童鞋设计时,要区分小童和中童。在设计小童鞋时,一般选用26码作为基本码;如果设计中童鞋时,一般选用32码(法码)作为基本码。而本次设计是以小童鞋为例,所以选用26码楦作为标准楦,数据也选用标准数据,即它的楦底样长为166mm、跖围为165mm。目前,贴楦绝大多数是采用美纹纸贴楦法,而在进行沙滩凉鞋的帮样结构设计时,基本都采用贴全楦法,即在贴楦时,有三条美纹纸竖向贴(先贴一条背中线,再在两侧各贴一条),接着其他采用横向贴法,且每条美纹纸都有1/2的重合(见图2)。
1.2标划“三点一线”和口门、后帮控制线
用铅笔在已贴美纹纸的楦头上,将背中线、后弧线、楦底中心线画出,并找到外腰边沿凸度点O,过点O作背中线的垂线OH,即为口门控制线。取OH的中点E和后跟高度点C(26码的后跟高度为45mm),用软尺直线连接CE,即为后帮高度控制线(见图3)。
1.3设定各部位点
各部位点的设定,见图4。(1)鞋帮总脸长的设定鞋帮总脸长没有固定的数据,主要视鞋的风格类型和分割比例而定,同时兼顾美观和穿着的舒适性。本款式凉鞋总脸长点设在脚弯点与跗骨点之间,一般是楦底样长的65%,即166mm×65%≈108mm;以楦底前端点I沿背中线向后量取长为108mm处,定为J点,线段JI即为鞋帮总脸长。(2)内怀最前点的设定全空式凉鞋的内怀最前点主要根据款式类型而定,一般设计在大脚趾后端点的前方。根据本款式特点,内怀最前点一般设计在楦底样长的85.5%处,即以楦底后端点K为起点,直线量取142mm(166mm×85.5%≈142mm)与楦底边沿交叉点P,即为内怀最前点。(3)外怀最前点的设定全空式凉鞋的外怀最前点,也是根据款式类型而定,一般设计在小脚趾后端点的前方。根据本款式特点,外怀最前点一般设计在楦底样长的83.1%处,即以楦底后端点K为起点,直线量取138mm(166mm×83.1%≈138mm)与楦底边沿交叉点S,即为外怀最前点。(4)后帮高度的设定后帮高度主要根据款式、后跟造型和穿着的舒适性而定。本款式是带有后带的凉鞋,且后带中包有海绵,因此,这样的后帮高度要略高于正常的后跟高度点。通常是占楦底样长的28.9%,即166mm×28.9%≈48mm。以楦底后端点K沿后弧线向上量取长为48mm处,定为M点,线段KM的长度即为后帮高度。
1.4设定部位线条与造型
各部位线条与造型的设定,决定了本款式的美观度和一定的舒适度(舒适度还与楦型有关),因此在帮样结构设计中此步骤非常关键。各部位线条和形状见图4或图5。(1)A—前帮内侧面的形状设定本款式的前帮内侧面,是一条带形状,可设计成直条形,但这样设计会过于简单,不是很美观,所以将它设计成下大上小的造型,这样做会有线条的美感,以及与B部件结合的非常流畅,不会那么呆板。大小要考虑B部件的数据,因为B部件的材质是织带,它的宽度数据是固定的几种,有15、18、20、25mm等规格。在本款中选择18mm或20mm(本文选择20mm)规格比较合适,因为太小,不够大方,美观度不好;太大,感觉过于臃肿。因为上端连接B部件,所以选择22mm的宽度;下端要比上端大一些,选择28mm。(2)B—前帮外侧面的数据设计上面已经介绍过,B部件的宽度选择,这里不作过多表述。而它的长度与E部件有关,因为B部件没有内里,它通过对折后固定在A部件上,形成环套,E部件从中穿过。所以与穿过B部件处的E部件宽度有关。(3)C、D—装饰片的造型设计鞋用的装饰件品种繁多,有装饰花、金属扣件、图案装饰等。而本款式的装饰件采用的是金属扣件与皮料装饰搭配使用,使装饰不会过于单调。此装饰件由3个部件组成,分别是C、D部件和“D”字形的金属扣。而C、D部件首先起到固定金属扣的作用,附带装饰的效果。因此,C、D部件连接金属扣处的宽度以D字扣的内径为准,而另一端设计成半边D字形的造型,使整个装饰看起来更协调、美观。本款式的D字扣的内径选用16mm,根据装扣件原则,皮料要比扣件内径略小一点,所以C、D部件与金属扣连接处的宽度设为14mm。C部件的另一端设计的要大一些,因为C部件的位置刚好在脚背上,视觉效果很明显,所以选用3颗铆钉去固定,这样饰看起来会更大气,它的宽度设为20mm,长度设为30mm。而D部件的另一端设计的稍大一些即可,因为D部件的位置在后方,装饰效果不很明显,所以用一颗铆钉固定便可,它的宽度设为16mm,长度设为22mm。(4)E—中帮面的线条设定在中帮面的设计中,主要配合整个鞋帮的造型和美观度,但对于凉鞋来讲,还要考虑有尽可能多的部位,同时不影响穿着的舒适度。本款式的中帮面造型中有一部分属于前帮面,它直接顺延到中帮面上,最终形成一个“Y”的造型。在前帮这个部分,它的宽度要与前帮内腰面相协调,因为与B部件有一个镶套的连接,它的尺寸要比A部件设计的小一些,所以在镶接处的宽度设为20mm,帮脚处设为24mm。在中帮面部分的宽度要比前帮面的略宽一些,设为26mm。鞋口处的线条用截面的方法去设计,即固定内外怀鞋底处定位点,再用软尺绕楦型一周,直接画直线便可。前帮部分与中帮部分直接将线条顺延起来,形成“Y”字形的整体。在中帮面的外腰部分,没有设计成直接到帮脚处,为了使穿着更方便,将此处设计成开口装置,用魔术贴(俗称毛刺)作为活动开口。开口的下方连接着F—后腰面部件,中帮面与F部件有一部分重叠。重叠部分的长度设为38mm,因为太长,没必要,太短,魔术贴粘不住。中帮面的分割处离帮脚处约5mm,这样设计可以使后腰面隐藏起来,感觉像是没有分割,是一个整体,会有比较好的视觉效果。(5)F—后腰面的形状设定在本款设计中,后腰面属于隐藏部位,且在中帮面的下方,所以它的尺寸与线条主要顺延中帮的线条设计,只是在上端做成倒角,保证穿着的舒适性就可以了。因此,后腰面的上端宽度设为26mm,帮脚处设为30mm。(6)G—后跟条带带的造型设计对于凉鞋后跟条带的设计,主要考虑保证穿着时的跟脚,及保护中后帮面的造型不易变形。最常用的尺寸为20mm(宽)×25mm(长)。因为这样的长度和宽度就可以满足需求,尺寸太小,会不好入脚;太大,无法起到让穿着更跟脚的作用,也是一种浪费。
2帮面样版的制作
2.1展平样版
在帮样结构设计中,样版的制作方法有很多种,有美纹纸贴楦法、牛皮纸贴楦法和比楦法等。而本文将介绍的是最常用的美纹纸贴楦法。鞋楦是一个三维立体的造型,而帮面样版是一个二维平面图形。因此在制作帮面样版之前必须有一个立体向平面转化的过程,即展平处理。经过展平处理而得到的样板,称之为展平样板。另外,每一块帮面样版都可以根据展平而制得,所以展平样版也称之为母版。具体步骤如下:(1)将已进行结构设计的美纹纸割去多余部分,在后跟条带上沿后弧线方向割开,再将美纹纸撕下,并展平在准备好的纸板上。从背中线部分向两侧逐渐展开、贴平,尽可能不产生褶皱(见图6)。(2)在帮脚处加7mm,后弧线断开处的两侧加2.5mm,然后再将各线条修顺畅,并割下。(3)在帮脚处用分规画一条距边5mm的线,然后在这条线上,取一些点(间距为5mm)并冲孔,作为线缝工艺操作时的缝线定位点。(4)在帮面装饰片的固定位置处,刻出槽线,用于制作装饰片的样版和定位。这样就完成了展平样板的制作(见图7)。
2.2净样版
(1)A—前帮内侧面先在纸板上画出前帮内侧面的轮廓线和帮脚的缝线定位点以及缝线的槽位线,并将此轮廓线割下,再在样板中间处刻一道槽线,作为缝假线的定位线,并做上内怀标志的牙剪。这样就可以得到前帮内侧面的净样板(见图8)。(2)B—前帮外侧面因为前帮外侧面使用的材料是织带,它有固定的宽度,之前的结构设计时已选择宽度为20mm,所以先割取一条宽度为20mm的条带,然后在这条带上做一对折线,将展平样板B部件的外轮廓一端,对准条带的对折线,然后画下与A的分割线和缝合线,最后放出8mm的压茬量,再沿着对折线对折,并剪去多余的条带,即可得到前帮外侧面的净样板(见图9)。(3)C—前装饰片在纸板上先画出前装饰片的轮廓线,然后在离前装饰片与金属扣件连接处3mm(因为金属扣是有厚度的,放出这3mm可抵消扣件厚度对样板的影响)远的地方做一条中心线,作为前装饰片的对折线,做出一个等腰三角形(底边长为8mm,边长为12mm),以此三角形的顶点作为铆钉定位点,用内径为2.0mm的冲子冲孔,将纸板沿对折线对折,并割出其轮廓线,展开后将两侧按线条走向顺延减小,长度为超过第一个铆钉定位孔8mm,剪去多余样板,在对折线上打两个定位孔,这样即可得到前装饰片的净样板(见图10)。(4)D—后装饰片方法同前装饰片的制作,只是在设定铆钉定位点时,将3个点改成1个点即可,这个点距离底边8mm左右,以便可得到后装饰片的净样板(见图11)。(5)E—中帮面先在板纸上画出中帮面的轮廓线和装饰片的定位点,以及帮脚处的线缝定位孔,然后将线条修顺,将外怀后侧的两个圆形倒角画好,后侧鞋口处放3mm翻缝工艺量,在内怀处冲出后跟条带的定位点,在帮脚处冲出的线缝定位点,然后再用内径为2.0mm的冲子冲出装饰片的定位点,最后割出轮廓线,做上内怀标志的牙剪,即可得到中帮面的净样版(见图12)。(6)F—后腰面先在板纸上画出后腰面的轮廓线和帮脚处的线缝定位孔,然后将线条修顺,将上端的两个圆形倒角画好,再冲出后跟条带的定位点,并在帮脚处冲出的线缝定位点,再做出毛刺定位线,最后割出轮廓线,即可得到后腰面的净样版(见图13)。(7)G—后跟条带先在板纸上画出一条中心线,将展平样版的内侧后跟条带的后端线对准此中心线,画出后跟条带的轮廓线,再将展平样版的外侧后跟条带的后端线对准此中心线,画出后跟条带的轮廓线,在上端鞋口处放3mm的翻缝工艺量,在两端各放8mm的压茬工艺量,并刻出槽线,最后割出外层轮廓线,在内怀做上内怀标志的牙剪,在中心线的上端剪出一个牙剪,下端打一个标志点,这样即可得到后跟条带的净样版(见图14)。
2.3划料样版
划料样板是在帮面的净样版基础上放出折边量和压茬量,再除去槽线和定位点的样版。因此,将帮面样版外轮廓线画在纸板上,如果遇到是折边工艺的,这个边放4.5~5mm;如果是压茬工艺的,这个边放8mm;其它工艺的保持不变,割去外轮廓线,即可得到划料样版。
3内里样版的制作
一般情况下,内里样版是根据帮面的展平样版来制作的,但分节式内里除外。而分节式内里一般都根据各组合的帮面来制作。本款式沙滩凉鞋采用的是分节式内里,所以选用帮面样版来制作内里样版。
3.1前帮里
先在纸板上画出前帮内侧面的轮廓线和槽线,在帮脚处向里缩条线3mm,在两侧各放出3mm,又在上端以槽线为基准放5mm,作为冲里量,然后割出轮廓线,作出内怀标志的牙剪,即可得到前帮里的样版(见图15)。
3.2中帮里
在纸板上先画出中帮面的轮廓线,在两边的帮脚处各向里缩条线3mm,在前端和外侧面放出3mm的冲里量,后端不变,然后割出轮廓线,作出内怀标志的牙剪、翻缝标志点和(魔术贴)毛面的定位点,即可得到中帮里的样版(见图16)。
3.3后帮里
在纸板上画出后腰面的轮廓线,在帮脚处向里缩条线3mm,其余部分放出3mm作为冲里量,然后割出轮廓线,即可得到后帮里的样版(见图17)。
3.4后跟条带里
将后跟条带样版放在纸板上画出轮廓线,在两端处各缩回3mm,在下端放出3mm的冲里量,即可得到后跟条带里样版(见图18)。
3.5(魔术贴)毛面和刺面
将中帮里与(魔术贴)毛面镶接的部位轮廓线画在纸板上,然后在后端缩回5mm,割出轮廓线即可得到毛面的样版。制作(魔术贴)刺面的样版时,先将后腰面的轮廓线和刺面的定位线画在纸板上,在前后两端各缩回2mm,割下轮廓线后,修顺四个圆角,便可得到刺面的样版(见图19)。
4定位版的制作
在制作定位版之前,要进行贴楦操作,只是贴楦主要是贴楦底板。贴楦完成后,在结构设计时,在楦底边沿做上各个帮脚处的定位标志,再将楦底样版揭下来,展平在纸板上,修顺轮廓线并刻下。用分规向内缩回5mm,画一圈线,然后将楦底边沿上所做的各个帮脚处的定位标志线顺延至此线,再剪去各定位处凹槽里的量,便可得到定位版(见图20)。
5问题分析
(1)鞋帮不伏楦鞋帮不伏楦分两种情况,原因有所不同,处理方法也有所变化。第一,如果鞋帮出现歪扭现象,从而导致不伏楦,很有可能是在制作展平样版时,没有顺延美纹纸的方向展平,强行拉动美纹纸,偏离自然跷度太多。或者在做定位版的时候发生了偏差,从而导致定位不准。第二,如果是因为鞋帮太大而导致鞋帮不伏楦,可能是因为材料太薄或延伸性太大所致。也可能是制作样版时放余量太大,或美纹纸被拉伸了太多。如果是材料问题,只需改变复合材料或增加复合材料便可。如果是样版问题,则必须修改样版。(2)鞋帮太紧,无法线缝这个问题比较简单,最有可能是因为制作样版时,没有加放余量或加放余量太小。又或者材料太厚或几种材料复合后太厚。如果厚度没问题,材料延伸性也正常,那就要调整样版了。(3)(魔术贴)毛、刺外露,盖不住毛、刺外露,可能是在设计时刺的大小已经超出了毛覆盖的范围。如果设计没有问题,那就是中帮面的样版制作得太小了。
6结束语
篇3
【关键词】型钢混凝土;石油化工;结构设计
1引言
型钢混凝土结构构件具备诸多优势,比如:受力性能好、截面尺寸小、抗震性能好、自重轻等,在石油化工结构设计中具备很优越的应用价值。在型钢混凝土结构设计过程中,需要明确方法,遵循《型钢混凝土组合结构技术规程》《型钢混凝土结构设计规程》等[1]。此外,还有必要通过构件的实际受力情况,对设计进行优化。总之,由于型钢混凝土具备很好的应用价值,所以对其应用进行探讨意义重大。
2工程实例分析
在石油化工焦化装置中,焦炭塔框架属于核心构筑物,操作重量大,装置支座位置及井架总高度偏高,通常情况下会有焦溜槽以及楼梯间附带。整体结构体系较复杂,设计存在一定难度。以某炼油厂为例,其工程延迟焦化装置焦炭塔框架属于两塔结构,焦炭塔单塔自重达4300kN(430t),塔外径为9690mm,单塔最大高度为41.3m。水焦工况最大操作介质为3040t,满焦工况焦炭量达到1150t。该工程所处场地在地面上10m位置的基本风压为0.5kN/m2,地面粗糙度为B类,抗震设防裂度为7度,工程场地设计基本地震加速度值为0.15g[2]。从框架设计来看属正常,但在结构空间利用方面提出了一些基本建议:(1)尽可能控制主要构件截面,使整体平面布置的需求得到有效满足;(2)确保塔体下方具备充足的空间,能够设置冷焦水过滤器1台和别的附属操作框架;(3)在塔体下方框架位置,有必要对全封闭设备操作房进行合理设置;(4)确保型钢混凝土结构能够合理、科学地应用,进而发挥型钢混凝土结构的作用。
3型钢混凝土结构的选择以及模型的计算
3.1结构选择
对于上述工程的焦炭塔框架设备支承部分来说,为典型的塔型设备基础,即:两塔板式框架联合塔基础,一共有3层,高为27m,纵向连续两跨2.5m×2,横向为单跨12.5m,出焦井架标高为27~117m,属中心支撑钢结构框架。
3.2模型计算
在设计中,所使用的是有限元分析软件STRAT,在利用该软件进行计算过程中需由经验丰富的技术人员操作,以确保计算值的精准性。同时,在焦炭框架选择上,选择高耸组合结构,在建模分析过程中,有必要对下部混凝土框架和上部钢结构的共同作用充分考虑,以此有效模拟结构的具体情况。对于完整的焦炭塔框架模型来说,需具备:①混凝土框架柱;②井架钢结构梁;③混凝土框架梁。此外,利用厚壳单元模拟混凝土顶板,利用薄壳单元模拟设备塔体。
4荷载组合与截面设计
4.1荷载组合分析
根据相关设计规范要求,对焦炭塔框架设计需根据承载能力极限状态最不利的效应组合加以设计。因此,两塔结构设计时的荷载组合为:(1)正常操作工况下:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(2)停产之前:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(3)停产检修工况下:1.2永久荷载+1.0×1.3×活荷载+1.4×风荷载;(4)地震作用下:1.2×[永久荷载+0.5×(介质荷载+活荷载)]+1.3×水平地震荷载+1.4×0.2×风荷载[3]。总之,需合理分析荷载组合,以此为进一步截面设计以及计算结果的准确性提供保障。
4.2截面设计分析
截面框架柱、框架梁的设计内容如下:1)框架柱设计。在设计初始阶段,如果外在条件全部一致,为了使框架柱截面的尺寸得到有效保证,可选择2种框架柱截面尺寸,通常会选择1个大柱尺寸,即:2500mm×2500mm规模;同时选取1个小柱尺寸,即:1800mm×1800mm规模,根据计算结果,采取对比的方法最终选择适合本工程结构的合理尺寸。在外在条件一致时,大柱和小柱模型需采取分别进行计算的方法。由于会受到框架柱截面尺寸差异的影响,进而使结构刚度存在很大的差异。针对此类情况,需要利用地震组合工况控制好设计结构。从实际经验来看,小柱模型在刚度上偏小,在柔性上较好,基于同样风载或者地震条件作用之下,结构内力偏小,便于为构件截面设计提供有利的条件。2)框架梁设计。对于框架梁来说,因受到工艺设计需求的影响,加之标高相对明确,使得调整的空间偏小。在梁截面上,一般选取为1500mm×2500mm。在对梁截面刚度进行合理增多的条件下,能够使框架柱的反弯点位置得到有效控制,进而使框架梁设计弯矩的要求得到有效满足。基于框架梁内部对H型钢进行设计,能够和框架柱内型钢柱之间组合成为内框架体系,从而使结构的整体性得到有效提升[4]。此外,框架顶板属于设备的支座层,起到承载塔体荷载的作用,在顶板中间部位需设置型钢斜梁,并采取STRAT计算结果提取内力,对厚板配筋进行计算。总结起来,在设置斜梁的条件下,能够使顶板的受力得到有效改善,同时使传力路线得到有效简化。
5结语
本次研究结合实际工程案例,对型钢混凝土在石油化工结构设计中的应用进行了探讨。在了解工程实例的条件下,需选择合理的型钢混凝土结构,并通过模型的计算,进一步分析荷载组合,然后在截面设计过程中,注重框架柱的设计和框架梁的设计。总之,对于型钢混凝土结构来说,对型钢和混凝同受力的特性加以应用的条件下,使混凝土的抗压性能以及型钢的抗弯性能得到有效展现,进而使结构的延展性得到有效提升。此外,在合理应用型钢混凝土结构的条件下,能够提升结构空间的利用效率,进而使实际生产需求得到有效满足。
作者:冉艳华 单位:中海油山东化学工程有限责任公司
【参考文献】
【1】陈燕,何夕平,马乐乐.各国规程对型钢混凝土梁抗弯承载力计算对比分析[J].青岛理工大学学报[J],2016(3):24-29.
【2】孙宇,郑岩,胡勇刚.延迟焦化在炼油工业中的技术优势及进展[J].石化技术与应用,2012(3):260-264.
【3】苏君超.焦炭塔框架阻尼比的取值[J].石油化工设计,2014(4):15-18.
【4】宋桂珍.钢结构防火涂料在石油化工装置中的应用[J].技术与市场,2011(6):175.
【5】靳铁钢.轻型钢结构设计问题探讨[J].城市建设理论研究(电子版),2011(33):11-12.
【6】张金法.门式刚架轻型钢结构设计及施工中一些问题和措施[J].城市建设理论研究(电子版),2011(22):46-47.
【7】唐国昱.型钢混凝土结构在工程设计中的应用[J].价值工程,2012(21):93.
【8】JasimAliAbdullah.钢管混凝土和套管混凝土短柱的抗剪强度和性能分析[J].钢结构,2010(3):156-157.
【9】刘巨保,许蕴博.基于GB50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011(4):96.
【10】李懿.浅析轻钢厂房结构设计要点[J].山西建筑,2013(17):75.
篇4
【关键词】结构设计问题分析
引言
建筑工程质量直接关系到人民生命和财产的安全,而施工图的设计质量又是整个工程质量的基础,一份高质量的施工图是工程建设质量保证的前提。但是目前施工图纸的质量远没有人们所想象的那么精确和完善。通过在多项建筑结构设计施工图的设计及审查中发现,结构设计中存在比较常见的问题有:超长结构与基础设计、板面设置温度应力筋及梁筏基础板筋位置等问题。
1有关超长结构与基础设计
混凝土结构设计规范第91111条中规定钢筋混凝土框架结构伸缩缝最大间距为55m,而71112条则规定当采取后浇带分段施工,专门的预加应力措施或采取能减小混凝土温度变化或收缩的措施且有充分依据的,伸缩缝间距可适当增大。这两条使我们在实际设计过程中较难把握。工程实例中超过55m就设置伸缩缝,这显然是很难保证的,但采取后浇带分段施工后究竟应控制房屋长度多少而不至于产生裂缝等不良现象呢?笔者认为这取决于各地区的温差及混凝土不同的收缩应力。按本人在广东省地区所做的工程实例经验,多层房屋长度超过55m但在75m以内时,采取设置施工后浇带及相应的构造加强措施后,不设置伸缩缝是可行的,这在许多工程竣工使用多年后也已得到证实,多个工程(比如有40m×72m的四层厂房,10m×72m的九层教学楼,2m×65m的九层宿舍,还有长达近100m的三层商业建筑等)均未产生严重的裂缝。但在结构设计中必须对梁柱配筋进行概念上的调整。首先是长向板钢筋应双层设置,并适当加强后浇带处的梁板配筋;而两端梁柱,特别是边跨的柱配筋必须加强,以抵抗温度应力带来的推力;另外,超长结构在角部容易产生扭转效应,我们在设计中也必须对角部结构进行加强。当框架结构超过75m时,笔者认为必须采取特殊的措施才能不设置伸缩缝,譬如说采用预加应力,掺入抗裂外加剂等等,而且作为超过75m的结构,必须对温度及收缩裂缝采取定量的分析,并相应施加预应力,这在许多工程实例中应用的效果也是众目共睹的。如果对超长结构,不能有效的分析清楚受力情况,本人建议还是应按规范要求设置伸缩缝,毕竟建筑上缝只要处理得当还是不影响观瞻的。目前的短肢剪力墙体系小高层由于考虑埋置深度的要求,一般均设置地下室。基础则采用桩筏基础。如何对桩进行合理选型,将对整个地下室设计的经济性产生重要影响。
2防止由于地基沉降或不均匀沉降引起的构件开裂或破坏
预防或减少不均匀沉降的危害,可以从建筑措施、结构措施、地基和基础措施方面加以控制。诸如:避免采用建筑平面形状复杂、阴角多的平面布置;避免立面体形变化过大;将体形复杂、荷载和高低差异大的建筑物分成若干个单元;加强上部结构和基础的刚度;同一建筑物尽量采用同一类型基础并埋置于同一土层中等一系列措施。应该引起重视的是:对高层建筑来说,由于需要一定的埋置深度,从经济的角度考虑,基础一般采用桩箱或桩筏结合的形式,此时应保证箱体的整体刚度,群桩布置的形心应与上部结构重心相吻合。当土层有较大起伏时,应使用同一建筑结构下的桩端位于同一土层中,并应考虑可能产生的液化影响。
3从结构计算和构造上满足规范要求
3.1从结构计算角度,看结构计算应注意的问题:
避免荷载计算的错误。诸如漏算或少算荷载、活荷载折减不当、建筑物用料与实际计算不符,基础底板上多算或少算土重。底框砌体结构验算时就应注意:底部剪力法仅适用于刚度比较均匀的多层结构,对具有薄弱层的底层框架混合结构,应考虑塑性变形集中的影响,通常对底层地震剪力乘以1.2—1.5的增大系数;底层框架混合结构的剪力分配不能简单地按框架抗震墙的方法。连续板计算不能简单地用单向板计算方法代替;双向板查表计算时,不能忽略材料泊松比的影响,否则,由于跨巾弯矩未进行调整,将使计算值偏小对电算结果的正确性进行正确评价。
3.2从构造角度看应注意的问题:
注意构件最大配筋率和最小配筋率的限值。尤其是在抗震设计中既要保证建筑结构在地震发生时具有一定的延性,又必须满足最小配筋的要求。严格按照规范要求,保证钢筋在各个部位所需满足的锚固、延伸和搭接长度,材料选用也必须满足强度要求。为了防止屋面温度应力引起的墙体开裂,必须采取有效的通风散热措施。按抗震构造要求设置的构造柱,应在整个建筑物高度内上下对准贯通,上至女儿墙压顶,下伸人基础圈梁,或伸人室外地面以下500毫米,构造柱与圈梁、楼板和墙体的拉接必须符合规范要求。
4剪力墙设计
布置:剪力墙布置必须均匀合理,使整个建筑物的质心和刚心趋于重合,且X,Y两向的刚重比接近。在结构布置应避免一字形剪力墙,若出现则应布置成长墙(h/w>8)应避免楼面主梁平面外搁置在剪力墙上,若无法避免,则剪力墙相应部位应设置暗柱,当梁高大于墙厚的215倍时,应计算暗柱配筋,转角处墙肢应尽可能长,因转角处应力容易集中,有条件两个方向均应布置成长墙;规范中对普通墙及短肢墙的界定是墙高厚比8倍以下为短墙,大于8倍则为普通墙,这就引起高厚比为719倍及811倍的两种墙的受力特性截然不同,而配筋亦大相径庭,这显得比较机械而不合理,因此笔者建议布置长墙时高厚比能大于9。超级秘书网
5结束语
以上几点是对设计中经常出现的几个问题的理解。在今后的设计过程中,设计者要把提高设计质量作为终身奋斗的目标,应以规范为依据,不断总结,因为安全才是人民利益的根本所在,使我们的设计更经济合理。
参考文献:
李必瑜.房屋建筑学.武汉:武汉理工大学出版社,2003.
沈蒲生.混凝土结构设计原理.北京:高等教育出版社,2003.
尚守平.结构抗震设计.北京:高等教育出版社,2003.
应惠清.土木工程施工.同济大学出版社,2001,2.
龙驭球、包世华.结构力学教程.北京:高等教育出版社,2003.
赵明华.土力学与基础工程.武汉理工大学出版社,2003.
篇5
1.1本项目的基本情况
本工程位于湛江市开发区的某小区。总用地面积17062.13m2,总建筑面积82351.57m2(其中地下建筑面积为12829.25m2,地上建筑面积为69522.32m2)。另外本工程设计使用年限为50年,结构安全等级为二级,抗震设防类别为丙类。
1.2场地自然条件
(1)风荷载:基本风压按50年重现期取0.8kN/m2,地面粗糙度B类。(2)本工程设计地震分组为第一组,抗震设防烈度为Ⅶ度,设计基本地震加速度值0.1g,地类别为Ⅲ类,属于中软场地土。
2结构设计
2.1地基基础
由于业主未提供详细地质资料,基础设计待业主提供详细地质资料后确定。本院根据当地工程经验,本工程拟采用桩基础。
2.2上部结构设计
根据建筑使用功能的要求并结合本工程的特点,本工程结构形式为:1~3栋采用框架-剪力墙结构;4栋采用剪力墙结构,其中剪力墙及框架抗震等级均为二级。本工程混凝土强度等级为C50~C30,钢筋采用HRB400级钢筋。
2.3PKPM系列结构软件分析
在本次湛江市开发区的某小区的结构设计中采用PKPM系列结构软件进行结构分析。具体来讲本设计所采用的计算机程序为中国建筑科学研究院PKPM-SATWE,版本型号是2010版,这也是在目前设计院住宅结构设计中较为常用的一款软件,并且该转件的结构计算结果较为可靠。本次住宅的结构采取较为常用的框架加剪力墙结构,目前这种结构在现有的高层住宅设计中被广泛的应用,这种形式结合了框架和剪力墙两种结构的优点,具有受力稳定,造价相对经济的特点。同样的为了保证整个结构的稳定性,在住宅建筑的-1~3层对结构进行了加强。整体结构的嵌固位置为地下室的顶板。每个建筑的结构在计算的过程中都会对灾害进行预估,提前计算其所受的荷载,并在设计过程中采取相应的措施。在本次住宅小区的结构设计中,对于五十年一遇的大风,预估的基本风压值为Wo=0.8kN/m2,建筑物地面的粗糙程度按照B类设计,以一号住宅楼为例,其承载风荷载效应时的放大系数为1.1,最终建筑物的体型系数采取1.4来进行计算。其次,对于地震灾害中的受力,在建筑结构的整体设计中也是应当考虑的,本项目的所处的地质环境要求建筑物按照Ⅶ度抗震烈度进行设防,所以在结构设计中按照其相应的抗震烈度设防地震分组为第一组,场地的类别为三类,建筑物的抗震设防类别为丙类,并且需要考虑在地震作用下构的偏心问题,以及双向地震作用力的问题。在地震作用下:计算振型个数为15,重力荷载代表值的活载组合值系数为0.5,周期折减系数为0.75,结构的阻尼比为5%,特征周期Tg为0.45,地震影响系数最大值为0.08。具体来讲混凝土框架的抗震等级为二级,剪力墙的抗震等级为二级,综合来讲其抗震结构措施为二级设计。最后在计算的过程中还需要对一些系数进行调整和修改:梁端负弯矩调幅系数为0.85;梁活荷载内力放大系数为1;梁扭矩折减系数为0.4;托墙梁刚度增大系数为1;实配钢筋超筋系数为1.15;连梁刚度折减系数为1.0(注:风荷载控制),0.6(地震荷载控制);梁刚度放大系数按2010规范取值;并且柱配筋的计算按照双偏压来进行设计。
3本工程的结构计算
本工程位于湛江市开发区的某小区,在进行结构计算的过程中采用的活载标准值按照《建筑结构荷载规范》(GB5009-2012),取值见表1。
4展望
对于实际的居住区工程来说,好的结构设计往往是整个项目成功的关键所在,合理的结构设计不仅可以使形体优美的建筑得以成为现实,更是为建设的设计者提供新的构思机会,因为合理的结构设计通常与美学的要求不谋而合。所以本文通过对实际项目结构计算过程中的地基基础、上部结构设计、PKPM系列结构软件分析等重要步骤的解析,探讨住宅小区在结构设计的过程中应当注意的关键点,对居住小区结构设计的方法进行了验证,希望可以对实际的居住区的建筑的结构设计提供一些灵感。
作者:潘伟朝 单位:广东省建科建筑设计院有限公司
参考文献
[1]梅丽娜.浅谈结构设计的几项基本原则[J].黑龙江科技信息,2010(15).
[2]梁兴泉.结构设计的体会[J].山西建筑,2009(27).
篇6
1.1载体设计
1.1.1载体材料目前催化器使用的载体有陶瓷载体和金属载体。要求三元催化器载体具有高的几何表面积、强度和氧化阻抗等,低的热容量、压力降和热膨胀系数,以及有效的废气热转换,且易于涂覆。图1示出陶瓷载体和金属载体的起燃温度比较图。从图1可以看出,陶瓷载体具有较好的起燃特性,排放控制效果也较好[2]。
1.1.2载体结构陶瓷载体采用高目数及薄壁结构能取得较好的净化效果。图2示出载体有效催化面积与目数的关系。载体目数增加对发动机的输出功率有一些影响,设计目标是尽量减少其对功率的影响,并达到排放要求。通过理论分析和试验研究,选用600cpsi/4mil结构,能够达到理想的效果。
1.1.3载体封装设计方案的选择主要从发动机舱空间大小、底盘空间布置、排放要求及成本控制进行考虑。在载体的选择上应尽量考虑采用圆形的载体,因为其气流分布的均匀性、催化剂的利用率、背压及封装工艺性都是最好的,但有时由于空间位置的关系还必须采用椭圆形或者跑道形载体。现有的载体封装方式分为蚌壳式、压入式和捆绑式,如图3所示。不同封装方式的底座平均压力也不相同,如图4所示。因增压器存在,催化器布置较为困难,催化器的布置较靠后,同时受空间限制,前级载体较小,前级背压可能会较高,很多情况下前级采用金属载体。金属载体背压与热容小,无需封装,可以直接焊端锥,相同催化器空间可获得更大的载体体积。
1.2贵金属涂层和涂覆工艺
1.2.1贵金属涂层贵金属的配比和用量对排放有较大影响。一般贵金属量越大,排放效果越好。手动及自动挡的载体涂层配比,如表1所示。
1.2.2涂覆工艺除了基本的设计外,还需借助隔离涂层技术,控制涂层成分的布置,保持催化器活性和耐久性。对于贵金属,特别是Rh,要避免因与氧化物(氧化铈)发生有害反应而生成低性能合金(如Pd-Rh),从而避免固态失活物(如铝酸盐)的形成,改善碱土的促进作用。采用特别的隔离涂层工艺,不仅使原子级的催化剂工程技术得以实现,使贵金属以原子态散布在特殊基层金属氧化物载体上,而且对贵金属功能有特别促进作用,可避免形成低性能合金,避免贵金属与基层金属氧化物生成化合物[4]。
2催化器模态分析
对该机型催化器前级进行模态振动分析。图5示出本机型催化器前级各危险点分布,表2示出前级中各危险点的分析数值。根据催化器前级在发动机上的实际安装状态,对其安装点进行约束及载荷加载,其约束位置,如图5中红圈部分所示。确定催化器约束点后对催化器进行模态分析,主要为了保证计算后的催化器模态高于发动机基础模态(大约在240Hz),避免与发动机产生共振而造成催化器损坏。同时为了观察前级催化器壳体在工作中的变化,一般对前6阶模态进行计算,如图6所示,用于壳体设计的参考。经过分析,在工作状态下其频率在2600Hz以上,主要表现为空腔部分的径向呼吸模态。
3排气系统CFD分析
3.1物理边界的确定图7示出催化器原始三维几何模型。通过抽取流体外壳及拉伸进出口边界,确定其物理边界。
3.2CFD物理模型及网格划分图8示出对排气系统建立的物理模型。各部件的内部结构完全按照实际结构进行构建,外部结构在不影响计算结果的情况下进行了适当简化。采用切割体网格对排气系统进行网格划分,主要由六面体网格构成,在保证计算精度的同时节约计算时间。
3.3初始参数及条件计算工况:排气管的流量为0.13kg/s,排气入口温度1173K(900℃)。
3.4边界条件设置1)入口边界:温度为1173K,将入口气流设定为均匀分布且沿入口轴线方向流动,介质为空气(因无确定的尾气物性数据,用空气近似代替),气体流量为估算值0.13kg/s;2)出口边界:经过前期的模拟试算表明,在较低压力状况下,出口压力的设置对排气系统的压力损失没有影响,对流出出口区域采用压力边界的形式,压力设置为500Pa;3)多孔介质:尾气在催化剂载体内是沿其孔道径向流动,因此,催化剂载体按各向异性多孔介质处理,即流体流经载体时只有沿轴向的速度和压力损失。表3示出排气系统背压计算结果。由表3可以看出,连接管段压力损失约占一半,对背压的贡献最大,是需要改进的主要地方。图9示出排气系统背压分布图,如图9红框所示,这部分弯管是管段压力损失的主要来源,也是优化的主要目标区域。图10示出排气系统背压局部图。图10中红框部分为压力损失较大的区域:前级催化器收缩端接口部分。
3.5流动不均匀性指数气流在载体截面上的流动均匀性影响到气体在催化剂载体中的停留时间,对催化剂的催化效率有很大影响。同时,流动均匀能有效减少压力损失。图11示出载体端面气流分布图。在这里,用催化剂载体截面上流体速度不均匀度指数D来评价在催化器截面上流动的均匀程度。D越小,表示流动越均匀,D越大,流动分布越不均匀。取催化剂载体入口端1cm处计算,得出:前后级催化载体不均匀指数分别为:0.252,0.431。
3.6优化方案结合优化工作,进行综合改进,改变进口段实现平滑过渡,增加管径,将后端催化器扩张管和收缩管改为锥形,如图12所示。
3.7改进结果图13示出催化器优化后排气背压分布图,其计算结果,如表4所示。经计算,改进后排气背压降低28.9-22.9=6kPa,前后级载体流动不均匀性指数分别为:0.385,0.266。可以看出,改进后前载体内流动不均匀性略有升高,后载体不均匀性下降。图14示出优化后载体端面气流分布图。从图14可以看出,通过优化,载体端面流场分布明显改善。
4结论
篇7
关键词:异形柱短肢剪力墙结构设计
现代住宅建筑要求大开间,平面及房间布置灵活、方便,室内不出现柱楞、不露梁等。异形柱与短肢剪力墙结构能较好地满足现代住宅建筑的要求,因而逐渐得到了推广应用。目前,现行国家规范或规程中尚未给出有关异形柱与短肢剪力墙结构设计的条款,因此,结构设计人员在设计中常会遇到一些规范或规程尚未论及的问题,需要设计人员积累经验,利用正确的概念进行设计。
本文旨在对异形柱与短肢剪力墙结构设计中的一些问题进行探讨,提出个人看法,供结构设计人员参考
1异形柱结构型式及其计算
异形柱结构型式有异形柱框架结构、异形柱框架—剪力墙结构和异形柱框架—核心筒结构。
异形柱结构自身的特点决定了其受力性能、抗震性能与矩形柱结构不同。由于异形柱截面不对称,在水平力作用下产生的双向偏心受压给承载力带来的影响不容忽视。因此,对异形柱结构应按空间体系考虑,宜优先采用具有异形柱单元的计算程序进行内力与位移分析。因异形柱和剪力墙受力不同,所以计算时不应将异形柱按剪力墙建模计算。
当采用不具有异形柱单元的空间分析程序(如TBSA5.0)计算异形柱结构时,可按薄壁杆件模型进行内力分析。
对异形柱框架结构,一般宜按刚度等效折算成普通框架进行内力与位移分析。当刚度相等时,矩形柱比异形柱的截面面积大。一般,比值(A矩/A异)约在1.10-1.30之间[1]。因此,用矩形柱替换后计算出的轴压比数值不能直接应用于异形柱,建议用比值(A矩/A异)对轴压比计算值加以放大后再用于异形柱。
对有剪力墙(或核心筒)的异形柱结构,由于异形柱分担的水平剪力很小,由此产生的翘曲应力基本可以忽略,为简化计算,可按面积等效或刚度等效折算成普通框架—剪力墙(或核心筒)结构进行内力与位移分析。按面积等效更能反映异形柱轴压比的情况,且面积等效计算更为简便。但应注意,按面积等效计算时,须同时满足下面两式:
(1)A矩=A异;(2)b/h=(Ix异/Iy异)1/2
式中,A矩、A异——分别为矩形柱和异形柱的截面面积;
b、h——分别为矩形截面的宽和高;
Ix异、Iy异——分别为异形柱截面x、y向的主形心惯性矩。
一般,按面积等效计算时,矩形柱的惯性矩比异形柱的小。但对有剪力墙(或核心筒)的异形柱结构,计算分析表明[2],按面积等效与按刚度等效的计算结果是接近的。
异形柱的截面设计,可根据上述方法得出的内力,采用适合异形柱截面受力特性的截面计算方法进行配筋计算。
2短肢剪力墙结构及其计算
短肢剪力墙结构是适应建筑要求而形成的特殊的剪力墙结构。其计算模型、配筋方式和构造要求均同于普通剪力墙结构。在TAT、TBSA中,只需按剪力墙输入即可,而且TAT、TBSA更适合用来计算短肢剪力墙结构。TAT、TBSA所用的计算模型都是杆件、薄壁杆件模型,其中梁、柱为普通空间杆件,每端有6个自由度,墙视为薄壁杆件,每端有7个自由度(多一个截面翘曲角,即扭转角沿纵轴的导数),考虑了墙单元非平面变形的影响,按矩阵位移法由单元刚度矩阵形成总刚度矩阵,引入楼板平面内刚度无限大假定减少部分未知量之后求解,它适用于各种平面布置,未知量少,精度较高。但是,薄壁杆件模型在分析剪力墙较为低宽、结构布置复杂(如有转换层)时,也存在一些不足,主要是薄壁杆件理论没有考虑剪切变形的影响,当结构布置复杂时变形不协调。而短肢剪力墙结构由于肢长较短(一般为墙厚的5-8倍),本身较高细,更接近于杆件性能,所以,用TAT、TBSA计算短肢剪力墙结构能较好地反映结构的受力,精度较高。
对设有转换层的短肢剪力墙结构,一般都只是将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。框支剪力墙是受力面向受力点过渡,由于薄壁杆件的连接处是点连接,所以用薄壁杆件模型不能很好地处理位移的连续和力的正确传递。因此,带有转换层的短肢剪力墙结构宜优先采用墙元模型软件(如SATWE)进行计算。当然,从整体上的内力(特别是下部支承柱的内力)分布情况来看,如果将剪力墙加以适当的处理,还是可以用TAT、TBSA对结构进行整体计算的[3]。
3异形柱的受力性能及其轴压比控制
天津大学的试验研究结果表明[4]:异形柱的延性比普通矩形柱的差。轴压比、高长比(即柱净高与截面肢长之比)是影响异形柱破坏形态及延性的两个重要因素。
异形柱由于多肢的存在,其剪力中心与截面形心往往不重合,在受力状态下,各肢产生翘曲正应力和剪应力。由于剪应力,使柱肢混凝土先于普通矩形柱出现裂缝,即产生腹剪裂缝,导致异形柱脆性明显,使异形柱的变形能力比普通矩形柱降低。
作为异形柱延性的保证措施,必须严格控制轴压比,同时避免高长比小于4(短柱)。控制柱截面轴压比的目的,在于要求柱应具有足够大的截面尺寸,以防止出现小偏压破坏,提高柱的变形能力,满足抗震要求。广东《规程》按建筑抗震设计规范(GBJ11—89)中所规定的柱子轴压比降低0.05取用(按截面的实际面积计算);天津《规程》则根据箍筋间距与主筋直径之比、箍筋直径及抗震等级共同确定,其要求比广东《规程》严格,例如,对s/d=5、4(即箍筋间距s=100mm,纵筋直径d分别为20mm、25mm的情况),箍筋直径dv=8mm,抗震等级为三级的L形截面,其轴压比限值分别为0.60,0.65。异形柱是从短肢剪力墙向矩形柱过渡的一种构件,柱肢截面的肢厚比(即肢长/肢宽)不大于4。《高规》(JGJ3—91)第5.3.4条,“抗震设计时,小墙肢的截面高度不宜小于3bw”,“一、二级剪力墙的小墙肢,其轴压比不宜大于0.6”。根据上述分析,为便于应用,建议在6度设防区,对于异形柱框架结构,L形截面柱的轴压比不应超过0.6(按截面的实际面积计算,下同),T形截面柱的的轴压比不应超过0.65,十字形截面柱的轴压比不应超过0.8;对于异形柱框架—剪力墙(或核心筒)结构,由于框架是第二道抗震防线,所以框架柱的轴压比限值可放宽到0.65(L形)、0.70(T形)、0.90(+字形),但对于转换层下的支承柱,其轴压比仍不应超过0.60。
短柱在压剪作用下往往发生脆性的剪切破坏,设计中应尽量避免出现短柱。根据高长比不宜小于4,在梁高为600mm的前提下,当标准层层高为3.0m时,异形柱的最大肢长可为600mm;底层层高为4.2m时,肢长可为900mm。
4短肢剪力墙结构中转换层的设置高度及框支柱
在现代高层住宅的地下室和下部几层,由于停车和商业用房需较大空间,就得通过转换层来实现。在短肢剪力墙结构中,一般都只将电梯间、楼梯间、核心筒和一少部分剪力墙落地,其于剪力墙框支。
据研究表明[5],“框支剪力墙结构当转换层位置较高时,转换层附近层间位移角及内力分布急剧突变,内力的传递仅靠转换层一层楼板的间接传力途径很难实现;转换层下部的‘框支’结构易于开裂和屈服,转换层上部几层墙体易于破坏。这种结构体系不利于抗震。高烈度区(9度及9度以上)不应采用;8度区可以采用,但应限制转换层设置高度,可考虑不宜超过3层;7度区可适当放宽限制。”因此,建议在6度抗震设防区,短肢剪力墙结构中转换层设置高度不宜超过5层,避免高位转换。转换层上下的层刚度比γ宜接近1,不宜超过2。转换层位置较高时,宜同时控制转换层下部“框支”结构的等效刚度(即考虑弯曲剪切和轴向变形的综合刚度),使EgJg与EcJc接近。EgJg为剪力墙结构的等效刚度,剪力墙结构高度取框支层的总高度,其平面和层高与转换层上部的剪力墙结构相同;EcJc为转换层下部“框支”结构的等效刚度。研究表明[5],“控制转换层下部‘框支’结构的等效刚度对于减少转换层附近的层间位移角和内力突变是十分必要的,效果也很显著。”
规范对框支柱的内力、轴压比、配筋等的要求都严于普通柱。框支剪力墙结构当转换层位置较高时,如何定义框支柱,涉及到安全与经济的问题。根据圣维南原理,局部处理的影响只限于局部范围,所以当转换层位置较高(如高位转换)时,除转换层附近楼层的内力较复杂外,下面的结构受到的影响很小,应与普通框架结构基本一样,不必按框支柱处理。文献[6]计算了两个28层的结构,一为内筒外框架结构,一为内筒外框支结构,转换层设在18层。计算结果表明,转换层下二层的内力影响很大,下三层的内力误差最大为15%,下五层的内力已比较接近(最大误差小于10%),下八层的内力已基本一样(最大误差小于5%)。这说明框支柱只需在五层范围内加以考虑,其它层的柱子按普通框架柱处理即可。因此,建议当转换层位置不超过五层时,转换层下的各层柱均按框支柱处理;当转换层位置超过五层时,转换层下相邻的五层柱按框支柱处理,而其它层的柱按普通框架柱处理。由于高位转换对抗震不利,所以结构设计中应尽量避免高位转换。
5短肢剪力墙结构的抗震薄弱环节及概念设计
振动台模拟地震试验结果表明[7],建筑平面外边缘及角点处的墙肢、底部的小墙肢、连梁等是短肢剪力墙结构的抗震薄弱环节。当有扭转效应,建筑平面外边缘及角点处的墙肢会首先开裂;在地震作用下,高层短肢剪力墙结构将以整体弯曲变形为主,底部的小墙肢,截面面积小且承受较大的竖向荷载,破坏严重,尤其“一”字形小墙肢破坏最严重;在短肢剪力墙结构中,由于墙肢刚度相对减小,使连梁受剪破坏的可能性增加。因此,在短肢剪力墙结构设计中,对这些薄弱环节,更应加强概念设计和抗震构造措施。例如,短肢剪力墙在平面上分布要力求均匀,使其刚度中心和建筑物质心尽量接近,以减小扭转效应;适当增加建筑平面外边缘及角点处的墙肢厚度(宜取250mm,对底部的小墙肢根据需要可取用300mm),加强墙肢端部的暗柱配筋,严格控制墙肢截面的轴压比不超过0.6,以提高墙肢的承载力和延性;高层结构中连梁是一个耗能构件,连梁的剪切破坏会使结构的延性降低,对抗震不利,设计时应注意对连梁进行“强剪弱弯”的验算,保证连梁的受弯屈服先于剪切破坏;短肢剪力墙宜在两个方向均有梁与之拉结,连梁宜布置在各肢的平面内,避免采用“一”字形墙肢;短肢剪力墙底部加强部位的配筋应符合规范要求;等。
参考文献:
[1]戴教芳.多层框架异形柱设计探索[J].工业建筑,1996,26(1):33-35.
[2]龙卫国.异形柱受力性能及结构设计有关问题探讨[J].四川建筑,2000,20(2):50-52.
[3]赵玉祥.钢筋混凝土高层建筑设计中若干问题的探讨[J].建筑结构学报.1998,19(2):12-22.
[4]赵艳静等.钢筋混凝土异形截面双向压弯柱延性性能的理论研究[J].建筑结构.1999,29(1):16-21.
[5]徐培福等.转换层设置高度对框支剪力墙结构抗震性能的影响[J].建筑结构.2000,30(1):38-42.
篇8
关键词:结构概念应用
引言
随着结构设计辅助程序的普及,在某些工程师设计过程中产生有一种现象—重应用而轻概念、重计算而轻构造。如何正确的把握概念、合理的应用概念,一定程度上决定着一个工程设计的成败。下面针对几个常遇的概念应用问题进行具体分析。
一、抗震设计中“强剪弱弯、强柱弱梁”不是刚柱柔梁
不能片面的理解为:大截面、多配筋,一味地加大截面和配筋,容易把框架结构最重要的抗震原则—延性破坏,变成脆性破坏,反而更不利。正确的概念是:结构在中震下允许某些构件先屈服,出现塑性铰,使结构刚度降低、塑性变形加大,当塑性铰达到一定数量时,由于结构自震周期延长,虽然结构承受的地震作用不再增加或增幅较小,但结构变形却迅速增加。为了使抗震结构能维持承载能力而又具有较大的塑性变形能力,设计时应遵循“强剪弱弯、强柱弱梁”,保证主要耗能部位具有延性的设计原则。通过控制受压区高度、最小配筋率、梁上部和下部纵筋的比例关系以及梁端箍筋配置要求来保证梁端塑性铰区有足够的转动能力;通过各种内力调整系数,来保证“强剪弱弯、强柱弱梁”,具体涵义是调整梁端负筋、箍筋、梁底纵筋与柱纵筋、箍筋的相对比例关系,使结构在地震作用下梁端塑性铰较普遍、较早出现,柱端塑性铰较少、较晚出现。通过塑性耗能,避免在较强地震作用下的结构严重损伤和更强地震作用下发生危及人身安全的局部或整体失效。在这里,梁端负筋、箍筋、梁底纵筋与柱纵筋、箍筋的之间的合理比例关系,成了决定结构在较强或更强地震作用下破坏模型的关键因素。
二、工业建筑的楼面设计的活荷载合理取值
据《建筑结构荷载规范(2006年版)》,民用建筑的楼面活荷载及相关参数取值遵照4.1节规定,工业建筑的楼面活荷载及相关参数取值遵照4.2节规定执行。工业建筑的楼面活荷载,它的特点是没有像民用建筑的楼面活荷载那样的荷载折减系数。活荷载在传递过程中的折减,是以楼面均布活荷载在。也就是说——合理的计算步骤根据“附录C”,按照板、次梁、主梁(柱和基础)各构件来取三次相应的标准值分别计算,同时注意组合值系数和准永久值系数与民用建筑要求的区别。
三、楼梯的荷载输入和计算模型
框架结构建筑中,当局部有电梯间、占总面积比例较小时,不宜做混凝土井筒,更不能用砌体承重,避免体系上的混淆。目前,一般整体设计时采用两种方式输入楼梯荷载。一种是楼梯间楼板厚度输入0,恒荷载折算后取7.0kN/m2左右,活荷载视具体使用功能而定;第二种是在半层平台梁下立小柱,此处按集中力输入荷载,比较真实地模拟了实际受力。第一种方式的问题是:楼梯间周边框架梁由三边受集中力变成四边受均布力(一边框架梁为半层平台处不受力);因总荷载大致相等,造成了三边框架梁上荷载偏小,计算挠度和裂缝偏小;当集中荷载对梁起控制作用时,梁的斜截面抗剪计算与均布荷载下的公式不同,箍筋配置值和范围均有区别。第二种方式应注意,平台小立柱截面一般小于300mm,强度设计值应乘以强度折减系数0.8,立柱及平台梁端部应配足够的负筋,以抵抗实际存在的弯矩。立柱下主框架梁也因为小立柱的存在,使其在沿梁长方向产生弯矩、在垂直方向产生扭矩,计算中没考虑,构造应加强配筋。
四、地下连梁(地框梁)的设置
基础埋深较大时,常设地下连梁承底层墙的自重和减小结构层高度。为了简化计算,常在结构计算模型中按多一层框架梁设计,此时较易出现短柱,有几种处理方法:①形成短柱后,严格按抗震规范计算其强度配筋等,并应同时建立两个计算模型:一个是有地框梁模型,考虑地下土体实际的约束作用,模型中的二层柱之计算长度系数应为1.25~1.0之间;二是取消地框梁层计算一次,实际建筑一层柱配筋取二者包络值,并短柱箍筋全高加密,建筑一层以上楼层梁、柱配筋取有地框梁模型实配。②地下连梁下移至基础顶面,此时是基础设计中常见的基础拉梁,作用是平衡柱底弯矩。承受墙体自重,仅为了计算出图的方便而仍按多一层的框架模型考虑。此时应改变计算模型中的二层柱计算长度系数,由1.25改为1.0左右,基础连梁考虑弯矩和轴向拉力后一般构造配筋;不必理会软件提示的底层柱抗剪不足问题。③参照《建筑地基基础设计规范》第8.2.6条的高杯口基础做成高颈现浇基础,高颈至地下连梁顶处,高颈刚度大于柱刚度4倍以上(非线刚度)。此时宜按正常模型计算,一层柱底至高颈处,注意按地基规范复核高颈配筋。
五、轻钢人字梁混凝土排架结构的计算模型
当钢梁采用人字梁时,钢梁在竖向作用下,对柱产生水平推力,在竖向力和水平力综合作用下,人字钢架弯曲变形不可忽略,已不能有效传递水平作用力,此时排架柱的联系构件实质上是铰接弹簧。排架柱的计算模型为下端固接、上端弹性连接,较水平为刚性杆的排架模型变形较大,受力较难量化分析。笔者建议,尽量少采用这种结构体系;当采用时,柱宜短、梁跨宜小,每侧柱的内力计算及配筋可采用较保守的悬臂模型单独进行。
六、地基基础设计的作用组合
按照《建筑抗震设计规范(2008年版)》第4.2节要求,一般多层建筑是不需要地基及基础的抗震承载力验算的。当地基进行抗震承载力验算时,且地基持力层或下卧层为软土层时:因为确定基底面积时采用了地震作用组合,可能基底面积受其控制,在沉降计算中又不含地震作用组合,此时应复核准永久组合下的基础的沉降差值是否满足规范要求,避免在常态下基础沉降不均。:
篇9
1.1剪力墙结构设计的概述
通常来说,一般剪力墙结构的建设规模较大,可实际厚度较小。因此,这种特点也决定了剪力墙结构的具体形状以及承受能力的大小。其中,剪力墙结构的组织形状相似于板状,自身具备了较高的承受能力,与柱子的受力程度非常相似。然而,在其他方面上,这两者有着十分明显的差异。并且,剪力墙结构是建筑结构中不可或缺的核心部分,设计人员在对其进行设计时,不仅要充分发挥剪力墙结构固有的承载力大和平面内刚度大的优点,还应该按照不同场所要求,设计出科学合理的剪力墙结构设计方案,使其发挥最大化的使用性能。
1.2剪力墙结构的分类
(1)虽然实体墙与截面剪力墙在某些方面,有着较大的差异。可是,这两者的开通面积与不开通面积是基本相同的。并且,这种剪力墙结构形式在发生变化时,也是呈现了曲线状态,是一种固定不变的形态。
(2)即使剪力墙开口不大,但因为剪力墙开通面积已经远远超出了规定范围。所以,此时的剪力墙结构呈现的是弯曲状态,并且无任何的阻挡点,从而导致其位置和形态均发生了不同程度的变化。
2.剪力墙建筑结构的厚度和长度的选取
剪力墙墙肢截面的高度就是剪力墙墙肢的长度,这个长度一般不应超过8m。在剪力墙结构设计中应确保剪力墙结构的延性,为了避免脆性的剪切破坏,可将高宽比大于2的细高剪力墙设计成弯曲破坏的延性剪力墙。但是有的墙体长度很长,为了确保墙体的高宽比值大于2,就要采取开设洞口的方法将长墙分成均匀的、长度较小的连肢墙,而其洞口则最好采用约束弯矩比较小的弱连梁。
3.剪力墙建筑结构设计计算的原则
设计人员在对剪力墙结构进行设计时,应该遵守相应的设计原则,真正做好考察工作,坚决不可以采用盲目的设计方法。只有这样,才能确保剪力墙结构设计的规范性,这也是保证建筑结构安全可靠性的重要表现。
3.1楼层之间最小剪力系数的调整原则
一般情况下,为了防止安全隐患的发生,减轻建筑结构的自身重量,设计人员在对建筑工程进行设计的过程中,可以采用减少剪力墙布置的方法。但是,这种设计形式有一个必要的前提条件,那就是短肢剪力墙的力矩必须保持在规范的标准要求内。同时还可以应用大开间的剪力墙结构,以此来提高建筑结构的强度,充分保证楼层剪力系数的安全性,并从一定程度上,大大降低了工程造价成本。
4.剪力墙结构优化设计的几点建议
我们知道,剪力墙结构作为建筑结构设计中至关重要的一个环节,其设计质量的好坏将会对建筑工程建设质量产生非常大的影响。而这种建筑结构形式因为具备较高的强度以及良好的延展性的优点,因此得到了十分广泛的应用,充分发挥了自身的有效价值。但是,在实际应用过程中,由于建筑工程存在很多的不确定性,当剪力墙结构发生明显的变化状态时,常常会受到一些外力因素的破坏,使得剪力墙结构的抗震性能遭到了一定的影响,同时也大大降低了建筑结构的稳定性。一般情况下,剪力墙结构最大的优点是具备了十分理想的承载能力。并且,在剪力墙结构的侧面部分,也拥有着较大的平面内刚度,这就充分保障了建筑物的安全性。另外,在建筑内部的剪力墙结构设计中,石柱与房梁都是隐蔽起来的,有效的提高了建筑室内的美感。但是,剪力墙结构也存在着较大的缺陷,无法为人们提供更多的可利用空间,经常会给人们的日常生活造成许多的不便。通过相关调查数据表明是刚韧性较强的剪力墙,在地震发生时,房屋所受到的损坏是最小的。但是,建筑设计人员一定要注意将其控制在合理的范围内,不允许其随意的扩散发展。从而确保剪力墙结构设计工作的质量和效率。其次,由于剪力墙结构成本费用较高,这无疑会对建筑工程建设成本上造成一定的压力。因此,建筑企业要采取及时有效的解决对策,尽可能减少工程成本的浪费,促剪力墙结构能够正常运行。
5.结束语
篇10
要想有效实现混凝土框架顶层加建钢结构的目标,就一定要明确两者之间的区别。混凝土框架具有自重大、刚度大、震害明显、密闭性好、整体性好、抗压性好、不易受外界侵蚀等特点;钢结构具有自重小、延性好、耐火性差、密闭性差、易受外界侵蚀等特点。混凝土框架与钢结构均是借助传统力学和数学公式进行受力计算的,同时在进行抗震设计的时候,均需要设置多道抗震防御体系,这样才可以保证结构的整体性与牢固性;在进行管理的时候,无论是混凝土框架还是钢结构,均需要管理人员具备相应的专业素质与技能,对施工中可能出现的风险、隐患、质量问题等进行预防与处理,保证施工的顺利完成。当然,两者之间也存在着明显的区别:首先,材质方面。混凝土框架主要就是由钢筋与混凝土构成,自重非常大;钢结构主要是由钢构件连接组成,自重比较小。其次,震害结果。根据相关资料显示,混凝土框架震害主要表现为裂缝,局部倒塌,很少出现整栋楼倒塌的情况;钢结构在地震作用下,经常发生失稳、扭曲、变形的情况,并且因为整体性比较差,因此在进行设计的时候,定要对整体性进行充分的考虑。最后,施工管理方面。在实际施工中,对于相同面积的施工,钢结构要比混凝土框架施工快;在现场施工的时候,混凝土框架施工需要进行现场支模浇筑,进行预制构件工厂加工的情况不多,而钢结构需要在工厂加工很多的预制构件,之后运输至施工现场,进行相应的安装与焊接。除此之外,针对工程造价而言,钢结构也要比混凝土框架低一些,在进行实际施工时,可以根据市场情况,进行适当的选择。
2加建工程的现状
我国加建设计起步比较晚,与世界先进国家之间存在着一定的差距。随着社会的不断发展与进步,科学技术水平的不断提高,加建工程得到了很大的发展空间,并且在我国各地都开展了一些旧房挖潜、改造、加建等工程,并且在上海、重庆、广州、贵阳、昆明等地都将旧房改造工程列入到了城市规划项目当中,颁布了相应的文件与规章制度。由此可以看出,我国加建工程得到了很大的发展空间。1)由以往的单个房屋加建发展为成片住宅区的加建工程;2)各种新材料、新工艺应用到了加建工程当中;3)轻钢结构加建技术得到了深入的分析与研究,并且在加建工程中得到了广泛的应用。
3钢结构加建的优缺点
开展钢结构加建工程的时候,具有以下优点:1)节约土地,提高土地面积的使用效率,缩短建设工期;2)因为钢结构的自重比较轻,因此,加建部分的荷载作用对原结构的影响非常小,不需要单独对地基进行加固处理,这样不仅可以减少工作量,还可以缩短工期,节省部分施工成本;3)钢结构具有较强的多样性,在进行加建的时候,可以充分发挥空间的优势,降低对原建筑结构的影响;4)钢结构加建的适用范围比较广,不仅可以对房屋建筑进行加建,还可以对工业建筑进行加建,因此,在建筑加建工程中得到了广泛的应用。当然,其也存在着一些缺点:1)在进行钢结构加建之后,其整体建筑结构就会呈现一种上柔下刚、上轻下重的质量与刚度分布,导致建筑整体性较差,缺乏一定的抗震性能;2)钢结构耐久性较差,在进行加建的时候,需要进行防腐、防火等措施的考虑,这样就会增加一些建筑材料的使用,此时不仅会涉及到原材料的质量问题,还要考虑原材料的成本问题,因此,存在着一定的不足。
4混凝土框架顶层加建钢结构设计
1)楼板设计。在设计楼板的时候,现阶段一般选用的都是现浇灌技术。目前,现浇灌技术是楼板设计中最为常用与有效的方法,在采用此种方式进行钢结构施工的时候,可以有效提高建筑结构整体的稳定性、牢固性与安全性。同时,在钢结构施工中,此种方法可以对出现的问题进行灵活的处理与调整,根据实际情况,提出有效的解决办法,保证楼板设计与施工的顺利进行,确保建筑工程的整体施工质量。2)梁设计。在进行梁设计的时候,一定要结合国际设计标准与实际设计情况,制定合理、科学的钢构设计要求:首先,在进行梁设计的时候,一定要保证其截面宽度不会低于200mm,同时宽度与高度之间的比值不要超过4。其次,在梁设计中必然要使用一些钢筋,对其使用钢筋也要进行一定的规定,保证梁结构具有一定的硬度与抗震性能,进而确保建筑工程整体结构的牢固性与安全性。最后,在设计扁梁的时候,一定要保证梁中线和柱中线重合,采用双向布置结构。同时对扁梁进行严格的计算与设计,保证其结构的合理性与科学性,增强建筑工程整体结构的稳定性。3)柱设计。在进行柱设计的时候,一定要保证其截面符合设计标准:通常情况下,柱截面宽度与高度均不可低于300mm,柱直径一定要超过350mm,截面短边与长边的比值不可以超过3,柱纵向钢筋配比不可以低于0.2%等。在设计柱的时候,一定要严格遵照以上要求,这样才可以保证柱设计的合理性与科学性,同时增强钢结构的稳定性,保证建筑工程施工的顺利完成。4)基础承载重量构件设计。在进行基础承载重量构件设计的时候,一定要综合考虑各方面的因素,结合建筑负荷、结构形式、施工状况等,加强基础设计的合理性与科学性,使其达到建筑工程整体设计要求。针对设计不合理、不符合要求的部分,一定要进行相应的修改,保证其设计的合理性与科学性,这样才可以保证建筑工程整体的施工质量。
5结语
免责声明
公务员之家所有资料均来源于本站老师原创写作和网友上传,仅供会员学习和参考。本站非任何杂志的官方网站,直投稿件和出版请联系杂志社。