深基坑工程范文10篇

时间:2023-03-31 12:31:31

深基坑工程

深基坑工程范文篇1

关键词:建筑工程;深基坑支护;施工要点

随着我国居民生活水平的不断提高,人们对建筑质量和舒适性要求也逐渐提高。建筑施工中深基坑支护施工对建筑的整体质量起到基础保障作用,对施工要点进行剖析,是优化施工工艺、提高施工质量、保证施工安全的重要前提。

1建筑工程中深基坑支护施工的重要性

基坑工程就是地基施工中的重要部分,包括基坑勘探、基坑挖掘、基坑支护、基坑回填等,主要目的是保障整体建筑的稳定性、安全性,对基坑周围地理环境进行加固保护。随着基坑挖掘规模的不断扩大,基坑支护种类得到拓展,基坑作业深度不断加深,使基坑支护的技术水平也得到不同程度的提高与发展。基坑支护工程属于地下作业,作业环境复杂,作业难度较高,涉及到的领域也较广,要针对具体的基坑支护施工问题,分析施工现场的各种不利条件,化解施工难题,才能保证基坑支护工程的施工质量。

2建筑工程中深基坑支护施工要点

2.1桩锚结构支护施工要点。深基坑支护中遇到地质结构松软时,需要采用桩锚结构支护,才能保证深基坑支护的质量和安全性。为了应对较大的应力变化,锚与锚索的质量越高越好,但这种高质量材料的应用,必然会引起工程造价的提高。2.2连续墙式支护施工要点。该技术利用连续的钢混墙做支护体,关键技术是对泥浆护壁的结构制作。这种连续墙体薄而坚固,渗透性差,能够很好的对地下水进行防御,从而保证深基坑支护结构的稳定性和安全性。2.3挡墙型支护施工要点。挡墙型支护结构具有应用范围广,对应用环境无特珠要求,施工工艺简单,支护功能较强等优点。该支护技术的要点是混凝土混搅质量要过关,深度要大,搅拌要均匀,吃混凝土上下一致,提高整体的支护性能,然后再用作支护墙体结构。2.4止水帷幕施工要点。首先,支护桩要标准规范,无残缺等质量问题;其次,支护桩制作时,要预埋注浆管,可随时对桩身内部进行注浆维护,提高桩身维护的便捷性;再次,支护桩间距要科学而标准,能够在满足独立作业的同时,保证整体支护强度,并用止水砂浆桩填充两桩之间,是止水帷幕的止水作用得到体现;最后,将钻孔灌注于高压喷射技术进行有机结合,增强止水帷幕的防水性能,增强结构的稳定性和安全性。2.5锚杆支护施工要点。在施工选择时,要先对墙面和耐受力壁进行检测,只有墙面或受力壁达到使用锚杆支护施工要求时,才能使用锚杆支护。使用时要对锚杆支点打圆柱形孔,并用泥浆对圆柱形孔进行灌注。使用时需要注意的是,支护砼与支护柱中心的误差要控制在50mm范围之内,锚杆嵌入墙面深度要达到100cm以上;墙面打孔后,在灌浆前要对打的孔进行清理,保证无沉渣颗粒;检查各构件位置要准确无误;混凝土现浇时要控制速,搅拌均匀排除气泡,并检查钢筋笼是否移位或上浮。2.6土钉支护施工要点。首先,土钉支护施工中要将钉孔的位置,深度和角度进行确定,使其与施工图纸和施工方案完全吻合;其次,土钉支护施工原则是挖一层支护一层,之后工作结束后才能进行后续挖掘施工;最后,土钉支护施工结束后,要对深基坑支护进行表面混凝土保护绝工,提高土钉支护整体稳定性与安全性。

3深基坑支护中其他应注意的问题

3.1施工设计。首先,不同建筑要求,不同地理环境需要不同的基坑支护技术。在设计阶段,需要进行实地勘探、取样,了解土层内部地质结构和水源变化规律,对基坑支护技术的选择提供可靠的数据支撑;其次,对采集的数据进行科学处理与分析,进一步明确地质结构中的应力变化规律,水位变化等,对地质结构的应力变化,水位变化的对基坑支护工程的影响给出准确的数据报告;最后,根据勘探与数据分析的最终结果,结合建筑工程的整体施工要求,设计科学合理的深基坑结构和支护技术,保证深基坑支护的质量。3.2基坑开挖。建筑工程规模较大时,基坑开挖采取分段式,边挖掘边支护,保证深基坑开挖的安全性。此时的深基抗支护,能够对基坑开挖的进程和安全性起到监督和保障作用。基坑支护要严格跟上基坑开挖的进度,当遇到特殊情况时,基坑支护可作适当调整。但无论如何调整基坑支护的工艺要求和支付标准,都需要严格按照施工方案的标准进行,保证后续工程的安全性和有效进度。3.3防水措施。基坑开挖和基坑支护施工中,地下水的影响不可避免,做好地下水疏通与防护至关重要。防水措施最常用的办法是挖建排水沟或深水井,安排专人进行水位变化监测,制定应急排水方案,最大限度的减少地下水对基坑开挖与基坑支护工程的影响。必要时可增设抽水设备,确定最佳间距和最佳安放位置,是地下水积聚较多的地方,能够及时迅速的排除水患。3.4深基坑工程检测。深基坑工程结束后要对基坑结构和支护结构进行检测,检测内容主要包含以下三内容:(1)坑壁有效性的检测,保证其稳定性。(2)支护结构检测,确定维护工程的质量符合设计要求。(3)对深基坑周围地质结构和建筑安全性与稳定性进行检测,必要时进行支护保护。

4结语

深基坑支护施工的质量水平直接影响着建筑工程的整体质量,相关工作人员必须严格按照流程规范施工,并熟练掌握各施工要点,保障工程的质量水平。

参考文献:

[1]徐汉阳.建筑工程基坑支护施工技术要点解析[J].居业,2018(01).

[2]谢正平.建筑工程中的深基坑支护施工技术要点探讨[J].建材发展导向,2018(16).

深基坑工程范文篇2

关键词:建筑工程;深基坑;加固;改造

在建筑工程施工的过程中,深基坑加固是其中最为关键的环节,为了对施工环境周边以及地下结构的安全进行保障,必须要合理安排深基坑加固。

1工程概况

某市中心工程,总面积为22508m2,建筑物分别包含主楼、商场两部分,基坑底绝对标高是23.570~26.051m,基坑深度周围土层分别是粉土填土层、粘质粉土、中砂以及砂质粉土,其中砂质粉土为持力层。此工程基坑开挖是原项目基坑支护结构,并于2013年停工,现今对其进行加固改造。

2深基坑加固改造检测

在进行深基坑加固改造施工之前,必须要实施鉴定,使其能够符合改造标准,才能保证建筑物日后的使用安全。鉴定内容:①不可抗因素。施工中面临的不可抗因素主要包含了泥石流、山体滑坡、洪涝等自然灾害。对于这一类灾害的预防需要通过搬迁来解决,短时间内无法完成搬迁的建筑物可以采取相应的灾害预防建议;②灾害预防水平。面对地震、爆炸等自然灾害时必须要有一定的预防能力,鉴定人员要根据相应的标准对各个方面进行评定,计算评定值,从而了解建筑面对自然灾害时的抵抗能力;③结构承载力。对结构承载力进行鉴定时,可以通过材料强度特征值等储备进行评定,以此提升结构的稳定性。只有保证了基坑各项数据与要求相符,才能落实接下来的加固改造施工,提升深基坑结构承载力与变形抵抗力,从而增强建筑整体结构的稳定性。

3既有深基坑加固改造设计与施工

3.1锚杆加固

新设计的基坑在原来的基础上扩大面积,破除原基坑中局部破损部位,在原基坑的南部与西部-8~-12m部位保证原结构不变。基坑中部该位置将原支护土钉墙破除,重新进行锚喷支护,将下部-12m以下完全破除,并运用桩锚支护。基坑北部的边坡需要重新增加一个新的锚杆进行加固,而支护体系仍保持不变。其余东部与南部基坑因为在影响范围以外,所以可以运用桩锚支护。

3.2沙土回填

在拆除原土钉墙之前,需要进行基坑回填,将土方回填至与拆除顶标高平齐部位,逐步分层依次回填。另外在加固改造中,降低土台高度,并按照级别将土钉和锚杆拆除,拆除的时间间隔保证在4h以内。施工人员在施工的同时要对锚杆应力释放所形成的影响加以注意,将释放锚杆应力、新锚杆植入同时操作,悬挂钢筋网片并喷射混凝土。这时土钉墙若已经拆除到与顶标高平齐,那么即可停止拆除,对地面进行清理。测量人员对改造部分进行测量并放线,为之后的护坡桩施工提供准备工作,在换填新土约为4m深度时,将土体压实并打桩。

3.3人工挖孔

由于原基坑中的南部存有一些旧锚杆,导致旋钻机无法操作,这时便可以运用人为挖孔的方式,先使用小钢锯将其拆除,人工挖孔至10m左右时,进行沙土回填,运用旋钻机设计挖孔深度。但是人工挖孔存在很大的风险性,也是一项分项工程,必须事先论证。例如正式施工前准备好所有防护工具,并对孔内的气体进行通风检测,挖桩时不能连续挖,要采取挑挖的方式。在钻孔时,如果混凝土压实之后出现钢筋笼灌注桩堵塞的问题,那么要即刻将堵塞部分拆除,将该部分混凝土进行清理之后重新放回原位置。但是需要注意的是,这一操作必须要在短时间内完成,如果处理难度系数较大,时间增加便会提高混凝土强度,使其无法重新插回设计深度中。另外,锚杆钻孔时如果存有不明障碍物,便会对成孔造成阻碍,进一步降低锚杆插入的深度。可以降低锚固长度与锚固力,从而满足成孔要求。

3.4处理渗水

在基坑开挖之后,发现帷幕的局部出现渗水现象,导致个别桩间没有全部咬合,经过分析可能是以下原因导致:①砂层与粘土层二者之间的旋喷桩所形成的旋喷效果不统一,导致局部旋喷桩和护坡桩临边处没有完全咬合;②旋喷桩和护坡桩在开挖初始阶段的变形缺乏协调性,导致临界处留有细微的裂缝;③局部旋喷桩槽内施工中,因为旋喷桩的施工角度问题,导致和护坡桩之间没有完全咬合。必须要确定造成渗水的主要原因,根据渗水量大小对其进行解决。该基坑加固工程的渗水量比较小,对局部进行处理之后并没有对整体基坑加固结构造成影响,所以也没有对其他环节的结构施工造成严重的影响。

4既有深基坑加固改造施工建议

4.1深基坑变形

在深基坑加固施工过程中,必须要对基坑变形进行考虑,可以运用杆系有限元法对深基坑相关系数进行计算。通过所得数据合理设计基坑边坡,以免出现变形对基坑结构造成影响。计算之前,结合加固与挖土支撑的实际状况、地基土水平方向校正基床系数Kh。

4.2深基坑保护

深基坑加固时,如果运用常规的加固方式和施工参数,那么深基坑只有在各个施工迅速的前提下,方可实现旋喷桩的一级保护;降水、搅拌桩、注浆才能得到二级保护;如果施工速度比较慢,且各个施工环节之间的间隔比较长,那么搅拌桩、旋喷桩可以得到二级保护,降水、注浆可进行三级保护。

4.3加固方案

深基坑加固时所运用的方法不同,那么加固效果、经济效益也不同。为了对深基坑施工质量与结构安全性等进行保证,可以通过对基坑保护等级、施工时间的合理考虑,选择与其相适应的加固方案,以免加固方案选择不当影响加固效果、建筑工程的经济效益。

5结束语

深基坑加固改造是对地下施工结构与周边环境安全进行保证的重要举措,然而因为当前阶段一些工程施工中面临基坑与现行要求不符的现象,所以不得不进行加固改造。为了对深基坑结构质量、安全进行保证,施工人员必须要结合工程实际情况,从锚杆加固、沙土回填、人工挖孔等多个方面,合理安排深基坑加固改造施工。只有这样才能对建筑工程中地下结构安全性进行保证,并为其带来经济、社会效益。

作者:张懿 单位:山东省建筑科学研究院

参考文献:

[1]吴杏弟,卜昌富,董鸽.既有航站楼连廊下狭长型相邻深基坑同步施工关键技术[J].建筑施工,2016,(3):257-259.

深基坑工程范文篇3

关键词:岩土工程;深基坑支护施工;稳定性

随着建筑行业的发展,建筑工程面临的土体环境也愈加复杂,尤其是岩性土体结构出现概率逐渐增加,为维护工程基础结构的稳固性和安全性,在实际施工作业中,加大深基坑支护施工技术的使用频率显得尤为重要。在该技术推动下,工程质量得以提升,作业人员安全性得以保障,为建筑行业的可持续发展提供了动力。

1.深基坑支护工程的基本概念

深基坑支护工程是指为确保深基坑地下结构及周边环境的安全,采取支挡、加固、保护等一系列措施。岩土工程地质结构特点和深基坑支护的需求,直接决定了支护工程任务量,深基坑支护施工技术也就是一种岩土工程施工安全保护措施。合理运用深基坑支护施工技术,可以有效降低发生深基坑坍塌事故的概率,保障岩土工程施工安全性。

2.深基坑支护的特点

2.1复杂性

地质环境勘查与现场放样测量,是建筑工程施工前期准备阶段的重点工作内容。施工单位要指定专人深入现场开展全面的地质环境勘查,对基坑位置的土体压力进行试验计算。然而,在实际地质环境勘查工作中,获取的地质环境勘查数据往往具有片面性和局限性,只能反映某一个局部区域或者某一个部位的地质环境概况,无法代表整个施工区域真实的地质环境概况。再加上地质环境勘查数据的分析结果过于保守,分析结果往往失去实际参考价值。另外,深基坑土体压力测试所采取的理论过于理想化。尽管这些理论体系也具有一定的科学性,但是,未能全面考量施工中土体结构的压力变化情况,影响了深基坑土体压力测试结果。在深基坑支护过程中,土体结构与压力也会随着外界环境条件的变化而发生相应的改变,而环境条件变化的不可预估性与不可控性,增大了土体压力测试难度。

2.2多因素性

当前,我国逐步加大对深基坑支护的重视力度,深基坑支护工程的发展也取得了长足的进步。但是,近年来深基坑失稳事故频繁发生,造成严重的经济损失和人员伤亡。导致深基坑失稳的原因是多种多样的,如前期准备阶段的地质环境勘查工作落实不到位、地质结构数据信息缺乏精准可靠性、工程设计缺乏科学合理性以及施工监督管理力度不足等。

2.3地域性

在深基坑支护工程施工过程中,要结合工程所处区域的环境概况展开施工考查,做好施工准备工作。我国疆域辽阔,南北方的地理环境条件与地质结构条件存在一定的差异,而地质结构条件是深基坑工程施工的关键影响因素。因此,在正式施工前,有必要组织专人深入现场对地质结构展开勘查测量,结合现场地质结构特征,选择适宜的深基坑支护方式。

3.深基坑支护施工流程

3.1基坑开挖

按照预先标定的位置开挖深基坑。在深基坑开挖过程中,做好开挖位置精度测量控制工作,考量现场地质结构条件与地下水文环境条件等关键影响因素。深基坑开挖以机械设备开挖方式为主,当实际开挖深度接近预计开挖深度时,采用人工开挖的方式,避免超挖问题。

3.2打孔

在深基坑周围的岩土层上打孔灌浆,作为支护结构的辅助支撑点。一般情况下,多采取土钉打孔方式;结合打孔需求,选择对应规格的土钉。打孔时,施工人员必须严格控制孔位的精准性及成孔的垂直度。

3.3灌浆

打孔后,将支护材料置入到成孔中。常见的支护材料包括钢筋、锚索和锚杆。为进一步提升支护结构与深基坑边缘结构的连接稳固性,增强辅助支护点的稳固效果,还要现浇混凝土。一般情况下,混凝土的水灰比多控制在0.45~0.55之间,混凝土的浇筑压力多控制在0.2Pa~0.4Pa之间。与此同时,施工人员还要严格控制灌浆浇筑间隔时间,尽可能地将灌浆浇筑间隔时间控制在30min内。

4.施工技术要求

4.1合理的设计

在深基坑支护工程正式施工前,施工单位应指定专人对现场的地质结构条件、地下水文环境条件、施工规模和基坑深度展开勘查测量。根据现场环境勘查测量结果对施工材料、施工工艺以及施工技术予以选择,将环境勘查测量结果作为重要的参考依据。

4.2适宜的支护结构

选择适宜的支护结构形式,是提高深基坑支护施工效率的必要前提。在正式施工前,结合现场环境条件、支护空间位置及关键点分布情况,选择适宜的支护结构形式。选择的支护结构的承载力极限值必须与深基坑周围土体结构的应力变化限值维持稳定平衡,由此,发挥支护结构的优势作用,维护深基坑周围土体结构的安全稳固性。

4.3稳定的止水功能

渗漏是岩土工程基础施工中的常见问题。在深基坑支护工程施工中,要通过增设支护结构的方式,增强地基基础的安全稳固性。并采取止水措施,最大限度地减轻地下水对地基基础的侵蚀作用。除地下水以外,地表径流下渗也会对地基基础造成侵蚀。为此,现场施工人员需要做好排水工作,增强地基的止水功能。

5.岩土工程中深基坑支护施工技术的具体应用

5.1混凝土灌注桩支护

混凝土灌注桩支护技术采取钻孔、注浆的方式形成灌注桩,增强基础结构支撑和保护效果。在实际应用中,需要作业人员对现场情况加以勘查,对于存在较大距离、位差问题的岩土工程,使用该技术予以支撑和防护,增强基础结构稳固性。在施工过程中,需先对场地展开整平和清洁处理,之后开始钻孔灌浆。混凝土灌注桩要在重点部位予以科学设置,以起到支护效果。通常情况下,单桩内含钢筋量在20根~25根,桩间距控制在200mm左右。

5.2排桩+内支撑+预应力锚杆支护

排桩支护是采用柱式排列的方式布设桩体结构,构建完善的支护结构体系,以保障深基坑的稳固性。排桩支护灵活性强,可根据现场实际情况科学布设,优化支护质量。对于排桩支护所需桩体数量及密度要求,可直接按照关键部位性能要求予以科学布置和选择,以增强支护的效果。

5.3锚杆支护

锚杆支护中会选用聚合物件、金属件等材料,与锚杆有效组合,实现支护加固效果。该技术应用原理为,利用锚杆作用力对深基坑岩土结构性能予以改善,增强受力效果,避免脱落、崩塌等问题的出现。锚杆支护技术具有机械化强度高、施工简单、施工成本低的优势。常用的锚杆有钢筋砂浆锚杆、树脂锚杆、快硬水泥锚杆、锚索等。一般锚杆的设置横向距离误差应控制在5cm内,纵向距离误差控制在20cm之内。

5.4地下连续墙

地下连续墙类型有:按槽孔的形式可以分为壁板式和桩排式两种;按开挖方式及机械分类,可分为抓斗冲击式、旋转式和旋转冲击式;按施工方法的不同可以分为现浇、预制和二者组合成墙等;按功能及用途分为做承重基础或地下构筑物的结构墙、挡土墙、防渗心墙、阻滑墙、隔震墙等;按墙体材料不同分为钢筋混凝土、素混凝土、黏土、自凝泥浆混合墙体材料等。5.4.1地下连续墙的优点主要表现在如下方面:(1)施工全盘机械化,速度快、精度高,并且振动小、噪声小,适用于城市密集建筑群及夜间施工;(2)具有多功能用途,如防渗、截水、承重、挡土等,由于采用钢筋混凝土或素混凝土,强度可靠,承压力大;(3)对开挖的地层适应性强,除熔岩地质外,可适用于各种地质条件,无论是软弱地层或在重要建筑物附近的工程中,都能安全地施工;(4)可将地下连续墙与“逆做法”施工结合起来:地下连续墙为基础墙,地下室梁板作支撑,地下部分施工可自上而下与上部建筑同时施工,将地下连续墙筑成挡土、防水和承重的墙,形成一种深基础多层地下室施工的有效方法。5.4.2地下连续墙的缺点,主要表现在如下方面:(1)每段连续墙之间的接头质量较难控制,往往容易形成结构的薄弱点;(2)较其他方案相比,造价昂贵。5.4.3小结由于地下连续墙优点多,适用范围广,可广泛应用在建筑物的深基坑支护结构等工程中。

6.岩土工程中深基坑支护施工技术应用实例

6.1项目简介

某工程项目为超高层建筑,主塔楼由南、北塔楼构成,南塔楼53层,北塔楼43层,位于市中心。该工程设6层地下室,深基坑用地面积在6054m2,开挖深度25.5m,土石方开挖量在1.28×105m3。基坑东面毗邻多栋4栋~8栋住宅、办公楼,距基坑边约3m;南面距天河北路人行道约3m,离规划地铁十三号线约25m;西面距林和东路约8m,离地铁一号线隧道约18m;北面为天河妇幼保健医院,距基坑4.5m。场地及基坑周边的地下管线、电缆:南面及西南角人行道上,市政管线种类及数量较多,分布较复杂;西面有一条污水处理厂排污管,埋深约2m;北侧小区道路上有较多给、排水管线。开挖区域土体结构以杂填土、粉质黏土、强风化粉砂岩、中风化粉砂岩、微风化砾岩为主。为保证深基坑施工质量,有效控制位移,采用旋挖灌注桩+内支撑的支护形式。

6.2技术要点

6.2.1基坑支护该项目位于广州市天河区林和东路与天河北路交汇处,基坑周长约300m,开挖深度为25.5m。基坑场地狭小,周边环境复杂,开挖深度大。本工程自设计方案阶段开始,经过多次方案筛选和经济技术分析,最终确定了本设计方案作为最终的施工方案。本设计方案采用旋挖灌注桩+内支撑的支护形式,支护桩采用吊脚桩,下部采用预应力锚索、锚杆或者喷锚锁脚。在保证工程安全的前提下,有效节省了工程造价,减少了施工工期,为本项目主体结构施工的顺利进行打下了坚实的基础。基坑支护施工过程中,设计人员常驻现场,场地地质条件及环境条件发生变化时,能及时快速调整设计,避免了停工等图,确保了基坑支护施工如期完成;基坑开挖及地下室施工期间,设计人员全程指导开挖施工并监督基坑周边车辆荷载、材料堆载情况,保证了基坑开挖、地下室施工顺畅进行。6.2.2施工顺序进行旋挖桩施工;开挖到第1道支撑梁底下50cm,进行冠梁、及第1道支撑梁施工;待第1道支撑梁强度达到设计强度的80%,开挖到第2道支撑底以下50cm,进行腰梁及第2道支撑施工;待第2道支撑梁强度达到设计强度的80%,开挖到第3道支撑底以下50cm,进行腰梁及第3道支撑施工;待第3道支撑梁强度达到设计强度的80%,开挖到预应力锚索以下50cm,进行预应力锚索施工;待预应力锚索张拉并达到设计强度后,开挖到基坑底。

6.3技术改善

6.3.1基坑开挖与支护协调平衡在岩土工程基础施工中,施工单位要结合现场概况,编制完整可行的施工方案,确保基坑开挖与支护保持协调平衡;在提高施工效率,满足工期要求的前提条件下,加强边坡结构的安全稳固性。再者,加大深基坑土体结构与边坡结构变形监测力度,保障现场施工安全,降低发生深基坑失稳事故的概率。6.3.2加强深基坑支护施工质量管理做好深基坑支护施工质量管理工作,是提高岩土工程基础施工水平的关键条件。深基坑支护施工质量管理工作的重点内容包括:(1)监理单位需组织定期巡检与不定期抽检活动,及时发现问题,上报主管单位,责令施工方限期整改,直至整改结果通过审核后,方可进入下一道工序。(2)施工单位应明确施工标准要求,约束和规范施工人员的操作行为,加强技术交底工作管理,让所有施工人员都能够明确施工流程与施工工序。(3)定期组织施工人员技能培训与素质教育,增强施工人员的责任意识与安全防范意识,提高施工人员的专业技能水平,强化施工人员的综合素质。再者,施工单位还需明确施工目标,优化人力资源配置,邀请监理进行现场审核,如旋挖桩深度、锚杆数量和锚杆长度等。制订完善的土方开挖与支护施工流程,促进各部门、各岗位和各个人员之间的沟通交流与协调配合,避免乱挖、欠挖以及超挖等问题,增强深基坑支护结构的安全稳固性,提升岩土工程基础施工水平。6.3.3变形监测岩土工程中深基坑支护施工前,需要先开展变形监测工作,准确了解基础结构、边坡结构特征,合理规划施工方案。在变形监测中,应重点注意的内容有:边坡坡度监测、周边环境及建筑物监测、地下管道及线路监测。通过监测得到完整的关于施工场地的数据分析,时刻把握工程施工进度,分析施工过程中可能出现的微小误差,以便更好地熟悉土质的变形情况,对影响土质改变的因素展开分析研究,有针对性的采取补救措施。已经结束施工的部分,要进行相应的监管,提出防护措施。另外,相关人员要加强施工监测管理作业,确保获取数据资料的齐全性、可靠性,减少失误或偏差带来的影响,推动后续作业顺利进行。同时,开展变形监测还能使施工中出现的问题得到及时处理和控制,降低安全事故的发生率。6.3.4石方爆破开挖管控由于本基坑深度大,开挖至深度15m后见到中风化、微风化砾岩或粉砂岩,强度很高,已无法正常开挖,需要采用爆破施工至基坑深度25.5m;又由于基坑支护采用吊脚桩支护,需要严格控制爆破波速、装药量及爆破深度,提前在基坑内旋挖桩吊脚下设置减震沟,以尽量减少爆破对支护桩产生的不利影响。爆破方案须经有关主管部门审批后方可实施。

7.结语

总之,岩土工程基础结构施工中,深基坑支护施工技术的应用是提高结构稳定性和安全性的重要手段。在实际应用中,应做到科学分析和选择,并结合现场的具体情况给出合理的技术方案,加强深基坑支护的施工效果,避免变形、渗漏、崩塌等问题的产生,以此促进岩土工程的高质量完工。

参考文献:

深基坑工程范文篇4

关键词:深基坑支护;施工技术;建筑工程

随着建筑工程地下建设深度不断加大,对深基坑施工和深基坑支护提出了更高的要求。深基坑支护施工经常会面临非常复杂的地质环境,如沿海区域、地下水位较高的区域、土层结构不稳定的区域,深基坑支护的质量会对深基坑施工的安全和建筑工程的稳定性产生很大影响,需要根据实际的水文地质条件、周边环境的要求及不同支护型式的特点、造价等综合考虑选择合适的深基坑支护技术。

1深基坑支护的三种不同类型

深基坑支护按照受力的不同可以分为三种类型的支护方式:第一种是主动受力的支护方式。这种方法是让土层和支护在彼此受力的情况下增加稳定性,以土钉墙支护和搅拌桩支护为代表。第二种是被动受力的支护方式。土层结构存在着不同的强度,被动受力支护能够通过支护承受土层压力以防止土层变形,以地下连续桩支护和灌注桩支护为代表。第三种是主动受力和被动受力组合的支护方式。组合支护能够综合各种支护方式的优点,最大程度保证支护的质量和深基坑的稳定性,组合支护在现代建筑工程的深基坑施工中得到了广泛使用。

2深基坑支护技术的具体运用

2.1钢板桩支护技术分析

钢板桩按分类有槽钢钢板桩使用于基坑4m以内的基坑,轧锁口钢板桩使用于开挖深度7~10m的基坑。轧锁口钢板桩支护技术中的钢板是深基坑支护的重要材料,钢板桩的钢材主要为型钢,这种钢材的表面存在一定的槽口,比较常用的有热扎型钢,代表为拉森钢板桩,适用于软土地层和开挖宽度较小的深沟槽。在深基坑施工土方开挖前,沿基坑边将钢板连续打入土层,同时要做好钢板之间的连接,确保钢板能够起到很好的挡土及防水效果。在土方开挖时分层开挖土方并施作围檩、支撑,基坑内工程完成后拆除回收钢材,钢板桩支护技术具有易上手、成本较低和操作简单的优点,能够彻底将深基坑中的土层与水隔绝开来,在稳定土体结构的同时还具有防渗水的功能。但是钢板桩支护技术的使用对施工现场有着较为严苛的要求,钢板桩支护技术不可以在山地地区或坚固地层使用,在软土地层、及深沟槽开挖支护中最常用。

2.2土钉墙支护技术分析

土钉墙是一种边坡稳定式的支护,其作用与被动的具备挡土作用的上述围护墙不同,它是起主动嵌固作用,增加边坡的稳定性,使基坑开挖后坡面保持稳定。土钉墙主要用于土质较好地区,我国华北和华东北部一带应用较多,目前我国南方地区亦有应用,有的已用于坑深10m以上的基坑,稳定可靠、施工简便且工期短、效果较好、经济性好、在土质较好地区应积极推广。在深基坑施工中应用土钉墙支护技术对于提高建筑地基稳定性具有重要的作用。进行土钉墙支护施工的时候需要将细长杆紧密地插进基坑边坡的土层中,要确保细长杆高密度地排列在一起,之后要将钢筋网铺到上面,在喷锚的作用下对深基坑的土体结构进行保护,喷锚支护技术在深基坑支护技术中非常重要,一般会与锚固支杆和钢网等工具搭配使用[1]。土钉墙支护技术可以与其他支护技术进行结合,发挥各个支护技术的优点。需要注意的是,如果深基坑施工现场的地下水位较高或者地下管线复杂,则不适宜使用土钉墙支护技术,土钉墙支护技术通常会在地下水位较低和降水少的区域中使用。

2.3排桩支护技术分析

排桩支护结构包括灌注桩、预制桩、板桩等类型桩构成的支护结构。深基坑以钢筋混凝土灌注桩最为常见,钢筋混凝土灌注桩排桩支护使用于7~13m基坑,地底土质为塑性较好的粘土。地下水位丰富的地区多采用双层搅拌水泥灌注桩。应用排桩支护技术时要将所有的桩柱都整齐地列到一起,灌注桩是由钢筋混凝土制成的,施工人员需要将灌注桩有序地插入深基坑四周土层中。施工人员可以在相邻灌注桩之间使用钢筋混凝土,以此来提高深基坑支护和建筑基础的稳定性。灌注桩排桩支护施工可以按照不同的排列方式进行支护,如拉锚式的排列方法或者锚杆式的排列方法。运用排桩支护技术的时候要合理分布钻孔桩和挖孔桩,通常钻孔桩会随着基坑深度的加深而不断加大排列密度,灌注桩之间距离太远就无法起到牢固土层和保护深基坑的作用,距离太近又会浪费钢筋混凝土材料和增加无用的工作量,所以施工人员要考虑实际的挡土效果和灌注桩的间隔距离。使用排桩支护技术进行支护施工基本不会破坏原本的地质环境,但是排桩的过程中需要使用专门的机械,机械运行发出的声音会对周围居住的居民产生较大影响。

2.4地下连续桩支护技术分析

应用地下连续桩支护技术时往往要有充足的资金支持,高额的成本费用使地下连续桩支护技术很少在建筑工程深基坑支护施工中使用。但是不可否认的是,地下连续桩支护技术在深基坑支护中具有多方面的优点,具有极强的实用性、安全性和稳定性,能够满足建筑基础的承重需求,保证深基坑施工和建筑施工的质量,是一种比较关键的深基坑支护技术。地下连续桩支护技术是地下连续墙支护的基础,在施工中需要先使用水泥浆进行护壁处理,挖槽的过程中要密切注意地下连续墙的厚度和深度,根据施工方案中的分段安排进行分段挖槽。接下来要装入钢筋骨架并通过导管将多余的泥浆从地下导出去,最后通过注入混凝土来形成钢筋混凝土墙,通过连续不断的钢筋混凝土墙来进行挡土和防水[2]。

2.5深层搅拌桩支护技术

深层搅拌桩支护技术是深基坑施工中比较基础的施工技术,深层搅拌桩支护技术在应用中需要使用一种特定的媒介材料,这个材料就是固化剂。应用该技术进行施工时还会用到深层搅拌机,深层搅拌机要在深层基坑上把软土和固化剂搅拌均匀,使二者完全融合到一起并形成完整的桩体结构,固化剂和软土的结合能够极大增加土层的稳定性,通过深层搅拌桩支护的软基硬结令地基具有足够的强度和韧性。施工人员使用深层搅拌机进行搅拌可以改善土层原本的性能,令松软的地基变得更加稳固,所以深层搅拌桩支护技术经常被用于软土地基的支护施工中,通过桩支护或墙支护的形式对深基坑的软土土体进行加固。深层搅拌桩支护具有很好的支护效果和经济效益,应用该技术不需要准备太多的水泥材料,也很少会影响附近的建筑物和自然环境。但是在使用深层搅拌桩支护技术时还要掌握深基坑现场的地质环境条件,根据地质环境条件来分析技术应用的可行性和支护的效果,在进行深层搅拌桩支护施工之前做好充分的准备[3]。

2.6混凝土灌注桩支护技术

混凝土灌注桩支护技术是深基坑支护施工中最常见的一种支护方法,在我国得到广泛的应用。其多用于坑深7~15m的基坑工程,在我国北方土质较好地区已有8~9m的臂桩围护墙。深基坑开挖深度不断加深时,深基坑施工和支护的难度也越来越大,对施工安全和支护技术的应用提出了更高的要求,使用混凝土灌注桩支护技术应当严格把控混凝土材料的质量,要保证混凝土灌注桩的基本性能符合土质条件和深基坑支护的基本需求,要控制好混凝土灌注的质量。在灌注之前要精确计算灌注面的高度以及混凝土桩支护的强度,根据计算的结果来安排钢筋的数量,确认无误后就可以进行浇筑。该支护技术经常在高层建筑的深基坑支护中使用,包含两种灌注方式:第一种是经常被使用的钻孔灌注桩支护。钻孔灌注就是使用专门的钻孔机械对地面进行钻孔,将孔清理干净后就可以进行灌注。第二种是沉管灌注桩支护技术。这种灌注方式需要让钢管进到土层内部,在钢管的作用下形成灌注孔。混凝土灌注桩支护的特点有:施工时无振动、无噪音等环境公害,无挤土现象,对周围环境影响小;墙身强度高,刚度大,支护稳定性好,变形小;当工程桩也为灌注桩时,可以同步施工,从而施工有利于组织、方便、工期短;桩间缝隙易造成水土流失,特别时在高水位软粘土质地区,需根据工程条件采取注浆、水泥搅拌桩、旋喷桩等施工措施以解决挡水问题;适用于软粘土质和砂土地区,但是在砂砾层和卵石中施工困难应该慎用;桩与桩之间主要通过桩顶冠梁和围檩连成整体,因而相对整体性较差,当在重要地区,特殊工程及开挖深度很大的基坑中应用时需要特别慎重。

2.7SMW工法

SMW工法亦称劲性水泥土搅拌桩法,即在水泥土桩内插入H型钢等(多数为H型钢,亦有插入拉森式钢板桩、钢管等),将承受荷载与防渗挡水结合起来,使之成为同时具有受力与抗渗两种功能的支护结构的围护墙。SMW支护结构的支护特点主要为:施工时基本无噪音,对周围环境影响小;结构强度可靠,凡是适合应用水泥土搅拌桩的场合都可使用,特别适合于以粘土和粉细砂为主的松软地层;挡水防渗性能好,不必另设挡水帷幕;可以配合多道支撑应用于较深的基坑;此工法在一定条件下可代替作为地下围护的地下连续墙,在费用上如果能够采取一定施工措施成功回收H型钢等受拉材料,则大大低于地下连续墙的费用,因而具有较大发展前景。

3结语

建筑工程施工技术的发展与基础建设水平的提高有很大关系,深基坑施工质量是建筑工程施工安全和质量保证的重要条件,有效的深基坑支护又是提高深基坑稳定性的重要保障。在支护之前应当充分了解施工现场的地质条件并选择最恰当的深基坑支护技术,确保深基坑支护的稳定性和土层结构的稳定性,确保建筑工程的基础工程足够牢固和安全。

参考文献:

[1]陈鹏.深基坑支护技术在建筑施工中的应用[J].四川水泥,2021(5):178-179.

[2]余磊.建筑工程中的深基坑支护施工技术分析[J].绿色环保建材,2021(4):116-117.

深基坑工程范文篇5

岩土工程区域性强,岩土工程中的深基坑工程,区域性更强。如黄土地基、砂土地基、软粘土地基等工程地质和水文地质条件不同的地基中,基坑工程差异性很大。即使是同一城市不同区域也有差异。正是由于岩土性质千变万化,地质埋藏条件和水文地质条件的复杂性、不均匀性,往往造成勘察所得到的数据离散性很大,难以代表土层的总体情况,且精确度很低。因此,深基坑开挖要因地制宜,根据本地具体情况,具体问题具体分析,而不能简单地完全照搬外地的经验。

(2)深基坑工程具有很强的个性

深基坑工程不仅与当地的工程地质条件和水文地质条件有关,还与基坑相邻建筑物、构筑物及市政地下管网的位置、抵御变形的能力、重要性以及周围场地条件有关。因此,对深基坑工程进行分类,对支护结构允许变形规定统一的标准是比较困难的,应结合地区具体情况具体运用。

(3)基坑工程具有很强的综合性

深基坑工程涉及土力学中强度(或称稳定)、变形和渗流3个基本课题,三者融溶一起需要综合处理。有的基坑工程土压力引起支护结构的稳定性问题是主要矛盾,有的土中渗流引起土破坏是主要矛盾,有的基坑周围地面变形是主要矛盾。深基坑工程的区域性和个性强也表现在这一方面。同时,深基坑工程是岩土工程、结构工程及施工技术相互交*的学科,是多种复杂因素相互影响的系统工程,是理论上尚待发展的综合技术学科。

(4)深基坑工程具有较强的时空效应

深基坑的深度和平面形状,对深基坑的稳定性和变形有较大影响。在深基坑设计中,要注意深基坑工程的空间效应。土体蠕变体,特别是软粘土,具有较强的蠕变性。作用在支护结构上的土压力随时间变化,蠕变将使土体强度降低,使土坡稳定性减小,故基坑开挖时应注意其时空效应。

(5)深基坑工程具有较强的环境效应

深基坑工程的开挖,必将引起周围地基中地下水位变化和应力场的改变,导致周围地基土体的变形,对相邻建筑物、构筑物及市政地下管网产生影响。影响严重的将危及相邻建筑物、构筑物及市政地下管网的安全与正常使用。大量土方运输也对交通产生影响。所以应注意其环境效应。

(6)深基坑工程具有较大工程量及较紧工期

由于深基坑开挖深度一般较大,工程量比浅基坑增加很多。抓紧施工工期,不仅是施工管理上的要求,它对减小基坑变形,减小基坑周围环境的变形也具有特别的意义。

(7)深基坑工程具有很高的质量要求

由于深基坑开挖的区域也就是将来地下结构施工的区域,甚至有时深基坑的支护结构还是地下永久结构的一部分,而地下结构的好坏又将直接影响到上部结构,所以,必须保证深基坑工程的质量,才能保证地下结构和上部结构的工程质量,创造一个良好的前提条件,进而保证整幢建筑物的工程质量。另一方面,由于深基坑工程中的挖方量大,土体中原有天然应力的释放也大,这就使基坑周围环境的不均匀沉降加大,使基坑周围的建筑物出现不利的拉应力,地下管线的某些部位出现应力集中等,故深基坑工程的质量要求高。

(8)深基坑工程具有较大的风险性

深基坑工程是个临时工程,安全储备相对较小,因此风险性较大。由于深基坑工程技术复杂,涉及范围广,事故频繁,因此在施工过程中应进行监测,并应具备应急措施。深基坑工程造价较高,但有时临时性工程,一般不愿投入较多资金,一旦出现事故,造成的经济损失和社会影响往往十分严重。

(9)深基坑工程具有较高的事故率深基坑工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常常经历多次降雨、周边堆载、振动等许多不利条件,安全度的随机性较大,事故的发生往往具有突发性。

深基坑工程范文篇6

【关键词】深基坑;自动监测;基坑支护

1深基坑概述

基坑是指工程施工过程中,按照勘察设计图纸在基础设计位置向下开挖的地下空间,深基坑是指开挖深度超过5m,地下室超过3层,或深度虽未超过5m,但基坑周边地质复杂的工程。深基坑工程包括土方挖运、边坡支护、基坑排水等,是一项专业领域覆盖广、危险系数大、综合性强的工程[1]。由于深基坑支护结构都是临时结构,故危险系数大,在设计施工方案时应充分考虑在施工过程中支护结构稳定性的监察问题,更应设计切实有效的应急措施。基坑工程综合性强,所需要的专业人才不仅懂得结构力学、土力学、测量勘探,还需具备一定的计算机技术和施工技术知识。基坑工程具有环境效应,在深基坑开挖过程中必然对周围建筑物、地下水位和土体产生影响,因此,在制定施工方案时应充分考虑这一点。

2自动化监测概述

2.1自动监测原则。2.1.1及时反馈原则。对于基坑支护情况监测过程中出现的任何问题能够准确及时地向项目管理人员与施工员反馈,并根据实际情况及时采取有效措施。2.1.2测点相关性原则。在进行测点布置时,应尽量将测点布置在同一断面内,如若遇到不能布置在同一断面的情况,要尽量布置在相近断面上,以便各测点采集数据后的相关性分析结果更为准确。2.1.3经济性与技术性原则。在保证日常监测工作正常进行的情况下,尽量控制自动化监测设备的造价与维护投入,监测点的选取不应对周围环境造成影响,且同时满足施工和水文地质要求。2.1.4自动化原则。由于人工监测基坑支护容易出现纰漏,且肉眼和一般仪器监测不够准确,因此,需要一套完整且自动化高速运转的监测设备进行支护结构变形情况的监测。2.2自动监测原理。2.2.1数据收集层级。在数据收集及处理的过程中建立层级,由数据采集传感器将数据采集,并通过无线电信号传至数据收集器中,再利用计算机技术对采集的数据进行处理和分析。2.2.2数据预处理与传输层级。数据的预处理时常是在数据采集系统中进行的,数据采集系统将传感器采集的各种数据进行处理,使其转换为数字信号,再通过数据传输网络将数据传输至数据处理中心进行处理。2.2.3数据处理层级。庞大的数据处理工作是由数据处理与控制系统共同完成的,数据处理系统通过接收并分析由各级传感器采集的数据,对整个系统的运行进行控制,根据传感器反映的数据,针对整个数据库进行数据更新与管理。2.2.4结构安全评定层次。整个结构安全评定工作由安全评定系统根据数据处理系统的分析结果自动生成,对监测数据及结构进行分析,对比现收集数据及历史监测数据,进而对建筑物结构的安全性和稳定性进行分析,生成符合实际情况的结构安全报告。2.3自动化监测的目的。监测系统代替传统的人工监测,全天候进行自动监测基坑支护与建筑物基础情况。提高数据可靠度,并且能够及时提供监测报告,满足应用计算技术的高效施工要求。实时监测,实时对比安全数据,在监测指标不达标时,能准确地在第一时间发出警报,指引管理人员采取相应措施处理问题。

3基准点、监测点及设备布设

3.1基准点布设。在基坑周围布设不少于2个全站仪后视基准点,且布置在基坑边坡变形影响范围之外的区域,以免受到基坑支护位移和护坡变形的影响,且要求基准点周围视野开阔,土层牢靠使基准点不宜随意移动。基准点每月应定时测定1次位置与稳定性,保证采集数据的准确性和分析结果的合理性。3.2监测点布设。3.2.1土体位移监测。土体位移监测是对基坑开挖以及支护体系土体在纵向发生的位移量进行监测,并掌控土体与基坑变化方向的动态信息。测斜孔是将高强度的PVC测斜管打入土体内部,且保证测斜管长大于测斜孔深度。测斜管内使用便于测斜仪探头滑轮顺利下方的十字滑槽,必须与基坑的边线垂直。测斜管上下端端口必须用专用的盖子密封好,防止水和砂石进入管内,在整个测斜管打入完毕后,立即加入黄沙等材料,并夯实表面覆盖土体,以确保监测点的安全性与稳定性。3.2.2应力器的布设。围护墙外侧土层给予的纵向荷载是由基坑围护墙及其支撑体系共同承受,当实际支撑轴力与理论设计支护轴力不符时,极易造成整个基坑支护体系的失稳,造成不可弥补的灾难。为了实时监测基坑支护的轴力是否达标,需对支护体系设置监测点,进行轴力监测。将轴力监测点安装在混凝土支撑构件中时,利用应力测试器进行支护体系轴力的测定,将应力器安装在钢管支撑上时,在钢管外表面焊上应变计,且与支撑方向平行,保证焊接平整、无孔洞和间隙。3.2.3地面监测点的布设。在地面开孔并打入直径不小于22mm的螺纹钢筋,为防止路面沉降带给测点的影响,需将螺纹钢筋打入混凝土地面下,在螺纹钢筋周围填入细砂土并夯实。在打入地面的螺纹钢筋上安装微型棱镜,为便于全站仪观测,棱镜至少高于地面5mm,并正对监测仪器,采取一定的保护措施,防止被破坏。布设周边建筑物监测点时,要将监测点设置在角点、大转角,新旧建筑物、高低建筑物等视野宽阔的地方,对于圆形、多边形的建筑多沿纵横轴线进行监测点的对称布置[2]。3.3观测仪器的布设。对于全站仪布置时应有稳定的基础,浇筑全站仪基础前应先制作完毕带螺杆的钢筋笼,常使用长度为1m的8根螺杆与钢筋笼焊为一体,立杆底部与基础刚接,稳定相连,全站仪架在立杆顶部,在全站仪外建造保护箱以防止灰尘与水渍对全站仪的影响。

4结语

随着科学技术的不断发展,深基坑开挖与支护技术也愈加成熟,各类技术难点都已得到基本解决,但这些问题上依旧存在巨大的进步空间。在深基坑开挖支护施工中,运用自动化监测技术,全面控制基坑开挖、支护的效率和安全性,对于深基坑边坡开挖支护技术的提升具有十分重要的意义,因此,需要相关技术部门重视自动化监测技术的研究工作,施工企业也要不断学习先进的技术理念,切实提高工程施工效率和质量,提高工程的经济效益和社会价值。

【参考文献】

【1】李晓芳.深基坑支护施工技术的研究与应用[D].天津:天津大学,2015.

深基坑工程范文篇7

关键词:建筑项目;深基坑支护;工程安全

1深基坑支护工程事故类型

1.1高处坠落事故

深基坑支护工程作业期间,高空作业主要包括:高空安装大型设备、开挖后挂网、可回收锚索的施工、换撑设施的拆除。高处作业时,如果没有保护装备和相应的保护措施,很容易发生高处坠落事故。

1.2坍塌事故

坍塌事故是深坑支护工程中最常发生的事故,也是造成大伤亡和大损失的事故。在基坑开挖阶段,很可能发生塌陷事故。坍塌的原因包括土方开挖、支撑结构不稳定和基坑边缘荷载超标。在大规模建设设备的使用过程中,设备故障引起的坍塌也是坍塌事故。

1.3物体撞击事故

在挖土作业过程中,如果石块从高处落下,施工半径内的施工人员无法躲避,容易发生物体撞击事故。当施工人员在基坑底部时,施工人员容易受到基坑顶部物体的掉落引起的事故伤害。

1.4起重伤害事故

深基坑支护作业包括大量吊装作业,如材料转运、钢筋笼安装等。如果起重设备在作业时发生故障,或者起重部件不符合要求,很容易发生起重事故。

2深基坑支护工程安全事故成因

2.1建设原因

(1)没有详细计划而盲目地进行施工,致使资金链供应不足,不能顺利地进行后续的建设。(2)在进行基坑工程施工时,没有严格遵守相关程序,没有按规定要求施工,没有给予施工许可,没有遵守试验程序,导致基坑质量控制失控。(3)勘察、设计和施工单位的资格没有经过严格审查,招标没有按照规定进行,通过关系或非法手段获得工程项目,一些施工团体的资格、技术技能和素质较低,难以进行深度挖掘施工,造成安全风险。(4)基坑工程设计或施工过程中的无限压低价格和压缩工期致使施工过于仓促,造成设计方面的漏洞。由于不同行业之间缺乏沟通,给今后的工作的开展造成阻碍。(5)为了降低支护结构的设计成本,施工单元盲目采用一些别的基坑工程的支撑计划,或者随意修改设计方案。

2.2设计原因

(1)基坑的设计不符合适用规范,这是工程事故的常见原因。由于基坑项目的专业范围比较广泛,相关部分没有以适当的规定为标准,各部分可信度太差。这样不仅浪费材料,而且很危险,甚至会引起事故。(2)基坑支护方案与现实不符。基坑支护方案与实际分析和认真选择的情况不一致,盲目接受其他形式的支护技术支持,没有咨询专家,导致基坑开挖存在很多问题,进而引发安全事故。(3)没有进行动态设计。施工时,发现环境变化、实际地质情况和执行情况不符合设计要求,没有联系设计单位修改设计方案,而是继续按照原设计计划进行;或修改后的设计没有经过专家验证便进行施工。(4)大部分基坑设计施工单位或人员缺乏相应的设计资质,不能保证设计的可靠性。一些项目单位缺乏研究所需的技术资格,研究结果最终不符合质量要求。此外,建筑设计和基坑工程设计分为两部分,对基坑工程产生了不利影响。

2.3施工原因

(1)随意修改设计方案,盲目施工。对于水平锚的安装,随意自由地改变支撑平面,以取代原有设计中的杆系锚与棒材悬臂,造成事故。锚杆系统中锚杆间距的任意变化,导致基坑支护结构变形。盲目施工还表现为在施工期间任意修改支撑臂的长度,减小支撑结构的开挖深度,导致较长的悬架截面的技术事故。(2)施工质量不符合设计要求。承包商以低廉的价格接受了工程任务后层层转包,无资格或低成本承包商为了获得利润,盲目地修改设计、承包合同,给支撑结构、锚固体系、地下水处理体系、施工发掘等工程施工带来了各种风险,最终会引发或大或小的工程安全事故。(3)施工管理混乱,安全意识淡薄。施工中,在基坑附近建立办公室、仓库和其他建筑物,致使基坑支护结构的附加压力增加,可能会增加大变形的滑坡或倒塌的可能。现场管理人员缺乏所需资质,现场执行管理混乱,执行质量安全意识低,未落实所有质量责任和管理体系、技术和安全管理体系。(4)现场施工人员的安全培训不规范,流于形式。甚至在没有培训的情况下安排新员工的上岗工作;人力资源管理不规范。

2.4监测原因

(1)在修建基坑项目期间没有进行监测。一些业主投资节省资金,只进行表面检查。但是,表面检查的局限性很大,只能提供定性描述,不能用数量来诊断当前的支护结构和周边单位的安全。所以无法在挖掘项目中发现事故隐患,从而导致了事故[1]。(2)监测基坑项目的内容很少或不合理。目前正在建设的监测项目主要包括周围环境和支护结构两种监测。在某些情况下,业主和施工单位在工作过程中进行的监测不够充分或不合理,没有建立有效的监测系统,未能达到预定目标,导致基坑事故[2]。(3)缺乏对监测数据的分析能力和分析的及时性。监测工作的目的是指导工作的开展,而不仅仅是获取监测数据。在监测期间获得、分析或量化准确数据时,可以预测风险,并在风险得到解决之前提出合理的建议。(4)监测报警不及时。监测数据或报警标准不准确,报警没有及时给出,也没有在最佳的时间去解决问题,也会导致事故的发生[3]。

2.5技术原因

技术生产能力、工艺方法、执行经验等,都是衡量执行单位执行技术水平的重要指标。(1)管理技术人才、技术设备、技术规程、技术学习、技术应用、技术发展等要素是稳定施工现场的生产技术秩序、保证施工产品质量和安全生产的必备条件。(2)深基坑支护工程的实施是一个动态的过程,它会随时发生变化。在施工的各个阶段,都应考虑到所有因素。(3)履约期间,应具备良好的保险机制,以避免因技术人才、技术设备不足或与履约不符、技术应用和技术发展能力薄弱而导致履约期间发生事故,进而导致工程质量差或技术问题解决不好。如办公楼地下室深基坑施工完成后,基坑位移、周围土方体开裂未得到有效控制,基坑支撑墙部分破坏,且邻近塔基础排水量倾斜,经总部专家和有关方面共同提出整改措施后,问题才得到解决。例如,如果酒店地下室挖深近4m,土质为流砂,流砂因其稳定性差,与原设计条件差异较大而被执行,如果在施工期间盲目执行或不采取新措施,破坏会在底部挖掘尚未作为复合地面钉完成时发生[4]。

2.6管理原因

施工现场管理也是施工公司管理的基础。深基坑支护工程中的施工现场管理水平反映在结构支护深基坑开挖的施工质量、成本和安全等经济技术信号中,是深基坑支护结构安全的重要保证。熟悉设计检查制度、技术审批制度、安全教育制度、技术检查验收制度、材料检查制度等实施前的制度,与深基坑支护结构的安全性密切相关。如果基坑暴露时间过长,基坑外附加荷载、堆载过多,坑外土体裂缝没有及时处理,雨季排水不好,现场安全措施针对性差,执行操作人员安全自我防护意识不强,特殊操作人员操作资格未严格控制,都会破坏基坑的安全性与稳定性[5-6]。

3结语

深基坑支护工程是基础设施工程的重点,它不仅对工程的成本、质量和工期有着重大影响,而且对环境也有巨大影响。因此,施工中必须遵守相关标准和设计要求,认真识别事故风险施工,加强安全教育,注意安全检查等,从而实现深基坑安全。

参考文献

[1]孙强,李厚恩,秦四清,等.地下水引起的基坑破坏分析[J].岩土工程学报,2006(S1):1428-1432.

[2]李凤超,张业忠.大型建筑施工企业安全生产形势分析与对策[J].铁道工程学报,2012(5):92-95

[3]马行空.深基坑土方、护坡的施工管理[J].施工技术,2006(6):100-101.

[4]张若美.建筑施工工地安全生产管理机制探讨[J].施工技术,2010(S1):473-475.

[5]蒲小平.建筑施工企业安全管理问题与对策研究[D].西安:长安大学,2012.

深基坑工程范文篇8

关键词:深基坑;组合方案;优化设计

随着经济建设的快速发展和人们生活水平的不断提高,近年来,我国的各类建筑得到了迅猛的发展,基坑工程的规模不断增大,开挖的深度也越来越大,但是由于深度较大的基坑往往都是在城市中心,建筑物比较稠密、地下管线很复杂,没有足够的空间提供放坡施工的需要,所以常采用在支护结构保护下的垂直施工方法。目前,支护类型非常多,选择合理的支护型式,需要对深基坑支护工程方案进行优化设计。

1深基坑支护设计现状

当前深基坑支护工程设计中存在的问题主要体现在以下几个方面:①岩土施工中的深基坑支护设计参数在选择上不合理。尤其是对于一些工程项目地质情况较为复杂的项目区域,地质条件复杂、支护的深度较大使得这一偏差越来越大,如无法对岩土施工中的深基坑支护所承受的土压力进行准确的计算则会使得岩土施工中的深基坑支护的安全性大大折扣。②在岩土施工中的深基坑土体取样代表性不强。在岩土施工中的深基坑土质取样中采取的是对项目地的土质进行随机取样,但是由于岩土施工中的深基坑土质的复杂性及土质的不均匀性使得采样所取得的土质数据与项目现场实际情况之间存在着一定的偏差。③对岩土施工中的深基坑开挖的空间效应考虑较少。以往所采用的岩土施工中的深基坑支护在设计时是根据平面应变问题来进行设计的,其能够适应于细长型的岩土施工深基坑支护,但是在应用于长方形的深基坑支护时则无法取得良好的支护效果,因此在岩土施工中的深基坑支护中需要在平面应变进行设计的基础上,对岩土施工中的深基坑支护结构进行一定的调整,以使其能够满足深基坑挖掘的空间效应的要求,确保岩土施工中的深基坑支护的安全性与可靠性。

2深基坑支护工程方案推理机制分析

深基坑支护工程方案推理机制的建立主要包括以下内容:①基坑支护工程组合方案设计,深基坑开挖与支护工程方案种类繁多,各方案的相互匹配可演变出多种整体支护方案和细部结构设计方案。根据各种施工方案的不同特点,对施工方案分类组合,支护方案分类见图1,按可能存在的施工方法构成100余种组合方案供系统筛选,例如代码101、201、301、401、501、601为单排悬壁式透水结构的人工挖孔桩,其余类推;②基坑支护工程系统组合方式及流程,从系统优化理论出发,对支护工程系统中涉及的因素归类,划分相应的研究层次,每个层次划分为若干个既相对独立又相互关联的子系统,系统运行初级子系统所获得的结果作为二级子系统的输入量或边界条件,由此系统进入二级优化,依此类推,直至整个系统优化分析过程的完成。一般说,构成基坑支护系统的第一级要素由支挡结构体、降排水与土方开挖3者构成;③基坑支护方案的确定,基坑支护设计工作主要采用的是直径较大的钻孔灌注桩,结合钢筋混凝土作为支撑的支护设计。能够较好产生止水效果,根据地质实际状况进行现场监测,搜集相应的参考数据,归纳分析数据特点,不断地满足深厚饱和软土区基坑支护设计的要求,实现结构受力均衡,有效的避免事故的发生。对基坑进行分段支护结构设计,确定各分段钻孔灌注桩规格,基坑支护结构的选型要充分地考虑到挖深、桩径、桩间距、嵌固深度以及配筋数量等;④基坑设计计算分析,基坑支护方案设计计算主要采用的是弹性法,能够对不同土层面进行计算,计算结果将会显示基坑支护整体的稳定结构特点,对比《建筑地基基础设计规范》将会充分地了解到安全系数,在进行基坑支护水平位移最大限度监测的时候,主要是通过抛物线法对地表沉降情况进行确定,能够获取到最大数值的差异,要将最大数值控制在《建筑基坑工程监测技术规范》(GB50497-2009)的要求。

3基坑支护工程优化设计

3.1工程实例概述

该商业楼初步设计方案打算建设在地下1层,基坑设计的深度约为5.1m,相关配套设备的地下2层深度约为1层深度的2倍。正在使用的地铁站位于2条路的交叉口位置。车站主体外包尺寸为152.3m×17.6m,车站底板深度约16.5m,设计方案中预留的出入口的深度与2层地下设施的设计深度保持一致。交叉的2条道路均为主要干道,配备有相关的居民日常生活中常用的配置设施。其中,受商业楼基坑施工影响较为明显的居民配套设施为预留的雨水管,其施工建设的深度在3m左右。管底距出入口顶板较近,容易遭受到预留出入口在后续施工过程中对其造成的影响。

3.2设计方案的分析与优化

①围护桩墙、支撑的设计参数之间的比较。为了满足设计及计算的信息要求,根据相关规范对基坑稳定性、围护桩墙强度及变形控制等方面的要求,按照实际施工要求及建筑物的基本特征和功能需求设定好围护墙的各个参数。②模型的维度、尺寸以及相关参数。考虑到边界对现有建筑物的影响,统一将模型的边界确定为结构边界外侧25m。土体采用D-P方式进行施工,并在初始应力状态分析及开挖过程模拟阶段对土体赋予不同的弹性模量,围护结构、各层结构板和市政管线采用线弹性板单元进行模拟应用,内支撑结构采用线弹性梁单元模拟。③计算结果。基坑的最大水平位移出现在基坑底面以上接近坑底的部位,与基坑围护桩墙优化分析时常采用的Winkle地基梁法算得的围护墙体变形具有相同的规律。在对基坑施工完成之后,既有预留出入口上方雨水管的变形小于其相邻两侧区域,源于该处水管底部距出入口顶板距离近,而出入口结构沉降小,对雨水管具有类似结构基础的承托作用。为降低基坑施工时该区域水管因较大差异沉降而增加的水管损伤风险,雨水管敷设施工时,已在预留通道两侧各设置1座检修井以增加管线对地层沉降的适应能力。地铁车站的底板变形呈现在近基坑开挖一侧较大,往远处逐渐减小的特征。其中,平面上位于既有预留出入口区域的变形梯度较大,原因为计算模型与所模拟的实际结构具有差异性。

3.3结果分析

通过上述方案的对比分析得出,方案1受到的环境影响较方案2、方案3大,但仍可满足周边建、构筑物的保护要求,特别是运营地铁的安全要求。商业基坑虽然说在设计及施工中面临开挖面积大、与地铁车站及管线的平行段长度长等诸多问题,但基坑与车站平行段间的水平净距位于基坑开挖的显著影响区以外,区基坑与车站既有预留通道的衔接段,基坑的主要变形为横断面方向,即平行于地铁车站的方向,且基坑沿深度方向设置3道内支撑体系,由此对车站的直接影响较小;地铁车站底板埋深大于本基坑的底板深度客观上符合相邻基坑开挖“先深后浅”的基本原则。同时,车站围护墙底的深度较大,对地层位移具有一定的隔断效果。因此,在具体的施工进行之前,优先选择方案1具有很高的商用价值和实践意义,值得各个相关单位关注和采纳。

4结束语

综上所述,需要结合深基坑支护工程施工经验结合工程建设目标的设定建立方案推算比较机制,对编制的施工方案进行比较分析,最终选出最佳的施工方案,保证符合技术要求,满足施工质量。

作者:杨政举 单位:贵州省地矿局112地质大队

参考文献

1杨培明.深基坑工程支护方案的优化设计.现代物业•新建设,2013,12(9)

深基坑工程范文篇9

关键词:岩土工程;基础施工;深基坑支护;施工技术

近年来,在经济发展的推动下,建筑施工技术得到了快速发展。为了能够合理利用土地资源,缓解城市化带来的人地矛盾,高层建筑成为现代城市建筑的主要建设形式。基础施工安全是高层建筑施工过程中必须重点关注的一个问题,而深基坑支护施工是保障高层建筑地下结构以及基坑周边环境安全的重要工序。深基坑支护施工作业的开展能够有效改善高层建筑基础施工质量,但目前我国深基坑支护施工仍存在着一定的问题,为了更好地发挥深基坑支护施工的作用,保障高层建筑基础施工安全,建筑施工单位以及相关专业人员必须加强对岩土工程中的深基坑支护施工的研究。

1常见的深基坑支护方式

深基坑支护施工的主要目的是对一些不平整的土地进行临时支护施工,保障建筑基础结构的安全。根据具体施工环境的不同,深基坑支护方式也分为很多种,如人工挖孔支护、钢丝网和混凝土浇筑共同支护、长螺旋钻孔灌注桩支护等方式。

1.1人工挖孔支护方式

目前建筑施工过程中,最常见的是人工挖孔支护方式。人工挖孔支护方式主要应用于建筑基础较深的情况。采用人工挖孔支护方式不仅能够有效地避免建筑基础出现移动,还可以提高建筑基础的稳定性[1],使建筑基础有能力抵抗外部的干扰。另外,采用这种方式,还能够在提高施工效率的同时,减少建筑施工过程中的人力和物力成本。同时,人工挖孔支护方式的应用环境相对较宽松,其不仅能够应用于地质条件较好的深基坑工程中,还适用于地下水位较高的地区。总之,在深基坑支护施工过程中,人工挖孔支护方式在各种地质条件下,都能有效发挥支撑作用。

1.2钢丝网与混凝土浇筑共同支护方式

在实际的深基坑支护施工过程中,钢丝网和混凝土浇筑共同支护方式也较为常见。这种支护方式通常用于地下水位的上方或者一些已经完成填土作业的地底层。如果地下水位较高,那么普通的支护方式就无法充分发挥应用的作用。另外,泥土等支护材料,在应用过程中会存在风险并无法长期发挥作用。而采用钢丝网以及混凝土浇筑共同支护方式,能够有效避免土壤出现粘连,有利于提高施工的安全性与灵活性。[2]当然,这种支护方式也有一定不足,例如,其容易造成施工建筑基坑壁变形等问题,并有可能进一步增加施工范围,从而导致后续施工成本增加。

1.3长螺旋钻孔灌注桩支护方式

长螺旋钻孔灌注桩支护方式是利用长螺旋钻孔机在土层中钻至预定深度,并向其中注入超流态混凝土以形成桩体的一种支护手段。超流态混凝土流动性强,灌注速度快,成桩质量好,能够降低造价。此外,这种支护方式具有穿越土层能力强、施工效率高、支护稳定性好、操作简便、噪声低、污染小等优点,适用于软黏土质和沙土地区。但是这种支护方式也容易造成水土流失,因此施工人员采用这种方式时,应采取相应措施来解决挡水问题。

2岩土工程中的深基坑支护施工现状以及影响因素

2.1深基坑支护施工现状

在岩土工程中,深基坑支护施工质量是影响整个工程质量的关键性因素,建筑施工单位要结合实际施工情况进行合理规划,加强深基坑支护技术的应用,提高岩土工程基础施工质量。但从当前的建筑行业发展情况来看,我国岩土工程的项目建设经验较为落后,深基坑支护技术在施工操作方面也存在一定的不足。由于不同的工程项目有着不同的施工环境,深基坑支护技术在应用要求上会有一定的差异。目前,我国已经引进一些先进的深基坑支护技术,但这些技术的应用适宜性和灵活性仍然有待进一步优化和提高。现阶段,大部分岩土工程中,施工人员都是凭借自己以往的施工经验以及自己的主观想法来开展深基坑支护施工工作。在这种情况下,深基坑支护施工往往缺乏科学性和规范性。

2.2深基坑支护施工的影响因素

2.2.1设计参数岩土工程的各项设计参数对于工程质量都有着重要的影响,所以施工人员在施工时要对各项参数进行反复确认。[3]在深基坑支护施工过程中,压力参数是一项重要的指向性参数,会对支护工程的安全性、稳定性以及整体质量造成非常大的影响,施工人员必须予以足够的重视。但是在实际工作中,尤其是在深层开挖施工过程中,施工环境复杂、施工难度大,工程压力参数计算不准确,会导致施工人员在后期进行支护设计时,无法确保地基受力值的精度。在这种情况下,深基坑支护的施工质量难以得到保障。[4]2.2.2取样在进行深基坑结构设计的过程中,工作人员需要到施工现场进行取样,明确样品的物理性能,从而更加科学、合理地进行支护设计。在取样过程中,工作人员需要进行钻探取样,确保取样的结果符合相关标准要求。如果工作人员不深入施工现场,或者在取样过程中敷衍了事,就无法保证样品检测的准确性,这会导致结构设计不科学,影响深基坑支护施工质量。2.2.3基坑位移深基坑支护施工过程中的基坑位移的问题对于整个建筑结构稳定性的负面影响非常明显,它会造成整体结构偏差,这种偏差呈现出两端小、中间大的特点。因此,在深基坑支护施工过程中,施工人员需要实时观察基坑的变化情况,并且结合基坑实际位移情况进行调整,以保障施工质量。

3具体案例

3.1工程概况及初步准备工作

某大厦建筑的地基基础以岩土为主,建筑主体分为地下三层以及地上部分。整个施工区域的周边布满了地下管线。由于基础施工面积达到了6500m2,按照施工要求,地基深度需要达到23m。施工过程中会用到爆破等技术手段,所以结合地质实际情况,该工程中需要进行深基坑支护施工,以保证建筑基础结构的稳定性。3.1.1方案确定通过勘察,工作人员发现工程所在地属于海岸阶地,地面表层是由人工进行回填改造的,基本上保持了原来的地貌。而岩石上层为粗沙砾和填土,下层则是花岗岩。工作人员将基岩的中风化带作为支护施工的持力层。在沙石层和素土层,工作人员以钢筋混凝土配合长螺旋灌注桩的方式进行支护,然后辅以高压旋喷止水桩来进行加固。另外,工作人员考虑到后续的爆破施工需求,采用锚喷体系对坡面进行支护施工,同时进行长螺旋灌注桩和高压旋喷桩交替施工,以增强坡体的稳定性。3.1.2基坑支护体系由于施工场地具有一定局限性,工作人员决定采用不放坡开挖。这时,工作人员需要采用长螺旋灌注桩支护方式对基坑边坡位置进行加固。但是该区域的岩体结构存在滑落的情况,所以在深基坑支护施工的过程中,工作人员必须利用锚板墙对岩体结构进行加固,防止垂直开挖时引发支护桩桩脚悬空的情况出现,从而减少安全隐患。

3.2具体施工

在采用长螺栓灌注桩方式时,考虑到施工挡水的问题,工作人员利用导管来排放承压水,使承压水能够沿着周边沟渠流出。同时,为了避免支护结构长期暴露在自然环境中而影响土体稳定性,工作人员还对深基坑支护工作与基坑土体开挖工作进行协调,并且开展分层支护作业,提高边坡的稳定性。除此之外,工作人员还进行了预应力抗拔锚杆施工,以确保预应力能够达到施工设计要求。在这个过程中,工作人员还开展了锚板墙体施工工作。当锚板墙体施工的强度达到设计要求之后,工作人员立即进行锚杆锁定,以提高基础工程的稳定性。

4深基坑支护施工质量提高策略

4.1完善施工方案

在深基坑支护施工之前,设计人员需要全面了解深基坑的情况以及支护技术应用的合理性。在设计过程中,设计人员要充分考虑施工不规范导致的施工结果偏差。设计人员必须重点对岩土的变化规律进行研究,了解施工过程中的各种变化情况,从而结合实际需求设计出更加完善的深基坑支护施工方案,保证整个工程的质量。

4.2加大支护施工变形观测力度

为了充分发挥出深基坑支护施工应有的作用,工作人员应加大支护施工变形观测力度。[5]在支护施工变形观测过程中,工作人员要对基坑边坡的变形情况进行观测,了解土方开挖对深基坑支护产生的影响,保障支护技术应用的合理性,从而提高施工质量。参与观测的工作人员必须严格执行相关规定,提高观测技术应用水平,保证测量数据的准确性。

4.3加强施工质量管理

建筑施工单位要做好深基坑支护施工的质量管理工作,保证支护技术应用的合理性和有效性。首先,建筑施工单位要加大监管力度和检查力度,通过巡检和不定期抽检的方式来检验深基坑支护施工质量是否达标,从而提高施工质量,保障工程项目的整体进度。其次,在具体的施工过程中,建筑施工单位必须针对不同的施工环节制定出相应的工作标准,并将相应的责任落实到具体的工作人员,确保每位工作人员都能够按照标准流程进行深基坑支护施工。[6]再次,建筑施工单位应该定期组织专业知识培训,提高施工人员的专业水平和技术应用能力。最后,建筑施工单位要按照岩土施工工程的要求,编制具体的执行排期表,减少无支撑土体暴露时间,从而提高施工安全性。

5结语

综上所述,岩土工程中的深基坑支护施工是一项最基本的工作,也是施工过程中相对复杂的工作之一。建筑施工单位以及相关工作人员要加强对深基坑支护施工的研究,提高深基坑支护施工技术的应用水平,不断总结和分析深基坑支护施工经验,全面提高深基坑支护施工的质量,为建筑施工单位的稳定发展提供保障。

参考文献:

[1]孟庆保.探讨岩土工程中深基坑支护问题及对策[J].居舍,2020(20):47-48.

[2]毛建勋.基于岩土工程中的深基坑支护设计问题和对策探析[J].建筑技术开发,2020,47(05):137-138.

[3]范夏阳.岩土工程深基坑支护存在的问题以及控制措施[J].工程技术研究,2020,5(04):257-258.

[4]马丽珠,赵中华,田悦.岩土工程中深基坑支护的设计与施工方法探究[J].价值工程,2020,39(04):156-157.

[5]温树锦.试论岩土工程施工中深基坑支护问题[J].西部资源,2019(03):98-99.

深基坑工程范文篇10

[关键词]深基坑;支护;勘察;工程地质;水文地质;环境地质

随着城市化的不断发展,高层建筑不断涌现,加之地铁等轨道交通及地下设施建设的大量应用,建筑深基坑工程的数量急剧增加,城市深基工程作业面往往受到限制,毗邻的建筑物和地下设施比较多,基坑的开挖往往对其产生影响,危及结构的安全性及使用寿命。选择的合理的深基坑支护方案既能保证基坑的安全施工,同时可以减小对基坑周边环境的影响。近年来,建筑深基坑工程建设环境及施工条件越来越复杂,工程人员应更加重视深基坑工程的水工环地质勘察工作,准确掌握基坑场地及周边环境的工程地质、水文地质、环境地质情况等与支护方案的选择息息相关。

1深基坑工程的勘察特点分析

1.1工程地质条件分析

工程地质勘察的目的是查明场地地貌单元、地基各岩土层的时代及成因,提供地基各岩土层的物理、力学指标及承载力等,深基坑工程具有很强的区域性[1],不同工程地质条件下基坑工程差异性很大,同一工程场地不同区域基坑工程也可能差异。由于地质条件复杂性、差异性,致使工程勘察取得的土层物理力学性质数据离散性很大,用于基坑支护设计精确度很低。因此,深基坑工程设计时,应详细对场地进行勘察,通过科学的采样,保证深基坑范围内各岩土层的物理、力学指标数据的精确性。工程技术人员应根据实地情况,利用地质学知识,对数据进行分析,提出合理的支护方案建议,分析在基坑工程施工期间可能发生的安全问题,优化调整施工方案,从而确保深基坑工程的安全顺利竣工。

1.2水文地质条件分析

水文地质勘察是岩土工程勘察的重要组成部分[2],在深基坑工程勘察中更应引起工程技术员重视。近年来,因地下水导致的基坑安全事故频频发生。地下水的存在,致使岩土体物理力学性质变差,导致岩土体结构被破坏、强度下降,当滑动力矩较大且抗滑力矩不足时,基坑周边土体会沿着滑动面向基坑内产生滑动坍塌,导致土体与支护结构同时失稳;当渗透压力达到土的浮重时,地下水存在还能导致基坑土体渗流破坏,表现为流砂、管涌、突涌等形式,造成基坑底部土体破坏;地下水状态的改变会造成地基不均匀沉降,破坏基坑周边建筑物、地下管线等设施。深基坑工程的水文地质勘察十分重要,工程人员须重点对基坑场地地下水状况进行勘察和分析,查明地下水的类型、埋藏条件及水位变化幅度等,并以此为基础建立模型,进行风险预测,制定科学有效的预防和处理措施,预防因地下水导致的安全事故,保证深基坑工程的安全施工。

1.3环境地质条件分析

深基坑工程具有较强的环境效应,基坑的开挖会导致周围岩土体应力场的改变,同时会对地下水位产生影响,有效应力改变会使土体产生变形,对毗邻建筑物、地下管线设施产生影响,危及建筑物、地下设施的安全与正常使用;深基坑开挖会产生大量土方,处置不当会对交通运输及环境产生不良影响。因此,工程人员除应准确掌握场地工程地质条件、水文地质条件外,还应对深基坑场地周边环境进行详细的勘察,详细调查深基坑周边环境,排查基坑施工过程中可能造成的环境污染及环境破坏问题。

2深基坑支护设计及应用

2.1深基坑工程特点

为了保证地下结构施工及基坑周边环境的安全,需对基坑侧壁及周边环境采取支挡、加固等保护措施[3]。深基坑工程具以下特点:①基坑开挖深度大,岩土层相对复杂,基坑开挖深度一般超过5m,基坑侧壁水土压力相对较大;②受地下水影响较为明显,根据不同的地质条件,深基坑工程往往受不同类型的地下水共同影响;③基坑周边环境复杂,支护设计时需考虑对周边环境的影响。对于工程人员而言,首要目的是选择合适的支护方案,确保深基坑施工作业的安全性以及支护方案经济性。实际设计过程中,技术人员应根据基坑场地的水工环地质条件,比选不同支护形式,从而选择安全、合理、经济的基坑支护方法。

2.2深基坑支护技术

根据工程应用情况,深基坑工程广泛采用的支护技术分为以下三种:①利用支护结构拉锚或支撑提供水平方向的作用力来抵抗基坑侧壁水土压力,保证侧壁岩土体的稳定,典型的支护方式有锚杆及土钉支护技术,此外钢筋混凝土内支撑、钢结构内支撑等支护技术在深基坑工程中也得到比较广泛的应用;②通过支撑结构或加固基坑侧壁土体,限制基坑侧壁土的变形,从而保证基坑施工安全、顺利地进行,典型的支护技术有钻孔灌注桩、深层水泥搅拌桩、注浆加固技术等,在深基坑工程中均得到不同程度的应用;③兼顾稳定性及抗渗性的整体支护技术,其特点是对基坑四周采取加固措施,保证基坑侧壁岩土体稳定性的同时提高了抗渗性能,包括地下连续墙、锁扣钢板桩、排桩支护等技术,在场地条件限制、地层含水丰富的深基坑工程中应用十分广泛。

2.3深基坑支护设计的应用

深基坑工程设计应充分利用基坑范围及周边的水工环地质资料,应该加强对水工环地质勘察工作的重视程度,勘察工作过程中,应尽可能查明区域工程地质、水文地质、环境地质情况,通过详细的调查、规范化的外业作业、严格的原味测试、标准化取样及进行室内试验,保证提供的数据的准确性;设计人员要对勘察人员提供的水工环地质数据进行准确把握,明确设计要点,认真进行支护方案的比选,保证深基坑工程安全性的同时兼顾经济效益;应加强勘察、设计、施工等部门技术人员相互配合,加强施工过程管理,施工前反复核对支护及施工方案,施工过程中,如发现地质情况异常,应及时沟通,必要时进行补充勘察,同时密切应密切关注施工过程中地下水的动态,一旦发现地下水渗漏、涌出或者其他隐患问题,施工、勘察及设计人员应查明原因并立即采取相应措施加以解决。

3深基坑工程的勘察要点

3.1工程地质勘察要点

工程地质勘察所提供的报告及资料,是深基坑支护设计与施工的重要依据。通常情况下,深基坑工程勘察会与主体工程的勘察同步进行,考虑到深基坑支护工程的特点,应专门对深基坑的工程地质勘察工作提出要求。3.1.1明确勘察要求深基坑工程地质勘察的目的是给支护设计和施工提供详细的岩土工程资料,进行深基坑工程岩土勘察时,应根据场地平面位置图及基坑设计深度沿基坑周边合理布置勘探点,通常情况下,基坑勘探点布置范围不应小于一倍基坑开挖深度,当支护结构深入基坑侧壁土体时,其布置范围不应小于支护影响深度,当采用锚杆支护时,应在基坑外不小于两倍基坑深度范围内布置勘探点;勘探点间距宜取15~25m,当工程地质条件复杂,存在软弱土层及不良地质现象时,应适当加密勘探点;勘探点的深度不宜小于基坑开挖深度的两倍,同时应兼顾主楼沉降变形计算所需的岩土层厚度,勘探点深度应穿过对基坑工程有影响的承压含水层及软弱下卧层。3.1.2编制勘察纲要岩土工程勘察过程中,编写岩土工程勘察纲要是一项重要的工作,工程地质勘察工作通常是围绕勘察开展的,勘察纲要既是野外工作的指南,同样是外业管理及质量验收保证[4]。深基坑作为危险性较大的分部分项工程,勘察纲要编制尤为重要,深基坑工程勘察纲要的内容要侧重以下几点:①勘察纲要明确勘察目的和任务,保证勘察期间查明的场地工程地质情况满足深基坑支护及和施工的要求;②勘察纲要应明确勘察方法,勘察布置和工作量,以便技术人员优化勘察流程,保证勘察工作有序进行;③勘察纲要应明确质量、安全保证措施及环境保护措施,明确勘察参与人员的责任分工,预防和减少勘察作业过程中的突发事故。3.1.3加强过程管理深基坑工程的支护设计,对基坑周边岩土层物理力学性质参数的准确性要求较高,勘察人员必须保证基坑支护相关参数的准确性和真实性,勘察人员不仅需要实地开展勘察工作,同时还负责安全生产、设备材料和人员调配,协调各种关系,控制工程质量,因此应加强勘察过程管理。为保证深基坑勘察质量目标的顺利完成,须做到以下几点:①现场技术工作、质量管理按勘察纲要和有关规范、规定和标准执行;②室内实验,试样规格、实验过程须符合规范、标准的要求,提交的成果要求数据准确、结果可靠;③进场前向参与勘察的人员进行详细技术交底,明确责任义务,现场的人员一律戴安全帽、着防护服、穿劳动鞋,工作中思想必须高度集中,保证安全生产。

3.2水文地质勘察要点

工程地质勘察已包括查明地下水的埋藏条件、提供地下水位及其变化幅度等地下水勘察相关内容。因深基坑开挖深度较大,往往受地下水影响情况较为复杂,因此工程技术人员必须重视深基坑工程中的水文地质勘察。3.2.1提高水文地质勘察重视工程技术人员应加强深基坑水文地质勘察意识,要将水文地质勘察和工程地质勘察放在同等的位置看待。在实际深基坑勘察过程中加强场地水文地质研究力度,采取原位测试、钻探等查明水文地质情况,认真分析施工过程中地下水对深基坑工程的影响,确保深基坑安全施工。3.2.2准确评价水文地质问题深基坑工程中水文地质的评价主要包括两个方面:一是查明地下水埋藏分布情况,包括地下水位、地下水类型及埋藏条件,以此为基础,分析地下水对深基坑工程施工的影响,针对可能存在的危害性制定措施,减少风险情况的出现。二是分析深基坑施工对地下水的影响,工程人员应测量和计算含水层半径以及渗透系数等水文参数,评价深基坑开挖是否会导致地下水状态改变,进而对附近环境产生不利影响,并根据实际情况应采取有效的应对措施。

3.3环境地质勘察要点

近年来,深基坑工程中的环境地质勘察逐渐得到工程人员的重视,深基坑开挖对环境的影响主要表现为环境污染及环境破坏,应加强对深基坑周边环境的勘察,采取有效的措施,减小对基坑开挖对周边环境影响。3.3.1明确环境地质勘察内容深基坑工程环境地质勘察重点主要包括以下方面:①查明基坑周边既有建筑物的情况,包括基础形式和尺寸、埋深等,查明各种既有地下管线、地下构筑物的类型、位置、尺寸、埋深等;②查明场地地下水分布情况,评价地下水对深基坑施工及周边环境的影响;③分析勘察过程中可能造成的环境污染,如噪声污染、泥浆对周边污染环境的污染,制定合理的施工方案,降低对环境的污染。3.3.2加强新技术的研发及应用由于深基坑周边环境限制,传统的勘察方法存在钻机无法到达指定位置、勘察过程可能破坏地下设施等不足,因此应加大勘察新技术的投入力度。加强物探技术在基坑环境地质勘察中的应用,如采用地质雷达技术,向地底发射电磁波,利用声纳技术探测以数据形式采集的地质信息,通过专业仪器将获得的数据形成图形,技术人员能更清楚地了解与地质环境有关的信息,包括地层情况和地下水状态[5];采用遥感技术,利用计算机信息系统构建基坑周边环境的多维模型,通过清晰的图像,使工作人员能够更清楚地观察勘探区的环境地质情况,从而对场地进行更全面的分析。3.3.3加强对深基坑周边环境的监测工程人员应重视深基坑工程施工对周边环境的影响,应在深基坑及周边环境安装相应的预警设备,布置传感器,对深基坑支护结构、侧壁土体、周边建筑、地下管线等变形进行实时监测,并建立信息化平台,及时更新监测数据,分析并找出偏差,及时预警,并对后续深基坑工程的施工进行适当的校正,保证深基坑工程支护及施工安全。

4结语

总而言之,工程人员应重视深基坑工程的地质勘察工作,明确水工环地质勘察工作的重点,准确掌握基坑周边工程地质、水文地质、环境地质情况,加强专业理论知识储备,选择的合理的基坑支护方案,加强对周边环境的监测,保证基坑的安全施工,减小对周边环境的影响。

参考文献

[1]曹际妹.岩土工程深基坑支护施工技术[J].建筑技术开发,2021,48(10):159-160.

[2]贺凯.岩土工程勘察中的水文地质问题分析[J].居舍,2022(3):169-171.

[3]闫兵兵.深基坑工程岩土工程勘察的重点及对支护施工的影响研究[J].中国住宅设施,2021(12):42-43.

[4]闫中锴.深基坑岩土工程勘察的重点探析[J].房地产世界,2022(3):101-103.