热力学范文10篇

时间:2023-04-03 18:53:06

热力学

热力学范文篇1

关键词:案例库;课堂设计;案例筛选;考核评价

案例教学法由来已久,在辩证哲学、法学、医学、管理学等领域被广泛应用,并取得了很好的教学效果。最早苏格拉底的教学过程被编辑成书,成为众人的学习范本,奠定了西方案例教学的先河。现代案例教学法是由哈佛大学最早提出,在医学和法学教学中摸索总结出的有效教学方法,如现在为大家所熟知的临床实践、模拟法庭等都是案例教学法的成功应用。我国案例教学法自1979年从哈佛大学引入后,也得到了较好的应用,尤其是在管理学领域[1-3]。案例教学法除了知识、理论传授以外,在提高学生推理能力和解决问题的能力等方面相较于传统教学方法具有非常明显的优势。这与大学生最终培养目标相一致,因此受到各高校、各专业的重视。传统化工热力学教学主要以灌输的方式向学生传授知识,对学生学习潜能、思维能力的开发和培养极其不利。尤其化工热力学课程内容抽象而繁杂,很难激起学生学习兴趣。为改善化工热力学教学情况,提高教学效果,很多高校的很多老师都在教学方式方法等方面做了大量的研究、尝试和探索。关于案例教学法在化工热力学教学中应用的研究很多。如冯新等[4-6]将生活中常见的液化气、天然气的液化压缩和贮存、轮胎充气、高原反应等问题引入化工热力学教学,有效引导学生透过现象看本质,极大的提高了学生的学习兴趣。高光华等[7]将工程研究实例三元体系高压液液平衡测定与关联等引入化工热力学本科教学,对培养学生解决问题的能力和科学研究精神有很大帮助。张军、胡琳娜、张存等[8-11]都将案例运用到了实际的化工热力学教学中,并对教学效果进行了评价和分析,具有代表性的案例在教学中的应用,使得教学内容具象化,教学过程更加生动,对激发学生学习热情,培养学生实践精神和创新意识,提高教学质量确实有很大的作用。但在教学实践过程中也不可避免的出现了很多问题,教学效果与预期不符。本文针对教学过程中发现的问题,进行探索和分析,结合我校实际情况,尝试调整优化案例教学法的执行效果,使其尽可能发挥其应有的作用。

1案例教学法在化工热力学教学应用中存在的问题

1.1案例数量少,新颖性不足。目前在热力学教学过程中使用的案例多数都是经过几十年应用验证的,虽然相对来说内容和问题设计较为严谨,但因为内容涉及的很多领域区域性和时代性明显,并不适合各地区院校普遍化使用。尤其是对很多现代大学生来说,很多传统化工行业,如石油化工、合成氨等并没有什么吸引力,而新兴的化工行业,如新能源开发、新材料新工艺等相关案例又几乎难以看到。案例数量少,可选择空间小,案例内容新鲜度不够都不利于案例教学法在课堂教学中有效运用。1.2案例内容设计过于专业化。化工热力学课程本身内容就比较抽象,专业性较强,对于基础不太好的同学来说学习起来非常吃力,也因此很难激发学生的学习兴趣。我们在课堂上采用案例教学法的其中最重要的一个目的就是增加趣味性,提高学生学习热情。如果案例内容专业性太强,学生没有什么工程实践经验,很难有切身体会,要运用对他们来说本就抽象艰涩的知识来解决高度专业化的问题,反而进一步增加了学习难度,难以达到教学目的。1.3案例教学组织不合理。案例教学法是培养学生发现问题、分析问题和解决问题能力的有效方法,但要想达到这样的效果,其具体实施过程的设计就至关重要。每门课程都具有自己独特的个性,根据课程内容特点,有针对性的设计课堂教学组织形式是案例教学法顺利开展的关键。化工热力学学习关键在于原理的理解、模型的构建及其二者在解决实际问题上的应用。需要将抽象理论与实际工程问题有机结合,如果粗放的将各种案例通过问题设置、小组讨论、教师总结的形式组织开展,教学效果将大打折扣。1.4总结不到位,后继乏力。案例教学由于案例本身的设计、过程控制等问题的存在,其执行结果本来就很难预测,到最后通常又以教师对案例中涉及到的理论、原理等知识的总结延伸,讨论过程中出现的问题、学生表现的总体评价等为结束。学生撰写的总结报告良莠不齐,如果不能进行针对性的考核评价,引起学生的足够重视,以个别案例讨论的小结为相关内容全部结束,学生能力培养只能是空谈。

2有效提高案例教学效果的建议

2.1深入了解课程内容和学生情况。课程内容是案例设计筛选的前提。这里的课程内容不单指当前所教授的课程,还应该包括其前期支撑课程和后置课程。化工热力学是专业基础课,在专业学习中起到承前启后的作用,需要良好的数学、物理、化学基础,尤其是基础化学中的物理化学,很多化工热力学的内容都可以看做是物理化学中相关内容的延伸。同时很多热力学模型的构建和应用又需要大量的物理数学知识。鉴于此,培养方案和课程教学大纲的制定就尤为重要,做好前期准备工作才能为后续课程的开展打下良好的基础。案例内容和教学过程设计才能更具有可行性。充分了解学生才能更好的调动学生学习的积极性,激发其想象力和创造力,实现案例教学的目的。在案例教学过程中经常出现的问题就是学生参与力度和发挥情况不理想。案例教学对学生的要求是很高的,因此正确认识每一个学生的个性特征、兴趣爱好、优点特长对案例设计和教学顺利开展具有重要意义。与学生建立良好的沟通纽带,充分体现每位学生在教师心中和课程中的重要性,提高学生对课程的关注度,才能得到学生的支持,保证教学工作的有效实施,这对案例教学来说尤为重要。2.2构建化工热力学案例库。案例是案例教学的起点,是案例教学法课堂实施和目标实现的保障。化工热力学本身就是解决实际工程问题的工具,如状态方程模型,其建立和发展大多就是基于石油化工生产发展的需要而开展的。要寻找相关案例并不是太难的事情,但要将其切实应用到本科教学中还是需要进行严格的筛选分类,设计修改的。这需要教师,包括热力学课程老师和相关课程,如物理化学、化工原理、反应工程等相关老师,与具有相当工程实践经验的企业工作人员一起通过讨论,筛选设计适用于教学的案例,在案例中将各个知识点与实际问题有机结合,同时也需要为课堂教学留出足够的调整空间,使上课教师能够在教学过程中针对教授对象的知识结构、认知水平等实际情况做好灵活选择。2.3分类设计组织课堂案例教学。案例教学法在实施过程中有很多的不确定性,经常会出现偏离教师初衷的情况,但如果给定案例情景,设置过多限制性因素,学生就很难发挥其主观能动性,不利于学生创造力、创新能力等的培养和提高。因此在案例设计及组织实施方面需要从专业、现实等多个角度出发,在充分考虑各种情景的前体下,进行灵活多变的案例设计。也可以根据课程特点对案例进行分类设计,循序渐进的将不同类型的案例加入到不同阶段的教学活动中。依据化工热力学课程内容可以按照不同的需要进行案例整理和设计。为充分调动课堂气氛,可设计与日常生活非常贴近的生活化趣味案例,如液化气组成及液化工艺;也可根据当前先进技术发展情况设计案例,如燃料电池汽车动力设计。或者根据课程安排,将案例按照印证型、分析型、解决型、探究型等不同类型进行分类整理,形成体系,在教学过程中,教师通过认真筛选准备,以其中的典型案例或者特色案例为范本,引导或指导学生一起在进行了充分的课前准备后,在课堂上组织开展多层次的深入讨论,务求做到每位同学都能够参与其中,最后共同对案例中出现的想象、原理、准则,讨论过程中迸发的亮点、存在的问题等进行总结。完成课堂教学并不是案例教学的重点,最重要的事应该是在课后,需要要求每位同学根据准备和讨论情况完成自己的总结分析报告,报告需涉及案例的阅读分析,信息的获取,用什么方法解决了哪些问题,及未解决的疑问等。在完成整个分析报告后,学生在案例库中自行选择案例,根据前期学习成果,充分利用课后时间,独立完成不同的案例分析,做好案例分析报告。将整个教学过程做成完整的闭环设计。学生将教学内容内化,实现培养和提高学生能力的目的。2.4改革考核方式。教学效果必须要通过考核结果来进行判断。传统的考核方式主要采取闭卷考试的形式,考核方式单一,无法体现学生掌握、应用知识,分析解决问题、创新等方面的能力。为解决这一问题,有很多老师进行了很多考核方式方法改革的尝试[12],如在综合成绩中增加平时成绩、课堂表现成绩等;或者在考试中改变闭卷考的形式,通过开放性的试题设置,考核学生综合能力。这在一定程度上对教学效果的提升起到了积极作用。但针对运用案例教学法开展教学活动的课程,考虑到其教学形式的特殊性,需要对课程考核评价方式进行全新的调整和尝试。如在综合成绩中单列案例考核成绩一项,通过设计完整可行的案例教学考核方式,建立完善的评价机制和评分标准,在考核结果中充分体现学生对知识的掌握度和各项能力的成长情况。

3结论

热力学范文篇2

关键词:工程热力学;课程建设;课堂;多媒体课件

1绪论

根据《教育部关于一流本科课程建设的实施意见》和《河北省教育厅关于开展一流本科课程建设的通知》,河北建筑工程学院制定了一流本科课程建设实施方案,组织申报了一流本科课程建设项目。2019年能源工程系实施能源类专业大类招生、平台培养的教学改革举措,成立“工程热力学”课程组,获批了校级线下一流课程建设项目。“工程热力学”课程组结合普通高校学生学习状况及特质,确定课程建设目标和实施方案,以提高青年教师教学水平为契机,改善目前课堂“学生沉默状态”,焕发课堂生机活力;以提升学生综合能力为重点,重塑课程内容,创新教学方法及手段,较好发挥课堂教学主阵地、主渠道、主战场作用。对于非一流高校,作为多年学校重点建设课程,“工程热力学”课程组先期做了一些教学教改工作,主讲教师除优化课堂教学外,在教学方法、教学内容和教学手段上都在努力探索与实践,比如:“启发式”“互动式”等教学模式;研制工程热力学多媒体课件;研制出开闭卷题型的试题库等;同时积极申报教研项目、发表教研论文,编写教材,并取得成果如下:(1):《热工基础课程教学的探讨》《工程热力学典型题的教学探讨》。(2)完成教研项目:《分析方法研究填埋气供暖技术应用》(省级);《工程热力学优秀课程建设》(校级);《专业基础课教学中提高学生专业素质的研究与实践》(校级)。(3)教材及获奖:能源工程系教师合编教材《热工基础》,普通高等教育“十一五”部级规划教材,中国电力出版社出版,获得河北建筑工程学院优秀教材一等奖;课程组制作《朗肯循环》微视频获学校第一届微课大赛三等奖。

2结合目前教学中存在的问题,围绕学校一流本科课程

建设目标和建设内容,制定课程建设方案并实施由于“工程热力学”理论性强、难点内容较多、概念抽象等,学生钻研精神不足,个别学生基础薄弱,存在不及格率较高、难点内容学不透彻、课堂积极性调动不起来等问题,课程组从以下几方面做了课程建设探索与改革。2.1以培养培训为关键点提升教师教学能力,使教师队伍真正强起来“工程热力学”课程组成员5人,职称、年龄结构匹配合理、学历层次也较高。目前存在主要问题:2个近三年入职的教师,对课程难点内容的理解不够深入;面对基础课程理论性强、概念抽象的特点,如何引导学生深入浅出,激发课堂兴趣等还存在很大问题;教学多年的教师也面临“课程难点内容是否讲解透彻”“学生对难点内容理解效果如何”等问题。课程组针对问题采用如下措施:(1)采取“一对一培养模式”“高效培养模式”,发挥好“传帮带”作用。一名老教师对应培养一名青年教师,二者共同承担教学任务,青年教师多上讲台,从教学内容、教学环节“全程”指导,改变过去青年教师助课一轮,二轮就直接上讲台的现象。听课信息及时反馈,对上课中存在严重问题,课程组集体讨论。培养计划可以指定3~5年,改变青年教师“自我成长”“自我成熟”的现状,形成卓有成效的培养模式。(2)强化教学研究,定期集体备课、研讨课程“重点、难点内容”。课程组制定教学研究课题,比如“及损”“溴化锂吸收式制冷循环”等,申报教研项目,其中省教育厅项目《分析方法研究填埋气供暖技术应用》。课程组有业务能力强、丰富经验的主讲教师,也有新手需要培养,定期集体备课,共同研讨“重点、难点”教学内容及教学方法。考虑“大类招生、平台培养”的模式,课程组教师资源共享,统一选取教材,教学内容选取、习题选取等需要讨论。(3)青年教师培养与培训相结合,推动教师培训常态化。除了采取“一对一培养模式”“高效培养模式”外,课题组定期组织“课堂观摩课”,对重点、难点内容进行“讨论课”“培训课”,推动教师培训常态化。另外,创造条件和机会去参加省内外的教学研讨、一流课程建设培训,比如慕课培训等。2.2以提升教学效果为目的创新教学方法,采用翻转课堂式教学模式,使课堂活起来课程组基于如下思想:强化课堂设计,解决好怎么讲好课的问题,杜绝单纯知识传递、忽视能力素质培养的现象,采用翻转课堂式教学模式,具体做法如下:(1)对每一章内容进行“指导性学习”“讨论性学习”划分,“翻转课堂”讨论内容多选有工程应用背景等,其教学效果:强化师生互动、生生互动,杜绝教师满堂灌、学生被动听的现象。(2)对“翻转课堂”讨论内容的组织实施,将班级分设讨论小组,课外讨论、自学,每人写出讨论总结,课上进行汇总,将问题细化、透彻化,优化了“传统+翻转课堂”教学模式。通过“翻转课堂”互相讨论,可以培养学生多角度、批判性思维的能力。2.3采用“PPT课件+传统板书”的教学手段,课堂教学信息量大作为公式多,推导过程多的基础课程,大多数教师习惯板书表达,其中一位主讲教师曾在能源与动力工程专业的教学中采用“PPT课件+板书”,课堂教学内容丰富、信息量大,教学效果良好。课程组要求任课教师采用“PPT课件+传统板书”的教学手段,而且对PPT制作提出了一定要求,具体要求如下:(1)PPT课件制作要求与教材相匹配,可以插入动画、动态图、图片等,制作质量要求精良,保证图片清晰美观,如教材图片需要用CAD绘制等。(2)PPT课件制作中采用“超链接”,将公式推导过程完整的表达在“超链接”页面,清晰条理性好,与板书相比,节省了一些时间。(3)对PPT课件的教学内容也做了一定要求,基础课程具有“内容太细化,公式多、推导多”的特点,要求对“重点、难点内容”课件中描述完整、表达清楚。2.4作为能源大类招生的平台课,课程教学内容“取舍”探索研究能源工程系三个专业“建筑环境与设备工程”“能源与动力工程”“新能源工程”的平台课“工程热力学”,课程为56学时(6学时实验、50学时理论课),工程热力学基本理论部分包括:基本概念、热力学第一定律、理想气体的热力性质及热力过程、水蒸气的热力性质及热力过程、热力学第二定律;应用部分主要包括:湿空气、气体与蒸汽流动(喷管)、蒸汽动力循环、制冷循环。对于三个专业的平台培养,若学时足够,应用部分全部细讲比较好,但目前学时偏少,如何对教学内容作取舍,总思路:应用部分内容要求满足应知应会的基本要求;对后续课程学习所用较少的难点知识,采取“舍”,采取指导性学习方式;对工程应用较多的重点知识,采用“多取”,重点讲解、讨论等方式强化。大致教学内容上做如下调整:(1)基本理论部分:“基本概念”学时量减少,重点概念“可逆过程”“热力循环”学生写学结;“热力学第一定律”精讲,概念、推导及应用,做重点讲解;“理想气体性质及过程”学时量减少,有些内容只讲“枝干”,“细节”内容安排自学;“水蒸气性质及过程”精讲,重点“水蒸气热力性质表、图”“水蒸气热力性质软件”重点介绍;““热力学第二定律”是教学难点,是高等工程热力学的基础、考研必考内容,后续课程及工程应用很少,处理方法:框架讲解,考研学生在线辅导、在线讲解。(2)应用部分:基于三个专业的平台教学,应用部分内容的选取更难,“湿空气、制冷循环”是“建筑环境与设备工程”的教学重点,“气体与蒸汽流动(喷管)、蒸汽动力循环”是“能源与动力工程”的教学重点,相对“新能源工程”内容分量差别不大。在课程学时偏少情况下如何平衡选取?课程组作如下考虑:由于基本理论部分教学内容、教学手段作了调整,学时上有结余,应用部分的内容全部选取,重点、难点内容做精讲,其他部分采用指导、讨论、自学的方式。2.5激发学习动力和培养专业志趣,制作多个专题的多媒体课件对某些专题做课件,包括热力发电循环、磁流体发电、太阳能热利用、热管、燃料电池、半导体制冷、热泵等技术专题。对制作专题的多媒体课件的内容及形式说明:(1)“热力发电循环、热泵”专题内容,能量转换基本原理学生已掌握,需要对实际循环与理论循环简介,对工程实际应用及国内外技术发展前沿介绍,采取插入视频、著名学者学术研讨报告等。获得实践的教学效果:学生深入理解重点知识、培养分析解决综合问题的能力。(2)“磁流体发电、太阳能热利用、热管、燃料电池、半导体制冷”专题内容,作为新能源、新技术介绍给大家,了解该课程应用方面的新能源技术,提高学生综合专业素质,也采取插入视频、著名学者学术研讨报告等方式,专题课件报告在学生开设课程中穿插,培养了学生学习课程的兴趣,开阔了学科领域视野。2.6以激发学习动力和专业志趣为着力点,完善学习过程的评价,使学生忙起来基础课程枯燥难懂,对重点难点分组讨论学习,讨论过程及评价的实施可以课堂内外、线上线下;讨论学习内容分为“深入研究型”“问题探究型”等,提升课程学习的深度;讨论学习成绩评定形式采用“论文式”“报告答辩式”等;具体做法如下:(1)对每一章的“知识节点”进行“深入研究型”“问题探究型”等划分,分配给讨论学习小组;教师需写出讨论提纲、提出问题等。该内容可以课堂内外、线上线下实施。(2)对“翻转课堂”讨论的内容,实施过程进行量化打分,作为学生综合成绩评定。

3结语

热力学范文篇3

工程热力学课程的特点是理论性强、概念抽象,教学难度大。在缺少专业工程背景的情况下,学生在学习过程中普遍感觉较为困难,甚至茫然不知所云。如何使学生能够较好地掌握教学内容及热力学基本内容,是工程热力学课程教学的根本所在。在多年的教学过程中,我们发现在课堂教学中,除了需要借助优美的PPT多媒体课件来展示热力学过程,更需要激发学生学习热力学的兴趣,在引入一些工程实例的基础上,激励学生去思考,及时地与学生就教学内容进行讨论,促进学生对知识点的掌握和领悟。与常规教学方法相比,课堂教学不再是文字、公式的罗列,PPT动画的简单演示,而是把教学的核心放在启迪学生对热力学概念、原理的思考及把握上,使学生在学习课程内容的同时,熟悉热力学的系统内容、章节间的逻辑关系、基本原理等,形成对热力学的一种系统的总体的认识和把握,而不是零散地去背诵记忆一些片段。通过这种激励启发式的教学,使学生做到理论和实际工程案例的结合,从而使热力学知识很好地固化在学生的大脑中,并且达到灵活应用的目的。激励启发式教学,需要教师在课堂教学前充分准备,精心设计课堂教学内容的每个环节,围绕章节内容中的重点知识内容,设计问题及启发实例,并完成课堂互动讨论的教学组织,在此过程中需要教师饱含激情和较好的耐心,使学生在严肃活泼的氛围中掌握热力学的相关知识。

二、改进课堂教学PPT,增加工程实例

工程热力学作为一门专业基础课,与工程实际密切相关。在教学过程中,需要有很多的工程问题作为背景。以教科书为单一内容的PPT演示,并不能满足课堂学生学习的需要。为了提高学生学习热力学的兴趣及深入掌握热力学知识,迫切需要在传统课件中加入工程实例,利用多媒体技术全面展示热力学的工程应用,使学生在工程案例的演示中发现并体会工程热力学的重要性及美感。通过工程案例的学习,使课堂教学内容图文并茂,声像结合,使学生在多方位、立体化地形成认知并达到对热力学知识的理解、分析、记忆、掌握和应用。对于热力学工程案例,我们选取了真空做功、制冷循环,内燃机等工程机械作为实例,进行详细分析和讲授。工程案例的引入,将实际生活中与热力学相关的问题引入到教学中,用所学知识来解释工程问题,在讲解中让学生明白热力学知识可以解决本专业涉及的实际专业问题,从而实现“从理论中来,到实践中去”,实现对创新型人才的培养。

三、将工程热力学的学习融入大学生创新项目中

在创新型人才培养中,需要提升学生运用基础理论进行学术研究的能力和具有工程应用背景的有关开发、设计的能力。大学生创新项目的实施,有利于促进高校培养具有创新意识和能力的新型人才,促进高校探索并建立以科研活动为中心的教学模式,倡导以学生为主体的本科人才培养和研究性学习教学改革,充分调动学生主动学习的积极性、创新思维和创新意识,同时在项目实施中使学生逐渐掌握思考问题、解决问题的能力。结合大学生创新项目,结合建筑环境与能源应用工程的专业特点,在指导学生大创项目时,将热力学第一定律、热力学第二定律和卡诺定律应用其中,使学生明白能源利用的守恒性,以及如何提高热力循环的效率,减少不可逆损失,这些都成为学生应用所学知识来解决实际问题的一种锻炼。学生在科研项目中,深化了对热力学知识的认识,同时提高了自己思考问题、解决问题的能力。同时,鼓励学生积极参加各类挑战杯、建筑节能比赛、机械创新设计大赛等,通过这些竞赛活动进一步提升自己的创新能力。

四、改进课后作业完成形式,增加分析报告

工程热力学课程是一门实践性很强的课程,其中很多理论已用于工业过程。因此,在课后作业中,需要对传统布置练习题来检验教学成果的方式进行改进,增加一些实际工业循环的实例,让学生通过分析其所应用的原理,提交分析报告,并指出该工业过程效率提高的方式和途径,以这样的方式来激发学生学习的兴趣,提高学生理论联系实际的能力。同时,精选一些课后习题,通过详解的方式,激发学生的创新意识和解决问题的能力,进一步促进创新型人才的培养。创新是实现社会持续不断向前发展的原动力,也是培养和造就一大批素质过硬、勇于创新的新世纪人才,保证国家高速发展的有力保障。创新能力的培养来自于理论和课堂,更在于理论和课堂之外的亲身体会和具体的实践操作。

本文从工程热力学教学与工程实例结合,与科研活动结合,改进课堂教学组织模式和课后作业完成形式等方面,探讨了以培养创新型人才为目标下的工程热力学教学改革与实践,希望能够进一步提高工程热力学的教学质量和效果。

作者:高蓬辉 张东海 王义江 黄 炜 单位:中国矿业大学力学与建筑工程学院建筑环境与能源应用工程系

参考文献:

[1]岳丹婷,吕欣荣,李青.深化热工教学改革加强学生创新能力培养[J].2002,(4):86-88.

[2]谭羽非.突出专业特点改革工程热力学课程教学的研究与实践[J].高等建筑教育,2004,(13):39-43.

热力学范文篇4

工程热力学是动力工程、机械工程、能源工程等专业的一门传统的技术基础课程,是资源利用率最大化的一种技术,是我们国家高等教育的重要组成版块。目前,我们国家对能源利用率的要求越来越高,对环境保护质量也相对提高,工程热力学课程教学改革对提高能源的利用效率起着至关重要的影响作用。尤其是面对未来生产的发展对能源动力需求迅速增加的趋势,许多相关联的热力工程技术、环境保护技术都需要工程热力学作为其研究的理论基础。工程热力学是一门综合性比较强的学科,并且在实际的生产与生活中其应用价值极高。在课程教学与实践过程中教师不容易清晰明了的讲授清楚工程热力学的相关理论知识,学生也不易掌握基本的公式、概念与相关方面的条件。不仅如此,在实践活动中学生不能够灵活的运用所学的课堂教学知识进行实验,这就大大降低了工程热力学的实际运用价值,削弱了工程热力学的课程教学质量。工程热力学是一门比较基础的课程,也是建筑环境与设备工程等相关专业学生应当掌握的基础学科,同时也是学生进行研究创新的基本前提。工程热力学是研究动能、机械能与热能的基本学科,也是研究三者之间关系的重要理论知识,主要讲述三者之间能量的转换趋势与规律。

建筑、机械与其他工业产业利用工程热力学来提高生产效率,提高资源利用率,以此实现降低成本得目标,这也是经济可持续发展的重要保证。目前我们国家的工程热力学的教学质量亟待提高,教学方式与课程教学内容急需改革,并且其实践过程中的运用效率偏低,这就需要我们针对工程热力学的特征与现状进行课程教学改革,提高其实践效率。课程教学改革是指在教育体制改革的背景下,课程内容与课程教学方式也应当发生相应的变化。课程改革的重点应当放在课程实施工作之上,课程的实施依赖课程的教学质量,因此我们必须充分重视课程教学改革的重要性。随着我国新一轮基础教育课程改革的推进,如何在新课程理念的指导下改革工程热力学课堂教学,把先进的教学理念融入到日常的教学行为之中,已日益成为工程热力学教师和教学研究人员关注和探讨的热点问题。工程热力学课程教学实践是指教师在讲授工程热力学知识的时候应当充分的结合其实际情况,将实践活动与课堂理论知识讲授充分的融合,这样才能够提高学生的课程学习质量,帮助学生掌握更加丰富的工程热力学知识。课程教学实践是提高学生实际操作能力的平台,也是提高工程热力学课程教学质量的重要基础,关系到教学质量与国民经济的发展速度。实践是检验真理的唯一标准,因此在工程热力学课程教学改革过程中应当将其改革的内容付诸实践,这有这样才能够检验其改革的内容是否符合教育体制改革发展的总目标。在实际的课程教学过程中,教师、研究者与学生应当提高实践活动的强度,改善当前的现状,为提高工程热力学课程教学改革质量奠定基础。

2工程热力学课程教学改革与实践的过程中存在的主要问题

当前我们国家的高等院校和高职院校对工程热力学课程教学的重要性认识不足,没有充分的认识到工程热力学教学质量与工业生产、环境保护、资源利用率提高等之间的关系。工程热力学对学生综合能力的提高有着不可或缺的作用,因此我们必须充分的探析在工程热力学课程教学改革与实践过程中存在的主要问题,这样才能够详细的了解其改革现状,为提高课程改革质量奠定良好的基础。

(1)国家教育部门与高等院校、高职院校等教育机构对工程热力学课程教学改革与实践工作的重视程度偏低,没有充分的认识到工程热力学课程教学改革与实践对提高教学质量、促进教育体制改革进程、提高经济发展质量与速度之间的关系。工程热力学是一门综合性比较强的学科,并且也是建筑专业、环境保护与机械设计等专业的基础课程,关系到这些工程热力学相关专业的发展前景。相关的教育部门与组织在资金投入、技术支持、人才引进等方面相对短缺,严重的影响了工程热力学课程教学改革与实践的进程,没有投入更多的基础设备让学生参与实践。这样下去就会严重的泯灭学生的学习积极性和创新性,不利于提高工程热力学课程教学改革的质量与效率。

(2)在工程热力学课程教学改革过程中重点不明确,相关方面的制度和政策不够完善。虽然我们国家正在实行新一轮课程改革,在教育体制改革方面的力度比较大,但是仍然没有彻底改变当前应试教育的局面,没有完全的实现从应试教育向素质教育过渡的目标。在课程教学改革的过程中教师没有积极创新,对课程教学改革与实践认识不清,导致在理论教学与实践教学时教学方式不当,没能完全激发学生的潜力,这为后来的工程热力学改革埋下隐患。不仅如此,相关的教育部门与学校在课程设置方面没有考虑市场的发展需要,在课时、教学内容、教学形式以及考核方式等方面存在着严重的问题。

(3)工程热力学课程教学改革过程中的教学方法不符合实际的情况,不能够很好的提高课程教学改革与实践的质量。许多教师仍然沿用传统的教学方式,在教学内容上没有较大的突破与创新,被陈旧与古板的方式与内容所束缚。在改革的过程中,其课程改革教学目标不够明确,与工程热力学相关的课程体系不够完善与健全。不仅如此,在工程热力学课程设置等方面没有突出课程的专业特色与个性,不利于提高工程热力学的地位与重要性。这样学生的学习积极性与热情会大大降低,无益于实现课程教学改革的目标。

3提高工程热力学课程教学改革与实践质量的相关对策

(1)国家教育部门与高等院校、高职院校等教育机构要不断提高对工程热力学课程教学改革与实践工作的重视程度,充分的认识到工程热力学课程教学改革与实践对提高教学质量、促进教育体制改革进程、提高经济发展质量与速度之间的关系。相关方面的教育部门与教育组织要加强政策支持与资金支持,为提高工程热力学课程教学改革提供良好的条件,引进先进的设备与基础设施为开展实践活动提供良好的平台,从而提高学生的理论知识水平与实践操作能力。目前人们对生活与生产的要求越来越高,对环境的保护意识也越来越深厚,因此我们必须加强相关方面的教学质量,培养全面型与综合型的人才,以此来适应经济社会的发展趋势。伴随着社会现代化进程的加快,社会各界对人才的素质和质量标准也越来越高,因此教育制度改革迫在眉睫。

(2)明确工程热力学课程教学改革的重点,逐渐完善与健全相关方面的课程教学改革体制,为高等院校和高职院校的课程教学改革与实践提供指导性方案。相关的教育部门与学校在课程设置方面要充分考虑市场的发展需要,在课时、教学内容、教学形式以及考核方式等方面要积极创新。保持学科基本理论的严密性和系统性,逐渐强化工程热力学相关专业所必须的教学内容,不断的优化课程教学的内容。在教学的时候要让学生充分的理解相关的工程热力学的理论知识、公式与条件等等,这样学生才能够有足够的理论知识进行实践操作。不仅如此,还要培养学生查图、查表的能力,要求学生学会用抽象、简化和假设的热力学方法去求解制冷、供暖等实际问题。

(3)工程热力学课程教学改革过程中的教学方法要不断适应市场的发展需要,这样才能够逐渐提高课程教学改革与实践的质量。工程热力学课程教学的相关教师和研究者应当积极创新,改变传统的教学方法,摒弃陈旧的教学方式,提高工程热力学课程教学改革与实践的质量。不仅如此,教学研究者还要积极改变教学方式,教师应当根据课堂教学情况与学生的学习情况来改进教学方式,以此来激发学生的学习热情。因为工程热力学属于一种理论性比较强的学科,学生在学习的过程中容易产生消极情绪,这样就会严重阻碍课程教学改革的进展,不利于全面提高学生的综合实力。教师要注重诱导式教学方式,提高学生的发散思维能力,贯彻创新意识。教师要根据课程教学内容和学生的差异性来帮助学生树立正确的学习观念,让学生掌握符合自己实际情况的学习方式。这样学生在学习工程热力学知识的时候就会比较容易上手,在理解相关概念和理论知识的时候也会更加容易。教师在讲解理论知识与进行实践操作教学的过程中要灵活运用比较式指导方法,将相关的理论知识进行比对,加深学生的理解程度。同时也要积极使用相关方面的图表,让学生快速的理解抽象理论知识。教师在教学的过程中要积极采用多媒体教学与网络教学,这也是充分利用教学资源的体现。由于学科本身具有的特性决定了工程热力学的理论知识、定义、概念、公式等比较复杂抽象,学生不易理解,利用多媒体能够帮助学生理解记忆,加深对工程热力学原理的理解。网络教学能够促进学生与教师之间的交流,提高课程教学改革的质量。

4结论

热力学范文篇5

标准平衡常数与△G

气体反应:aA+dDgG+hH

等温等压下,热力学推导证明:

△G=△+RTln

上式称为化学反应的等温方程式。

=(称为相对压力商)

反应达平衡时,△G=0,等温方程式为

△G=△+RTln=0

△=-RTln

△G=-RTln

称为标准压力平衡常数

=·()-△n△n=(g+h)-(a+d)

等温方程式可写成:△G=-RTlnK+RTlnQ

任意状态下的化学反应方向的判据:

Q<K,△G<0,正反应自发进行;

Q>K,△G>0,逆反应自发进行;

Q=K,△G=0,反应达平衡。

三、关于无机离子性盐类溶解性的讨论

例4离子性化合物在水中溶解的难易程度,可以根据溶解过程的标准自由能变化[123]来加以讨论:ΔSG=ΔSH-TΔSS。当ΔSG<0,溶解自发进行,即为易溶解的物质;ΔSG>0,溶解不能自发进行,即为难溶解的物质;ΔSG=0,溶解处于平衡。由ΔSG的计算公式可以看出,溶解过程的焓变和熵变都对自由能变化作出贡献,所以在研究溶解过程的自由能变化时,应从ΔSG和ΔSH两方面进行整体分析[4]。一方面,由于在溶解过程中,焓变通常很小,熵变的重要性有时显得十分突出;另一方面,又由于焓变的影响通常很明显,判断比较容易。

溶解过程中的熵变包括两个方面:(1)在离子化合物溶解生成水合离子的过程中,由于离子的电荷强电场的作用,使得在离子周围形成了一个水化层。显然,水化过程使系统的混乱度减小。(2)离子的水化破坏了水原有的簇团结构,使水分子变得自由,结果是体系混乱度增加,水合过程的熵增加。因此,溶解过程的熵是增加还是减小决定于这两个方面哪一个占优势。如果ΔsS<0,熵变项对自由能变化的贡献是正值,即ΔSS<0,使盐的溶解性减小。如果ΔSS>0,熵变项对自由能变化的贡献是负值,即ΔSS>0,使盐的溶解性增加。显然,当离子的电荷很高和离子半径较小时,离子的电荷密度较大,第一种效应占优势,此时熵值减小,不利于溶解过程的发生;相反,当离子电荷低、半径大、离子电荷密度小,此时,第一种效应较弱,此时熵值增加,有利于溶解过程的自发进行。

定量分析NaCl和AgCl溶解过程的热力学数据,能够进一步加深对离子性盐类溶解性问题的深刻理解。这两个化合物在溶解时都是吸热的,ΔS均大于0,但又都是熵增的,即ΔS>0。

ΔS=ΔS-TΔS

NaCl:-9.1<03.6>042.8>0(单位:kJ·mol-1)

AgCl:55.5>065.5>033.6>0

但在NaCl的溶解过程中焓变的正值较小,熵变项的贡献对ΔS的影响又比较大,最终使得ΔS<0。而AgCl的溶解熵变的贡献不能克服较大的焓变为正的不利影响,结果ΔS>0。故NaCl为易溶的物质而AgCl为难溶的物质。然而,CaCl2和CaF2都同它们相反,它们的溶解过程因Ca2+离子的电荷高、半径小因而是熵减的过程,又由于F-的影响比Cl-更大一些,因而熵减的更多:

ΔS=ΔS-TΔS

CaCl2:-65.5-82.2-56.0

CaF2:1.76.6-151.3

CaCl2和CaF2,二者的差别在于CaCl2同时也是焓减小的过程,其较负的焓效应足以克服相对较弱的熵变产生的不利影响,因而ΔS仍为负值,所以CaCl2易溶。而CaF2却是焓变的增加和数值比较大的熵减小过程,因而ΔS仍为正值,故难溶。

结论:

至此可以概括用热力学方法研究一个化学问题可以分为三步:第一,用热力学方法叙述问题,一般是比较热力学数据;第二,再用热力学方法去论述该问题,找出影响因素,论述应在许多种可能途径中选用热力学数据最准确可靠和为理论阐述最容易的那一种,一旦完成了这些,热力学工作就告结束;第三,对论述的问题进行理论说明。

这样一来,热力学就像是一些理论化学与实验提出的问题之间的一座桥梁,即使这种理论回答有时仅是定性的或不可信的。这种失败不能归咎于热力学,事实上,这样的失败可能有两个原因:一是可能所采用的热力学数据不当,二是化学理论仍面临严重的不足。

热力学范文篇6

标准平衡常数与△G

气体反应:aA+dDgG+hH

等温等压下,热力学推导证明:

△G=△+RTln

上式称为化学反应的等温方程式。

=(称为相对压力商)

反应达平衡时,△G=0,等温方程式为

△G=△+RTln=0

△=-RTln

△G=-RTln

称为标准压力平衡常数

=·()-△n△n=(g+h)-(a+d)

等温方程式可写成:△G=-RTlnK+RTlnQ

任意状态下的化学反应方向的判据:

Q<K,△G<0,正反应自发进行;

Q>K,△G>0,逆反应自发进行;

Q=K,△G=0,反应达平衡。

三、关于无机离子性盐类溶解性的讨论

例4离子性化合物在水中溶解的难易程度,可以根据溶解过程的标准自由能变化[123]来加以讨论:ΔSG=ΔSH-TΔSS。当ΔSG<0,溶解自发进行,即为易溶解的物质;ΔSG>0,溶解不能自发进行,即为难溶解的物质;ΔSG=0,溶解处于平衡。由ΔSG的计算公式可以看出,溶解过程的焓变和熵变都对自由能变化作出贡献,所以在研究溶解过程的自由能变化时,应从ΔSG和ΔSH两方面进行整体分析[4]。一方面,由于在溶解过程中,焓变通常很小,熵变的重要性有时显得十分突出;另一方面,又由于焓变的影响通常很明显,判断比较容易。

溶解过程中的熵变包括两个方面:(1)在离子化合物溶解生成水合离子的过程中,由于离子的电荷强电场的作用,使得在离子周围形成了一个水化层。显然,水化过程使系统的混乱度减小。(2)离子的水化破坏了水原有的簇团结构,使水分子变得自由,结果是体系混乱度增加,水合过程的熵增加。因此,溶解过程的熵是增加还是减小决定于这两个方面哪一个占优势。如果ΔsS<0,熵变项对自由能变化的贡献是正值,即ΔSS<0,使盐的溶解性减小。如果ΔSS>0,熵变项对自由能变化的贡献是负值,即ΔSS>0,使盐的溶解性增加。显然,当离子的电荷很高和离子半径较小时,离子的电荷密度较大,第一种效应占优势,此时熵值减小,不利于溶解过程的发生;相反,当离子电荷低、半径大、离子电荷密度小,此时,第一种效应较弱,此时熵值增加,有利于溶解过程的自发进行。定量分析NaCl和AgCl溶解过程的热力学数据,能够进一步加深对离子性盐类溶解性问题的深刻理解。这两个化合物在溶解时都是吸热的,ΔS均大于0,但又都是熵增的,即ΔS>0。

ΔS=ΔS-TΔS

NaCl:-9.1<03.6>042.8>0(单位:kJ·mol-1)

AgCl:55.5>065.5>033.6>0

但在NaCl的溶解过程中焓变的正值较小,熵变项的贡献对ΔS的影响又比较大,最终使得ΔS<0。而AgCl的溶解熵变的贡献不能克服较大的焓变为正的不利影响,结果ΔS>0。故NaCl为易溶的物质而AgCl为难溶的物质。然而,CaCl2和CaF2都同它们相反,它们的溶解过程因Ca2+离子的电荷高、半径小因而是熵减的过程,又由于F-的影响比Cl-更大一些,因而熵减的更多:

ΔS=ΔS-TΔS

CaCl2:-65.5-82.2-56.0

CaF2:1.76.6-151.3

CaCl2和CaF2,二者的差别在于CaCl2同时也是焓减小的过程,其较负的焓效应足以克服相对较弱的熵变产生的不利影响,因而ΔS仍为负值,所以CaCl2易溶。而CaF2却是焓变的增加和数值比较大的熵减小过程,因而ΔS仍为正值,故难溶。

结论:

热力学范文篇7

知识目标

1.知道温度表示物体的冷热程度.

2.知道温度计的构造、原理以及摄氏温度的规定.

3.常识性了解摄氏温度和热力学温度的关系.

能力目标

通过观察和分析培养学生的观察能力和分析概括能力.

情感目标

培养学生使用物理仪器测量的良好习惯.

教学建议

本节是初中生接触热学的第一节课,只涉及了热学的最基本知识点.

教材首先介绍“温度”的概念,用实例阐明人类和温度的密切关系,确切知道温度很重要.然后通过一个小实验让学生进一步明白靠感觉的不可靠性,是不科学的.要树立使用工具得出正确结论的严谨科学态度.接着具体讲解了实验用温度计的原理、构造,着重介绍了体温计的的测量范围、最小刻度值、用水银的原理和它的特殊结构及特殊用法.介绍了计量温度的两个不同方法:摄氏温度的规定,具体摄氏温度的读法和专用符号的使用;热力学温度的规定,单位名称、专用符号以及这两种温度计量方法的关系.

在课本的引言部分学生已经明白物理是一门研究力、热、声、光、电等现象的自然科学.本节是研究热学的第一节内容,应该首先向学生交代本章讲的为热学的入门,是热学的基本知识.具体到本节可以从最常见的、比较了解的水的各种形态,不同冷热的水入手.让学生感觉一下水的冷热,提出感觉的不可靠性,进而说明使用仪器的准确性和科学性.过渡到温度计和温度的计量方法上.

强调摄氏温度、热力学温度的规定、正确读法、专用符号的使用以及它们二者之间的关系.

教学设计示例

温度计

课题

温度计

教学目标

1.知道温度表示物体的冷热程度

2.知道温度计的构造、原理以及摄氏温度的规定

3.常识性了解摄氏温度和热力学温度的关系

教学重点

温度计的构造、原理以及摄氏温度的规定

教学难点

摄氏温度和热力学温度的关系

教学方法

讲授、实验

教具

玻璃杯、热水、冷水、实验用温度计、体温计、寒暑表、冰块

知识内容

教师活动

学生活动

一、复习引言部分

物理是研究力、热、声、光、电等现象的自然科学,

二、引入新课

指出温度跟人类生活的密切关系,温度的概念.引导学生发现感觉的不可靠,

三、实验用温度计

温度计原理:利用液体的热胀冷缩来测量温度.观察温度计的构造、测量范围及分度值.

四、摄氏温度

讲解摄氏温度的规定,每个分度值代表1摄氏度.摄氏温度的正确表示方法及正确读法

五、热力学温度

介绍宇宙温度的下限――绝对零度,以绝对零度为起点的温度计量方法叫热力学温度.

热力学温度和摄氏温度的关系

六、体温计

着重讲解体温计的原理、测量范围、最小刻度值、特殊结构及用法

七、小结

温度计原理和温度的计量方法

八、作业

P46—1、2、3

教师引导学生实验:去体验先后把手放在冷水热水以及温水中的不同感觉

教师出示实验用温度计,引导学生进行观察.

出示体温计,引导学生观察.示范用法并引导提问

自己得出结论:冷热只是相对概念,靠感觉根本区分不了温水的冷热程度

学生总结得出温度计构造、测量范围,并提问:C的意思和分度值代表什么?

观察细节,并提问

探究活动

【课题】

人类的“热”现象的探索和利用

【组织形式】

学生小组

【参考题材】

1.热力学发展的历史.

2.我国古代对热的认识.

3.温度计的类型和发展.

4.生活中的热现象.

【评价】

1.所查阅的资料.

热力学范文篇8

关键词空间热力学平衡相变量子自由能相对论时间熵场黑洞宇宙统一场

微观物质运动与宏观宇宙运动的自然逻辑关系是不言而喻的,但是作为这两个物理领域的主导理论体系,量子理论与相对论的统一却至今未能实现(1、2)。注意到普遍的物质运动遵从热力学规律,如果相对论和量子理论分别与热力学互洽,它们之间必定统一。

设计一个理想的热力学平衡系统,该系统应当满足以下条件:1、允许在系统内(包括系统边界)随机选择任意多的检测点,点的大小是检测手段可能实现的最小范围(点区域)。2、允许以任何可能方式对“点区域”的能量状态进行检测。3、任意两个不同点的检测结果差异都在检测水平之下。如果检测在任意精细的水平上进行,满足上述三个条件的热力学系统是检测意义上的热力学绝对平衡系统。

因为热力学第二定律要求封闭系统的熵随时间增大,所以同时设计检测意义上的热力学绝对平衡系统在相当长的时间跨度上的熵增也在检测水平之下,该系统即时间意义上的热力学绝对平衡系统。一个检测意义与时间意义上的热力学绝对平衡系统理论上拥有最大的系统熵,系统在获得最大无序程度的同时在大跨度时间内也拥有最大的系统稳定程度。一个长时间保持系统状态不变的、封闭系统的热力学性质接近上述热力学绝对平衡系统。

如果给这个系统输入一个量子的能量,会发生什么?

能量介入热力学绝对平衡系统后会引起悖论。

首先,输入能量在输入点及其附近导致系统能量状态发生改变,偏离热力学平衡,这个小的区域理论上将形成耗散结构。如果这样的耗散结构不能得到适当的反馈而形成稳定的、偏离热平衡的自组织结构,该结构就是不稳定的,它将在第二定律规定的时间方向上因为耗散而瓦解,并且将耗散能量传播到邻近区域。根据设定条件,系统内任意一个区域与其邻近区域同质、同性,耗散能量的涉及区域也会形成耗散结构,然后瓦解。显然,只要输入能量不对系统做功,在足够长的时间内,这样的过程将遍历系统的任意点以及邻近区域,所以该事件可以被视为全系统事件。

现在存在两种可能。一是输入能量弥散至整个系统,最终导致系统内任意点区域的能量增大,系统在相对高的能量上处于热力学平衡状态,属于常态热力学变化。二是系统的稳定性对介入能量发生强烈反应,致使点区域耗散结构瞬间产生又瞬间瓦解,介入能量虽然转变为耗散能量却不能弥散,输入能量不断地进入系统又不断地被系统“反弹”出来。在这种情形下,如果限定输入能量对系统的做功为零,这个能量就将使系统内的点区域乃至整个系统在足够长的时间内偏离热力学平衡,而这种偏离竟然是系统执行热力学第二定律的结果,意味着该定律在某种终极条件下的执行结果是对定律本身的背反。

问题是:我们是否可以在彻底地接受热力学第二定律的同时又能对这样的背反行为做出解释?

热力学平衡系统P0在输入能量e的作用下形成耗散结构Pe,称该过程为系统P0的激发相变。由于耗散结构不稳定,Pe还原为稳定的热力学平衡系统P0,同时释放耗散能量e,称该过程为耗散结构Pe的相变还原。显然,只要不以任何形式对系统P0做功,输入能量e就会经过一个激发—还原过程全部转换为耗散能量。对于下一个激发—还原过程而言,耗散能量与输入能量等价并且物理意义相同。如果系统P0完成一次相变—还原过程所需要的时间是t,只要t充分小,我们将很难注意到相变过程,而只是看到输入能量对系统P0的似乎连续的影响。而如果限定P0的相变只是点区域事件,我们甚至可以认为e对P0的影响以点或线性形式连续存在。

相变对于上述事件在时间轴向上演变的意义在于:无论输入能量是否无限连续,它在系统P0内引起的一系列事件都将被相变“截断”为一个个因果相关但又并非处处连续的激发态耗散结构,每个耗散结构还原时所释放的耗散能量只能是输入能量的量子单位。因此,系统内活跃的只能是量子化能量,而不是连续输入系统的能量流。这种情形与神经系统的生理活动十分类似。向动物神经系统外周感受器施加连续的电流刺激,其在神经系统内的传导是生物电脉冲而不是连续的物理电流,这是因为物理电能在神经元轴突末端突触转换为化学能递质,然后通过化学递质与受体间的作用引起下位神经元的电脉冲。“突触换能器”对于神经系统的意义相当于上面所说的系统“相变”。

接下来,只要系统内一系列因果相关的耗散结构的“串联”方向与外部能量介入系统时的初始方向有关,系统内的自由能(系统有序性构造的标志)就是在矢量方向上运动的量子化能量。

如果绝对热力学平衡系统的稳定性能够对介入能量做出“相变”响应,系统就可以根据单位时间内相变发生的次数—相变频率对介入能量的大小做出评价,或者说该系统内自由能的“量子值”决定于介入能量引起的系统相变频率。

根据设定条件,一个绝对热力学平衡系统的能量状态是无法通过实际测量予以评价的,但是可以用P0表示它的恒稳态的“相”,以Pe表示它的激发态的“相”,根据上面的陈述,这个系统的相变可以表示为:Pe=P0+e,e代表介入系统的单位能量。相变在系统内的传布过程表示为:P0+e=Pe→P0+e=Pe→……→……,只要e不对系统做功(比如被系统边界吸收),相变—还原过程将无限次地重复进行。若将相变传布的矢量性质考虑在内,则有:

P0+e(—)=P(—)e→P0+e(—)=P(—)e→……→……。

如果介入系统的是单一形式的能量流E,相变使得E转变为量子能量的过程表示为:P0+E(—)=P0+me(—)=mP(—)e→P0+me(—)=mP(—)e→……→……,m为系统内的量子数。系统P0对单位介入能量e(—)的大小的响应形式为系统的相变频率f,即单位时间t内的相变次数n,f=n/t,而频率的表达与系统P0的状态函数f(P0)有关。即:e(—)=f(—)•f(P0)=(n/t(—))•f(P0)。表达形式:P0+E(—)=mP(—)e=P0+me(—)=P0+f(—)•f(P0)=P0+(mn/t(—))•f(P0)。因为m、n均为自然数,所以时间是唯一显示系统P0内有序能量运动方向的物理矢量,从中我们可以看到有序能量的“量子值”是如何通过时间与耗散结构在系统P0内的传布方向相联系的。如果时间t变大而n不变,单位量子的相变频率降低,“量子值”变小;反之,如果时间t变小,“量子值”增大。如果e(—)对系统边界做功(为系统边界吸收),则不能继续引起系统P0的激发,耗散结构P(—)e的产生和传布随之终止,时间对于P0没有意义。时间是评价偏离热力学平衡的能量结构在传布方向上单位量子能量大小的物理量。时间具有方向。时间对于绝对热力学平衡系统没有意义。

现在我们已经能够清楚地看到以光量子为代表的、纯粹的物理能量在物理真空(以下简称物理空间或空间)中的基本行为方式。事实上,物理空间是迄今已知的、最稳定的“物质”实体,关于它的稳定性我们无从测度或评价。相反,无论经验还是理论,空间都是我们评价其他物质形式或构造稳定性的物理背景。量子理论认为物理真空是高度无序的能量质体。因此,我们有理由认为物理真空对于任何具体的物理事实都完全满足所设定的绝对热力学平衡系统条件。那么,物理真空是否存在能量激发下的系统相变呢?

实验证实,物理真空具有理想的热力学黑体性质。根据普朗克辐射定律(Planck`sradiationlaw),M=C1λ—5/exp(C2λT-1),热力学温度T可以通过黑体转换为波长为λ的量子辐射能量M。如果将热力学温度视为向空间连续输入的能量流E,E将依照该定律通过物理真空辐射量子化能量,这种转换符合物理空间受激相变—相变还原机制。空间相变机制对于以下基本物理问题具有重要意义。

一.物理空间相变是量子力学理论的动力学基础

1.物理空间相变与海森堡的“测不准”原理

空间相变使得量子在空间中的运动带有或然性。由于相变是局域空间的能量激发事件而不是发生在确定点上,因此每一个激发态耗散结构生成的位置只能是涉及区域一个概率点。如果激发态耗散结构的传布速度为光速,它的每一个激发位置将不能被精确测定,而一旦引入测定激发位置的附加能量,它本身产生的空间激发必然会改变被测量子在传布路径上的空间状态,从而不能客观地得到被测量子的路径位置。空间相变机制符合海森堡的“测不准”原理。

基于物理真空的恒稳态性质,它的系统状态函数f(P0)应该为常数,这个常数就是普朗克常数h=f(P0)=6.626196×10—34Js。就量子的激发位置而言,普朗克常数可能是一个概率值。对于单位量子:e=f•f(P0)=h•f,f—自由量子频率。

2.物理空间相变与自由量子运动的波粒两重性

光量子的空间运动路径是由一系列相变“点”构成的。无论对于空间的“稳态相”还是“激发相”,这条路径都不是无限连续、光滑的,但只要相转换速度充分快,光量子的空间路径就是充分连续的,类似于粒子的连续运动轨迹。然而,相变毕竟是局域空间构造的变化过程,会对邻近区域的空间结构产生影响,并且以波的方式扩散,这就使得光量子的运动同时具有粒子—波动两种形式。其中,光量子在时间方向上的矢量运动是谓“粒子”运动,而相变对周围空间状态的影响是谓波动。根据相变机制,光量子运动的波粒两重性不可分割。称空间对局域相变产生的低能态响应形式为量子场。

这里出现一个问题:如果相变对邻近区域的影响足以使空间结构发生相变,那么一个光量子就会以光的形式在三维空间中没有衰减地扩散,等价于复制出越来越多的光量子本身,违背能量守恒定律。因此,物理真空的相变必定对激发条件提出临界要求,使得相变只能在一个矢量上递进产生,而相变对邻近的其他矢量上空间结构的影响因为不能满足临界条件而形成量子场。这个激发条件本身必须具有单一的矢量性质,它就是光速。光速的时间方向就是光量子的线性运动矢量方向,与确定光量子频率的时间方向同一。即:

f(—)•λ=nλ/t(—)=c(—)(光速),λ—光量子波长,f—光量子频率。

设想物理真空充满随机分布的点。因为这些点在任何位置出现的概率相等,所以物理空间处于热力学平衡的完全无序状态,可视为能量的均质体,它的任何一个充分小的区域P0状态与整体相同。受到介入能量的激发,区域空间的无序点以某种有序的形式排列,形成局部的耗散结构Pe,称这样的耗散结构为“量子结构”,物理真空相变与量子运动的波粒两重性.

为空间的热力学平衡性质所决定,激发区域附近的点也呈现一定程度的有序排列,但不足以产生Pe结构,这样的有序形式即“量子场”。假定“量子场”内每个点平均携带一定的有序能量,随着“量子场”区域的扩大,会有更多的点参与有序能量的分配,而每个点得到的有序能量则减少。所以,以激发区域为中心,相变对附近空间状态的影响随距离增大而减小。

作为一种局域不稳定结构,Pe按照热力学第二定律发生耗散而瓦解,但耗散能量的释放具有方向,引起这个方向上下一个P0区域的相变,如此依次传递,形成量子的光速路径。随着Pe结构瓦解,能量点的分布状态还原至稳态物理真空,对附近空间的影响也随之消除。依序发生的、相变对附近区域三维结构的影响—消退过程构成完整的量子波动,称量子场的传布为自由量子的本征波动。

必须指出,每个光量子能量仅对受激区域的空间相变负责,与附近区域的空间结构变化无关。空间相变引起的波动是由空间的热力学平衡性质所决定的。对于恒稳态物理空间而言,相变不会导致自由量子的能量衰减。原理上,自由量子的单一矢量运动对于维持其在时间方向上的持续存在具有重要的反馈作用,考察自由量子e在恒稳态空间P0中的相变机制可以发现,由于量子结构P(—)e的矢量性质,它对矢量前方空间的影响可以使那里点排列的有序程度高于其他方向,获得在同一能量激发下优先实现相变的较大概率,乃至主导相变的传递方向。也就是说,量子场的有序形式指向量子的运动方向。称量子场有序形式的方向为“量子势”。量子的矢量运动本身以及量子势是量子在空间中持续运动的反馈机制—自反馈机制。正因如此,如果一个光量子恰好通过另一个光量子的本征波动区域,量子矢量方向上的空间状态变化会干扰自反馈机制,它的路径可能因此改变。称自由量子本征波动对其他量子行为的影响为相干波动。相干波动使得自由量子的运动方向不能被准确预测。显示光的波粒两重性的经典狭缝实验是对相干波动的直接证明,也是对量子本征波动的间接证明,其本质则是对空间激发相变模式的证明空间相变以及相变传递的物理实像即自由量子的矢量运动。每一个相变—还原过程等效于一个稳态空间区域从A移动到B,A与B之间的距离就是量子的波长,每个波长对应一次相变。单位时间内量子以光速经过的距离为nλ,nλ/t=f•λ=c,f=n/t。所以自由量子的频率f即单位时间t内量子在矢量方向上经历的相变次数n。

物理空间受激相变产生量子化能量以及以光量子为代表的自由量子的波粒两重性。其中,量子的“粒子”式运动是量子的本征属性,而量子场则源于稳态物理空间对局域相变的低能态响应,反映稳态物理空间热力学平衡的本征属性。自由量子的波粒两重性符合海森堡的“测不准”原理,满足热力学第二定律和能量守恒定律。

二.物理空间相变是相对论的物理基础

空间相变要求物理空间是高度无序的热力学平衡系统,意味着空间是一种实在的、可以与其他物质体系相互作用的能量质体。空间状态可以通过量子的波粒两重性以及单位量子的能量得到反映,因此与时间具有不可分割的联系,符合相对论原理。

量子理论以及相关实验表明,物质之间的相互作用是通过彼此交换被称为介子的一类量子实现的。借用这个概念,我们发现空间的受激相变就是激发能量与稳态空间交换“能量介子”的过程,也就是单位自由量子与空间相互作用的物理形式,只不过被交换的“能量介子”就是自由量子(能量)本身。以下将看到,这一概念是怎样通过相对论得到体现的。假定一个静止物体对一个自由量子的评价由e=hf=hn/t给出,t是系统的静止时间。现在我们要求该物体吸收量子e并且因此以速度v运动。根据相变原理,单位量子的能量反映这份能量与空间的结合能力。经典力学定义物体吸收能量并获得速度增量的过程为物体的加速度a,物理作用力f=a•m。因此也可以说,物体吸收能量获得速度增量是因为该物体吸收了能量与空间的结合力,加速度是物体与空间作用力增大的结果。

假定物体吸收能量e后并没有速度变化,该物体就只能按照爱因斯坦方程e=mc2获得质量增量。无论对于速度增量还是质量增量,e都提供相等的空间结合力,e的等价质量所产生的空间结合力必然等于使物体产生加速度的空间结合力。质量与空间的结合力通过重力加速度表达,即所谓引力场效应,符合广义相对论原理。具体细节上,我们甚至可以发现量子场与引力场的平方反比关系完全一致。

这里存在一个关于狭义相对论的物理现象。静止物体吸收能量e后获得速度v,它的时间将按照洛伦兹变换t`=(t-vx/c2)/(1-v2/c2)1/2发生变化。在相对论速度域(0,c)内,t`t,相对论称之为时间膨胀。运动物体对同一量子的评价由e`=hf`=hn/t`给出。因为t`t,所以e`e,对于静止时间,e`=hn/t`=•hn/t,1,量子的能量增大了。这个结果对于量子的波长表达形式也一样,e`=hf`=hc/λ`,因为洛伦兹变换给出λ`=(λ-vt)/(1-v2/c2)1/2,λ`λ,e`e。结果显示同一能量对于速度较快或质量较大的物体具有更大的力学效能。例如,分别从地球和太阳表面观测远处同一光源的光谱线,太阳处谱线的蓝移程度大于地球。相反,从这个光源处观察地球和太阳同一元素的谱线,太阳谱线的红移程度将大于地球,即爱因斯坦引力红移(3)。根据上面的分析,引力红移效应实际上具有相对论动力学意义。可以说,相对论的本质物理意义在于反映运动系统或质量系统对自由能“作用量”的评价形式。

经典引力作用所遵循的平方反比定律使我们相信,质量物体周围的空间“序型”是与量子场同质的低能态有序构造,可以参与自由量子的自反馈机制并影响光量子的路径方向,构造的有序程度与物体质量正相关。我们可以将光在大质量天体附近的弯曲归因于引力空间的有序程度而不是空间形变,事实上,自由量子的本征波动可能是产生引力平方反比定律、相对论引力红移以及光线在大质量天体附近弯曲等现象的物理基础。将质量物体视为自由量子,该物体附近空间的有序程度因为自由量子的存在而增高,但不足以产生激发相变。量子场以及量子势是量子矢量运动自反馈机制的一部分,因而与时间方向一致。既然物体与空间的结合力等价于自由量子与空间作用力的累计或集合,物体附近空间“序型”的方向应当指向物体,称这样的“序型”形式为“向心性序优势”。显然,“向心性序优势”与定义在物理场概念下的“能量势”的物理内涵完全相同。“向心性序”的优势随空间范围的扩大而逐渐离散,与距离成反比关系。因为入射光的矢量方向与物体附近空间的“序向”一致,量子运动的自反馈机制强化,量子能量增大,波长变短,光谱蓝移。相反,出射光线逆“势”而行,自反馈机制被削弱,量子能量减小,波长增大,光谱红移。当然,引力空间的“向心性序优势”也会通过相干波动原理影响附近经过的自由量子路径,使之内向偏移。

“向心性序优势”是引力空间的本质物理特征,“向心性序优势”的方向与引力空间的时间方向重合,指向物体的质量中心。

引力空间的“序优势”赋予广义相对论效应以实际物理意义。

随着物体质量增大,引力空间的“序优势”逐渐强化。当“序优势”达到空间相变能级时,空间受激生成自由量子并向物体质量中心运动。经过该区域的其他自由量子在相干波动机制作用下改变矢量路径,同样向物体质量中心运动,使得该区域形成黑洞(1、4)。黑洞视界即引力空间的相变临界或亚临界区域。

三.统一的物理相互作用

引力是迄今已知最普遍的物理相互作用。一旦我们发现引力及引力场的物理本质其实只是自由量子与空间结合的一种物理形式,后者的物理意义立即凸现。根据相变原理,空间不再仅仅是包容万物的思想容器,而是一切物质形式赖以构造和运动的物理实体。

A.所有物理运动都是物质系统与物理空间结合的结果。

无论理论、经验还是实验,命题A都无一例外地成立。因为如果脱离空间,一切都无从谈起。一切物质运动都是物理空间事件,一切物理空间事件都必然有空间的直接参与,否则我们无从知晓。

根据命题A,可以直接得到以下推论:

a.物理测量以物质系统与物理空间的结合关系为物质基础。

b.任何物质系统的运动都具有波粒两重性。

c.物质系统之间的相互作用是它们各自与空间作用的结果。

依照质能等价关系e=mc2,宇宙中所有物质构造和运动形式都是能量结构或能量运动的结果,而一旦发现能量的基本单元—量子与空间的结合形式,我们就不再需要除物理空间之外的任何物质实体之间的相互作用,它们之间的相互作用是它们分别与空间相互作用的结果。实际上我们也不可能发现比量子—空间作用更基本的物质作用形式。实验证明,四种基本相互作用中的强力、弱力和电磁力是通过传递明确的介子能量实现的。传递引力的介子尽管没有被直接发现,但是根据相变原理和e=mc2,所有的自由量子都可以成为传递引力的介子,因为它们被物体吸收后以等价质量的形式对重力场有所贡献。

物理空间的热力学平衡性质(即空间的无序状态)使之具有充分甚至无限的几何构造可塑性,可以对任何形式的激发能量做出相变响应并产生相应的自由量子和量子场,产生不同的物理相互作用模式,包括力的强度和力的作用距离,继而产生不同的物质结构形式或体系。上面的分析显示,这样的物质构造过程同时满足热力学、经典力学、量子力学以及相对论的基本原理,而由空间相变产生的自由量子—空间结合关系将成为统一场理论的基础。统一场的物理本质是量子场,量子场的累计或集合构成物理力场。

四.时间之箭

根据相变原理,时间是在定量自由量子的“能值”时引入的,与量子本身的自然运动没有必然的联系。经典力学中,时间只是与评价自由量子能量有关的一个物理测量概念。我们可以利用与空间相变完全无关的时间定义一个自由量子的频率。在这个意义上,时间相对独立于具体的物理事件。但是相对论表明时间具有运动属性,根据物体运动速度的变化而变化。对于系统相变和引力红移效应的分析显示,作为评价量子能量的物理量,时间的方向必须与自由量子的运动方向保持一致并且必须遵循等效性原则客观反映量子能量在不同空间状态下的变化。因此,时间必须具有实际物理属性并且直接参与物理过程。

时间对于绝对热力学平衡系统没有意义。时间就是某种耗散结构存在的标志,而耗散结构必须通过某种运动形式维持其存在。物理真空相变产生自由量子,而自由量子随即因为耗散而还原,这个过程符合热力学第二定律,只是耗散能量在量子势的反馈支持下可以激发下一次相变。所以,自由量子在空间的存在本身就是量子化的,是不连续的。但是对于有限测量精度而言,空间激发态的相转移是充分连续的,我们看到连续的自由量子光速轨迹,时间也因此连续。本质上,时间是能量的有序状态。根据能量守恒定律,能量不会消失,所以时间也不会消失,但只是对于能量的有序状态有意义。能量的有序状态必然要求“序”的方向,就是时间的方向。

根据命题B,可以有以下推论:

a.时间可以转移

能量可以由一种有序状态转变为另一种有序状态,时间也因此可以转移。比如自由量子的能量可以转换为物体的动能或质量,时间的方向也因此指向物体的运动方向或者引力空间“序优势”的方向。

b.时间随耗散结构状态的变化而变化

时间是能量的有序状态,所以状态的改变必然导致时间变化。相对论给出关于物体运动速度或物体质量与时间的关系函数。

c.时间转移与时间延续的关系不确定

对一个有序结构输入能量的结果是不确定的,可能以正反馈形式延续其存在,也可能以负反馈形式促其崩溃。自由量子的矢量方向决定于输入能量的初始方向,而每一次相变产生的量子都是下一次相变的输入能量,每一个相变“点”的位置不能精确预言。

仅仅限于物理真空受激产生自由量子事件范围,如果物理真空恒定,只要自由量子不对其他物质系统做功(自由量子对其自身做功),它将在空间中永久存在。但是如果视物理真空为一个能量系统,热力学第二定律并不阻止自由能量对系统边界做功,结果将导致宇宙膨胀,每一个自由量子都将为此付出代价,能量衰减,光谱整体红移。根据命题A(c),物质系统之间的相互作用将被削弱,包括中子、质子在内的所有基本粒子都将衰变,物质宇宙最终“热寂”。按照这样的模式,时间的方向指向宇宙边界,指向宇宙“热寂”,与引力空间的时间方向相背。现在我们看到宇宙历史上系统引力与系统膨胀是如何关于时间直接对抗的,对抗的结果决定宇宙的命运。公务员之家:

宇宙的命运究竟是什么?就是两种对抗力量的平衡。

平衡的方式或许很简单。基于自由量子的相干波动原理,足够强大的宇宙引力可以限制自由量子的活动范围,避免其对宇宙边界做功,宇宙边界将得以稳定。对于边界的外部而言,边界的内部是一个黑洞。当然,这就要求引力空间的“序优势”范围扩展到整个宇宙。一旦如此,自由量子最终会以连续变化的曲率轨迹向宇宙的质量中心运动,宇宙仍然难逃坍缩的命运。

前面已经谈到,物理空间在黑洞视界发生相变,产生的自由量子在“序优势”的作用下以光速向黑洞的质心运动。设想黑洞是一个容积有限的中空球体,它的质心与球心重合。来自各个方向上的自由量子在球心处相遇,它们的本征波动相干,任何微小的对称失衡都将引起量子运动的极大混乱,瓦解能量的所有有序结构并最终实现热力学平衡,物理空间得到还原,时间之箭失去方向。

回顾物理空间的激发相变,可以认为一个独立的激发状态Pe不能作为物理实在,只能用“虚”状态表示,即:Pe•(i)=P0+e。从对称的角度上考虑,如果从P0中取出单位能量e,则有:-Pe•(i)=P0-e。于是得到结果:Pe2=P02-e2,即:P02=(Pe2+e2)。……(1),方程(1)中,物理空间的激发相Pe是一个能量“陷阱”,无论量子能量e有多大,P0保持不变,意味着在任何物理相互作用中,物理空间的状态恒定。即使将宇宙的全部物质作为自由能投入Pe也不会改变物理空间的性质,这也是对物质宇宙与黑洞关系的描述。

那么,黑洞空间需要一个具体的、有质量的“壁”么?试想将宇宙质量放入一个黑洞,它所产生的引力当然足以形成黑洞效应,所谓黑洞空间的“壁”其实与我们熟悉的引力空间没有区别。的确,相对论黑洞极度紧致,甚至不能容纳概念空间,但是相对论效应同时表明,任何一个进入黑洞的自由量子e`=h•n/t`的时间t`都会极大地甚至无限膨胀,量子能量甚至无限增大,相应增加黑洞与空间的作用力,等价于相应的质量增量。根据黑洞的史瓦西半径r=2GM/c2,在保持黑洞效应不变的条件下,充分大的M的增量允许r充分扩大。另外一个例证来自光电效应。如果用相同频率的光照射金属表面,那些运动速度较大的电子应当更容易被击出它原来的位置。

物理真空好比白纸上一些随机散落的点。相变造成某个局部的点以特定形式有序排列(量子结构),附近的点倾向性排列(量子场和量子势),相变还原后这些点回复到原来的状态,甚至没有发生任何可以测量的位移。相变的传递只是点的有序排列方式的传递而不是点本身,譬如电流传递的只是电能而不是电子。特定形式的能量传递特定形式的秩序,物质体系就是相同或不同能量秩序的集合体。外部宇宙的秩序在通过黑洞时被彻底瓦解。

现在我们可以清楚地理解能量究竟意味着什么。所谓“能”就是特定形式的秩序。当这种秩序在确定方向上运动时取得“量”的概念,它的“量”和方向通过时间得到定义。广义而言:时间是反映秩序运动方向和大小的物理量,与秩序本身的状态不可分割。

根据物理空间的热力学性质,方程(1)中空间的稳态“相”和激发“相”可以用系统的“熵”表示:P0=S0,Pe=Se,则:e2=(S02-Se2),其中S0是一个恒量。当|e|0时,S0Se。

这样处理后,量子能量与系统的“熵”联系在一起。较大的|e|拥有较小的Se,能量的有序程度较高。对于能量的累积形式,则可以表示为:S02=Σe2+ΣSe2。若E=mc2=Σe,则S02=Σ(mc2)2+ΣSe2。根据相变原理,量子结构、量子场以及量子“势”都是能量系统有序程度的表达,归结为“场”的有序状态,通过“熵”Sm2=ΣSe2予以量化评价。粒子之间或粒子与量子之间存在“场相干”,产生波动。S02=e2+Se2可以作为物质运动波粒两重性的基本表达形式。讨论:量子理论研究正在逼近物理真空(2),但是可能受到经验以及经典力学时空概念的影响,物理空间至今仍然只是物质存在与运动的载体而不是具有独立意义的物质实体。当然,物理空间无从测量因而无从定义、无从把握的性质也很难被作为具体的研究客体,尽管空间的黑体性质以及相对论表明它是宇宙物质的一部分,至少它参与宇宙的物质过程。另一方面,空间无从测量恰恰反映它完全无序的状态,没有特征,不会主动参与物质运动,这就是它的特征。因为无序,所以拥有充分的、被动塑造的可能。

在热力学平衡的背景上将热力学耗散系统推向极端的结果必定引起相变,这是由热力学平衡系统性质所决定的悖论形式。只要赋予物理空间以适当的张量,好比一方绷紧的水面,相变就会将能量进行“量子式”裁切,量子就会像“打水漂”的石片一样跳跃,同时引起水面的涟漪。称这样的量子为自由量子,它们携带的能量为自由能。自由量子的运动是能量与空间结合的结果,是自由能与空间的结合力“拉动”量子以光速运动。在这里,空间响应速度扮演裁刀的角色,裁切的原则是保证下一次相变的条件,这个条件就是光速。所以自由能的速度只能是光速。

量子结构、量子场及量子势三者共同构成空间相变完整的动力学形式,为“测不准”原理的阐释呈示物理细节。对于解释包括波粒两重性在内的诸多量子行为而言,空间相变是一个十分理想的模型。

“打水漂”的石片的动力并非来自水面,但是量子运动的动力却来自能量与空间的结合力,好比一个人拽着胡子把自己拉动得飞快。换一个角度说,量子通过与空间的结合力对自己做功,做功时产生的“废能”竟然又生成一个相同的量子,相变的传递犹如接力。将这样的怪异与质能等价方程e=mc2放在一起,我们发现广义相对论竟然可以从量子理论的角度上得到简洁而且准确的解释:作为能量的构造形式,质量同时承载着能量与空间的结合力,而引力场则是量子场的累计或集合表达形式。作为回应,相对论通过影响自由量子的时间或空间表达相对论量子效应。相对论量子的能量与物体的速度或质量正相关,也因此与能量对物体的作用效能有关,这一点对于黑洞空间的存在至关重要。没有黑洞视界处的相对论时空效应,就没有自由能的相对论增量,也就不会产生自由能对黑洞质量的相对论贡献,不可能出现史瓦西“解”允许的黑洞空间。物质宇宙的演变会是另外的样子。

根据相变原理,相对论和量子理论分别与热力学互洽,所以两者统一,其中关键在于能量与空间的结合关系。以能量—空间结合关系为基础,热力学、经典引力理论、量子理论以

及相对论可以统一;以能量—空间结合力为基本作用关系,物理相互作用可以实现统一。

能量与空间的结合关系是最基本的物质作用形式。量子场是最基本的物理力场。热力学属性是时间的本质属性,但是作为对热力学在绝对条件下的背反,引力时间与热力学时间构成宇宙最基本的、彼此相背的时间体系。根据e2=(S02-Se2),因为自由量子的能量e在引力场中增大,所以引力场的“熵”Se减小,有序程度增高。黑洞是极端有序的物质构造,但其内部e=0,Se=±S0,是对极端有序的背反。

Se=±S0所展示的对称性意味着什么?反物质?暗物质或其他?

根据命题B(b),时间的基本形式是量子化形式。

直接参与物质作用的空间才是真实的物理空间。真实的物理空间对于完整的自然宇宙是不可或缺的,因为这样才自然。

参考

1.《时间简史》史蒂芬•霍金著,许明贤、吴忠超译,湖南科学技术出版社1996年4月第1版。

2.《时间之箭》彼得•柯文尼罗杰•海菲尔得著,江涛、向守平译,湖南科学技术出版社1995年10月第1版。

3.《狭义与广义相对论浅说》阿•爱因斯坦著,杨润殷译,上海科学技术出版社,1964年8月第1版。

4.《时空本性》史蒂芬•霍金罗杰•彭罗斯著,杜欣欣、吴忠超译,湖南科学技术出版社,2003年2月第1版。

热力学范文篇9

[关键词]热寂说;熵增加原理;近代宇宙论

“热寂说”是热力学第二定律的宇宙学推论,它既是哲学上的一个原则问题,也是物理学上无法直接验证的问题,它的意义关系到包括生命物质在内的万物生长、发展和消亡的普遍规律以及人类和宇宙的未来等问题。所以一经提出,就一直受到科学界和哲学界的广泛关注并引起激烈的争论,但尚缺乏较全面的专论。本文试图对热寂说提出的历史进行较系统的考察,并对其产生的社会影响及批判作进一步的探讨和阐述。

一热寂说的提出

一般的热学和物理学史教科书都认为最早提出热寂说的物理学家是威廉·汤姆孙和克劳修斯。其实早在威廉·汤姆孙(W.Thomson)和克劳修斯(R.Clausius)一百多年前牛顿就已看出了他们后来提出的热寂说(heatdeath)。牛顿在其《光学》一书的疑问31(problems31)中描述了后人在一百多年后描述的可怕的宇宙毁灭景象:地球、行星、彗星和太阳这些物体,以及它们上面所有的一切,均将冷却和凝冻,变为非活性的物体。并且所有腐烂、生长、繁殖和所有生命现象,均将停止。所有的行星、彗星将不再能留在它们的轨道上运动。这就是说,牛顿在建立自己力学体系之初,就已意识到它的体系不能解释非弹性碰撞过程(实际上就是牵涉到热交换的过程)的不可逆性与宇宙稳定性的矛盾。为了解决这一矛盾,牛顿提出了“主动原理保持和补偿运动”的物理思想。他指出:“所以,有一种按照主动保持和补偿运动的必要性,这就是重力的原因。行星和彗星由这个原理保持在轨道上,降落时物体获得大的运动,由发酵的原因,动物的心脏和血液保持永恒的运动和热量。地球内的部分持续生热,某些部分变得很热……太阳保持剧热并可见,以其光使万物变热。除去归之于这些主动原理之外,我们在宇宙间遇到的运动很少。”从这段话可以看出,虽然牛顿带有过分强烈的思辨性,但他在设法超脱机械论的局限性,希望用非机械论的解释摆脱力学带来的困难。然而在他那个时代,当能量、能量守恒定律以及各种运动形态均未出笼时,他的设想是很难有什么积极的成果的。为此,他只好求助于上帝的存在,希望上帝给以支援。他在同一书中又指出:“上帝既是宇宙的创造者,又是宇宙的持续的保持者。”“没有他的治理和监督,就会一事无成。说宇宙是一架大机器,无需神的干预即可以运转下去,就如同一个时钟不需要钟表匠的帮助而继续运转那样,这种观念实际上是以把上帝说成是超凡的神灵为借口,想把天意和上帝对现实的统治排除掉。”

随后,欧勒、拉格朗日、拉普拉斯和泊松等一批物理学家和数学家从数学分析方面发展了力学,他们证明,太阳系中所有的变动都是周期性的,这种变动不仅在某一有限范围内进行,而且其增强或减弱的变化也是周期性的。因此,他们得出结论,认为太阳系具有一种稳定性,而且在无限长的时期里,这种稳定性是永远不会改变的。从而他们从物理思想中排除了上帝,这当然是一个了不起的进步,但他们却由此而忽视了牛顿对于不可逆过程的担心,并想彻底抛弃这种忧虑,而宣布太阳系(乃至整个宇宙)将永远稳定,应该说这也是物理思想史上的一次后退。

由以上简单的历史回顾可知,当W·汤姆孙和克劳修斯揭示了自然过程的不可逆性这一曾在历史上争论过的问题后,为什么会引起当时许多一流物理学家的高度重视!

1852年,W·汤姆孙在关于自然界中机械能耗散的一篇论文中提出,在自然界中占统治地位的趋向是能量转变为热而使温度拉平,最终导致所有物体的工作能力减小到零,达到热寂状态。他在1862年发表了《关于太阳热的可能寿命的物理考察》论文,明确提出“热寂说”。他写道:“热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及热的枯竭,如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。”

从汤姆孙这段话可以看出,他从机械能转化为热而耗散和热力学第二定律,得出宇宙热寂的观点。随后克劳修斯在1865年的论文《论热的动力理论的主要方程的各种应用形式》中得出:“这个定律在宇宙中的应用,已得出一个结论,那是汤姆孙首先得出的,因此我才发表我所说的论文。”可见克劳修斯承认汤姆孙先于他提出热寂说,并启发他做进一步的尝试。

克劳修斯在1865年的上述论文中把宇宙看作一个孤立的绝热系统,在这个系统中热的正向变化总是大于负向变化,因此他认为宇宙热量的总和将向一个方向变化而趋于最终状态。另外他指出,他的熵只包含了“热含量”和“热离散度”,而未考虑当时已知的热辐射和由“以太”传播的热量等。他写道:“由此熵尚未用尽,还必须考虑辐射热,或以太振动方式通过宇宙空间弥散热的其它形式,以及不包括在热名义下的那些扩展更远的某种运动。”正是在上述前提下得出他表示的宇宙基本定律:1)宇宙的能量是恒定的;2)宇宙的熵趋于极大。克劳修斯在1867年作的《关于机械热理论的第二定律》的讲演中,又进一步提出:“宇宙越是接近于其熵为一最大值的极限状态,它继续发生变化的可能性就越小;当它最后完全达到这个状态时,就不会再出现进一步的变化了,宇宙将永远处于一种惰性的死寂状态。”这就是著名的克劳修斯的“热寂说”的来历。

值得注意的是,开尔文和克劳修斯提出“热寂说”时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个“有限”的体系;后者并没有做这样一个限定,而是毫无条件地推广到整个宇宙。在对“热寂说”的提出者进行客观评价时,这种区别是要特别认真对待的。

除W·汤姆孙外,在克劳修斯前提出热寂说的还有赫姆尔霍兹,这一点很久以来似乎被人们忽视了,他在1854年的一次讲演中就谈到热力学第二定律意味着整个宇宙最终将处于温度均匀的状态,并且“自此以后,宇宙将陷入永恒的静止状态”,即热寂状态。

二热寂说的社会影响

热寂说的提出,在社会上引起了巨大的反响,因为它是基于严谨的科学定律而预言的“世界末日”。这种世界末日的悲观思想造成了19世纪欧美所特有的悲观情绪,使很多人因此对社会进步感到悲观失望,以致不仅自然科学家关心,人文学者也同样关心。

美国历史学家亨利·亚当斯把它解释为19世纪所特有的低落情绪的原因,还把它与对社会进步的失望情绪相联系,正是这一观念给一些作家带来了一种对宇宙热死亡的忧郁心态。例如具有资产阶级自由思想的英国诗人斯温伯恩曾这样描述了热寂:

不论是星星还是太阳将不再升起,

到处是一片黑暗,

没有溪流的潺潺声,

没有声音,没有景色,

既没有冬天的落叶,

也没有春天的嫩芽,

没有白天,也没有劳动的欢乐,

在那永恒的黑夜里,

只没有尽头的梦境。

美国的物理学史家G·霍尔顿把这种没落情绪正确地归之于社会原因。他在《物理科学的概念和理论导论》一书中指出:“热寂说对于一些流行作家有一种不健康的吸引力,这些作家沉湎于席卷欧美社会某些部分的关于世界末日的悲观情绪。由于熵的增加意味着更大的无秩序的混乱,这也许就是对社会崩溃和环境衰退的一种解释!”

这样,热力学第二定律被视为堕落的渊薮。因为它断言,一切都不免从有序走向无序,从整齐走向混乱。甚至更有人延伸说,热力学第二定律表明人种将从坏变得更坏,最终都要灭绝。总之,在19世纪末,热力学第二定律和由它导出的热寂说,已成了社会声誉最坏的科学定律。

因此,从19世纪开始,就不断有人提出各种方案或假说来批判热寂说,试图证明热寂说只是一个佯谬,由此证明宇宙是不会热寂的。这些批判都十分令人钦佩,因为它们若成功了,就不仅拯救了物理学的名声,而且也“拯救了整个宇宙和人类”。三对热寂说的批判

长期以来,人们总以为宇宙基本上是静态的,而且在时间上既无始又无终。但按照热寂说的说法,似乎宇宙早就该处于热寂状态了。然而最使人不可理解的是,为什么现实宇宙至今并没有达到热寂状态?由于热寂说在感情上和理智上都给人以强烈的冲击,所以它问世不久,就遭到各方面的抨击。下面简要介绍对后世影响较大的两家之言以及比较流行的一些观点。

1.对后世影响较大的两个代表性说法

(1)“麦克斯韦妖”的提出。1871年,麦克斯韦(J.Maxwell)曾以“麦克斯韦妖”给热力学第二定律提出了一难题。他设想:一个容器分为A和B两部分,中间有一小孔,有一个小精灵能打开孔道,使快分子从A跑到B,慢分子从B跑到A,这样就在不消耗能量的情况下,使B温度升高,A温度下降。这样一来,热量自动从低温部分传向高温部分,系统的熵降低了,热力学第二定律受到了挑战。人们称这个小精灵为“麦克斯韦妖”。一百年来,“麦克斯韦妖”对许多物理学家一直有很大的诱惑力。麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。然而1929年,匈牙利物理学家西拉德揭开了“麦克斯韦妖”之谜。他指出:麦克斯韦妖有获得和储存分子运动信息的能力,它靠信息来干预系统,使它逆着自然界的自发方向进行。1951年布里渊更明确指出,妖精要识别分子,它必须有一个温度与环境不同的微型光源去照亮分子,这就要输入能量,按现代的观点,信息就是负熵,正是麦克斯韦妖将负熵输给了系统,才降低了系统的总熵。麦克斯韦妖正是以此为代价,才获得了所需要的信息(即负熵)的这额外的熵的产生,补偿了系统里熵的减少,从而引起熵的增加。他由此断言妖精是不存在的。

(2)玻尔兹曼的质疑。1872年玻尔兹曼(L.Bo—ltzmann)也指出:热力学在局部范围内是正确的,但它不是绝对的规律。他首先赋予熵的增加以统计解释,按照这样解释热平衡态总是伴随有涨落现象,后者是不遵守热力学第二定律的。在宇宙的某些局部可以偶然地出现巨大的涨落,在那里熵没有增加,因此宇宙也就不可能产生热寂,甚至还在减少,因此宇宙也就不可能产生热寂。玻尔兹曼这种“涨落说”有一定的吸引力,但尚缺乏事实根据。天文学观测表明,至今没有任何有说服力的证据说明现在的宇宙是处在热平衡态并存在着上下“涨落”。而且从逻辑上看,玻尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了,因而他首先承认“涨落”是在平衡态附近发生的。而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛巴赫(H.Reihenbaeh)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了存在着熵的涨落现象,但同样由于缺乏观测证据支持而最终被放弃。

2.恩格斯对热寂说的批判

由于“热寂说”涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学界,尤其是马克思主义哲学的深刻关注,一百多年来,恩格斯对“热寂说”的批判产生了深远的影响。

“热寂说”刚刚提出,恩格斯就在1869年3月2日致马克思的信中指出,这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就,用来作为“必须设想有上帝存在”的论证,而这种论证实质上是与辩证唯物论背道而驰的。

恩格斯在其《自然辩证法》导言中,又从能量守恒与转化的观点出发,对热寂说也作了精辟的分析和批判。他指出:“散射到太空中去的热必须有可能以某种方法——阐明这种方法将是以后自然科学的课题一转变为另一种运动形态,在这种运动形态中它能够重新集结和活动起来。”恩格斯依据天文观测资料“新星之突然地闪现以及熟知的旧星的突然增加光亮”指出散射到太空中的热能有重新集结的可能,他坚持辩证自然观的正确性,因此他写道:“我们确信,物质在它的一切变化中永远是同一的,它的任何一个属性都决不会丧失,因此它在某个时候以铁的必然性毁灭自己在地球上的最高的花朵——思维着的精神,而在另外的某个地方和某个时候又一定以同一种铁的必然性把它重新产生出来。”

3.曾广为流行的其它观点

(1)熵增加原理只对孤立系统成立,目前我们没有任何根据说宇宙是这样的一个封闭的孤立系统。把在有限时空范围内得到的原理任意推广到整个宇宙是难以置信的。

(2)对整个宇宙而言,既存在着从有序向无序转化的过程,即熵增加过程,也存在着无序向有序转化的过程,即熵减少过程。因此,耗散结构理论认为宇宙在历史的长河中,熵只是在不断地增加的结论,是没有什么根据的。耗散结构理论认为,对于非孤立系统,熵的变化可以形式地分为两部分。一部分是由于系统内部的不可逆过程引起的,叫做熵产生,用dis表示。另一部分是由于系统和外界交换能量或物质而引起的,叫做熵流用des表示。所以整个系统的熵变化是ds=dis+d3s一个系统的熵产生永远不可能是负的,即总有diS≥0,对于孤立系统,由于des=0,所以ds=dis>0,这就是熵增加原理的表达式。

但对于非孤立系,视外界的作用不同,熵流des可正、可负。如果des<0,且|des|>dis,就会有ds=dis+des<0,这表示经过这样的过程,系统的熵会减小,系统就由原来的状态进入更加有序的状态。这就是说,对于一个封闭系统或开放系统存在着由无序向有序转化的可能。为此《纽约时报》曾于1980年发表特稿,宣称普里高津的耗散理论帮助人类解决了一项科学上最扰人的似是而非的问题。然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图象和实验基础而不被天体物理学界所认可。

(3)熵增加原理的严格表述是:“一个热力学系统从一个平衡态出发,经过绝热过程,到达另一个平衡态,它的熵不减少。”这里很重要的一点是,体系在过程的开始和过程的终了都处在平衡态。而对于宇宙来说,在我们知识所及的历史年代里,宇宙一直处于远离平衡状态之中。因此,说我们所及的历史年代中宇宙的熵不断增加是没有根据的。四热寂说的终结

多少年来我们总有这样的感觉,对已有的对热寂说的批判说服力不强,并没有真正解决问题。1948年,美籍俄裔物理学家伽莫夫(G.Gamow)和他的同事提出了一个“大爆炸”的宇宙理论,使热寂说的佯谬迎刃而解。

热寂说是以宇宙整体正在从非平衡趋于平衡的结论为前提的。然而大爆炸宇宙学的研究和观测表明,宇宙起源于150亿年前“原始火球”的一次大爆炸,大爆炸之后宇宙一直在膨胀。它不是趋于平衡,而是越来越趋于不平衡。按照熵增加原理,只对于每个静态的封闭体系,熵才有个固定的极大值Smax;对于膨胀着的系统,每一瞬时熵可能达到的极大值Smax一是与时俱增的。如果膨胀得足够快,系统不但不能每时每刻跟上过程以达到新的平衡,而且实际上熵值S的增长落后于Smax的增长,二者的差距越拉越长。虽然系统的熵不断增加,但它距平衡态却愈来愈远。我们的宇宙中发生的正是这种情况。

大爆炸宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3K微波背景辐射。1929年,美国天文学家哈勃(E.Hubble)在研究了前人测量的星系距离资料后发现,这星系光谱线的颜色要比近星系的稍红一些,哈勃仔细的测量了这种红化,发现它呈系统性变化,而且,星系愈远,光谱线红移愈大,在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学——大爆炸理论的基础。

支持大爆炸宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大爆炸发生一秒钟以后,宇宙是由极高温的基本粒子组成的“羹汤”,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23.6%的物质质量聚合成了氦核,英国皇家格林威治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23.5%。这一结果与大爆炸的理论预言极为相符。

支持大爆炸理论的第三个证据是3K微波背景辐射的发现。大爆炸理论预言,现在的宇宙中应该存在着一种来自宇宙早期的均匀的、各向同性的微波背景辐射,它是宇宙早期的遗迹,频谱应该符合普朗克黑体辐射公式,温度约为3K。1965年这一预言被射电天文学家彭齐亚斯(A.Penjias)和威尔逊(R.Wilson)在宇宙观测中证实,此后亦为众多科学家进一步证实。这一结果表明,宇宙早期曾一度处于平衡态,处处都有相同的温度,而且物质也是相当均匀的,非均匀性不超过10-5,大爆炸之后,宇宙才逐渐偏离热平衡态,而今天宇宙中物质分布的不均匀性已高达10—103。

另一方面,宇宙膨胀的原因是由于引力的作用。有引力作用的热力学与无引力作用的热力学得出的结论完全不同。在不考虑引力的经典热力学中,加热则体系升温,冷却则体系降温,热容量是正值。而在一个自引力体系中情况则刚好相反,加热则体系变冷,放热则体系升温,热容量是负值。而负热容物体的存在对于热力学来说具有根本性的影响。在一个体系中,如果同时存在着正热容物体和负热容物体,那么这个体系就具有极大的不稳定性。稍有扰动,平衡就会彻底遭到破坏而产生温差。因此,只要有引力体系存在,原则上就不存在稳定的热平衡,而宇宙间的天体或天体系统大多数正是这种引力系统。尽管自引力系统中熵是增加的,但由于没有热平衡,因而熵的增加是无止境的,永远没有极大值。

因此,“热平衡的存在对整个热力学是至关重要的,热平衡是热力学的出发点,而对于引力起作用的体系,实际上不存在热力学意义上的热平衡态,而是不稳定的状态。”这种现象在静态宇宙模型中是不可能发生的,也是开尔文和克劳修斯等人没有料想到的。

热力学范文篇10

关键词:逆流换热器热力学优化温差场均匀性因子火用效率熵产

1.引言

换热器作为一种各工业领域广泛使用的设备,它的研究倍受重视。目前关于换热器的研究大致有两个方向,一是研究换热器传热强化,主要目的是提高换热器流体和固壁间的对流换热系数,进而提高换热器的效能。二是从可用能的角度研究换热器的热力学优化,包括换热器的熵产分析、火用效率分析等,从使换热过程不可逆性最小的角度来优化换热器。其中过增元提出的换热器温差场均匀性原则,一方面可以指导新的提高换热器效能的方法,另一方面也可以对换热器热力学优化做分析。本文是从温差场均匀性原则出发,将其应用于逆流换热器的优化过程,并对各种优化方法进行分析比较。

2.换热器温差场均匀性原则

过增元在1992年《热流体学》[1]一书中定义了温差场不均匀因子,应用于顺流、逆流和叉流换热器,发现在相同的传热单元数NTU、热容量比W和流体进口温度的条件下,逆流换热器温差场最均匀,效能也最高,熵产也最小。进而在1996[2]年定义温差场均匀性因子,提出了换热器热性能的温差场均匀性原则:在NTU和W一定时,换热器的温差场越均匀,其效能越高。并采用数值方法对13种换热器的温差场和效能进行了分析,验证此原则的正确性。通过熵产分析指出此原则是以热力学第二定律为理论依据的。同时针对叉流换热器,提出了分配换热面积来改善换热器性能的新方法。过先生又在2002[3]年给出了简单顺流、逆流、叉流换热器温差场均匀性因子的解析表达式,同时通过实验的方法对此原则进行了验证,针对多流程叉流换热器,举例说明用改变管路连接的方法来改变温差场均匀因子,进而改变换热器的效能。在2003[4]年提出基于温差场均匀的场协同原则,同时将此原则应用于多股流换热器中,提出换热器传热性能的高低取决于冷热流体温度场的协同程度,而不是流动方式。

从上述温差场均匀性原则的提出、验证和发展历程来看,这一理论已经比较成熟,也是从传热物理机制方面优化换热器的新探索,可以利用它比较实际换热器的换热性能。很多换热器大都是复合型流动方式的换热器,基本上没有解析表达式;尤其对于叉流换热器,应用此原则,可以在NTU和W给定时,改变传热面积的分布或是管路连接方式,来改变换热器的效能。温差场均匀性原则前提条件是NTU和W值恒定。对于换热方式(逆流)已定的换热器,在W和NTU变化时,应该如何应用此原则是本文讨论的主要内容。

3.温差场均匀性原则在逆流换热器热力学优化中的应用

过先生[3]将温差场均匀性原则用于指导叉流换热器的优化,并对优化效果进行了分析验证。温差场均匀性原则,是从研究对流换热的物理机制出发[5],用于指导各种形式换热器的优化。本文目的就是应用这一原则来指导逆流换热器优化方法的选择。

3.1逆流换热器已有热力学优化方法比较分析

以目标函数区分的优化方法大概有两类:一是传热过程熵产分析,二是定义火用效率分析。

关于熵产,徐志明、杨善让[6]等人定义熵产生数Ns:单位换热量的熵产。以Ns最小为目标,通过泛函求极值求得换热器温度和热流的最优分布,得到结论:使W略大于1实现最优参数分布。他们从温度分布的角度来优化换热器,提供了一种从换热内部的细节研究问题的思路。能大曦[7]等人在分析换热器的熵产时得到了类似的结论:在W为1时,换热器的Ns最小。同时指出徐志明等人研究得到的W略大于1的结论,是因为他们定义的NTU与常规的定义不同。综合分析前二者可以得到:当NTU一定W变化时,使W为1,换热器性能最佳。对于逆流换热器,W为1就意味着温差场均匀,符合温差场均匀的原则。当W不变NTU变化时,对于Ns的变化,能大曦[7]等人的研究得到:对于逆流换热器,W不变,随着NTU的变化,Ns单调减小。

关于火用效率分析,徐志明、杨善让[8]等人,给出考虑阻力的火用效率取极大值的方法。通过定义火用效率:

分析火用效率随NTU和W的变化,下图是他们分析的结果。从上述结果看出:对于逆流换热器,W不变,NTU较大时,随着NTU的变化,η会越来越低,NTU不变,W变化时,η在W近似为1时取得最大。

比较熵产和火用效率两种方法的结论可以得到,NTU不变,W变化时,二者结论基本一致。而对于W不变,NTU变化的情况,随着W增大,Ns单调减小,而也降低了。两种方法出现了矛盾。下面通过温差场均匀性原则对两种方法比较选择。

3.2逆流换热器熵产和温差场均匀性分析

3.2.1逆流换热器W变化时,看换热器的效能、Ns、温差不均匀因子变化规律。

分析中采用文献中已有的表达式:

(a)换热器的效能[8]:

(b)换热器的熵产[7]:

(c)熵产生数[7]:

其中:。

的解析表达式见文献[7],换热器的表达式见[3],图1给出W从0.1变到0.9时,、以及变化结果。其中

由图中得到:随着热容量比接近于1,换热器温差场均匀性因子增加了,熵产减小了。同时结合徐志明[8]等人分析火用效率的结论,综合得到:在NTU不变,W越接近于1,换热器温差场均匀性因子越大,熵产生数越小,火用效率越高。即熵产分析和火用分析均符合温差场均匀性原则。另外从图中看出效能随着温差场的均匀而降低了,用效能来评价换热器性能和热力学分析结论出现了矛盾。当NTU一定,如果要求不同的W得到相同的换热量的话,那么W小的流体,热侧流体的流量很大,保证如此高的流量也要有代价,同时由于流量大,通过换热器时阻力损失也大,与之相对应的火用损失也大,火用效率[7]降低了。因此同时得到单纯用效能来评价换热器是不可靠的结论。

3.2.2W一定,NTU变化时,温差场均匀性因子、熵产生数以及效能的变化。为便于和火用效率[7]分析的结果作对比,取热容量比:

得到结果如下:

图2Ns-NTUφ-NTU和ε-NTU曲线

由上图可见,当W不变时,随着NTU的增加,Ns变小了,效能增加了,但温差场变得不均匀了。结合徐志明[8]的结论,火用效率变小。发现此时火用效率判据符合温差场的均匀性原则,而熵产分析却和原则相反了。Bejan[10]曾把逆流换热器传热过程的熵产分为不平衡流动即热容量不匹配的熵产和由于传热面积有限引起的熵产。能大曦[7]等人对两部分熵产比较得到:两部分的熵产随NTU的变化,趋势是相反的。由于换热面积有限引起的熵产随NTU增加而减小,由于不平衡流动的熵产随NTU增加而增大。对于逆流换热器,温差场均匀与否只取决于W是否为1。不难理解只有由热容量不匹配引起的熵产变化趋势能用温差场均匀性原则来解释。换句话说,熵产生数来做判据包含了换热的物理机制之外的部分,在对换热器做优化时,应怎样用它还有待进一步的分析。从这个角度考虑,基于换热的物理机制建议选择火用效率作为换热器热力学优化的判据。

4.结论

(1)针对逆流换热器,比较已有优化方法,发现熵产分析和火用效率分析在W一定,NTU变化时得到的结论出现了矛盾。

(2)应用温差场均匀性原则,对比温差场均匀性程度变化的趋势和熵产生数、火用效率的变化趋势,得到火用效率和温差场均匀程度变化趋势相协调,选用火用效率来做优化更能反映换热的物理机制。因此建议用火用效率来优化换热器。

参考文献

[1]过增元,热流体学,清华大学出版社,1992

[2]过增元、李志信、周森泉、能大曦,中国科学(E辑),1996.2

[3]GuoZeng-Yuan,ZhouSen-Quan,LiZhi-Xin.InternationalJournalofHeatandMassTransfer,2002,45:2119-2127

[4]过增元、魏澎、程新广,科学通报,2003.11

[5]过增元,科学通报.2000.45(19):2118-2122

[6]徐志明、杨善让、陈钟颀,化工学报,Vol.46No.1,1995.2

[7]能大曦、李志信、过增元,工程热物理学报,Vol.No.1,Jan.1997

[8]杨善让、徐志明等,工程热物理学报,Dec.1996

[9]杨世铭、陶文铨等,传热学,高等教育出版社,1998

[10]BejanA.EntropyGenerationthroughHeatandFluidFlow.NewYork:Wiley-Interscience,1982