声学设计范文10篇

时间:2023-04-06 13:25:12

声学设计

声学设计范文篇1

美国等发达国家在进行厅堂建筑设计时,均要由建筑师、声学顾问和剧场顾问组成联合设计组,从项目立项开始就一道工作,直至项目完工。这是国外厅堂建筑之所以高质量的重要保证。因此,只有明了建筑声学设计的程序和工作内容,学习国际先进经验和惯常做法,方能保证我国的厅堂建筑具有良好的音质。

一般而言,建筑声学设计的工作内容主要包括噪声控制和音质设计两大部分。

根据建筑物的使用功能、等级与投资规模,参照国际或国家规范来确定建筑物室内噪声标准,是噪声控制设计的首要内容。

通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据,保证厅堂建成后能达到预定的室内噪声标准。

围护结构的隔声设计分为空气声隔声设计及固体声隔声设计两部分,均包括隔声量的计算、隔声材料的选择以及隔声构造设计等内容。除理论计算外,经常需要进行隔声构件的实验室或现场测量,来确定其各频带的隔声量。

噪声控制的另一重要内容,就是针对厅堂建筑内部的噪声振动源进行控制。这些噪声振动源包括空调设备、给排水设备、变压器、某些灯光设备、舞台机械设备以及来自相邻房间通过空气及固体传声传入的噪声和振动等,都将对观众厅的安静造成干扰。因此,在建筑方案设计阶段,声学顾问就必须介入,以便审视建筑内部各种房间的平、剖面布置是否合理,尽可能在建筑设计阶段就将可能的噪声振动干扰减至最低。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

音质设计通常包括下述工作内容:

一、确定厅堂体型及体量。为看得清楚、听得清晰,各类厅堂都有个长度的限制。厅堂的宽度会涉及到早期侧向反射声的组织,与音质的空间感有重要关联。厅堂的高度不仅影响竖向早期反射声的组织,而且影响早后期声能比和混响声能的大小及方向。厅堂的体积和每座容积都直接影响混响时间等音质参数。厅堂的体型更是关系到是否存在回声、颤动回声、声聚焦、声影区等音质缺陷。所有这些,都必须在初步方案设计阶段就提供建筑声学的专业意见。

二、确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。这些指标及其优选值的选定,将为进一步进行音质参量计算和将来竣工后的音质测试提供目标和依据。

三、对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。厅堂的平面及各界面的形状、面积、倾角等以及乐池、乐台、包厢、楼座、音乐罩、反射板等都影响声脉冲响应的结构,从而对厅堂音质产生重要影响。因此,是否设楼座、包厢,设几层楼座、包厢,楼座和包厢的深度及开敞度多少为合适,栏板的面积与倾角多大较恰当等等,都属于建筑声学设计的范畴,都需由建筑师与声学顾问共同磋商,加以确定。乐池的形状和开口大小也直接影响乐队声能的输送以及乐队与演员的相互听闻。此外,是否设音乐罩或反射板,设何种形式的音乐罩和反射板等等,也都需要从建筑声学专业的角度提供咨询意见,并给出设计方案。四、计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。通过音质参量的计算,提供设计反馈信息,以便对设计方案作出必要的修改与调整。这个过程有时需要反复进行多次,以便臻于至善。在此过程中,需要辅以平剖面声线分析、三维声场计算机仿真乃至缩尺模型试验等技术手段,才能做出较准确的预计。

五、进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。因此,声学顾问还需与装修设计师密切配合,共同完成室内装修设计。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

六、声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。从这一点意义上讲,要进行成功的现代厅堂音质设计已离不开计算机仿真的辅助。

七、缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。缩尺模型试验优于计算机仿真之处,在于唯有它能对室内声波动效应做出仿真,而前者仅能在中、高频段,在几何声学的范围内提供较准确的仿真结果。此外,计算机仿真从本质上说是将声学家已知的声学原理输入计算机中,而缩尺模型则可较客观地展示厅堂中发生的实际声物理现象。目前,华南理工大学建筑声学实验室正在负责对在建的广州歌剧院作1∶20的声学缩尺模型试验,以确保该剧院建成后的高水准音质。

八、可听化主观评价。对于重要的厅堂,必要时还可在计算机仿真和缩尺模型试验基础上,应用先进的可听化技术进行主观听音评价。可听化技术是通过仿真计算,或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。

九、建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。厅堂音质参量测量除了在工程竣工之后进行,以验证声学设计是否达标外,有时还需要在厅堂建筑主体完工,进入内部装修阶段时进行,以便为施工的最后阶段进行必要的设计修改与调整提供科学数据。

声学设计范文篇2

关键词:扩场系统音质声学问题

星海音乐厅是以人民音乐家冼星海的名字命名的。音乐厅建于珠江之畔风光旖旎的二沙岛上。它与已建成的美术馆和正在建设中的博物馆等建筑构成广东省相当规模的文化中心。

星海音乐厅包括1437座的交响乐大厅,462座的室内乐厅,96座的视听音乐欣赏室,排练室,琴房和音乐资料馆,以及水上演奏台和音乐喷泉、各种配套用房。建筑面积1800m2,是我国目前规模最大、设备先进和音质优异的现代化音乐厅。也是我国第一座采用“葡萄园”形(或称山谷梯田形)配置方式的音乐厅。

星海音乐厅交响乐厅、室内乐厅的各项声学设计指标*

星海音乐厅于1998年6月13日――冼星海诞生日正式使用。广州交响乐团和中国交响乐团合唱团进行首场演出。演奏了钢琴协奏曲《黄河》和贝多芬第九交响曲《欢乐颂》,获得成功,著名音乐家、指挥家和教育家李德伦、吴祖强出席了首演式。相继一周内,中国交响乐团,以色列交响乐团,澳大利亚交响乐团和德国管风琴演奏家,在该厅献艺。音乐家们对大厅良好的音质均给予高度的评价。

一、星海音乐厅的设计宗旨和各项声学指标

星海音乐厅这座华丽的艺术殿堂是为满足广大观众欣赏高雅音乐的殷切的需求、并作为国内外文化交流的基地和窗口而建造的。音乐厅设计始终把音质效果放在首位,以继承传统音乐厅的良好品质、而又能适应现代生活提出的各种需求为设计的宗旨。

声学设计指标是根据国际上获得“顶级”音质效果的音乐厅为参照对象,广泛听取我国音乐家和声学家的意见确定的。交响乐厅、室内乐厅的各项“最佳”。

为实现上述指标、确保获得良好的音质,分别在设计、施工、竣工后调试的不同阶段,采取了一系列的保证措施:

·初步设计阶段:通过计算机模型和1/40缩尺实体声学模型试验与声学估算相结合,分析体形、了解声场状况和可能出现音质缺陷的部位;

·技术设计和施工图阶段:用1/10缩尺实体声学模型试验和围护结构的隔声量试验,以及各种声学构件声学性能的实验室测定,确定声学构造的部位、尺度和装修用材。并进行较为详细的声学计算;

·施工阶段:在没有专业施工队的条件下,主要是施工交底和监理,检查隐蔽工程,并在交响乐大厅主体结构完成后,进行首次混响和声场分布的现场测定;

·竣工调试阶段:用以解决声学计算、缩尺模型试验与实际效果存在的差距。要修正客观存在的偏差,就必须采用声学测定与乐团试用的主观感受相结合的方法。作多次调试、修改装修、直至达到预期的效果。星海音乐厅通过三个月的调试工作,才实现所要求的演奏和听闻效果。

二、交响乐大厅的声学设计

交响乐大厅是星海音乐厅的主体。容纳1437名听众,有效容积效期2400m3,每座占容积8。6m3。大厅采用“葡萄园”形的配置方式,即在演奏台四周逐渐升起的部位设置听众席。这种形式的最大优点是在大容量厅堂内缩短后排听众至演奏台的距离,从而确保在自然声演奏的条件下,有足够强的响度。此外,利用演奏台四周厢座的栏板和楼座的矮墙,可使听众席获得足够强、且有较大覆盖面的早期侧向反射声。近期的研究表明,这是传统音乐厅所以能获得良好音质的重要原因。而传统音乐厅则是通过窄跨度的侧墙实现的。因此,这种形式不仅继承了传统音乐厅所具有的良好品质,又能适应现代大容量音乐厅的各种需求。它自1963年德国柏林“爱乐”交响乐大厅首创至今,在国际上已被广泛采用。但在国内尚属首次。

大厅的屋盖选用“马鞍”形壳体。所有横剖面均为凹弧形面而引起声聚焦,从而造成声场不均。通过1/40缩尺实体模型试验和三维计算机模型试验充分证实了这一点。图2即为大厅横剖面计算机模型显示的声反射图,可见声聚焦的状况。

此外,在大厅壳体拆模后的现场测定均表明,顶部不悬吊抽射板时,厅内声场分布不均和存在回声现象。

对此,在演奏台上悬吊了12个弦长3.2m,曲率半径为2.6m的球切面反射体,其目的除了消除回声和声聚焦以外,还可加强乐师间的相互听站,提高演奏的整体性。同时也使堂座前区和厢座听众获得较强的顶部早期反射声。

为加强听众席后座的声强,在球切面反射体周围设置了锥状和弧形定向反射板。以此获得厅内均匀的声场分布。

为使大厅达到中频(500z)满场1。8s的混响时间,并使低频(125Hz)混响提升1。15倍(相对于中频),即2。07s。采取如下几项措施:

·增大容积,每座容积取8。6e

·厅内所有界面均不用吸声材料,在容易引起不利声反射的部位(后墙和后部吊顶)设置锥状扩散体;壳顶拆模后上刷涂料;墙面为35mm厚硬木板实贴在18mm厚的多层板上;地面均为实贴木地板,仅演奏台设木筋架空地板;所有悬吊的反射体采用刚度大的阻燃玻璃钢结构。

·减低座椅的声吸收,并使其吸声时接近听众的吸声量,从而减少厅内空、满场混响时间的差值。

根据以上确定的容积和内装修构造,进行了混响时间的计算和1/10缩尺实体声学模型试验,其结果见图7所示。由图可见,缩尺模型的测定结果仅中频较为接近,其它频率偏差较大,这是因为模拟材料不可能在很宽的频度范围内有一对一应的吸场性能。

大厅的扬扩散是除混响时间以外的另一个重要音质指标。当听众感到乐声似乎以相等的幅度来四面八方时,扩散是最好的,表征声扩散的指标是d,它定义为;厅内声场扩散值与自由场扩散值之比,即

d=1-m/m(1)

式中m-为厅内声场的扩散值;

m0-为在自由声场的扩散值;

m-△M(声强的平均差值)/M(各方位角的平均声强);

m0-的求同m,只是在自由声场中。

交响乐大厅的声扩散是通过多边的形体、差落的包厢和楼座栏板,以及顶部悬吊的反射体实现的。缩尺模型试验测定的结果表明,大厅具有良好的声扩散,d值均大于0.85,最大达0。93。

对于音乐厅来说,厅内希望获得良好的声扩散,但又不要求完全扩散(即d=1),因为听众在要求乐场来自各方的同时,还希望有一定的方向感,即乐声来自演奏台。

传统音乐厅所以能获得良好的音质,除了有最佳的混响时间和良好的声扩散以外,早期侧向反射声起着重要的作用,它加强了直达声的强度和提高了亲切感。因此近年所建音乐厅无不考虑早期侧向反射的设计,星海交响乐厅是通过侧墙、厢座栏板、楼座矮墙对所覆盖的听众席提供早期侧向反射的;此外,壳顶下悬吊的反射体也给听众席提供顶部的早期反射声。

早期反射声的状况,可以通过脉冲声测定获得测点的反射声序列,并能计算求得声能密度,为了便于定量比较。目前常用早期声能与后期声能之比的C值作为评价指标。时间的分界为80ms(以音乐丰满为主的厅堂)和50ms(以清晰为主的厅堂).

声能比C80,C50又称明晰度,这是一项与早期声能相关的指标。L.L.Beranek建议以500Hz,1000Hz和2000Hz,C80的平均值C80(3)作为评价音乐厅指标,其最佳值为0~-4.0。

交响乐大厅的噪声控制,主要解决单层壳顶的隔声和空调系统的消声和减振两方面:

交响乐大厅的墙体均为内隔重墙,只有壳顶暴露在室外,单层230mm厚的钢筋混凝土壳体,具有足够的空气隔声量(基地噪声为67~71dBLeq(A))。但大雨冲击的撞击隔声量却很低,对此做了隔离撞击声的构造,并在实验室内做了测定,其结果表明。实施的构造可以隔离大雨时的冲击声。

空调系统的消和减振,是大厅获得良好的听闻条件的最基本的保证,开启空调时内噪声不得大于28dBA,也即以听不到的空调噪声为设计指标。对此,采取了如下措施:

(1)在空调系统的管路系统内设置阻、抗复合型消场器,减低风机噪声沿管路传至厅内;

(2)防止气流噪声,限止流速:主风道低于6m/s,支风道低于3。5m/s。出风口低于1。5m/s。为实现这一目标,采用侧送、局部顶送(演奏台上方球切面,反射体间),座席地面下回风的方式。

(3)送风与回风量相适应,也即采用1:1的送回风比例。

(4)全部空调、制冷设备均作隔振处理,水泵、冷水机组采用SD型橡胶隔振装置;风机采用弹簧隔振器;管道用软接管,并用弹簧吊架。

有关其它的工程设备和需要隔声的构件,均采用常规的做法处理。

三、交响乐大厅的声学测量和音质调试

在交响乐即将竣工的前后,曾对所有各项声学指标进行了测量,并在竣工后的试用阶段,听取了乐团的意见进行了音质调试。

(一)声学测量

声学测量的内容包括响度、混响时间、早期反射声、声扩散、声场分布、频率响应和噪声第七项。明晰度(声能比)C80和低音比BR(温暖感)是分别根据脉冲响应和混响时间测定的结果计算求得。现将混响时间和早期反射声的测定结果分述如下:

(1)混响时间(RT):

混响时间菜测定了四次,测定频率为63Hz~8000Hz八个倍频程的中心频率。其结果是中频(50Hz)满场为1.82s,空场为2.19s。

(2)早期反射声测定:

早期反射声测定是在演奏台上配置脉冲声源。在大厅的七个区内,选择有代表性的座席测定其反射声序列。时标为100ms,由图内可观察早期反射声的状况、反射声的时延间隙(t1)和计算求得明晰度C80和C50。在演奏台上声源取2个位置,S1和S2,在厅内各区分别测定27个点。计54幅图。为压缩篇幅。在图9内列出S1和S2各7个测点结果。由反射声列图见,时延间隙(t1)为3~7ms。

由早期反射声测定结果,可用式(2)求得500Hz,1000Hz和2000Hz三个频率的C80值,然后取其平均值。即C80(3)的值。交响大厅七个区的明晰度C80(3)求得C50(3)见图10所示。C80(3)的平均值-1.43。

通过声学指标的测定结果表明:交响乐大厅的声学设计达到了预期的指标。

(二)音质调试

声学设计的最终目的是为乐师和听众创造优异的演奏和听闻环境。各项声学参数虽然达到了国际上“顶有”音乐厅的指标,但是能否获得同等的主观评价呢?对此,,由广州交响乐团进行多次配合演出,召开座谈会,听取各方面的意见,经归纳有如下几点:

·普通反映混响时间长,因而层次不够,清晰度差;

·弦乐器部位(小提琴、中音提琴区)缺乏反射声,得不到演奏台侧墙的支持;

·打击乐和钢管乐声级过高,相应地弦乐声较低,影响乐声的平衡。

根据上述意见,采取了如下的改善措施:

(1)在演奏台上方的球切面反射上,配置人工翻动的锥状可调吸声结构,使大厅混响时间可在1.66~1.82s之间调节,适应习惯于较短混响条件下演奏的国内乐团,满足层次和清晰度的要求。可调吸声构造见图11所示,图12为实测可调混响幅度。

(2)在演奏台两侧凹进的演员入口处,设置凸弧形活动声屏障,增加提琴区的侧向反射声,改善乐师的自我感觉。

(3)在演奏台和合唱队的两个后墙上,按原设计配置锥关扩散体,并在两个锥面上插入可调吸声板,(一面为七合板,另一面为6mm厚阻燃毯),用以加强演奏台的声扩散,以及必要时降低打击乐和铜管乐的声级,求得乐声的平衡和融合。

(4)在堂座走道和演奏台两侧楼梯上设地毯夹,以便在必要时,铺设地毯,进一步降低混响至1.5s。

四、室内乐厅的声学设计

星海音乐厅室内乐厅是以室内乐演奏为主,兼供戏剧演出、会议和立体声电影所用的多功能厅。容纳462名听众,有效容积3400m3,每座占容积分7。4m。大厅采用不对称的扇表平面,右侧设在厢座,左侧二层有挑廊,大厅后部设有三排座席的小楼座,大厅的平、剖面见图13所示。图16为大厅内景。

大厅的不规则形体有助于厅内的声扩散,池座有左侧墙和厢座矮墙提供早期侧向反射声、厢座和楼座主要由吊顶供给早期反射声。

为满足多功能使用的要求,同时使每种功能都有“最佳”的混响时间,故采用计算机调控的可调混响装置。可调的上限值取1.3s,供室内乐演奏使用;下限值是根据立体声电影的要求,确定为0.8s,故可调幅度为0.5s(0.8~1.3s)。并要求125Hz~400Hz的频率范围内均有接近相同的调辐量。

为了使用人员便于操作,把可调幅度设定为五个档次,即1.3s,1.2s,1.1s,1.0s,和0.8s.,根据选定的方式用计算机在15s内(圆柱体旋转3600需30s)即可调至要求的混响时间。也可以无级调至幅值范围内的任何一个值。

可调吸声结构采用旋转圆住体和平移的帘幕相结合的形式:圆柱体直径为800mm,一半为反射面,另一半为宽频带吸声面,配置左侧墙的上、下部位和后墙上,共设29个转体,(侧墙14个,后墙15个);可调帘幕分三道,配置在厢座侧墙木格栅内,共计可调面积为大厅总表面积的十分之一。

室内乐厅内除了可调吸声结构以外,其余的墙面均为25mm厚的木板墙,榉木三合板贴面;木地板;吊顶为轻钢龙骨石膏板刷涂料;座椅采用相当于听众声吸收的澳大利亚“西贝”(Sebel)公司产品。座垫和椅背可根据需要调节倾角。

室内乐厅的噪声控制同样包括隔声和空调系统的消声和减振两部分。厅内的周墙均为内隔断重墙,屋顶为双层结构,不存在屋面冲击声的问题。空调系统采用上送、下回的传统方式,消声和减振做法同交响乐大厅。

五、室内乐厅的声学测量和评价

室内乐厅竣工后曾对设计的八项指标进行了测定。混响时间和早期反射声的测定结果如下:

(1)混响时间(RT)

混响时间的测定是按设定的五种可调混响方式中三种进行的;即:1)转体和帘幕均为暴露反射面,即厅内具有最长的混响;2)转体和帘幕吸声面暴露,厅内混响处于最短的情况;3)转体和帘幕的吸声面各暴露一半,即处于1)2)的中间状态。测定结果和测定点配置分别见图14,最大可调幅度为0。48s(空场)和0.42s(满场)

(2)早期反射声测定:

早期反射声测定结果,可用式(2),式(3)求得500Hz,1000Hz和2000Hz三个频率的C80和C50的值,然后取其平均值:即C80(3),室内乐厅8测点的C80(3)值为2.55~4.93dB,平均值为3.77dB;C50(3)为-0.02~2.38dB,平均值为1.06dB。

星海音乐厅内乐厅的9项声学指标测定结果表明:全部达到预期效果,该厅在调试期间曾进行了广东省少年钢琴比赛,以及古筝独奏会,无论是乐师和听众均反映厅内音质效果极佳。

六、音乐厅声学设计中几个总是的探讨

通过星海音乐厅声学设计的实践和调试、试用过程中我国音乐家们反映的各种意见,笔者认为有些问题值得研讨,以便给今后音乐厅的设计提供参考。

(一)关于交响乐大厅的“最佳”混响时间

世界著名的传统音乐厅混响时间都比较长。这无疑对我国音乐厅设计有较大的影响。星海音乐厅交响乐大厅的满场混响时间也是参考了传统音乐厅而确定为1.8s的。

但长的混响时间不适合国情,原因首先是我国的交响乐团,习惯于在较短混响条件下演奏,这是因为国内的自然声演奏的厅堂没有达到满场1.8s混响时间的;其次是我国音乐家常以清晰为主要目的。正如我国著名指挥家严良堃先生在深圳音乐厅国际招标会上对音乐厅提出的音质要求是:“清晰、圆润、宏亮”。这在很大程度上代表了我国音乐界的意见。

国外的音乐家们也未必都喜爱长混响的,例如:维也纳音乐厅的混响时间为2.5s,音乐家也有不同的意见:著名音乐家’、指挥家卡拉扬(H.V.Karajan)就提出:“……大厅唯一不足之处是难以显示出一些弓上和嘴唇上的技巧,相继的音符彼此被相互吞没”,这明确表明混响太长了。

星海音乐厅交响乐大厅在调试过程中就是追加了人工调控混响而同时满足了国内、外音乐家的要求,而获得好评的。

(二)音乐厅的形体

音质良好的传统音乐厅均为“鞋盒”式形体,尽端配置演奏台,由于跨度窄、容积小(座椅宽度和排距小)因而有较强的早期侧向反射声,且覆盖面较大,近年的研究表明:它是传统音乐厅所以能获得良好音质的重要因素之一。而控音乐厅,由于容座大、又要求有舒适的座椅,势必容积大,在这种情况下,试图按“鞋盒”式音乐厅的比例增大其尺寸去再现传统音乐厅的特色,是不可能的。这将改变直达声和射声到达的时间和方向,从要命上削弱和恶化其效果,英国皇家节日音乐厅和台北文化中心音乐厅即为典型的例证。因此,对于大容积的交响乐大厅应在继承传统音乐厅良好品质的前提下,突破“鞋盒”式形体。“葡萄园”式(或称“山谷梯田”形)即为一咱比较适用的形式。它有可能缩短听众席后排至演奏台的距离,从而获得足够响度,这对于自然声演奏的大厅来说是至关重要的。如果演奏台周围逐渐升起的厢座和楼座栏板或矮墙设计得当,同样可以获得足够强的、覆盖面较大的侧向早期反射声。

致于音乐厅围护结构的几何形式(圆、椭圆、扇形、三角形等……)并不重要,不应约束建筑师的创作,但厅内装修所构成的空间形式应有利于声的扩散,这一点必须做到。

(三)关于音质效果的评价

音乐厅声学设计的最终目的是获得良好的听音效果,也即满足听众主观感受的要求。因此音乐厅建成后,通过声学测量核对测定数据是否达到设计指标,仅完成了客观量的评价,还须进行主观评价。有关音乐厅音质的主观评价,国内外有很多方法,但较为简易有效的方法是通过乐团多种节目的演出,听取各方面的意见,进行统计分析,求得评价结果。但在评价的实际工作中,应注意如下两点:

(1)乐队在演奏厅内空场排练不能作为主观评价的依据。

这首先是因为乐队经常在容积小,混响短(一般为1.0s)的排练厅练习,。因而在混响长达2.0s以上的演奏厅内排练,反差太大;其次是空场时,演奏台四周的座席是空的,座椅有反射而影响乐师的相互听闻。此外,空场排练只能反映光师在演奏台上的自我感受而不能评价大在的听音效果。因此,主观评价时,至少组织1/3满座的听众。既缩短了混响,又有听众和乐师两方面意见。

(2)正确、公正的评价需要时间

对新建音乐厅最初作评价是配合声学调试的乐队指挥和乐师,他们反映的实际上是演奏台上的自我感觉。而不是大厅的音质。如果是空场排练,则他们反映的意见多数是不可靠的;大厅公开演出后,厅内达到设计的声学状态,音乐家、音乐评价家和听众反映的才是真实的时质效果。但由于音乐家、指挥家的知名度,新闻媒界报导大厅的音质效果主要听取这些权威的评论。很少来自参加音乐会的听众。但更为正确、公正的评价最终应取决于包括音乐家在内的广大听众;但这需要时间,一上音质优异的音乐厅,应经得起时间的考验。

(四)音乐厅屋顶结构的选择应多方考虑

音乐厅的屋顶采用何种形式绘声绘色是结构工程师的事。但不论选用何种形式,必须考虑音乐厅某些特殊的要求:

(1)演奏台上方的屋架应能承重较大的局部荷载,以便吊置重的反射体、灯具和一些机械设备;

(2)演奏台上方应有足够的高度,使台上的声反射板和照明灯有升降的空间,在音乐会开演前一般将反射板悬吊在高处,以便使听众看到演奏台的全景,特别当设置管风琴时,更希望大部分听众都能看到。演奏开始时,才降下反射板和灯具。

(3)在承重的屋顶下,音乐厅的吊顶上应设置一个工作层,以便配置和操作升降的机械设备的设置通风管道。同时,还可使屋顶有足够的空气声和撞击声的隔声能力。

星海音乐厅选用“马鞍”形壳体,从结构上没有体现壳体的优越性(壳体厚达220mm)同时又不能满足上述所提的要求。无论在声学和使用上带来很多麻烦。

七、结语

声学设计范文篇3

围护结构的隔声设计分为空气声隔声设计及固体声隔声设计两部分,均包括隔声量的计算、隔声材料的选择以及隔声构造设计等内容。除理论计算外,经常需要进行隔声构件的实验室或现场测量,来确定其各频带的隔声量。

噪声控制的另一重要内容,就是针对厅堂建筑内部的噪声振动源进行控制。这些噪声振动源包括空调设备、给排水设备、变压器、某些灯光设备、舞台机械设备以及来自相邻房间通过空气及固体传声传入的噪声和振动等,都将对观众厅的安静造成干扰。因此,在建筑方案设计阶段,声学顾问就必须介入,以便审视建筑内部各种房间的平、剖面布置是否合理,尽可能在建筑设计阶段就将可能的噪声振动干扰减至最低。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

音质设计通常包括下述工作内容:

一、确定厅堂体型及体量。为看得清楚、听得清晰,各类厅堂都有个长度的限制。厅堂的宽度会涉及到早期侧向反射声的组织,与音质的空间感有重要关联。厅堂的高度不仅影响竖向早期反射声的组织,而且影响早后期声能比和混响声能的大小及方向。厅堂的体积和每座容积都直接影响混响时间等音质参数。厅堂的体型更是关系到是否存在回声、颤动回声、声聚焦、声影区等音质缺陷。所有这些,都必须在初步方案设计阶段就提供建筑声学的专业意见。

二、确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。这些指标及其优选值的选定,将为进一步进行音质参量计算和将来竣工后的音质测试提供目标和依据。

三、对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。厅堂的平面及各界面的形状、面积、倾角等以及乐池、乐台、包厢、楼座、音乐罩、反射板等都影响声脉冲响应的结构,从而对厅堂音质产生重要影响。因此,是否设楼座、包厢,设几层楼座、包厢,楼座和包厢的深度及开敞度多少为合适,栏板的面积与倾角多大较恰当等等,都属于建筑声学设计的范畴,都需由建筑师与声学顾问共同磋商,加以确定。乐池的形状和开口大小也直接影响乐队声能的输送以及乐队与演员的相互听闻。此外,是否设音乐罩或反射板,设何种形式的音乐罩和反射板等等,也都需要从建筑声学专业的角度提供咨询意见,并给出设计方案。四、计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。通过音质参量的计算,提供设计反馈信息,以便对设计方案作出必要的修改与调整。这个过程有时需要反复进行多次,以便臻于至善。在此过程中,需要辅以平剖面声线分析、三维声场计算机仿真乃至缩尺模型试验等技术手段,才能做出较准确的预计。

五、进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。因此,声学顾问还需与装修设计师密切配合,共同完成室内装修设计。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

六、声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。从这一点意义上讲,要进行成功的现代厅堂音质设计已离不开计算机仿真的辅助。

七、缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。缩尺模型试验优于计算机仿真之处,在于唯有它能对室内声波动效应做出仿真,而前者仅能在中、高频段,在几何声学的范围内提供较准确的仿真结果。此外,计算机仿真从本质上说是将声学家已知的声学原理输入计算机中,而缩尺模型则可较客观地展示厅堂中发生的实际声物理现象。目前,华南理工大学建筑声学实验室正在负责对在建的广州歌剧院作1∶20的声学缩尺模型试验,以确保该剧院建成后的高水准音质。

八、可听化主观评价。对于重要的厅堂,必要时还可在计算机仿真和缩尺模型试验基础上,应用先进的可听化技术进行主观听音评价。可听化技术是通过仿真计算,或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。

九、建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。厅堂音质参量测量除了在工程竣工之后进行,以验证声学设计是否达标外,有时还需要在厅堂建筑主体完工,进入内部装修阶段时进行,以便为施工的最后阶段进行必要的设计修改与调整提供科学数据。

声学设计范文篇4

美国等发达国家在进行厅堂建筑设计时,均要由建筑师、声学顾问和剧场顾问组成联合设计组,从项目立项开始就一道工作,直至项目完工。这是国外厅堂建筑之所以高质量的重要保证。因此,只有明了建筑声学设计的程序和工作内容,学习国际先进经验和惯常做法,方能保证我国的厅堂建筑具有良好的音质。

一般而言,建筑声学设计的工作内容主要包括噪声控制和音质设计两大部分。

根据建筑物的使用功能、等级与投资规模,参照国际或国家规范来确定建筑物室内噪声标准,是噪声控制设计的首要内容。

通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据,保证厅堂建成后能达到预定的室内噪声标准。

围护结构的隔声设计分为空气声隔声设计及固体声隔声设计两部分,均包括隔声量的计算、隔声材料的选择以及隔声构造设计等内容。除理论计算外,经常需要进行隔声构件的实验室或现场测量,来确定其各频带的隔声量。

噪声控制的另一重要内容,就是针对厅堂建筑内部的噪声振动源进行控制。这些噪声振动源包括空调设备、给排水设备、变压器、某些灯光设备、舞台机械设备以及来自相邻房间通过空气及固体传声传入的噪声和振动等,都将对观众厅的安静造成干扰。因此,在建筑方案设计阶段,声学顾问就必须介入,以便审视建筑内部各种房间的平、剖面布置是否合理,尽可能在建筑设计阶段就将可能的噪声振动干扰减至最低。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

音质设计通常包括下述工作内容:

一、确定厅堂体型及体量。为看得清楚、听得清晰,各类厅堂都有个长度的限制。厅堂的宽度会涉及到早期侧向反射声的组织,与音质的空间感有重要关联。厅堂的高度不仅影响竖向早期反射声的组织,而且影响早后期声能比和混响声能的大小及方向。厅堂的体积和每座容积都直接影响混响时间等音质参数。厅堂的体型更是关系到是否存在回声、颤动回声、声聚焦、声影区等音质缺陷。所有这些,都必须在初步方案设计阶段就提供建筑声学的专业意见。

二、确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。这些指标及其优选值的选定,将为进一步进行音质参量计算和将来竣工后的音质测试提供目标和依据。

三、对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。厅堂的平面及各界面的形状、面积、倾角等以及乐池、乐台、包厢、楼座、音乐罩、反射板等都影响声脉冲响应的结构,从而对厅堂音质产生重要影响。因此,是否设楼座、包厢,设几层楼座、包厢,楼座和包厢的深度及开敞度多少为合适,栏板的面积与倾角多大较恰当等等,都属于建筑声学设计的范畴,都需由建筑师与声学顾问共同磋商,加以确定。乐池的形状和开口大小也直接影响乐队声能的输送以及乐队与演员的相互听闻。此外,是否设音乐罩或反射板,设何种形式的音乐罩和反射板等等,也都需要从建筑声学专业的角度提供咨询意见,并给出设计方案。四、计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。通过音质参量的计算,提供设计反馈信息,以便对设计方案作出必要的修改与调整。这个过程有时需要反复进行多次,以便臻于至善。在此过程中,需要辅以平剖面声线分析、三维声场计算机仿真乃至缩尺模型试验等技术手段,才能做出较准确的预计。

五、进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。因此,声学顾问还需与装修设计师密切配合,共同完成室内装修设计。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

六、声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。从这一点意义上讲,要进行成功的现代厅堂音质设计已离不开计算机仿真的辅助。

七、缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。缩尺模型试验优于计算机仿真之处,在于唯有它能对室内声波动效应做出仿真,而前者仅能在中、高频段,在几何声学的范围内提供较准确的仿真结果。此外,计算机仿真从本质上说是将声学家已知的声学原理输入计算机中,而缩尺模型则可较客观地展示厅堂中发生的实际声物理现象。目前,华南理工大学建筑声学实验室正在负责对在建的广州歌剧院作1∶20的声学缩尺模型试验,以确保该剧院建成后的高水准音质。

八、可听化主观评价。对于重要的厅堂,必要时还可在计算机仿真和缩尺模型试验基础上,应用先进的可听化技术进行主观听音评价。可听化技术是通过仿真计算,或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。

九、建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。厅堂音质参量测量除了在工程竣工之后进行,以验证声学设计是否达标外,有时还需要在厅堂建筑主体完工,进入内部装修阶段时进行,以便为施工的最后阶段进行必要的设计修改与调整提供科学数据。

声学设计范文篇5

美国等发达国家在进行厅堂建筑设计时,均要由建筑师、声学顾问和剧场顾问组成联合设计组,从项目立项开始就一道工作,直至项目完工。这是国外厅堂建筑之所以高质量的重要保证。因此,只有明了建筑声学设计的程序和工作内容,学习国际先进经验和惯常做法,方能保证我国的厅堂建筑具有良好的音质。

一般而言,建筑声学设计的工作内容主要包括噪声控制和音质设计两大部分。

根据建筑物的使用功能、等级与投资规模,参照国际或国家规范来确定建筑物室内噪声标准,是噪声控制设计的首要内容。

通常音乐厅、剧场等厅堂都要求很低的室内背景噪声,因此,这些厅堂的选址很重要,应尽可能远离户外的噪声与振动源。另外,还要进行场地环境噪声与振动调查、测量与仿真预测,目的是为进行厅堂建筑围护结构的隔声设计提供依据,保证厅堂建成后能达到预定的室内噪声标准。

围护结构的隔声设计分为空气声隔声设计及固体声隔声设计两部分,均包括隔声量的计算、隔声材料的选择以及隔声构造设计等内容。除理论计算外,经常需要进行隔声构件的实验室或现场测量,来确定其各频带的隔声量。

噪声控制的另一重要内容,就是针对厅堂建筑内部的噪声振动源进行控制。这些噪声振动源包括空调设备、给排水设备、变压器、某些灯光设备、舞台机械设备以及来自相邻房间通过空气及固体传声传入的噪声和振动等,都将对观众厅的安静造成干扰。因此,在建筑方案设计阶段,声学顾问就必须介入,以便审视建筑内部各种房间的平、剖面布置是否合理,尽可能在建筑设计阶段就将可能的噪声振动干扰减至最低。

此外,建筑声学设计的另一个重要任务就是进行室内音质设计。

音质设计通常包括下述工作内容:

一、确定厅堂体型及体量。为看得清楚、听得清晰,各类厅堂都有个长度的限制。厅堂的宽度会涉及到早期侧向反射声的组织,与音质的空间感有重要关联。厅堂的高度不仅影响竖向早期反射声的组织,而且影响早后期声能比和混响声能的大小及方向。厅堂的体积和每座容积都直接影响混响时间等音质参数。厅堂的体型更是关系到是否存在回声、颤动回声、声聚焦、声影区等音质缺陷。所有这些,都必须在初步方案设计阶段就提供建筑声学的专业意见。

二、确定音质设计指标及其优选值。根据厅堂的使用功能选择混响时间、明晰度、强度指数、侧向能量因子、双耳互相关系数等音质评价指标,并确定各指标的优选值,是音质设计的重要任务。这些指标及其优选值的选定,将为进一步进行音质参量计算和将来竣工后的音质测试提供目标和依据。

三、对乐池、乐台、包厢、楼座及厅堂各界面进行声学设计。厅堂的平面及各界面的形状、面积、倾角等以及乐池、乐台、包厢、楼座、音乐罩、反射板等都影响声脉冲响应的结构,从而对厅堂音质产生重要影响。因此,是否设楼座、包厢,设几层楼座、包厢,楼座和包厢的深度及开敞度多少为合适,栏板的面积与倾角多大较恰当等等,都属于建筑声学设计的范畴,都需由建筑师与声学顾问共同磋商,加以确定。乐池的形状和开口大小也直接影响乐队声能的输送以及乐队与演员的相互听闻。此外,是否设音乐罩或反射板,设何种形式的音乐罩和反射板等等,也都需要从建筑声学专业的角度提供咨询意见,并给出设计方案。四、计算厅堂音质参量。当厅堂的平、剖面及楼座、包厢、乐池、乐台等设计方案拟定以后,就可开始计算厅堂音质参量。通过音质参量的计算,提供设计反馈信息,以便对设计方案作出必要的修改与调整。这个过程有时需要反复进行多次,以便臻于至善。在此过程中,需要辅以平剖面声线分析、三维声场计算机仿真乃至缩尺模型试验等技术手段,才能做出较准确的预计。

五、进行声学构造设计。厅堂音质除了受前述建筑因素影响之外,还与室内装修材料与构造密切相关。因此,声学顾问还需与装修设计师密切配合,共同完成室内装修设计。声学装修构造设计通常包括各界面材料的选择和绘制构造设计图,需详细规定材料的面密度、表观密度、厚度、穿孔率、孔径、孔距、背后空气层厚度以及龙骨的间距等技术参数。

六、声场计算机仿真。对厅堂建筑进行仔细的声场分析和音质参量计算,有赖于声场三维计算机仿真。从这一点意义上讲,要进行成功的现代厅堂音质设计已离不开计算机仿真的辅助。

七、缩尺模型试验。对于重要的厅堂,除了计算机仿真外,通常还须建立一定缩尺比的厅堂模型,进行缩尺模型声学试验。缩尺模型试验优于计算机仿真之处,在于唯有它能对室内声波动效应做出仿真,而前者仅能在中、高频段,在几何声学的范围内提供较准确的仿真结果。此外,计算机仿真从本质上说是将声学家已知的声学原理输入计算机中,而缩尺模型则可较客观地展示厅堂中发生的实际声物理现象。目前,华南理工大学建筑声学实验室正在负责对在建的广州歌剧院作1∶20的声学缩尺模型试验,以确保该剧院建成后的高水准音质。

八、可听化主观评价。对于重要的厅堂,必要时还可在计算机仿真和缩尺模型试验基础上,应用先进的可听化技术进行主观听音评价。可听化技术是通过仿真计算,或者通过模型试验测量获得双耳脉冲响应,将之与在消声室中录制的音乐或语言“干信号”卷积,输出已加入厅堂影响的声音信号,供受试者预先聆听建成后的厅堂音质效果。这是近年发展起来的建筑声学领域一项高新技术。

九、建筑声学测量。建筑声学测量包括噪声与振动测量,围护构造隔声测量,重要材料与构造的吸声量测量以及厅堂音质参量的测量等。厅堂音质参量测量除了在工程竣工之后进行,以验证声学设计是否达标外,有时还需要在厅堂建筑主体完工,进入内部装修阶段时进行,以便为施工的最后阶段进行必要的设计修改与调整提供科学数据。

声学设计范文篇6

1.2.2合适的混响时间人们对音质的主观评价“清晰”、“平衡”、“丰满”、“有力度”、“柔和”等术语与混响时间有密切的关系.混响时间的长短对音质的影响很大,混响时间长,音质“空”,含糊不清;混响时间短,音质“干”,单调枯燥;只有合适的混响时间,音质才能丰满、有力度.多媒体教室以语言声为主,混响时间的设计应主要考虑语言声的要求,因此要根据教室的容积,选择合适的混响时间(见表1),才能实现较高语言清晰度[3].表1语言类房间最佳混响时间与房间容积表容积/m350~6060~8585~127127~170170~245245~339339~424混响时间/s0.20.3~0.350.35~0.40.4~0.450.45~0.50.5~0.550.55~0.6

1.2.3避免声缺陷声缺陷主要是声波经由内表面反射后分布而干扰正常听闻的现象.多媒体教室的声缺陷主要包括回声、颤动回声以及声染色等,产生这些现象的主要原因是:一是房间的吸声量不够;二是房间大多是矩形房间,六个面互相平行,容易产生“简并”现象,形成声染色.对于多媒体教室而言,要避免上述声缺陷.

&nbs本论文由整理提供p;1.2.4声场分布均匀理想的多媒体教室室内声场应该充分扩散,分布均匀,而且有足够的声压级.室内声音的充分扩散,可以保证各个座位上的学本论文由整理提供生都应能听到响度相差不大的声音,也保证了室内空间各点的声压级相等,对多媒体教室而言,学生座位区的语言扩声声压级要达到70~75dB之间,音乐扩声声压级要达到80~85dB之间,背景音乐声压级要达到60~70dB之间,声场的不均匀度应控制在±4dB之内,使音质得以改善,声音变得柔和、具有亲近感和空间感.

1.2.5室内音质多媒体教室的声学设计其实就是室内音质的设计.而室内音质的最终评价是听众的主观感受,人们根据室内声学原理并借助经验,提出了混响时间、扩散程度、反射声、噪声级等若干与主观感受相对应的物理量或声学量.多媒体教室内的主要声信号为语音信号,对清晰度的要求很高.这主要取决于房间的混响时间、设备的功率等.

多媒体教室建设和改造中存在的主要声学现在大多数学校的多媒体教室是通过旧教室改造而成的,没有进行相应的声学处理,即使新建的多媒体教室也没有进行声学处理,而且面积和容积的差别很大,大的面积达到几千平米,小的才40~50m2,层高从3m左右到10m,平面形状矩形的占大多数.因此多媒体教室建设和改造中存在的主要声学问题有:一是建筑声学方面,选址不当,外界干扰较强;房间设计不科学,造成回声、颤动回声、声染色;装修吸声材料使用不妥,造成背景噪声较大、混响时间偏长;配电影响音频传输,出现干扰.二是扩声系统方面,设备档次低,交流噪音高;音响系统位置分布不合理,造成声场不均匀,产生啸叫;音响系统设备参数调在最不本论文由整理提供佳的位置等.使学生上课听不清,影响教学质量[4].

多媒体教室声学环境的优化设计针对上述多媒体教室声学环境存在的问题及声学环境的基本要求,多媒体教室的声学环境的设计主要从建筑声学和电声学两个方面进行.建筑声学设计由于每个房间都有本身的声学特性,做好建筑声学环境的处理对以后获得良好声音效果奠定比较坚实的基础.如果建筑声学环境处理不好则会出现混响过强、驻波、回声、声聚焦和共振等声第3期李兆义:多媒体教室的声学环境分析及设计69音缺陷.

2.1.1控制噪声,提高教室的声信噪比在多媒体教室运用扩声系统进行教学时,往往扩声系统会影响隔壁班级的正常上课秩序,会出现啸叫声,室外本论文由整理提供噪音等问题困扰着广大的师生[5].

这就要求多媒体教室的噪声标准必须达到相应的国家规范要求,但是多媒体教室又有其特殊性,控制噪声可以采取以下方式进行:

(1)远离噪声源在总体规划设计中让多媒体教室使远离马路、市场、运动场等噪声源,即避开强环境噪声源.对多媒体教室干扰声场(外界传入室内的噪声声场)大小的计算可以采用下面的公式来进行:Lp=Lp0-101g1τ-101gAF+6.式中Lp为室外噪声声压级,F为透声墙立面的面积,A=Sa-为室内总吸声量,τ为声能透射率,对于多媒体教室而言,噪声来源除了墙壁之外,更多的是从窗户、门等进入的,声能透射率可取平均值:τ=ΣFτiiiF,计算出的干扰声场的声压级应小于38dB.

(2)振动干扰预防如果上述办法有困难,可以实行被动式处理,即增加墙壁隔声量;安装消声窗;让多媒体教室置于教学大楼的顶层或同层本论文由整理提供中靠近楼体边缘的位置;使用时间和出现噪声的高峰期错开;同时禁止学生在教室内大声喧哗、吵闹;学生椅子采用航空椅,布面为亚麻布,防止学生之间语言的相互干扰;选用设备的本地噪声要足够低等.

2.1.2选择合适的房间尺寸及三维结构,提高房间的声扩散性能多媒体教室房间尺寸及三维结构选择的目的是让房间的固有频率分布均匀,防止声染色及语言或音乐的失真.若房间为矩形,其长、宽、高分别为,Lx,Ly,Lz则房间的简正振动频率为[1]:fn=c2(nxLx)2+(nyLy)2+(nzLz)2.式中,nx,ny,nz是不同时为0的任意自然数,c为空气中的声速.由此式可以看出,随着nx,ny,nz取数的越多,简正方式的数也就越多,简正频率也有无穷多个,若房间的比例不当,会出现“简并”现象,将导致声场中某些频率的成分得以加强,出现声染色,音质将大大下降.因此对于多媒体教室而言,房间的长、宽、高的比例选择非常重要,最佳的房间形状是传统的长方形,长、宽、高的比例尽量避免1∶1、1∶2的简单比例关系,通常选取人们所谓的“聆听空间黄金比例”,即满足1.618∶1∶0.618或2∶32∶1,也可以选用其他比例方法,但三遍之比应取无理数,绝不可取整数倍.为保证较多的简正方式,既要考虑良好的房间尺寸比例,又要得到较大的房间容积.通常多媒体教室的最本论文由整理提供小容积应遵循:Vmin≥4λ3max.式中Vmin为房间最起码容积;λmax为下限频率对应的波长.由于现在本论文由整理提供

的教室大多为矩形,一般都有平行墙面,为了避免产生驻波现象,应在平行墙面上布置扩散体,有利于声场均匀.如果室内有凹弧形墙面,一定要采用扩散体来发散声能,防止声聚焦.对于面积较大的多媒体教室,除了改善房间的结构(如可以采用矩形切角、扇形、正方形对角线配置以及多边形等)外,还可以在顶棚悬挂反射板(前次反射声相对直达声的延时时间如果大于50ms),这样既可以得到较多的侧向前次反射声,还可以加强听众区域的反射声功率[6].

2.1.3选择合适的吸声材料,使房间的混响时间达到最佳合理使用和布置各种吸声材料是获得理想混响、声扩散、消除声缺陷的重要条件.对于人耳来说,能够听到的频率范围大约为20~20000Hz之间,一般人的讲话声主要能量分布在100~5000Hz之间,对于以传递语言信息为主的多媒体教室,声音评价主要为语言的清晰度兼顾丰满度,要想满足此条件,多媒体教室内的混响时间可定为T60=0.4~0.7s.混响时间的长短与房间容积、房间表面积、装修后的吸声系数等许多不定因素有关,在吸声材料的选用和布局上应对室内的混响时间进行综合估算,具体的计算公式采用著名的赛宾公式进行工程估算:T60=0.161VSα.式中V为室容积;S为声室的内界面总面积;α为声室内界面平均吸声系数,α=ΣSiαi/ΣSi,Si为各种不同材料的面积,αi为室内表面各种不同材料的吸声系数,通过查阅常用材料的吸声系数便可知道,多媒体教室的吸声处理包括墙面、顶面和门窗等.要设计一个理想的混响时间,吸声材料的选择一定要与房间的容积和室内总表面积、教室内各种器材、设备(如:银幕、电视监视器、学生课桌、音箱、照明灯具、空调设备)等方面综合考虑,同时还要符合人们的美学观点.

因此在室内装饰装修上可采用木质龙骨吊顶,墙体做复合吸声结构,挂上柔软的布窗帘等方法,当然也要根据实际情况控制吸音和反射的合适比例;避免房间内凹面或弧型面反射的形成,防止出现声聚焦问题,使局部声音过强而产生反馈出现啸叫现象;对容易产生共振的物体进行加固处理,避免出现声音共振现象[7].当然运用混响时间公式计算出的结果只是一个参考值,与实际情况相比都会出现偏差,因此,要想让多媒体教室的混响时间达到最佳,必本论文由整理提供需要经过反复设计、评价、修改,才能达到理想的声环境.电声学设计建筑声学设计为多媒体教室音质的改善创造了很好的条件,但多媒体教室扩声系统如果没有合理的整体设计和正确连接,也难以达到理想的听音效果.

2.2.1多媒体教室的扩声系统设计多媒体教室扩声系统设计时要根据财力情况进行合理的安排,如果财力许可,设备的选型应采用专业品牌,系统性能要基本一致,避免设备档次配置不齐,有的偏高,有的偏底.多媒体教室的扩声系统主要由传声器、功率放大器、调音台、扬声器四大块组成.

(1)传声器:传声器是多媒体教室实现声音输入到语音处理系统的设备,它的质量优劣、选用的合适与否、使用的方法都直接或间接地影响教师把语音清晰的传递给学习者.常见的有动圈式和电容式两大系列.在多媒体教室的教学中一般选用灵敏度高、动态范围宽、频响平直、瞬态响应好、音质柔和方向性强的电容式传声器,使声音能够清晰、亮丽、细腻的重现,但由于电容式传声器具有灵敏度高和耐声压性小的特性,在摆放位置上要注意和音箱和其它音源的位置关系,以及根据音源大小、传声器和音源的距离,消除噪音,得到纯净的语音信号.

(2)调音台:调音台实际上是一个音频信号混合控制台,它可以对多路不同阻抗、不同电平的输入声源信号进行放大及处理,按照不同的音量对信号进行混合、重新分配或编组,产生一路或多路输出.因此,调音台的主要作用是对音频信号进行放大、音色修饰、抑制噪声、控制音量和信号混合.对多媒体教室的音源而言,主要是教师的讲解声和CD、DVD、VCD等高电平音源,用调音台要控制好输入电平,在保证声音信号清晰度的基础上,尽量满足丰满度要求.这就要求对高电平音源要按下定值衰减键PAD,降低输入电平,才能保证信号电平不超过输入电平的动态范围,使声音不失真.一般情况下不可用增益旋钮GAIN来调节改变音量,它会使信号信噪比下降.

(3)功率放大器:是把调音台、信号处理器等前端设备送来的比较弱的信号进行不失真的放大,并输出一定的功率,推动扬声器发出优美而洪亮的声音.而多媒体教室以语音的清晰度、可懂度为主,因此功率放大器作为系统的核心要有足够的功率输出,以本论文由整理提供保证室内的平均语言声压级达到70~80dB,有较宽而平直的频率响应范围,建议将功率放大器的输出功率与扬声器的额定功率配比定在1.5倍左右,这样能保证获得足够的力量感.

(4)音箱:音箱的作用是把音频电信号转换为声音信号,它对重放的声音效果起着决定性的作用,音箱技术配置、位置摆放等直接影响声音的还原效果.对多媒体教室而言要求声场均匀,做到“近听不吵,远听不小”,保证各区域内听到的响度基本一致.选择音箱时,除要考虑音箱的功率符合多媒体教室的声场要求外,还要考虑音箱的另外两个重要特性,即频响特性和指向特性.

2.2.2多媒体教室扩声系统的正确匹配在扩声系统的布置中,音箱布局的好坏直接影响整个扩声系统的效果,是电声系统设计的重要步骤,音箱要根据多媒体教室的大小和形状来选择数量和摆放方式.一般来说,用一对音箱把它安装在教室前墙的两侧的上方,音箱轴线对准学生座位的主要听音区域,就能得到理想的直达声;对于比较大的多媒体教室,如有两层,这时用一对音箱可能不满足室内声学要求,应再增加一对音箱,这两对音箱应位于同一垂直平面上,且让上面一对音箱的主轴线对准上层听众,下面一对音箱的主轴线对准下层听众,同时在摆放音箱本论文由论文由整理提供

tp:///">整理提供时,音箱的主轴线不宜交叉,或交叉角度不宜过大;如果是改建的多媒体教室,长、宽、高比例不一定很理想,对于过长,而宽度较小的教室,宜采用分散式布局,可将音箱线性均匀排列于房间顶部,使在房间前后的听众第3期李兆义:多媒体教室的声学环境分析及设计71均能听到较强的直达声,但要注意直达声须同时到达听众,因此对较前的音箱需加延时器,这样一来就会增加成本;对较宽的教室,宜采用两侧布局的分散式布局方式,原理与顶部布局完全一样;如果多媒体教室较大,则采用混合布局方式.不管采用哪种布局方式,音箱并非越多越好.音箱布局应以多媒体教室的音质要求为原则,切忌铺张浪费,同时音箱的布局还应避免声反馈,如果音箱的布局不合理,容易形成声反馈,影响教学效果,严重时还会损坏电声设备[7].

扩声系统的正确连接还要注意阻抗匹配、电平匹配、功率匹配等问题[8].多媒体教室声学改造完成后,听音评价受到人的主观因素的影响较大,只要室内混响时间和扩声系统达到了设计标准,声音传递平坦、混响适度、畸变小、瞬态好,使教学的声音信息准确无误地传递给每一位受教育者,也就基本上达到了多媒体教室的声学设计要求.

参考文献:

[1]曹揆申.教育电声系统[M].北京:高等教育出版社,1996.

[2]蔡丽霞.多媒体教室声学环境的分析及营造[J].中国现代教育装备,2008,63(5):36237.

[3]彭小云.多媒体教室的声、光环境[J].工业建筑,2006(36卷增):1012103.

[4]李耀麟,陈健本论文由整理提供祥.多媒体教室扩声系统优化的研究[J].井冈山学院学报,2008,29(10):43245.

[5]宁伟.多媒体综合教室视听环境建设的优化[J].中国现代教育装备,2008,66(8):59260.

声学设计范文篇7

机车整体布置如图1所示,主要分为上下两部分:上部由车体和它的附属设备组成;下部由位于两端的转向架和位于中部的燃油箱组成。机车设计采用模块化将机车划分为5个室;从前到后依次为司机室、辅助室、电气室、动力室和冷却室。其中主要设备声源有:柴油机排气口、冷却塔、电阻制动器、空调机和空压机等。

2主要声源特性

在柴油机满负载运行,空压机、冷却风扇和空调风机以最大转速运行工况下,机车的主要设备声源的总声功率水平见表1所示。根据表1所示,在柴油机满负载运行时,由于空压机及空调风机的噪声水平远远低于另外三个声源的水平(相差超过了10dB,根据声学理论,两个声源的噪声水平相差10dB,则两个声源叠加的结果为最大声源的噪声水平),因此,在计算机车外场噪声水平时,忽略空压机及空调风机噪声的影响,只分析柴油机排气口、冷却塔、电阻制动器的噪声水平。由于声源为声功率或平均声压级,且整车噪声测量的距离为15m(距离较长),因此声源可以简化都采用单极子声源进行模拟。在柴油机满负载运行时,柴油机排气、冷却塔、电阻制动器这三个主要的噪声源的声功率谱如图2所示。

3外场辐射噪声分析

参考标准《AS2377-2002声学-轨道车辆噪声的测量方法》,根据试验过程中的布点位置进行模拟如图3所示,进行内燃机车外场噪声仿真。采用LMSVirtual.LabAcoustics软件,建立机车外场噪声仿真模型,用直接边界元法分析低频噪声,射线声学法分析高频噪声,以求解机车外场辐射噪声场分布。声学仿真模型如图4所示。根据机车的边界元模型及射线声学的模型,对机车的外场辐射噪声进行全频段求解。如图5所示。从图6可以看出,在A、B、L点,冷却塔噪声源对总噪声值的影响较大;在C、D、J、K点,冷却塔和电制动器的噪声影响相差不大;在机车尾部,即E、F、G、H、I点,电制动器的噪声对总噪声值的影响较大。因此,如果要降低测点噪声,应该以降低电制动器噪声为主,冷却塔噪声为辅。根据客户要求,在柴油机满负载运行工况下,距离机车15米处的外场噪声限值为85dBA。如果要求各测点噪声水平小于85dBA,则电制动器噪声水平需至少降低5dBA,冷却塔噪声水平需至少降低3dBA。可以通过设备供应商改进结构降低噪声源噪声,或是增加消音器降低噪声。在降低电制动器和冷却塔噪声后,各声源对机车外场测点总噪声的贡献量见图7,测点总噪声值已满足要求。

4仿真与试验

降噪前噪声仿真值与测试值的对比见表2。从表2可以看出,仿真值与试验值趋势基本吻合,除了K点差异值较大,其余测点误差在2dB之内。A点噪声值最小,判断是因为在机车车头15m远处,距离噪声源最远。D、J点噪声值较大,判断是因为受到柴油机和电制动器影响较大。

5展望

(1)机车外场辐射噪声模拟分析过程中,在机车满负荷运转的情况下,C-E、I-J点的测点位置噪声明显超过了指标要求值85dBA。满负荷工况下,机车后端部是噪音超标的高风险区域。(2)为减弱机车外场辐射噪声对周边环境的影响,要依据机车整体布局,需对机车各个部件噪声要求有所提高。在以上分析过程中,发现超标噪声值主要集中在机车后端部,修订了电阻制动装置与冷却风扇的噪声值要求。

在利用LMS软件开展机车外场辐射噪声的数值仿真分析过程中,为达到要求,除重新修订主要外购件技术指标外,机车整体设计和设备布局也采取了有针对性的改进措施,取得了较好的效果。该数值分析方法的应用为机车设计工作增添了一份保障,也将会为后续的开发项目积累一些应用经验,相信通过后续的试验验证和深化应用,该方法定会日臻成熟并被广泛应用。

参考文献

[1]蔡庆云.机车动态检测噪声的防治[J].铁道标准设计,2006(5):97-99.

[2]SenMKuo,MorGan.ActiveNoiseControl:ATutorialReview[J].Proc.IEEE,1999,87:943-973.

[3]马大猷.噪声与振动控制工程手册[M].北京:机械工业出版社,2002.

[4]周新祥.噪声控制技术及其新进展[M].北京:冶金工业出版社,2007.

[5]SenMKuo,XuanKong,WoonSGan.ApplicationsofAdaptiveFeed⁃backActiveNoiseControlSystem[J].TranslationsonControlSystemsTechnology,IEEE,2003,11(2):216-220.

声学设计范文篇8

在很多情况下,室内装修有一定的声学要求。不仅是各类剧院、体育场馆和歌舞厅以及与声学有关的录音室、演播室等专业用房本身有一定的声学技术指标,而且凡是公共场所,一般都需要传播语言或音乐,即使是家庭用房现在也需要有良好的音乐欣赏环境。所以室内装修工程必须重视声学要求。如果忽视这一点,极有可能造成不良后果。例如有一水上健身娱乐场所,地面基本上都是水面,上空是一大玻璃圆穹项,由于没有声学设计,致使厅内混响时间特别长,当有文娱表演时连报幕的话也听不清。再如有的走廓或门厅,做得富丽堂皇、金碧辉煌,但即使是普通的谈话声或背景音乐,也在空间内久传不衰,形成令人烦恼的干扰噪声。

造成音质差的主要原因是没有科学的声学设计。不少装饰工程公司本身没有合格的声学设计人员;有的一开始邀请声学专家做设计,以后自以为有了“经验”,便大胆地把设计也承包了;有的是东抄西袭,以为找到了人家的奥秘,你做软包,我也搞软包,你用穿孔板,我也做穿孔板,实际上没有掌握真正的声学要求;也不排除有的工程技术人员懂得一些声学知识,但并不精于室内声学的原理和实践,做出了并不合格的声学装修设计。

室内声学设计是一门系统学科,涉及面较广,本文只就与室内装饰有关的吸声和隔声的材料和结构方面的知识作简单介绍,希望装饰工程人员和业主对声学材料和结构有所了解,能够理解声学设计为什么作这样那样的处理,从而使装饰工程在美观和声学要求上达到完美的统一。

1.吸声与隔声的基本概念

首先要明确吸声与隔声是完全不同的两个声学概念。吸声是指声波传播到某一边界面时,一部分声能被边界面反射(或散射),一部分声能被边界面吸收(这里不考虑在媒质中传播时被媒质的吸收),这包括声波在边界材料内转化为热能被消耗掉或是转化为振动能沿边界构造传递转移,或是直接透射到边界另一面空间。对于入射声波来说,除了反射到原来空间的反射(散射)声能外,其余能量都被看作被边界面吸收。在一定面积上被吸收的声能与入射声能之比称为该边界面的吸声系数。例如室内声波从开着的窗户传到室外,则开窗面积可近似地认为百分之百地“吸收”了室内传来的声波,吸声系数为1。当然,我们所要考虑的吸声材料,主要不是靠开口面积的吸声,而要靠材料本身的声学特性来吸收声波。

对于两个空间中间的界面隔层来说,当声波从一室入射到界面上时,声波激发隔层的振动,以振动向另一面空间辐射声波,此为透射声波。通过一定面积的透射声波能量与入射声波能量之比称透射系数。对于开启的窗户,透射系数可近似为1(吸声系数也为1),其隔声效果为0,即隔声量为0db。对于又重又厚的砖墙或厚钢板,单位面积质量大,声波入射时只能激发起此隔层的微小振动,使对另一空间辐射的声波能量(透射声能)很小,所以隔声量大,隔声效果好。但对于原来空间而言,绝大部分能量被反射,所以吸声系数很小。

对于单一材料(不是专门设计的复合材料)来说,吸声能力与隔声效果往往是不能兼顾的。如上述砖墙或钢板可以作为好的隔声材料,但吸声效果极差;反过来,如果拿吸声性能好的材料(如玻璃棉)做隔声材料,即使声波透过该材料时声能被吸收99%(这是很难达到的),只有1%的声能传播到另一空间,则此材料的隔声量也只有20db,并非好的隔声材料。有人把吸声材料误称为“隔音材料”是不对的。如果有人介绍某种单一材料吸声好隔声也好,那他不是不懂就是在骗人了。

2.吸声材料

吸声材料是指吸声系数比较大的建筑装修材料。如果材料内部有很多互相连通的细微空隙,由空隙形成的空气通道,可模拟为由固体框架间形成许多细管或毛细管组成的管道构造。当声波传入时,因细管中靠近管壁与管中间的声波振动速度不同,由媒质间速度差引起的内摩擦,使声波振动能量转化为热能而被吸收。好的吸声材料多为纤维性材料,称多孔性吸声材料,如玻璃棉、岩棉、矿碴棉、棉麻和人造纤维棉、特制的金属纤维棉等等,也包括空隙连通的泡沫塑料之类。吸声性能与材料的纤维空隙结构有关,如纤维的粗细(微米至几十微米间为好)和材料密度(决定纤维之间“毛细管”的等效直径)、材料内空气容积与材料体积之比(称空隙率,玻璃棉的空隙率在90%以上)、材料内空隙的形状结构等。从使用的角度,可以不管吸声的机理,只要查阅材料吸声系数的实验结果即可。当然在选用时还要注意材料的防潮、防火以及可装饰性等其他要求。

多孔性吸声材料有一个基本吸声特性,即低频吸声差,高频吸声好。定性的吸声频率特性见图1。频率高到一定值附近,见图1中f0,吸声系数α达到最大值,频率继续增大时,吸声系数在高端有些波动。这个f0的位置,大体上是f0对应的波长为材料厚度t的4倍

当材料厚度增加时,可以改善低频的吸声特性。图1中t2大于t1,相同频率时t2的吸声系数大于t1的吸声系数。如果t2=2t1,则相同吸声系数对应的频率大约为f2=f1,即厚度增加一倍,低频吸声系数的频率特性向低频移一个倍频程。但并非可以一直增加厚度来提高低频吸声系数的,因为声波在材料的空隙中传播时有阻尼,使增加厚度来改善低频吸声受到限制。不同材料有不同的有效厚度。像玻璃棉一类好的吸声材料,一般用5cm左右的厚度,很少用到10cm以上。而像纤维板一类较微密的材料,其材料纤维间空隙非常小,声波传播的阻尼非常大,不仅吸声系数小,而且有效厚度也非常小。

一般平板状吸声材料的低频吸声性能差是普遍规律。一种改进的方法是将整块的吸声材料切割成尖劈形状,见图2,当声波传播到尖劈状材料时,从尖部到基部,空气与材料的比例逐渐变化,也即声阻抗逐渐变化,声波传播就超出平板状材料有效厚度的限制,达到材料的基部,从而可改善低频吸声性能。吸声频率特性仍与图1相似,最大吸声系数的频率f0对应的波长大约为尖劈吸声结构长度t的4倍。例如要使100hz以上频率都有很高的吸声系数,吸声尖劈的长度约为87cm左右。当然这样的吸声结构一般不宜用于室内装修,主要用于声学实验室或特殊的噪声控制工程。

3.共振吸声结构

利用不同的共振吸声机理,设计各种类型的共振吸声结构,使吸收峰值选择在所需频率位置,满足不同频率吸声量的要求,特别是解决低频吸声量不足的问题。

3.1薄层多孔性吸声材料的共振吸声

薄层多孔性吸声材料也包括各种透气的织物,如棉、麻、丝、绒、人造纤维等织物。如图3a,将材料挂在刚性面前距离d处,则当d=1/4(2n+1)λ(1)时,λ是空气中声波波长,n为正整数,织物处于刚性面前驻波的声压波节位置,那里声波的质点振动速度最大,使在织物中消耗最大的声能,形成共振吸声。在(1)式中n分别等于0、1、2……时,对应的共振吸声频率fn为:fn=(2n+1)/4.co/d(2)式中co为空气中声波传播速度,一般以340m/s计算。例如,当织物与刚性壁距离为34cm时,n=0对应的最低共振频率f0=250hz,n=1对应的f1=750hz,n=2对应f2=1250hz……。其共振吸声的频率特性见图3b。吸声峰值与织物性能有关,一般都比较大,但共振吸声峰的宽度不大,在实际使用中往往将帘子增大折皱悬挂,即连续改变织物与刚性面的距离,并在不同距离处悬挂不止一层织物,以改善吸声频率特性。此外,将厚度为d的玻璃棉一类材料离刚性面d处安装,见图4,则(1)式中的d→变成为d→(d+t)连续变化,即有许多共振吸声频率,而最低共振频率为f0=c0/4(d+t)。

3.2薄膜共振吸声结构

如果刚性面前d处有一层不透气的膜,见图5,膜的单位面积质量为m,则膜与厚度为d的空气层构成质量——弹簧的共振系统,其共振频率为:

fr=co/2π√ρo/md(3)

式中ρo为空气密度。例如在“软包”外表面蒙上不透气的膜,则包在里面的多孔性吸声材料就不能发挥原有的吸声功能,而首先是膜的共振吸声并通过膜振动传入材料内的吸声作用,而此膜振动又受到材料的阻尼抑制,吸声效能受到限制。如果蒙皮用人造革一类质量较大的材料,如有的剧院中的座椅,那种吸声性能就更差了。

3.3薄板共振吸声结构

薄板是两维的振动系统,其共振频率除了与板的物理常数和几何尺寸有关外,还和它的边缘固定状况有关。如果一块边长为la、lb的矩形板,厚度为h,四边都被牢固地钳定,它的共振频率fm,n为:

fm,n=π/2[eh2/12ρ(1-σ2)]1/2.[m2/1n2+n2/1b2]1/2(4)

式中e、ρ、σ分别为板的杨氏模量、密度和泊松比,m、n为正整数。当n=0、m=1时,得到最低的共振频率(设la>lb)。如果板为玻璃,将玻璃的物理常数代入:

fm,n=2.5×10h3(m2/1n2+n2/1b2)1/2(5)

式中长度单位为米。例如长50cm、宽40cm、厚4mm的玻璃窗,四边固定,则(m,n)为(1,0)的最低共振频率为20hz,(m,n)为(0,1)的共振频率为25hz,(m,n)为(1,1)的共振频率为32hz。随着(m,n)渐次增大,共振频率越来越大(间隔也越来越密),在这些频率上有较大的声吸收和声透射。

在室内装修中经常用到板材,它们都有一定的共振吸声效应,其共振频率大体上如(4)式所示,与板的几何尺寸和物理常数有关,同时与边缘固定状况有关,例如钉子钉多少,钉紧的程度,是否用胶固定等等。因此这类共振吸声往往不被主动采用在设计方案内,只有有经验的设计师才谨慎地使用。但有一点非常重要,即当用薄板作表面装饰处理时,为避免共振频率过多的一致,在设计和施工中注意将固定薄板的木筋之间给予不同的间距尺寸,使共振频率得以分散。对于不希望有薄板共振吸声作用的声学空间,表面处理就采用贴实的厚板。

3.4穿孔板共振吸声结构

经常利用穿孔板共振吸声结构来补足低频所需的吸声量。穿孔板吸声结构如图6a所示,板厚t,离刚性面距离d,如板上钻圆孔(也可开狭缝),孔的半径为a,穿孔面积占板面积的比率(穿孔率)为p,则此穿孔共振结构的共振频率fr为

fr=co/2π√p/(t+16a)d(6)

式中表示共振频率有好几个参数可以调节,如板厚t,孔的半径a,穿孔率p以及板与刚性面的距离d。现在市场上有做好的不同穿孔率的穿孔板,可以选择不同的穿孔率和改变板与刚性面间距离d,来得到所需的共振频率。

需要注意的是穿孔板共振吸声峰的形状,它与共振结构系统的阻尼有关。见图6b,阻尼小时,共振峰较尖锐,阻尼大时共振峰较为平缓。一般宁可选择较为平缓的吸声特性,以避免过强的吸声频率选择性。板厚、孔径小,阻尼较大。微穿孔板的穿孔直径为08~1mm左右,所以阻尼大,吸收峰较为平缓,但因易积灰和不耐腐蚀,所以不少地方不宜采用。

一般穿孔板厚度不大于5mm,穿孔直径在6~10mm左右,这种情况下阻尼嫌小。要增加共振结构的阻尼,需要在穿孔附近增加吸声材料。参看图6c,当声波传播经过穿孔时,“声线”像流线那样在孔中和孔附近比较密集,那里的“流速”大,即声波的质点振动速度大,吸声材料产生最大的阻尼作用。我们很难将吸声材料填塞到一个个孔中,所以往往在板的前面或后面贴一层吸声材料(厚度为一个孔直径时效率最高)来增加共振吸声系统的阻尼,使吸收峰比较平缓。吸声材料在穿孔板后面时,只起到共振吸声的阻尼作用;若放在穿孔板前面,则同时兼有多孔性吸声材料的吸声功能。穿孔率p大于02时,一般不是共振吸声结构,仅仅作为多孔性吸声材料的“护面板”。

4.隔声材料

不透气的固体材料,对于空气中传播的声波都有隔声效果,隔声效果的好坏最根本的一点是取决于材料单位面积的质量。

参看图7,一个面积非常大的隔层,其单位面积质量为ms,当声波从左面垂直入射时,激发隔层作整体振动,此振动再向右面空间辐射声波。以单位面积考虑,透射到右面空间的声能与入射到隔层上的声能之比称透射系数τ。定义无限大隔层材料的传递损失(也称透射损失)tl:

tl=101g1/г(7)

上述简单情况下可计算得到传递损失近似为:

tl=20lgωms/2ρoco(db)(8)

式中ω=2πf为圆频率,ρ0、c0为空气的密度和声波传播速度。tl的大小表示材料的隔声能力。(8)式的一个重要特点,即材料单位面积质量增加一倍,则传递损失增加6db。这一隔声的基本规律称“质量定律”,也就是说隔声靠重量。所以像砖墙、水泥墙或厚钢板、铅板等单位面积质量大的材料,隔声效果都比较好。

(8)式也表明,单层隔声的高频隔声好,低频差。频率每提高一倍,传递损失就增加6db。

需要说明的是:传递损失tl是隔层面积为无限大时的理论“隔声量”,作为一垛墙或楼板,它都有边缘与其它建筑构件连接,这时的“隔声量”与(7)式所表示的传递损失有差别。既有因边缘接近于固定而增大隔声能力,也有作为边缘固定的板振动有一定的共振频率,使某些共振频率点上隔声效果降低的现象。而当作为两相邻房间之间的隔墙或楼板,因为两室之间有多条传声(或振动)通道,这两个房间之间的隔声量(只能称声级差)更不能以该隔层的传递损失来代表。

隔层材料在物理上有一定弹性,当声波入射时便激发振动在隔层内传播。当声波不是垂直入射,而是与隔层呈一角度θ入射时,声波波前依次到达隔层表面,而先到隔层的声波激发隔层内弯曲振动波沿隔层横向传播,若弯曲波传播速度与空气中声波渐次到达隔层表面的行进速度一致时,声波便加强弯曲波的振动,这一现象称吻合效应。这时弯曲波振动的辐度特别大,并向另一面空气中辐射声波的能量也特别大,从而降低隔声效果。产生吻合效应的频率fc为:

fc=co2/2πsin2θ[12ρ(1-σ2)/eh2]1/2(9)

式中ρ、σ、e分别为隔层材料的密度、泊松比和杨氏模量,h是隔层厚度。任意吻合频率fc与声波入射角θ有关。在大多数房间中的声场都接近于混响声场,到达隔层的入射角从0°到90°都有可能,因此吻合频率出现在从掠入射(θ=90°)的fc0开始的一个频率范围,也就是说吻合效应使某一频率范围的隔声效果变差。一般这一频率范围发生在中高频。从质量定律知道,中高频隔声量较大,除了内阻尼很小的金属板外,因吻合效应使中高频隔声量降低的现象,不会引起很大的麻烦。

5.双层隔声结构

根据质量定律,频率降低一半,传递损失要降6db;而要提高隔声效果时,质量增加一倍,传递损失增加6db。在这一定律支配下,若要显著地提高隔声能力,单靠增加隔层的质量,例如增加墙的厚度,显然不能行之有效,有时甚至是不可能的,如航空器上的隔声结构。这时解决的途径主要是采用双层以至多层隔声结构。

双层隔声结构模型见图8,单位面积质量分别为m1、m2,中间空气层厚度为l。双层结构的传递损失可以进行理论计算,结果比较复杂,在不同频率范围可以得到不同的简化表示,这里只作定性介绍。

两个隔层与中间空气层组成一个共振系统,共振频率为fr(m的单位为kg/m2,l的单位为m):

fr=60/√m1m2l/(m1+m2)(10)

在此共振频率附近,隔声效果大为降低。不过对于重墙来说,此频率已低于可闻频率范围。例如m1为半砖墙250kg/m2,m2为一砖墙500kg/m2,空气层厚度05m,这时共振频率在7hz左右。

对于轻结构双层隔声,共振频率可能落在可闻频率范围内,例如两层铝板分别为52kg/m2和26kg/m2,中间空气层5cm,可计算出共振频率约为200hz。这时应在两板间填塞阻尼材料,以抑制板的振动。一般若用薄钢板做双层隔声结构时,钢板上都涂好阻尼层来抑制钢板的振动。

在共振频率fr以下,双层隔声的效果如同没有空气层的一层(m1+m2)的隔声效果;在fr以上一段频率范围,双层隔声效果接近于两个单层隔声的传递损失之和;在更高的频率,当空气层厚度l为四分之一波长的奇数倍时,双层隔声效果相当于两个单层的传递损失之和再加6db,l为波长的偶数倍时,双层隔声效果相当于两个单层合在一起的传递损失再增加6db,在其它频率,传声损失在这两个值之间。所以在总体上,当频率大于fr时,双层隔声结构显著地提高了隔声效能。

声学设计范文篇9

在很多情况下,室内装修有一定的声学要求。不仅是各类剧院、体育场馆和歌舞厅以及与声学有关的录音室、演播室等专业用房本身有一定的声学技术指标,而且凡是公共场所,一般都需要传播语言或音乐,即使是家庭用房现在也需要有良好的音乐欣赏环境。所以室内装修工程必须重视声学要求。如果忽视这一点,极有可能造成不良后果。例如有一水上健身娱乐场所,地面基本上都是水面,上空是一大玻璃圆穹项,由于没有声学设计,致使厅内混响时间特别长,当有文娱表演时连报幕的话也听不清。再如有的走廓或门厅,做得富丽堂皇、金碧辉煌,但即使是普通的谈话声或背景音乐,也在空间内久传不衰,形成令人烦恼的干扰噪声。

造成音质差的主要原因是没有科学的声学设计。不少装饰工程公司本身没有合格的声学设计人员;有的一开始邀请声学专家做设计,以后自以为有了“经验”,便大胆地把设计也承包了;有的是东抄西袭,以为找到了人家的奥秘,你做软包,我也搞软包,你用穿孔板,我也做穿孔板,实际上没有掌握真正的声学要求;也不排除有的工程技术人员懂得一些声学知识,但并不精于室内声学的原理和实践,做出了并不合格的声学装修设计。

室内声学设计是一门系统学科,涉及面较广,本文只就与室内装饰有关的吸声和隔声的材料和结构方面的知识作简单介绍,希望装饰工程人员和业主对声学材料和结构有所了解,能够理解声学设计为什么作这样那样的处理,从而使装饰工程在美观和声学要求上达到完美的统一。

1.吸声与隔声的基本概念

首先要明确吸声与隔声是完全不同的两个声学概念。吸声是指声波传播到某一边界面时,一部分声能被边界面反射(或散射),一部分声能被边界面吸收(这里不考虑在媒质中传播时被媒质的吸收),这包括声波在边界材料内转化为热能被消耗掉或是转化为振动能沿边界构造传递转移,或是直接透射到边界另一面空间。对于入射声波来说,除了反射到原来空间的反射(散射)声能外,其余能量都被看作被边界面吸收。在一定面积上被吸收的声能与入射声能之比称为该边界面的吸声系数。例如室内声波从开着的窗户传到室外,则开窗面积可近似地认为百分之百地“吸收”了室内传来的声波,吸声系数为1。当然,我们所要考虑的吸声材料,主要不是靠开口面积的吸声,而要靠材料本身的声学特性来吸收声波。

对于两个空间中间的界面隔层来说,当声波从一室入射到界面上时,声波激发隔层的振动,以振动向另一面空间辐射声波,此为透射声波。通过一定面积的透射声波能量与入射声波能量之比称透射系数。对于开启的窗户,透射系数可近似为1(吸声系数也为1),其隔声效果为0,即隔声量为0db。对于又重又厚的砖墙或厚钢板,单位面积质量大,声波入射时只能激发起此隔层的微小振动,使对另一空间辐射的声波能量(透射声能)很小,所以隔声量大,隔声效果好。但对于原来空间而言,绝大部分能量被反射,所以吸声系数很小。

对于单一材料(不是专门设计的复合材料)来说,吸声能力与隔声效果往往是不能兼顾的。如上述砖墙或钢板可以作为好的隔声材料,但吸声效果极差;反过来,如果拿吸声性能好的材料(如玻璃棉)做隔声材料,即使声波透过该材料时声能被吸收99%(这是很难达到的),只有1%的声能传播到另一空间,则此材料的隔声量也只有20db,并非好的隔声材料。有人把吸声材料误称为“隔音材料”是不对的。如果有人介绍某种单一材料吸声好隔声也好,那他不是不懂就是在骗人了。

2.吸声材料

吸声材料是指吸声系数比较大的建筑装修材料。如果材料内部有很多互相连通的细微空隙,由空隙形成的空气通道,可模拟为由固体框架间形成许多细管或毛细管组成的管道构造。当声波传入时,因细管中靠近管壁与管中间的声波振动速度不同,由媒质间速度差引起的内摩擦,使声波振动能量转化为热能而被吸收。好的吸声材料多为纤维性材料,称多孔性吸声材料,如玻璃棉、岩棉、矿碴棉、棉麻和人造纤维棉、特制的金属纤维棉等等,也包括空隙连通的泡沫塑料之类。吸声性能与材料的纤维空隙结构有关,如纤维的粗细(微米至几十微米间为好)和材料密度(决定纤维之间“毛细管”的等效直径)、材料内空气容积与材料体积之比(称空隙率,玻璃棉的空隙率在90%以上)、材料内空隙的形状结构等。从使用的角度,可以不管吸声的机理,只要查阅材料吸声系数的实验结果即可。当然在选用时还要注意材料的防潮、防火以及可装饰性等其他要求。

多孔性吸声材料有一个基本吸声特性,即低频吸声差,高频吸声好。定性的吸声频率特性见图1。频率高到一定值附近,见图1中f0,吸声系数α达到最大值,频率继续增大时,吸声系数在高端有些波动。这个f0的位置,大体上是f0对应的波长为材料厚度t的4倍

当材料厚度增加时,可以改善低频的吸声特性。图1中t2大于t1,相同频率时t2的吸声系数大于t1的吸声系数。如果t2=2t1,则相同吸声系数对应的频率大约为f2=f1,即厚度增加一倍,低频吸声系数的频率特性向低频移一个倍频程。但并非可以一直增加厚度来提高低频吸声系数的,因为声波在材料的空隙中传播时有阻尼,使增加厚度来改善低频吸声受到限制。不同材料有不同的有效厚度。像玻璃棉一类好的吸声材料,一般用5cm左右的厚度,很少用到10cm以上。而像纤维板一类较微密的材料,其材料纤维间空隙非常小,声波传播的阻尼非常大,不仅吸声系数小,而且有效厚度也非常小。

一般平板状吸声材料的低频吸声性能差是普遍规律。一种改进的方法是将整块的吸声材料切割成尖劈形状,见图2,当声波传播到尖劈状材料时,从尖部到基部,空气与材料的比例逐渐变化,也即声阻抗逐渐变化,声波传播就超出平板状材料有效厚度的限制,达到材料的基部,从而可改善低频吸声性能。吸声频率特性仍与图1相似,最大吸声系数的频率f0对应的波长大约为尖劈吸声结构长度t的4倍。例如要使100hz以上频率都有很高的吸声系数,吸声尖劈的长度约为87cm左右。当然这样的吸声结构一般不宜用于室内装修,主要用于声学实验室或特殊的噪声控制工程。

3.共振吸声结构

利用不同的共振吸声机理,设计各种类型的共振吸声结构,使吸收峰值选择在所需频率位置,满足不同频率吸声量的要求,特别是解决低频吸声量不足的问题。

3.1薄层多孔性吸声材料的共振吸声

薄层多孔性吸声材料也包括各种透气的织物,如棉、麻、丝、绒、人造纤维等织物。如图3a,将材料挂在刚性面前距离d处,则当d=1/4(2n+1)λ(1)时,λ是空气中声波波长,n为正整数,织物处于刚性面前驻波的声压波节位置,那里声波的质点振动速度最大,使在织物中消耗最大的声能,形成共振吸声。在(1)式中n分别等于0、1、2……时,对应的共振吸声频率fn为:fn=(2n+1)/4.co/d(2)式中co为空气中声波传播速度,一般以340m/s计算。例如,当织物与刚性壁距离为34cm时,n=0对应的最低共振频率f0=250hz,n=1对应的f1=750hz,n=2对应f2=1250hz……。其共振吸声的频率特性见图3b。吸声峰值与织物性能有关,一般都比较大,但共振吸声峰的宽度不大,在实际使用中往往将帘子增大折皱悬挂,即连续改变织物与刚性面的距离,并在不同距离处悬挂不止一层织物,以改善吸声频率特性。此外,将厚度为d的玻璃棉一类材料离刚性面d处安装,见图4,则(1)式中的d→变成为d→(d+t)连续变化,即有许多共振吸声频率,而最低共振频率为f0=c0/4(d+t)。

3.2薄膜共振吸声结构

如果刚性面前d处有一层不透气的膜,见图5,膜的单位面积质量为m,则膜与厚度为d的空气层构成质量——弹簧的共振系统,其共振频率为:

fr=co/2π√ρo/md(3)

式中ρo为空气密度。例如在“软包”外表面蒙上不透气的膜,则包在里面的多孔性吸声材料就不能发挥原有的吸声功能,而首先是膜的共振吸声并通过膜振动传入材料内的吸声作用,而此膜振动又受到材料的阻尼抑制,吸声效能受到限制。如果蒙皮用人造革一类质量较大的材料,如有的剧院中的座椅,那种吸声性能就更差了。3.3薄板共振吸声结构

薄板是两维的振动系统,其共振频率除了与板的物理常数和几何尺寸有关外,还和它的边缘固定状况有关。如果一块边长为la、lb的矩形板,厚度为h,四边都被牢固地钳定,它的共振频率fm,n为:

fm,n=π/2[eh2/12ρ(1-σ2)]1/2.[m2/1n2+n2/1b2]1/2(4)

式中e、ρ、σ分别为板的杨氏模量、密度和泊松比,m、n为正整数。当n=0、m=1时,得到最低的共振频率(设la>lb)。如果板为玻璃,将玻璃的物理常数代入:

fm,n=2.5×10h3(m2/1n2+n2/1b2)1/2(5)

式中长度单位为米。例如长50cm、宽40cm、厚4mm的玻璃窗,四边固定,则(m,n)为(1,0)的最低共振频率为20hz,(m,n)为(0,1)的共振频率为25hz,(m,n)为(1,1)的共振频率为32hz。随着(m,n)渐次增大,共振频率越来越大(间隔也越来越密),在这些频率上有较大的声吸收和声透射。

在室内装修中经常用到板材,它们都有一定的共振吸声效应,其共振频率大体上如(4)式所示,与板的几何尺寸和物理常数有关,同时与边缘固定状况有关,例如钉子钉多少,钉紧的程度,是否用胶固定等等。因此这类共振吸声往往不被主动采用在设计方案内,只有有经验的设计师才谨慎地使用。但有一点非常重要,即当用薄板作表面装饰处理时,为避免共振频率过多的一致,在设计和施工中注意将固定薄板的木筋之间给予不同的间距尺寸,使共振频率得以分散。对于不希望有薄板共振吸声作用的声学空间,表面处理就采用贴实的厚板。

3.4穿孔板共振吸声结构

经常利用穿孔板共振吸声结构来补足低频所需的吸声量。穿孔板吸声结构如图6a所示,板厚t,离刚性面距离d,如板上钻圆孔(也可开狭缝),孔的半径为a,穿孔面积占板面积的比率(穿孔率)为p,则此穿孔共振结构的共振频率fr为

fr=co/2π√p/(t+16a)d(6)

式中表示共振频率有好几个参数可以调节,如板厚t,孔的半径a,穿孔率p以及板与刚性面的距离d。现在市场上有做好的不同穿孔率的穿孔板,可以选择不同的穿孔率和改变板与刚性面间距离d,来得到所需的共振频率。

需要注意的是穿孔板共振吸声峰的形状,它与共振结构系统的阻尼有关。见图6b,阻尼小时,共振峰较尖锐,阻尼大时共振峰较为平缓。一般宁可选择较为平缓的吸声特性,以避免过强的吸声频率选择性。板厚、孔径小,阻尼较大。微穿孔板的穿孔直径为08~1mm左右,所以阻尼大,吸收峰较为平缓,但因易积灰和不耐腐蚀,所以不少地方不宜采用。

一般穿孔板厚度不大于5mm,穿孔直径在6~10mm左右,这种情况下阻尼嫌小。要增加共振结构的阻尼,需要在穿孔附近增加吸声材料。参看图6c,当声波传播经过穿孔时,“声线”像流线那样在孔中和孔附近比较密集,那里的“流速”大,即声波的质点振动速度大,吸声材料产生最大的阻尼作用。我们很难将吸声材料填塞到一个个孔中,所以往往在板的前面或后面贴一层吸声材料(厚度为一个孔直径时效率最高)来增加共振吸声系统的阻尼,使吸收峰比较平缓。吸声材料在穿孔板后面时,只起到共振吸声的阻尼作用;若放在穿孔板前面,则同时兼有多孔性吸声材料的吸声功能。穿孔率p大于02时,一般不是共振吸声结构,仅仅作为多孔性吸声材料的“护面板”。

4.隔声材料

不透气的固体材料,对于空气中传播的声波都有隔声效果,隔声效果的好坏最根本的一点是取决于材料单位面积的质量。

参看图7,一个面积非常大的隔层,其单位面积质量为ms,当声波从左面垂直入射时,激发隔层作整体振动,此振动再向右面空间辐射声波。以单位面积考虑,透射到右面空间的声能与入射到隔层上的声能之比称透射系数τ。定义无限大隔层材料的传递损失(也称透射损失)tl:

tl=101g1/г(7)

上述简单情况下可计算得到传递损失近似为:

tl=20lgωms/2ρoco(db)(8)

式中ω=2πf为圆频率,ρ0、c0为空气的密度和声波传播速度。tl的大小表示材料的隔声能力。(8)式的一个重要特点,即材料单位面积质量增加一倍,则传递损失增加6db。这一隔声的基本规律称“质量定律”,也就是说隔声靠重量。所以像砖墙、水泥墙或厚钢板、铅板等单位面积质量大的材料,隔声效果都比较好。

(8)式也表明,单层隔声的高频隔声好,低频差。频率每提高一倍,传递损失就增加6db。

需要说明的是:传递损失tl是隔层面积为无限大时的理论“隔声量”,作为一垛墙或楼板,它都有边缘与其它建筑构件连接,这时的“隔声量”与(7)式所表示的传递损失有差别。既有因边缘接近于固定而增大隔声能力,也有作为边缘固定的板振动有一定的共振频率,使某些共振频率点上隔声效果降低的现象。而当作为两相邻房间之间的隔墙或楼板,因为两室之间有多条传声(或振动)通道,这两个房间之间的隔声量(只能称声级差)更不能以该隔层的传递损失来代表。

隔层材料在物理上有一定弹性,当声波入射时便激发振动在隔层内传播。当声波不是垂直入射,而是与隔层呈一角度θ入射时,声波波前依次到达隔层表面,而先到隔层的声波激发隔层内弯曲振动波沿隔层横向传播,若弯曲波传播速度与空气中声波渐次到达隔层表面的行进速度一致时,声波便加强弯曲波的振动,这一现象称吻合效应。这时弯曲波振动的辐度特别大,并向另一面空气中辐射声波的能量也特别大,从而降低隔声效果。产生吻合效应的频率fc为:

fc=co2/2πsin2θ[12ρ(1-σ2)/eh2]1/2(9)

式中ρ、σ、e分别为隔层材料的密度、泊松比和杨氏模量,h是隔层厚度。任意吻合频率fc与声波入射角θ有关。在大多数房间中的声场都接近于混响声场,到达隔层的入射角从0°到90°都有可能,因此吻合频率出现在从掠入射(θ=90°)的fc0开始的一个频率范围,也就是说吻合效应使某一频率范围的隔声效果变差。一般这一频率范围发生在中高频。从质量定律知道,中高频隔声量较大,除了内阻尼很小的金属板外,因吻合效应使中高频隔声量降低的现象,不会引起很大的麻烦。

5.双层隔声结构

根据质量定律,频率降低一半,传递损失要降6db;而要提高隔声效果时,质量增加一倍,传递损失增加6db。在这一定律支配下,若要显著地提高隔声能力,单靠增加隔层的质量,例如增加墙的厚度,显然不能行之有效,有时甚至是不可能的,如航空器上的隔声结构。这时解决的途径主要是采用双层以至多层隔声结构。

双层隔声结构模型见图8,单位面积质量分别为m1、m2,中间空气层厚度为l。双层结构的传递损失可以进行理论计算,结果比较复杂,在不同频率范围可以得到不同的简化表示,这里只作定性介绍。

两个隔层与中间空气层组成一个共振系统,共振频率为fr(m的单位为kg/m2,l的单位为m):

fr=60/√m1m2l/(m1+m2)(10)

在此共振频率附近,隔声效果大为降低。不过对于重墙来说,此频率已低于可闻频率范围。例如m1为半砖墙250kg/m2,m2为一砖墙500kg/m2,空气层厚度05m,这时共振频率在7hz左右。

对于轻结构双层隔声,共振频率可能落在可闻频率范围内,例如两层铝板分别为52kg/m2和26kg/m2,中间空气层5cm,可计算出共振频率约为200hz。这时应在两板间填塞阻尼材料,以抑制板的振动。一般若用薄钢板做双层隔声结构时,钢板上都涂好阻尼层来抑制钢板的振动。

在共振频率fr以下,双层隔声的效果如同没有空气层的一层(m1+m2)的隔声效果;在fr以上一段频率范围,双层隔声效果接近于两个单层隔声的传递损失之和;在更高的频率,当空气层厚度l为四分之一波长的奇数倍时,双层隔声效果相当于两个单层的传递损失之和再加6db,l为波长的偶数倍时,双层隔声效果相当于两个单层合在一起的传递损失再增加6db,在其它频率,传声损失在这两个值之间。所以在总体上,当频率大于fr时,双层隔声结构显著地提高了隔声效能。

声学设计范文篇10

关键字语音合成,文语转换,语音人机界面

1引言

由人工通过一定的机器设备产生出语音称为语音合成(SpeechSynthesis)。语音合成是人机语音通信的一个重要组成部分。语音合成研究的目的是制造一种会说话的机器,它解决的是如何让机器象人那样说话的问题,使一些以其它方式表示或存储的信息能转换为语音,让人们能通过听觉而方便地获得这些信息。

语音合成从技术方式讲可分为波形编辑合成、参数分析合成以及规则合成等三种。

波形编辑合成,这种合成方式以语句、短语、词或音节为合成单元,这些单元被分别录音后直接进行数字编码,经适当的数据压缩,组成一个合成语音库。重放时,根据待输出的信息,在语料库中取出相应单元的波形数据,串接或编辑在一起,经解码还原出语音。这种合成方式,也叫录音编辑合成,合成单元越大,合成的自然度越好,系统结构简单,价格低廉,但合成语音的数码率较大,存储量也大,因而合成词汇量有限。

参数分析合成,这种合成方式多以音节、半音节或音素为合成单元。首先,按照语音理论,对所有合成单元的语音进行分析,提取有关语音参数,这些参数经编码后组成一个合成语音库;输出时,根据待合成的语音的信息,从语音库中取出相应的合成参数,经编辑和连接,顺序送入语音合成器。在合成器中,通过合成参数的控制,将语音波形重新还原出来。

规则合成,这种合成方式通过语音学规则来产生目标语音。规则合成系统存储的是较小的语音单位(如音素、双音素、半音节或音节)的声学参数,以及由音素组成音节、再由音节组成词或句子的各种规则。当输入字母符号时,合成系统利用规则自动地将它们转换成连续的语音波形。由于语音中存在协同发音效应,单独存在的元音和辅音与连续发音中的元音和辅音不同,所以,合成规则是在分析每一语音单元出现在不同环境中的协同发音效应后,归纳其规律而制定的如共振峰频率规则、时长规则、声调和语调规则等。由于语句中的轻重音,还要归纳出语音减缩规则。

现在展开大量研究和实用的是文语转换系统[1](Text-To-SpeechSystem,TTSSystem),它是一种以文字串为输入的语音合成系统。其输入的是通常的文本字串,系统中的文本分析器首先根据发音字典,将输入的文字串分解为带有属性标记的词及其读音符号,再根据语义规则和语音规则,为每一个词、每一个音节确定重音等级和语句结构及语调,以及各种停顿等。这样文字串就转变为符号代码串。根据前面分析的结果,生成目标语音的韵律特征,采用前面介绍的合成技术的一种或者是几种的结合,合成出输出语音。

本文所讨论的语音合成应用系统就是一种面向TTS应用的语音系统。该系统的设计目标是作为人机交互的一种反馈手段,用于将计算机中的数据或状态以语音的形式加以输出。该系统的应用背景是作为卫星测试系统的一个子系统用于增强人机交互能力。通过引入语音合成技术,将原本需要测试人员主动观察的数据、状态或指令等内容以语音的形式即时播报出来,相应的测试人员只需被动收听即可,只有在敏感内容出现时才加以主动观察,从而降低测试人员的工作强度,改善工作环境和条件。在这样的应用背景下,对语音合成系统的要求是响应速度快,计算复杂度和存储空间复杂度低,具有良好的可扩展性和合成语音清晰度高、可懂性强,适于科学术语、符号和单位的发音合成等。基于以上系统需求,我们开发了专门针对科学应用特别是航空航天领域内常见的科学术语、符号、计量单位和数学公式等文本分析模块,以及新型的基于规则和参数的语音合成技术。

2系统结构

图1中给出了本文讨论的语音合成系统的结构框图。

从外部接口上看,该系统的输入为文本输入接口,用户将要发声的文本内容通过此接口送入系统,输入的文本不需特别的格式;输出为音频输出接口,系统将合成的声音以某种编码方式由此输出;此外系统中所有语音信息模型均存储于语音模型库文件中,各种符号、单位标注、单词字母以及词汇的发音等均存储于词库文件中,这些库文件作为语音合成系统的内部输入。

图1语音合成系统结构

从内部结构上看,输入的文本主要通过规范化处理和符号转化,将其中的特殊符号、缩写、英文单词以及计量单位等转换为可识别的发声单元标识。在分词模型中,对输入的文本按预置的分词规律进行单词的划分,通过分词处理就基本确定了句子的韵律结构以及多音字的发音。韵律预测决定各词发音;协同发音决定了各词之间的连接关系。选词模块按照韵律要求及词的发音在词库中选择最优的发音,经过语音重构将波形恢复出来。各词的语音波形经过拼接模块在拼接参数的控制下完成最终语句的合成。

3声学单元的选择及生成

为使合成语音具有较高的清晰度、可懂度以及自然度,通常采取基于波形的语音合成技术。波形拼接语音合成中的合成单元是从原始自然语音中切分出来的,保留了自然语音的一些韵律特征。根据自然语言的语音和韵律规律,存储适当的语音基元,使这些单元在确定的存贮容量下具有最大的语音和韵律覆盖率。合成时经过声学单元选择、波形拼接、平滑处理等步骤后输出语音。通过精心设计语料库,并根据语音和韵律规则从音库中挑出最适合的声学单元,使系统输出高质量的语音。

常见的语音单元候选可以有词组、音节、音素和双音素等。就词组而言,无论是中文还是西方语系,都和确定的语义相对应,因此使用词组作为声学单元可以比较容易的解决合成语音的可懂度问题[2],但是由于词组的类别非常多,而且在不同韵律环境下有着明显不同的表现,这样会造成所需的声学单元趋向于无穷大。所谓音节,一般都是由元音和辅音构成的,元音是音节的主干部分[3]。以汉语为代表的一些东方语系,音节数目较少,而且音节基本上是“辅音-元音”结构,但是对于一些西方语言,音节数目较多,结构比较复杂,而且使用它并不但不能避免大多数协同发音的影响,而且会引起音库容量的急剧增大。音素是最小发音单位,可以使语料库设计时的灵活性好,但由于音素受相邻语音环境的协同发音影响很大,对这些影响考虑的不合理时,就会造成音库在语音和韵律上的不平衡。另外在挑选单元时,由于音素的声学变体很多,所选择的样本不合适时,会导致相邻音素间存在基频和共振峰上不连续,需要采用谱平滑法进行处理,这必然会降低合成音质。

综合上述对音节、词组、音素的分析可以知道,它们各有优缺点,因此在构造波形拼接所需要的语料库时,可以结合不同类型样本的优缺点,例如对于自然语流中经常出现的一些协同发音强的音素、音节组合,在通过波形拼接形成目标语音时,应该尽量避免在这些协同发音影响大的音素组合之间进行拼接,否则单元挑选的稍有不合适,就会造成听觉上的难以接受。所以在构造实用合成系统时所采取的声学单元的类型和长度都将是不固定的[4]。

在选择声学单元构造语音库时,通常利用某种损失度函数来描述具有相同大小语音库的合成能力。一个典型的损失度函数可以表达为:

(1)

其中f为当前声学单元的词频,d为声学单元的预测时长,c为该单元中所包含的音素之间协同发音的大小[4]。在不考虑韵律条件下,构造由声学单元组成的语音库时,应使由(1)表示的损失度函在该语音库上的取值最小为目标。用于拼接的声学单元通常由连续语流中切分获得。通过检索含有大量航天、电子通信、计算机以及卫星领域内关键字的文献,并通过对这些文献进行文本处理,将文献切分成词和句。通过对词汇的统计可以得到词频信息,并在词频信息的指导下挑选由文献获得的句子,使得选出的句子对高频词具有较好的覆盖,这些挑选出来的句子成为稍后需要录制的脚本。

挑选合适的播音员,对照脚本进行合理朗读,并且录音。将录音所得的语音波形数据按脚本以及声学单元的划分进行切分,通常对于汉语可以切分为词、字(CV结构)而英文通常需要切分到词以及少量音素或双音素,从而构成发声单元库。对切分得到的声学单元按其在原句子中的位置(前中后)以及前后相连的字词进行标注。这些标注信息对选词模块的判决提供依据。

4韵律的生成

韵律的声学参数一般包括基频、时长、能量,对于一个TTS系统,韵律生成和控制是十分重要的。韵律参数对于控制合成语音的节奏、语气语调、情感等具有重要意义,而对汉谱普通话,基频是和声调直接相关的物理参数。汉语的构成原则可归结如下:由音素构成声母或韵母,韵母带上声调后成为调母,由单个调母或由声母与调母拼接成为音节。汉语有阴平、阳平、上声、去声、轻声5个调,1200多个有调音节。一个音节就是一个字的音,即音节字。由音节字构成词,最后再由词构成句子[5]。

基于规则的韵律生成。通过对汉语语音学和语言学的研究总结一些通用的韵律规则,利用这些先验知识,可以建立一个基于规则的韵律生成系统。通常规则系统包括两个方面:一是通用规则,比如四个调的基本形状,上声连接的变调规则,时长变化,语气语调的音高变化等;二是目标说话人的特定韵律规则,比如个人的基本调高、调域、语速和停顿等。此外在连续语流中,每个字的发音是会相互影响的,连续语流中一个字的发音的声调与这个字单独发音时的声调会有所不同,在合成的连续语流中,只有具有这种声调变化才能使合成的语音具有较好的可懂度,否则将只会是单字语音的生硬连接。汉语普通话语句中的变调以二字词的变调最为主,因为二字词所占比例约为74.3%。它的调型基本上是两个原调型的相连的序列,但受连读影响使前后两调或缩短、或变低。

基于机器学习的韵律生成。虽然目前已经得到了许多关于韵律的规则,但这些规则对于形成非常贴近自然的韵律还相差很远。为能够发觉隐藏而且难以描述的韵律规则通常利用机器学习的方法来实现韵律的生成。常用的算法模型有隐马尔可夫模型(HMM)、人工神经网络(ANN)、支持向量机(SVM)以及决策树等[5][6]。

基于参数化模型的韵律生成。基于机器学习的韵律模型提取一些人工无法分析的细则,大人降低人工参与分析的工作量,但这种方法同时也存在如下问题:首先,一般的学习算法都要求比较多的数据资源,特别是属性特征比较多的时候;其次,如果己有数据资源分布不均匀,将造成训练的整体偏差,影响分析结果;再次,专家知识没有很好的结合利用进来,是一种信息浪费;第四,训练模型没有和语言特征和人的感知挂钩,无法进行转移和调整。基频和时长是影响人的韵律听感的直接声学参数,两者都是随时间变化和环境变化的。参数模型利用先验知识,先分析基频时长和语言特征、人的听感的关系,对此关系建摸,提取基频时长和语言特征及人的听感直接相关的参数。这样的模型有效利用了专家知识,就可以用不多的数据训练出文本语言特征和参数的关系,同时通过调整模型参数就可以达到改变听感的韵律特征的目的[7]。

Fujisaki模型是一种广泛使用的基频参数化模型[8][9],它主要通过模拟人的发音机理来预测基频的变化。Fujisaki认为基频的改变主要有两个原因:韵律短语边界(Phrase)的影响和音节调(Accent)的影响。基频曲线的产生是按照声带振动的机理,以Phrase和Accent作为预测系统的输入,以基频曲线作为系统的输入,其中以脉冲信号的形式产生Phrase形状,以阶梯函数产生Accent形状。在该模型下基频曲线可以表示为:

(2)

其中函数Gpi(t)以及Gaj(t)的表达式分别为:

(3)

(4)

在表达式(2)、(3)及(4)中各参数含义如表1中所示。

表1Fujisaki韵律模型参数

Fmin基频最小值αi第i个Phrase命令控制系数

IPhrase元素数量βj第j个Accent命令控制系数

JAccent元素数量θAccent命令最大值参数

T0i第i个Phrase命令的时间标记Api第i个Phrase命令幅度

T1j第j个Accent命令开始时间Aaj第j个Accent命令幅度

T2j第j个Accent命令结束时间

Fujisaki模型的机理很简单,对于每个phrase命令,就是以一个脉冲信号通过phrase滤波器,相应的基频值上升到最大点,然后逐渐衰减。对于连续的phrase命令,基频曲线则产生连续的波动。Accent命令由一个阶梯函数初始化,因为accent滤波器的参数α远大于β,使得Accent元素很快达到其最大值,然后迅速衰减。

5系统实现及应用

整个语音合成系统由一系列动态链接库构成,分别对应图2中的各组成部分,各动态库由C语言书写。这种动态库的使用方便未来对局部进行修改。通过对动态库的加载,可以方便的将该语音合成系统集成到任何应用环境中。该合成系统输入以汉语为主,允许混合少量英文单词、希腊字母以及其它通用符号。

声学库中的语音波形分别采样AMR及MFCC两种编码方式,此外MFCC编码后再进行矢量量化处理,由此形成多种码率的声学单元库。采用不同的单元库将获得不同音质的合成结果输出。系统的录音为女声,可以通过一定的算法,如基音同步叠加技术(PitchSynchronousOverlapAdd,PSOLA)算法,在输出端对音色进行修改。

该系统作为我所研制的卫星测试系统的一个关键技术在实际应用中取得了良好的效果。通过该系统所构造的VoiceUI提供了一种全新的人机界面。计算机通过语音将卫星的实时状态汇报给监视人员,极大的降低了监视人员的观察强度,提高了人机系统的工作效率。

参考文献

[1]D.H.Klatt,Reviewoftext-to-speechconversionforEnglish,J.Acoust.Soc.Am.,82(3):737-793,1987

[2]R.Linggard,ElectronicSynthesisofSpeech,CambridgeUniversityPress,Cambridge.1985

[3]J.Allen,M.S.HunnicuttandD.Klatt,FromTexttoSpeech:TheMITalkSystem,CambridgeUniversityPress,Cambridge,1987

[4]陈永彬,王仁华.语言信号处理.中国科学技术大学出版社,1990

[5]陶建华,蔡莲红.汉语TTS系统中可训练韵律模型的研究.声学学报,2001

[6]初敏.自然言语的韵律组织中的不确定性及其在语音合成中的应用.第七届人机语音通讯学术会议,厦门,2003

[7]倪晋富,王仁华.模型化F0曲线中的升降模式控制机制.声学学报,1996