电子爆震控制范文10篇

时间:2023-04-03 04:11:44

电子爆震控制

电子爆震控制范文篇1

现代汽车设计为了降低排放并获得大的输出扭矩,通常情况下会采用一个大的压缩比。问题在于,当压缩比增大时,气缸压缩终了的压力和温度都将随之升高,混合气中的汽油分子能汽化得更完全,颗粒能更细密,加上气缸高压缩比的密封效果,致使混合气燃烧速度加快,当火花塞跳出火花时就能使得混合气在瞬间内完成燃烧的动作,释放出最大的爆发能量,此时发动机可输出最大动力。

但是压缩比越高发动机抖振越厉害,发动机的压缩比越高,通常伴随着的就是发动机工作时抖振会较明显增大,即使是多缸发动机也是如此。在爆发点火时混合气燃烧所产生的能量在瞬间释放出来,相对的振动的动能也就较大。

而高压缩比气缸压缩终了时的温度通常高于正常温度80-110℃,当进入气缸燃烧室的混合气吸收过度的热量,则燃烧室内的混合气会由于分子聚集,其中的汽油分子吸收了足够的热量之后,在达到它的燃点时,此时若燃烧室内存有积炭或某个角落恰有热点出现,吸收足够热量的汽油分子便会自行燃烧起来,或在火花塞欲点火之前就自行燃烧,即所谓的自燃、预燃,所有这些都直接诱导了燃烧室内发生爆震。

持续的爆震,将引起缸体、缸壁、进气歧管等薄壁构件产生高频振动,导致很大的噪声和损坏,还可能引起火花塞电极和缸壁出现过热、熔损等现象,使发动机无力、损坏机械元件,严重威胁发动机使用性能。但理论与实践同时证明:当发动机工作在爆震的临界点或有轻微爆震时,发动机的热效率最高,输出动力性和燃油经济性最好。

二、解决方案

为了获得最佳动力性和燃油经济性,现代汽车通常利用点火提前角的闭环控制系统来有效的控制点火提前角,从而使发动机工作在爆震的临界状态。此项控制内容可通过安装在缸壁上的爆震传感器来实现点火的闭环控制,从而有效的防止爆震产生。

燃烧室内发生的震动,可由爆震传感器检测,每台发动机一般安装1~2只。带通滤波器只允许发动机爆震信号(频率为6~9kHz的信号)或接近爆震频率的信号输入控制单元进行处理,而其他的信号频率则被衰减。爆震信号经过滤波、放大、整波、比较后,可判断出发动机是否发生爆震。

由上可看出爆震传感器的作用是:将发动机爆震信号转换为电信号输入发动机电子控制单元(即ECU),以便ECU根据爆震信号对点火提前角进行修正,从而获得最佳点火提前角来消除爆震,获得最大输出动力。

通过带通滤波电路检测到的爆震信号输入控制回路,此时,控制单元将控制延迟点火直到再次发生爆震。

其优点如下:(1)伴随着压缩比增大时,扭矩也增大,发动机油耗相应的下降。(2)通过协调动力、油耗和排放可优化点火特性图。(3)作为一个功能的运转条件,点火系可以自动限制发动机爆震的发生。(4)正确的点火角度可通过自动选择来中和(或协调)燃油品质的不同、燃油老化以及环境的影响(如压力、温度等)。(5)现代电子控制实现了每个缸的爆震检测及最佳点火提前角的控制。

三、方案设计

爆震控制系统既可做成单独的如晶体管点火系统,或者整合成诸如Motronic的复杂类型。其中将电子点火与爆震控制做成一个整体即带有爆震传感器的点火闭环控制单元尤为重要。

爆震控制需要在缸壁上装一个传感器,紧贴在缸壁上。传感器由塑料壳包裹着压电元件及振动块组成。此外,还有爆震控制电路。

爆震控制可包含下述功能:(1)通过控制燃油泵的节流阀及增压阀来改变空然比。(2)排气再循环利用。(3)微处理器进行故障自动检测诊断,必要时,可通过安装在特定位置的转速计来输出故障信息。

四、操作

发动机的爆震界限不是一个固定值,它随着运转条件的变化而变化。只有当检测到发动机发生爆震时才比较重要。爆震传感器检测到发动机缸壁上的固体震动,并将这些震动转变成电信号,输入控制单元。闭环控制系统筛选出爆震信号,并对其特性进行分析。震动信号被分配给相对应的气缸,通过这种方式,可实现每缸爆震的单独控制。

一旦检测到发生爆震,控制回路立即控制相对应气缸立刻推迟点火,一般每次推迟0.5°—1.5°曲轴转角,直到爆震消失。爆震强度越大,点火时间推迟越多;爆震强度越小,点火时间推迟越小。

只要传感器检测到气缸发生爆震,则点火控制单元再次控制推迟点火即减小点火提前角,直至无爆震信号出现即爆震消失,并且在随后的一段时间内都保持其值不变。当爆震消失后或无爆震发生时,控制单元则又开始以相同的固定值逐渐增大点火提前角,一直到爆震再次出现,整个控制过程周而复始。

可利用带有爆震传感器的点火提前角的闭环控制来有效的控制点火,从而控制发动机工作在爆震的临界状态,从而获得最大的输出扭矩。

五、爆震强度判断及注意事项

爆震强度的判断通常是根据爆震信号超过基准值得次数来判定的。超过爆震基准值得次数越多,爆震强度越强,反之,爆震越弱。

其中a——气缸内压力曲线b——过滤后的压力曲线c——传感器信号发动机正常运转时机体振动频率频繁而剧烈,为了提高控制系统的可靠性,通常要设定爆震控制范围,即爆震控制并非在任意时刻都采用闭环控制,而是在识别发动机点火后爆燃且可能发生的一段曲轴转角范围内,只有在此范围内,控制系统才允许对爆震信号进行识别,即采用闭环控制方式控制点火提前角。

理论和事实证明,当发动机负荷低于某一值时,一般不会出现爆震。此时点火控制采用开环控制。

六、结束语

从上述内容可看出爆震控制在现代汽车电子控制中的重要地位,通过采用爆震传感器的爆震控制来实现点火提前角的闭环控制,对发动机获得大功率提供了有效途径。

参考文献:

[1]舒华,姚国平.汽车电子控制技术.北京:人民交通出版社,2008,01.

[2]冯崇毅.汽车电子控制技术.北京:机械工业出版社,2006,01.

[3]解福泉.电控发动机维修.北京:高等教育出版社,2007,05.

[4]潘旭峰.现代汽车电子技术[M].北京:北京理工大学出版社,1998.

电子爆震控制范文篇2

现代汽车设计为了降低排放并获得大的输出扭矩,通常情况下会采用一个大的压缩比。问题在于,当压缩比增大时,气缸压缩终了的压力和温度都将随之升高,混合气中的汽油分子能汽化得更完全,颗粒能更细密,加上气缸高压缩比的密封效果,致使混合气燃烧速度加快,当火花塞跳出火花时就能使得混合气在瞬间内完成燃烧的动作,释放出最大的爆发能量,此时发动机可输出最大动力。

但是压缩比越高发动机抖振越厉害,发动机的压缩比越高,通常伴随着的就是发动机工作时抖振会较明显增大,即使是多缸发动机也是如此。在爆发点火时混合气燃烧所产生的能量在瞬间释放出来,相对的振动的动能也就较大。

而高压缩比气缸压缩终了时的温度通常高于正常温度80-110℃,当进入气缸燃烧室的混合气吸收过度的热量,则燃烧室内的混合气会由于分子聚集,其中的汽油分子吸收了足够的热量之后,在达到它的燃点时,此时若燃烧室内存有积炭或某个角落恰有热点出现,吸收足够热量的汽油分子便会自行燃烧起来,或在火花塞欲点火之前就自行燃烧,即所谓的自燃、预燃,所有这些都直接诱导了燃烧室内发生爆震。

持续的爆震,将引起缸体、缸壁、进气歧管等薄壁构件产生高频振动,导致很大的噪声和损坏,还可能引起火花塞电极和缸壁出现过热、熔损等现象,使发动机无力、损坏机械元件,严重威胁发动机使用性能。但理论与实践同时证明:当发动机工作在爆震的临界点或有轻微爆震时,发动机的热效率最高,输出动力性和燃油经济性最好。

二、解决方案

为了获得最佳动力性和燃油经济性,现代汽车通常利用点火提前角的闭环控制系统来有效的控制点火提前角,从而使发动机工作在爆震的临界状态。此项控制内容可通过安装在缸壁上的爆震传感器来实现点火的闭环控制,从而有效的防止爆震产生。

燃烧室内发生的震动,可由爆震传感器检测,每台发动机一般安装1~2只。带通滤波器只允许发动机爆震信号(频率为6~9kHz的信号)或接近爆震频率的信号输入控制单元进行处理,而其他的信号频率则被衰减。爆震信号经过滤波、放大、整波、比较后,可判断出发动机是否发生爆震。

由上可看出爆震传感器的作用是:将发动机爆震信号转换为电信号输入发动机电子控制单元(即ECU),以便ECU根据爆震信号对点火提前角进行修正,从而获得最佳点火提前角来消除爆震,获得最大输出动力。

通过带通滤波电路检测到的爆震信号输入控制回路,此时,控制单元将控制延迟点火直到再次发生爆震。

其优点如下:(1)伴随着压缩比增大时,扭矩也增大,发动机油耗相应的下降。(2)通过协调动力、油耗和排放可优化点火特性图。(3)作为一个功能的运转条件,点火系可以自动限制发动机爆震的发生。(4)正确的点火角度可通过自动选择来中和(或协调)燃油品质的不同、燃油老化以及环境的影响(如压力、温度等)。(5)现代电子控制实现了每个缸的爆震检测及最佳点火提前角的控制。

三、方案设计

爆震控制系统既可做成单独的如晶体管点火系统,或者整合成诸如Motronic的复杂类型。其中将电子点火与爆震控制做成一个整体即带有爆震传感器的点火闭环控制单元尤为重要。

爆震控制需要在缸壁上装一个传感器,紧贴在缸壁上。传感器由塑料壳包裹着压电元件及振动块组成。此外,还有爆震控制电路。

爆震控制可包含下述功能:(1)通过控制燃油泵的节流阀及增压阀来改变空然比。(2)排气再循环利用。(3)微处理器进行故障自动检测诊断,必要时,可通过安装在特定位置的转速计来输出故障信息。

四、操作

发动机的爆震界限不是一个固定值,它随着运转条件的变化而变化。只有当检测到发动机发生爆震时才比较重要。爆震传感器检测到发动机缸壁上的固体震动,并将这些震动转变成电信号,输入控制单元。闭环控制系统筛选出爆震信号,并对其特性进行分析。震动信号被分配给相对应的气缸,通过这种方式,可实现每缸爆震的单独控制。

一旦检测到发生爆震,控制回路立即控制相对应气缸立刻推迟点火,一般每次推迟0.5°—1.5°曲轴转角,直到爆震消失。爆震强度越大,点火时间推迟越多;爆震强度越小,点火时间推迟越小。

只要传感器检测到气缸发生爆震,则点火控制单元再次控制推迟点火即减小点火提前角,直至无爆震信号出现即爆震消失,并且在随后的一段时间内都保持其值不变。当爆震消失后或无爆震发生时,控制单元则又开始以相同的固定值逐渐增大点火提前角,一直到爆震再次出现,整个控制过程周而复始。

可利用带有爆震传感器的点火提前角的闭环控制来有效的控制点火,从而控制发动机工作在爆震的临界状态,从而获得最大的输出扭矩。

五、爆震强度判断及注意事项

爆震强度的判断通常是根据爆震信号超过基准值得次数来判定的。超过爆震基准值得次数越多,爆震强度越强,反之,爆震越弱。

其中a——气缸内压力曲线b——过滤后的压力曲线c——传感器信号发动机正常运转时机体振动频率频繁而剧烈,为了提高控制系统的可靠性,通常要设定爆震控制范围,即爆震控制并非在任意时刻都采用闭环控制,而是在识别发动机点火后爆燃且可能发生的一段曲轴转角范围内,只有在此范围内,控制系统才允许对爆震信号进行识别,即采用闭环控制方式控制点火提前角。

理论和事实证明,当发动机负荷低于某一值时,一般不会出现爆震。此时点火控制采用开环控制。

六、结束语

从上述内容可看出爆震控制在现代汽车电子控制中的重要地位,通过采用爆震传感器的爆震控制来实现点火提前角的闭环控制,对发动机获得大功率提供了有效途径。

【摘要】本文从压缩比与发动机的动力关系入手,针对目前汽车上应用广泛的控制内容——爆震控制,作了简要的分析,并列举了高压缩比对爆震的影响及爆震的一些危害,简要阐述了电子爆震控制即闭环控制的优点、方案设计及具体操作等。

【关键词】压缩比自燃爆震闭环控制

参考文献:

[1]舒华,姚国平.汽车电子控制技术.北京:人民交通出版社,2008,01.

[2]冯崇毅.汽车电子控制技术.北京:机械工业出版社,2006,01.

电子爆震控制范文篇3

现代汽车设计为了降低排放并获得大的输出扭矩,通常情况下会采用一个大的压缩比。问题在于,当压缩比增大时,气缸压缩终了的压力和温度都将随之升高,混合气中的汽油分子能汽化得更完全,颗粒能更细密,加上气缸高压缩比的密封效果,致使混合气燃烧速度加快,当火花塞跳出火花时就能使得混合气在瞬间内完成燃烧的动作,释放出最大的爆发能量,此时发动机可输出最大动力。

但是压缩比越高发动机抖振越厉害,发动机的压缩比越高,通常伴随着的就是发动机工作时抖振会较明显增大,即使是多缸发动机也是如此。在爆发点火时混合气燃烧所产生的能量在瞬间释放出来,相对的振动的动能也就较大。

而高压缩比气缸压缩终了时的温度通常高于正常温度80-110℃,当进入气缸燃烧室的混合气吸收过度的热量,则燃烧室内的混合气会由于分子聚集,其中的汽油分子吸收了足够的热量之后,在达到它的燃点时,此时若燃烧室内存有积炭或某个角落恰有热点出现,吸收足够热量的汽油分子便会自行燃烧起来,或在火花塞欲点火之前就自行燃烧,即所谓的自燃、预燃,所有这些都直接诱导了燃烧室内发生爆震。

持续的爆震,将引起缸体、缸壁、进气歧管等薄壁构件产生高频振动,导致很大的噪声和损坏,还可能引起火花塞电极和缸壁出现过热、熔损等现象,使发动机无力、损坏机械元件,严重威胁发动机使用性能。但理论与实践同时证明:当发动机工作在爆震的临界点或有轻微爆震时,发动机的热效率最高,输出动力性和燃油经济性最好。

二、解决方案

为了获得最佳动力性和燃油经济性,现代汽车通常利用点火提前角的闭环控制系统来有效的控制点火提前角,从而使发动机工作在爆震的临界状态。此项控制内容可通过安装在缸壁上的爆震传感器来实现点火的闭环控制,从而有效的防止爆震产生。

燃烧室内发生的震动,可由爆震传感器检测,每台发动机一般安装1~2只。带通滤波器只允许发动机爆震信号(频率为6~9kHz的信号)或接近爆震频率的信号输入控制单元进行处理,而其他的信号频率则被衰减。爆震信号经过滤波、放大、整波、比较后,可判断出发动机是否发生爆震。

由上可看出爆震传感器的作用是:将发动机爆震信号转换为电信号输入发动机电子控制单元(即ECU),以便ECU根据爆震信号对点火提前角进行修正,从而获得最佳点火提前角来消除爆震,获得最大输出动力。

通过带通滤波电路检测到的爆震信号输入控制回路,此时,控制单元将控制延迟点火直到再次发生爆震。

其优点如下:(1)伴随着压缩比增大时,扭矩也增大,发动机油耗相应的下降。(2)通过协调动力、油耗和排放可优化点火特性图。(3)作为一个功能的运转条件,点火系可以自动限制发动机爆震的发生。(4)正确的点火角度可通过自动选择来中和(或协调)燃油品质的不同、燃油老化以及环境的影响(如压力、温度等)。(5)现代电子控制实现了每个缸的爆震检测及最佳点火提前角的控制。

三、方案设计

爆震控制系统既可做成单独的如晶体管点火系统,或者整合成诸如Motronic的复杂类型。其中将电子点火与爆震控制做成一个整体即带有爆震传感器的点火闭环控制单元尤为重要。

爆震控制需要在缸壁上装一个传感器,紧贴在缸壁上。传感器由塑料壳包裹着压电元件及振动块组成。此外,还有爆震控制电路。

爆震控制可包含下述功能:(1)通过控制燃油泵的节流阀及增压阀来改变空然比。(2)排气再循环利用。(3)微处理器进行故障自动检测诊断,必要时,可通过安装在特定位置的转速计来输出故障信息。

四、操作

发动机的爆震界限不是一个固定值,它随着运转条件的变化而变化。只有当检测到发动机发生爆震时才比较重要。爆震传感器检测到发动机缸壁上的固体震动,并将这些震动转变成电信号,输入控制单元。闭环控制系统筛选出爆震信号,并对其特性进行分析。震动信号被分配给相对应的气缸,通过这种方式,可实现每缸爆震的单独控制。

一旦检测到发生爆震,控制回路立即控制相对应气缸立刻推迟点火,一般每次推迟0.5°—1.5°曲轴转角,直到爆震消失。爆震强度越大,点火时间推迟越多;爆震强度越小,点火时间推迟越小。

只要传感器检测到气缸发生爆震,则点火控制单元再次控制推迟点火即减小点火提前角,直至无爆震信号出现即爆震消失,并且在随后的一段时间内都保持其值不变。当爆震消失后或无爆震发生时,控制单元则又开始以相同的固定值逐渐增大点火提前角,一直到爆震再次出现,整个控制过程周而复始。

可利用带有爆震传感器的点火提前角的闭环控制来有效的控制点火,从而控制发动机工作在爆震的临界状态,从而获得最大的输出扭矩。

五、爆震强度判断及注意事项

爆震强度的判断通常是根据爆震信号超过基准值得次数来判定的。超过爆震基准值得次数越多,爆震强度越强,反之,爆震越弱。

其中a——气缸内压力曲线b——过滤后的压力曲线c——传感器信号发动机正常运转时机体振动频率频繁而剧烈,为了提高控制系统的可靠性,通常要设定爆震控制范围,即爆震控制并非在任意时刻都采用闭环控制,而是在识别发动机点火后爆燃且可能发生的一段曲轴转角范围内,只有在此范围内,控制系统才允许对爆震信号进行识别,即采用闭环控制方式控制点火提前角。

理论和事实证明,当发动机负荷低于某一值时,一般不会出现爆震。此时点火控制采用开环控制。

六、结束语

从上述内容可看出爆震控制在现代汽车电子控制中的重要地位,通过采用爆震传感器的爆震控制来实现点火提前角的闭环控制,对发动机获得大功率提供了有效途径。

【摘要】本文从压缩比与发动机的动力关系入手,针对目前汽车上应用广泛的控制内容——爆震控制,作了简要的分析,并列举了高压缩比对爆震的影响及爆震的一些危害,简要阐述了电子爆震控制即闭环控制的优点、方案设计及具体操作等。

【关键词】压缩比自燃爆震闭环控制

参考文献:

[1]舒华,姚国平.汽车电子控制技术.北京:人民交通出版社,2008,01.

[2]冯崇毅.汽车电子控制技术.北京:机械工业出版社,2006,01.

电子爆震控制范文篇4

为了获得最佳动力性和燃油经济性,现代汽车通常利用点火提前角的闭环控制系统来有效的控制点火提前角,从而使发动机工作在爆震的临界状态。此项控制内容可通过安装在缸壁上的爆震传感器来实现点火的闭环控制,从而有效的防止爆震产生。

燃烧室内发生的震动,可由爆震传感器检测,每台发动机一般安装1~2只。带通滤波器只允许发动机爆震信号(频率为6~9kHz的信号)或接近爆震频率的信号输入控制单元进行处理,而其他的信号频率则被衰减。爆震信号经过滤波、放大、整波、比较后,可判断出发动机是否发生爆震。

由上可看出爆震传感器的作用是:将发动机爆震信号转换为电信号输入发动机电子控制单元(即ECU),以便ECU根据爆震信号对点火提前角进行修正,从而获得最佳点火提前角来消除爆震,获得最大输出动力。

通过带通滤波电路检测到的爆震信号输入控制回路,此时,控制单元将控制延迟点火直到再次发生爆震。

其优点如下:(1)伴随着压缩比增大时,扭矩也增大,发动机油耗相应的下降。(2)通过协调动力、油耗和排放可优化点火特性图。(3)作为一个功能的运转条件,点火系可以自动限制发动机爆震的发生。(4)正确的点火角度可通过自动选择来中和(或协调)燃油品质的不同、燃油老化以及环境的影响(如压力、温度等)。(5)现代电子控制实现了每个缸的爆震检测及最佳点火提前角的控制。

二、压缩比与爆震的关系

现代汽车设计为了降低排放并获得大的输出扭矩,通常情况下会采用一个大的压缩比。问题在于,当压缩比增大时,气缸压缩终了的压力和温度都将随之升高,混合气中的汽油分子能汽化得更完全,颗粒能更细密,加上气缸高压缩比的密封效果,致使混合气燃烧速度加快,当火花塞跳出火花时就能使得混合气在瞬间内完成燃烧的动作,释放出最大的爆发能量,此时发动机可输出最大动力。

但是压缩比越高发动机抖振越厉害,发动机的压缩比越高,通常伴随着的就是发动机工作时抖振会较明显增大,即使是多缸发动机也是如此。在爆发点火时混合气燃烧所产生的能量在瞬间释放出来,相对的振动的动能也就较大。

而高压缩比气缸压缩终了时的温度通常高于正常温度80-110℃,当进入气缸燃烧室的混合气吸收过度的热量,则燃烧室内的混合气会由于分子聚集,其中的汽油分子吸收了足够的热量之后,在达到它的燃点时,此时若燃烧室内存有积炭或某个角落恰有热点出现,吸收足够热量的汽油分子便会自行燃烧起来,或在火花塞欲点火之前就自行燃烧,即所谓的自燃、预燃,所有这些都直接诱导了燃烧室内发生爆震。

持续的爆震,将引起缸体、缸壁、进气歧管等薄壁构件产生高频振动,导致很大的噪声和损坏,还可能引起火花塞电极和缸壁出现过热、熔损等现象,使发动机无力、损坏机械元件,严重威胁发动机使用性能。但理论与实践同时证明:当发动机工作在爆震的临界点或有轻微爆震时,发动机的热效率最高,输出动力性和燃油经济性最好。

三、方案设计

爆震控制系统既可做成单独的如晶体管点火系统,或者整合成诸如Motronic的复杂类型。其中将电子点火与爆震控制做成一个整体即带有爆震传感器的点火闭环控制单元尤为重要。

爆震控制需要在缸壁上装一个传感器,紧贴在缸壁上。传感器由塑料壳包裹着压电元件及振动块组成。此外,还有爆震控制电路。

爆震控制可包含下述功能:(1)通过控制燃油泵的节流阀及增压阀来改变空然比。(2)排气再循环利用。(3)微处理器进行故障自动检测诊断,必要时,可通过安装在特定位置的转速计来输出故障信息。

四、操作

发动机的爆震界限不是一个固定值,它随着运转条件的变化而变化。只有当检测到发动机发生爆震时才比较重要。爆震传感器检测到发动机缸壁上的固体震动,并将这些震动转变成电信号,输入控制单元。闭环控制系统筛选出爆震信号,并对其特性进行分析。震动信号被分配给相对应的气缸,通过这种方式,可实现每缸爆震的单独控制。

一旦检测到发生爆震,控制回路立即控制相对应气缸立刻推迟点火,一般每次推迟0.5°—1.5°曲轴转角,直到爆震消失。爆震强度越大,点火时间推迟越多;爆震强度越小,点火时间推迟越小。

只要传感器检测到气缸发生爆震,则点火控制单元再次控制推迟点火即减小点火提前角,直至无爆震信号出现即爆震消失,并且在随后的一段时间内都保持其值不变。当爆震消失后或无爆震发生时,控制单元则又开始以相同的固定值逐渐增大点火提前角,一直到爆震再次出现,整个控制过程周而复始。

可利用带有爆震传感器的点火提前角的闭环控制来有效的控制点火,从而控制发动机工作在爆震的临界状态,从而获得最大的输出扭矩。

五、爆震强度判断及注意事项

爆震强度的判断通常是根据爆震信号超过基准值得次数来判定的。超过爆震基准值得次数越多,爆震强度越强,反之,爆震越弱。

其中a——气缸内压力曲线b——过滤后的压力曲线c——传感器信号发动机正常运转时机体振动频率频繁而剧烈,为了提高控制系统的可靠性,通常要设定爆震控制范围,即爆震控制并非在任意时刻都采用闭环控制,而是在识别发动机点火后爆燃且可能发生的一段曲轴转角范围内,只有在此范围内,控制系统才允许对爆震信号进行识别,即采用闭环控制方式控制点火提前角。

理论和事实证明,当发动机负荷低于某一值时,一般不会出现爆震。此时点火控制采用开环控制。

六、结束语

从上述内容可看出爆震控制在现代汽车电子控制中的重要地位,通过采用爆震传感器的爆震控制来实现点火提前角的闭环控制,对发动机获得大功率提供了有效途径。

【摘要】本文从压缩比与发动机的动力关系入手,针对目前汽车上应用广泛的控制内容——爆震控制,作了简要的分析,并列举了高压缩比对爆震的影响及爆震的一些危害,简要阐述了电子爆震控制即闭环控制的优点、方案设计及具体操作等。

【关键词】压缩比自燃爆震闭环控制

参考文献:

[1]舒华,姚国平.汽车电子控制技术.北京:人民交通出版社,2008,01.

[2]冯崇毅.汽车电子控制技术.北京:机械工业出版社,2006,01.

电子爆震控制范文篇5

1)汽车发动机基本原理和构造

当今世界上的汽车发动机工作过程基本上都由四个冲程组成,即进气、压缩、膨胀和排气。利用燃料和空气的混合气在气缸内燃烧产生的高温高压气体的膨胀,发动机借助于曲柄连杆机构通过曲轴对外输出扭矩而作功。发动机按照所用燃料可分成汽油机、柴油机和燃气发动机;按照点火方式可分成点燃式和压燃式;汽油机按照空气和燃油的比例可分成理论当量燃烧和稀薄燃烧;按照汽油喷射地点可分成中央喷射、进气口喷射和缸内喷射。

发动机的各个部分按其功能可分成燃油供应系统、进气排气系统、点火系统、曲柄连杆传动机构、润滑系统、冷却系统和辅助系统如发电机、起动机、空调压缩机和各种泵等。

发动机工况可分成冷起动、起动后、暖机、怠速、部分负荷、全负荷、加速、减速和倒拖滑行等。这些工况主要根据负荷与转速,结合发动机温度(即冷却液温度)来区分。

2)电子控制在发动机中的重要意义

汽车电子控制始于发动机电子控制。电子控制之于1957年引入发动机以及于1967年商品化,其初衷是为了满足越来越严格的排放法规要求,同时提高汽车的动力性、燃油经济性和舒适性。现代汽车和发动机技术离开了电子控制是不可思议的。电子产品的产值在整个汽车中所占的比例随着汽车级别的提升而升高,可达30以上。

3)发动机电子控制的核心问题

汽油机电子控制的核心问题是燃油定量和点火定时。柴油机电子控制的核心问题是燃油定量和喷油定时。

2.汽车和发动机电子控制系统的组成

汽车和发动机电子控制系统跟其它电子控制系统一样,也是由传感器、电子控制单元(ECU)和执行器组成。

1)传感器

(1)目前汽油机电子控制系统常用的传感器有:

l进气岐管绝对压力传感器(提供进气岐管绝对压力信息供计算负荷等)

l燃油压力传感器(提供油轨燃油压力信息)

l燃油箱压力传感器(提供燃油箱压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器提供(提供发动机温度信息)

l进气温度传感器(提供进气温度信息供计算空气密度等)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息供计算负荷等)

l节气门位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息等)

l霍尔传感器(提供转速信息、曲轴位置和相位信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l爆震传感器(提供发动机机体接收到的振动信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l是大于1还是小于1的信息)

(2)目前柴油机电子控制系统常用的传感器有:

l增压压力传感器(提供增压压力信息)

l燃油压力传感器(提供共轨燃油压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器(提供发动机温度信息)

l燃油温度传感器(提供燃油温度信息)

l进气温度传感器(提供进气温度信息)

l排气温度传感器(提供排气口和排气管的温度信息)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息)

l节气门位置传感器(提供节气门位置信息用于排气再循环控制)

l转角传感器(提供分配泵轴转角信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l霍尔传感器(提供转速和曲轴相位信息)

l海拔高度传感器(提供海拔高度信息)

l车速传感器(提供车速信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l的具体数值)

l压差传感器(提供微粒物捕集器的压差信息)

lNOX传感器(提供排气后处理系统的NOX浓度信息)

2)电子控制单元

电子控制单元(ECU)接受传感器提供的各种信息并加以处理,根据处理向执行器发出指令给,对发动机实施控制。电子控制单元由微型计算机和模拟电路组成。随着发动机技术的不断发展,电子控制单元的信息处理量越来越大,现在所用的芯片已经达到32位,晶体管数量可超过700万个,匹配参数可超过6000个,针脚数目可超过150个。

3)执行器

(1)目前汽油机电子控制系统常用的执行器有:

l电动燃油泵

l电磁喷油器

l点火线圈

l各种怠速执行器

l炭罐控制阀

l排气再循环控制阀

l电动节气门(又称电子油门)

l液压回路电磁阀(用于可变气门定时控制等)

l气动回路电磁阀(用于可变进气管长度控制等)

l全可变气门电子控制执行器

l涡轮增压废气放空控制阀

l电动二次空气泵

l三效催化转化器加热执行元件

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

(2)目前柴油机电子控制系统常用的执行器有:

l电动输油泵

l各种燃油喷射泵

l喷油量执行器(集成于燃油喷射泵内)

l喷油提前角执行器(集成于燃油喷射泵内)

l燃油切断阀(集成于燃油喷射泵内)

l共轨高压泵

l共轨压力控制阀

l各种共轨喷油器

l单元喷嘴系统和单元泵系统的高压燃油电磁阀

l炽热塞

l排气再循环控制阀

l电动节气门(又称电子油门)

l可变气门控制执行器

l可变进气管长度执行器

l涡轮增压废气放空控制阀

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

一部分柴油机传感器和执行器集成于燃油喷射设备之内,因所用的柴油喷射设备而异。

3.汽油机基本的电子控制项目

1)燃油定量。这是汽油机最重要的电子控制项目。控制对象是进入发动机的空气与燃油的质量比例,由ECU根据发动机的负荷、转速和冷却液温度等参数决定。负荷就是驾车人对发动机的扭矩要求,通过吸入空气量或油门踏板位置传递给ECU。执行器是电动燃油泵和电磁喷油器。燃油定量影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

2)点火定时。点火定时通常用点火发生时活塞在压缩冲程上止点之前多少度曲轴转角,即点火提前角来表征,也要根据发动机的负荷、转速和冷却液温度等工况参数决定。执行器是点火线圈。点火定时同样影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

3)爆震控制。汽油机爆震会损坏发动机,恶化排放和燃油经济性。通过电子控制避免爆震的主要途径是减小点火提前角。所以爆震控制通过点火定时控制实施。但是过小的点火提前角会影响燃油经济性。爆震控制的目的就是使点火提前角保持在恰好不发生爆震的临界点。

4)油箱蒸发排放物控制。油箱蒸发排放物都是碳氢化合物,是有害物质,必须利用活性炭罐加以吸附,并在适当的时候用新鲜空气清洗活性炭罐。清洗气流通过进气管送入气缸燃烧。并不是任何工况下都可以进行清洗,所以要利用炭罐控制阀对清洗气流加以控制。

4.柴油机基本的电子控制项目

柴油机基本的电子控制项目就是燃油定量和喷油定时。这两者都由喷射设备根据转速、负荷和冷却液温度等信息控制。这里,负荷信息由油门踏板传感器提供。如果说汽油机可以采用,也可以不采用油门踏板位置传感器的话,那么柴油机必须采用。

5.扩展的发动机电子控制项目

1)扩展的汽油机电子控制项目

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l二次空气电子控制。用于满足欧4以上法规对碳氢化合物和一氧化碳排放的要求。

l三效催化转化器燃油加热或电加热电子控制。用于满足欧4以上法规对排放的要求。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l喷油压力和喷油定时控制。用于汽油直喷,提高动力性和经济性,降低有害物质排放。

2)扩展的柴油机电子控制项目

l喷油压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l喷油规律电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l多次喷油电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l微粒物捕集器再生电子控制。用于降低发动机微粒物排放。

6.展望和结语

1)发动机电子控制系统是一个非常有潜力的市场。随着排放法规的逐步趋严和燃油经济性要求的逐步提高,发动机技术正在飞速发展,新的电子控制技术还在不断涌现。

2)都说世界制造业的重心正在向中国转移。汽车行业,包括汽车电子行业,也在一定程度上出现了这种趋势。但是,目前中国发动机电子控制系统的原配套产品基本上都出自外资企业。这些企业组装产品用的元件几乎都不是在中国生产的。由此我国丧失了许多GDP和就业岗位。国营和民营企业技术水平低下,只能仿造外资企业的产品,跟在外资企业后面从维修备件市场分一点残羹冷饭。有的甚至还偷偷摸摸地打着外资企业的招牌,干着生产假冒伪劣产品的勾当。这种局面应当扭转。政府应当看到,这个行业的发展将会带来巨大的GDP增长,并创造大量的就业机会。所以政府应当做出规划,对这一行业加以扶植和整顿。

电子爆震控制范文篇6

关键词:汽车发动机;电控系统;检修技术;探索

随着我国经济发展速度不断加快,交通方式正在逐渐的发生改变,汽车在我国的普及程度越来越高,在一些较大城市出现严重的交通拥堵现象。汽车普及程度提升,检修工作相对需求量更大,检修人员对发动机电控系统的检修工作属于常见问题,需要对其维修关键性技术进行说明,提升整体的检修质量。随着科技水平的不断发展,汽车发动机故障主要集中点由机械故障转向电控系统故障,因此本文对目前汽车发动机电控系统进行分析,同时针对常见的故障类型进行检修技术的说明,提高检修质量。

1汽车发动机电控系统

1.1传感器。汽车发动机电控系统是由多种类型的传感器构成,传感器可以将汽车发动机运行过程中难以检测的数据转化电信号进行检测,从而实现对整体的运行状态进行统一管理。传感器主要的构成分为敏感元件、转换元件和测量电路。传感器的可以准确的对发动机的运行状态进行检测,降低整体的油耗损失,对故障类型进行确定,保证废弃排除效果等作用。温度传感器主要用于对汽车发动机温度的检测,包括整体发动机温度、燃油温度、冷却水温度等进行分析,常见的形式为线绕或热敏电阻。压力传感器可以对发动机内部空气压力进行检测,应用较多的类型为半导体或者电容式传感器。爆震传感器能够对发动机中的爆震信号传输至控制中心,及时的报告故障。1.2电子控制单元。在汽车发动机电控系统内部主要构成系统为怠速控制、电子燃油喷射、废气再循环以及电控点火装置。目前电控点火装置的使用比较广泛,能够实现对点火提前角和线圈通电时间的控制,优化燃烧过程,降低发动机运行过程中的资源消耗,降低资源使用量,保证发动机使用的经济性。电子燃油喷射系统构成为电动燃油泵、油箱、压力调节器等元件。废弃再循环系统可以对废气进行二次回收进行再次利用,使其未充分燃烧部分进行二次气体混合燃烧,降低废气中的氮氧化物含量,更好的节能减排。

2汽车发动机故障检修技术

2.1发动机启动不流畅。汽车在使用一段时间后可能出现发动机启动过程不够流畅的情况,针对这一问题检修人员在检修过程中,首先需求确定是否为发动机蓄电池存在问题,一般情况下蓄电池出现故障时,点火发动动力相对较小,进而延长启动时间。如果蓄电池不存在问题,则可以考虑输油管的状态进行检查,查看是否存在接触不良或者局部破裂的情况。如果检查不存在问题,而发动机的动力明显不足,并且增加油门依然没有发生显著变化时,可以确定为供油系统不足导致,检修人员可以调节发动机喷油量,从而提升发动机的整体的运行动力。2.2发动机启动不着火。发动机启动不着火的情况相对比较常见,此时检修人员应当首先对发动机的化油器油面进行检查,确定加速喷嘴喷油情况是否正常。如果该元件不存在问题,可以检查火花塞跳火状态是否正常,将其上方的分缸高压线取下,令端头位置与气缸盖靠近,控制距离在4mm左右观察起动机,如果可以观察到白色火花和声音,则可以确定火花塞出现故障需要更换。若检查高压线端跳火情况不正常,检修人员应当观察电流表的转动情况来进行分析,如果电流表指针随着起动机转动发生摇摆,则说明故障发生于次级回路中,需要分缸检查高压线、分电器以及线圈的状态。如果没有发生跳火现象,则证明中心高压线正常,需要对分电器的接触点进行检查,查看是否存在故障。如果发现电流表指针与起动机运行情况无关,并且指针示数超过4A,则需要检查断电器的接触点间隙是否存在漏电。如果电流表没有示数,则检查辅助触点和低压接线柱的电压值,使其恢复正常即可。2.3发动机噪音异常。当出现发动机噪音异常时,检修人员首先需求对噪音异常的位置进行判断,分析发动机噪音存在的规律性,如果抖动为无固定规律的情况,则证明问题发生于点火系统,技术人员应当检查风扇的运行状态,检查是否存在异物,短接火花塞排除故障。如果发动机噪音呈现规律性则证明发动机机油使用存在问题或者机油变脏,需要进行更换。

3结语

本文针对发动机电控系统的构成进行分析,说明传感器和电子控制单元的具体情况,同时对目前检修实践经常出现的问题进行分析,对详细的步骤操作进行总结,为检修人员快速确定故障位置提供参考。

参考文献:

[1]周超良.汽车发动机电控系统分析与故障检修技术探讨[J].军民两用技术与产品,2017(02).

[2]王翠.汽车发动机电控系统故障分析和检修[J].科技资讯,2016,14(03):61~62.

电子爆震控制范文篇7

进入21世纪以来,社会经济的快速发展带动了汽车工业的进步。汽车正在渐渐进入千家万户,改善了人们的生活。但是汽车数目的增加对于能源的需求以及环境的危害成为重要的问题。怎样改善这些问题,让汽车工业走上可持续发展的道路,让汽车成为优质的交通工具继续传承,是当代汽车工业环保节能设计应用的重要课题。

2汽车工业节能环保设计应用措施研究

2.1普通电控发动机节能减排技术

2.1.1氧传感器对喷油量的闭环控制

发动机电控单元(ECU)通过安装在排气管道上的氧传感器对尾气中氧的浓度进行检测,并根据此信号来判断此前喷油量是多还是少,从而使发动机的空燃比(空气的质量/燃油的质量)始终控制在一个狭小的、接近理想的区域内(燃油完全燃烧的理想空燃比为14.7:1),从而可能实现燃油的完全燃烧(三元催化转化),不但减少了燃油的消耗,提高了发动机的动力性和经济性,而且减少了汽车排放中的有害物质,提高了排放质量。

2.1.2爆震传感器

对点火提前角的精确控制增大点火提前角既可减少燃料消耗又能提高汽车的动力性,但是过大的点火提前角会导致爆燃,使发动机工作不稳定。因此,应将点火提前角控制在一个“最大”而又不至于使发动机发生爆燃的合适提前角度上。电控发动机的电控单元主要利用安装在缸体上的爆震传感器检测出的爆燃强度信号,来使发动机始终工作在爆燃的边缘。这样就既能防止发动机爆燃的发生,又能有效地提高发动机的动力性和经济性,起到节能的目的。

2.1.3EGR废气再循环控制系统

NOx是空气中的氮气与氧气在高温、高压条件下形成的,所以发动机排出的NOx量主要与气缸内的燃烧温度有关,气缸内燃烧温度越高,排出的NOx量就越多。EGR控制系统就是将适量的废气重新引入气缸内再次燃烧,从而降低气缸内的燃烧温度,从而减少了NOx的排放量。

2.1.4汽油蒸汽排放控制(EVAP系统)

汽油有极强的蒸发性,为防止油箱内的汽油蒸气的挥发,造成空气污染和燃料浪费,设计了EVAP系统。油箱的燃油蒸气通过单向阀进入活性碳罐,在车辆工作时,利用真空等把碳罐内的汽油送入进气歧管,与正常混合气混合后进入发动机燃烧,使燃油得到充分利用。2.1.5涡轮增压技术涡轮增压就是提高发动机进气量,从而提高发动机的功率和扭矩。在相同排量的条件下,装上涡轮增压的发动机与未装增压的发动机的最大功率相比可以增加40%甚至更高。这也就意味着同样一台的发动机(排量不变)在经过增压之后能够产生更大的功率,但是耗油量却未有增加,从而有效地提高燃油经济性和降低尾气排放。

2.2发动机机内净化

2.2.1汽、柴油机电控燃油喷射系统

电控燃油喷射系统采用微电子技术来监测发动机运行情况,然后把这些信息传递给控制单元分析与计算,完成燃油在不同情况下适量、适时喷入气缸,进而改进燃油经济性,降低排放的污染物。根据分析可以知道,利用电控燃油喷射系统的发动机跟利用传统点火系统的发动机相比较,功率能够提升5~10%,然而能源消耗可以减少5~15%,对于限制污染物的排放也具备良好的效果。

2.2.2稀燃技术

为了提升燃油的经济性,改进排放,稀薄燃烧技术被引进到发动机系统当中,稀薄燃烧可以使得氮氧化物的排放量显著减少,与此同时,比较高的空气比值能够降低排放物当中一氧化碳与碳氢化合物的比重,这也可以实现减少个两种有害气体排放的目的。为了可以使得发动机在高空燃比的情况下不失火,一定要具备三种重要技术的支持,即高能点火技术、分层燃烧技术以及提升压缩比。稀燃技术虽然比不上缸内直喷系统先进,但是低廉的价格使得稀燃技术仍然具备广阔的市场。

2.3工业设计方法的应用

节能环保汽车的影响可以利用两种方法得到。一种是利用理论书籍以及网络来查找节能环保汽车的行业发展历程,品牌特征,技术发展过程,市场营销方案,其中包含生产物流、市场运作以及售后服务等等;收集环保节能汽车技术方面的资料,包含汽车车身、节能方式、内饰、环保、发动机等反面的专题。而是利用访谈改领域的设计师与专家,材料工程师以及具备十年以上驾驶年限的司机等,不断改进创建的因素框架。在创建因素框架过程当中,在访谈材料工程师、电气工程师、结构工程师、设计师等后,创建了如图1所示的环保节能因素框架结构。

2.4努力寻找新的替代能源,发展节能环保车

近年来,新能源电动汽车技术有了突飞猛进的发展。油电混合动力技术已经进入产业化,锂动力电池技术取得了重大突破,车用燃料电池技术不断进步。汽车企业需要懂点发展小型电动轿车的产业化。小型电动轿车迎合了电动汽车自身的发展规律以及我国的基本国情,我国具备丰富的稀土资源、镁资源以及锂资源,能够给电动汽车的重要构件原材料带来资源保障。并且我国的电动摩托车、电动自行车等轻型电动车的技术经验与发展过程可以给电动汽车工业的发展奠定良好的基础。油电混合动力汽车现在虽然已经生产,但是市场前景并不好。跟传统的燃油汽车相比较,油电混合汽车具备良好的能耗优势。油电混合动力汽车工业的发展最主要的问题就是降低投入成本,这也是需要汽车企业亟待解决的难题,尤其是一定要降低电机驱动系统、电子控制系统以及动力电池等的成本。这样一来混合动力车的销售量才会提升,才可能真正意义上给节能与减排做贡献。在研发锂动力电池上,锂离子电池具备容量大、性能好、能量密度高、无记忆性等优势,已经得到了众多车企的广泛认可,是当前车用电池的工业化热点。

3结语

综上所述,汽车产业的环保节能是一项回收期长、社会公益性强、投入巨大的工作,仅仅依靠汽车企业本身的力量是非常难以完成的,这需要全社会的整体参与。我们要从国情出发,创建节约型的消费观念,一起营造消费环保节能汽车的良好氛围。同时汽车企业要努力引进与研发新技术、努力探索汽车新能源动力,从源头上降低能耗,避免环境污染情况的恶化。要努力宣传节能环保汽车在环保与能耗等方面的优势。新能源汽车是一种新生事物,其发展的过程需要经过艰苦的探索,需要不断创新与改善,消费者在购买使用新能源汽车的时候,有责任把汽车出现的情况真实的反馈给汽车生产厂家,方便车企能够尽早改进,让新能源汽车得到很好的推广,其实促进汽车工业的环保与节能。

作者:隆中天 单位:湖北省襄阳市第五中学

参考文献:

[1]张希良,等.中国新能源汽车产业发展现状与展望[J].环境保护,2013(10).

电子爆震控制范文篇8

之后,随着中国汽车保有量和年产量的迅猛发展,中国为了进一步保护环境推行可持续发展战略,先后又了国III、国IV法规(见表I),以追赶欧美等发达国家的法规要求。和国际上排放法规的推行数度相比,可以看出,我国推行的力度很强,并且推行的步伐也更快。

近几十年来,汽车技术的发展和进步是以越来越多的电子技术应用紧密联系在一起的。电子技术在在汽车里的广泛应用提高了汽车的性能,有效降低了排放,有力地推进了汽车安全性和可靠性。而汽车电子的进步又总是和汽车半导体的进步密不可分。汽车电子的革新对半导体技术提出了新的挑战,而半导体技术的创新又为汽车电子的进步提供了必不可少的条件。动力系统作为汽车电子里最重要的核心系统之一,半导体技术更是起到了非常重要的作用。半导体器件作为动力系统的基本组成部分,直接影响到整个系统的规划,布局和系统控制战略。下面从微处理器,传感器和汽车功率器件等几个方面介绍半导体技术在汽车动力系统里的应用,创新以及对汽车半导体未来的展望。

随着汽车性能包括排放,可靠性和安全性的不断提高,一代又一代汽车的动力系统发生了非常大的变化。如果比较这一代又一代的汽车动力控制系统,我们会发现,传感器,执行器的数量明显的增加了,控制系统的复杂程度也大大提高了。

为了更有效控制的汽车动力系统,越来越多的传感器被应用到系统当中。传感器可以更准确的各种测量物理参数,以便于系统了解当前的状态,为准确有效的控制提供了可能。一代又一代微处理器的推出,为动力系统提供了越来越强的实时运算能力。半导体功率器件的不断更新和进步,使得执行器,如引擎点火,喷油嘴,结气门体等的控制更加准确和有效。

汽车微控制器的进步和革新

随着汽车应用中对于油耗,排放还有动力性能更高的要求,微处理器面临着巨大的挑战。为了适应以上提到的要求,微处理器在中央处理器运算能力,信号采集以及外设方面,以及对于执行器的控制能力方面都得到了很大的发展。

动力系统的革新和进步,往往和排放法规的推出联系在一起。作为动力系统革新的推动力,新的排放法规的出台总是推动着动力系统的更新换代。为了达到欧2的标准,8位微处理器就足以满足要求。英飞凌的8位微处理器C505今天依然被广泛的使用在这样的系统中。从90年代初开始,由于系统对于微处理器要求的提高,16位微处理器逐渐开始应用在动力系统当中。英飞凌16位微处理器C167以卓越的实时处理能力在市场上得到了广泛的认可。从而在汽车的嵌入式系统中得到了非常广泛的应用。

表:I型试验排放限值及法规执行日期。

图1:发动机及其管理系统的组成。

C167的内核以及设备都是为引擎应用量身定作的。比如用于产生控制信号的功能单元,用于优化点火以及喷油的模数/数模转换器等等都为引擎控制系统提供很多方便。正是由于这些独特的功能使得英飞凌16位单片机至今依然被广泛的应用于动力系统当中。

对于汽车里很多电子马达的控制,比如线控传动系统、启动马达系统或者电子增压涡轮控制,英飞凌8位C868或者是基于C166v2结构的XC164系列提供了最优的解决方案。随着要求的更进一步提高,32位微处理器越来越多的被应用于动力系统控制当中,英飞凌32位Tricore是这个领域的佼佼者。Tricore除了具有RISC结构以外,还集成一个数字信号处理模块。这样系统处理复杂信号的能力得到了大大的提高。

图2:微控制器性能对燃油消耗量的影响。

英飞凌推出的32位微处理器AUDO系列不仅仅具有32位的内核和DSP的处理芯片,同时还集成了一组精心设计的设备。这组外设是为动力系统专门优化的。外设有自己的外设管理模块。它可以独立的完成对于外设的控制。也就是说,外设比如时钟、模数/数模转换、CAN总线的管理都可以由外设管理器直接完成,不需要占用主处理的资源。主处理器程序不会被外设的中断打断。这样明显加强了微处理器的实时性能,系统的实时性能也就相应得提高。这对于动力系统来说是非常重要的。AUDO32位微处理器系列另一个很显著的特点是运行在中央处理器的应用软件和运行在外设管理器里的底层驱动可以分开独立运行。应用程序可以运行标准的操作系统比如OSEK上,而底层的驱动程序就是应用程序和外设之间的接口。AUDO系列微处理器还有一个独立工作的通用时钟阵列,具有完成复杂工作的能力。这种结构为汽车动力控制系统中的喷射控制,点火控制等提供了最优的解决方案。这一系列的外设取代原来要专用芯片才能完成的功能,从而起到简化系统结构,降低系统成本的作用。

汽车功率器件面临的挑战

控制系统最初主要是由分立元器件组成的。随着控制系统越来越复杂,尤其是对于系统诊断和保护功能的新的要求,以及系统把一些特定的功能分配到功率器件当中来完成,分立元件逐渐不能满足这样的要求。今天应用于汽车动力系统中的功率器件大都基于BCD技术(BipolarCMOSDMOS)。这种技术不仅有能够驱动大电流的DMOS结构,还可以集成复杂的逻辑和控制功能,比如过流、过温保护、诊断功能、准确的电流控制,等等。这些功能明显的加强了系统的可靠性,同时为OBD提供了很大的方便。越来越多的功能被集成在功率器件里,这也有效的优化了系统结构,进一步节省了系统的成本。虽然越来越多的智能芯片被运用于系统当中,分立元件以其特有的优势依然常常被应用于动力系统当中,尤其是对于功率损耗特别大的应用,比如柴油喷射系统中。

在动力系统当中,功率器件控制喷嘴,氧传感器加热器,点火装置,风扇以及各种各样的继电器等等。英飞凌提供一个非常全的产品系列,能够被运用于驱动这些负载。从2通道到18通道的低端多通道开关,驱动能力从50mA到10A,基于客户不同的需求,总是可以在这个标准产品系列中选取合适的产品。基于最新的技术和封装英飞凌仍然在不断完善这个驱动产品系列。在这个产品系列中,英飞凌非常重视模块性,可扩展性和灵活性。Lego和Flex产品系列很好的体现了这几个特性,产品系列中不同产品具有很好的兼容性。根据不同的需要,可以把一个或者几个产品结合起来使用。

由于小型汽车市场快速发展,对于汽车动力系统提出了新的挑战。这种挑战在动力系统结构,控制战略方面都产生了很深刻的影响。体现在汽车功率半导体上,系统需要高集成度的产品。由于小型汽车特殊性,为集成多种功率芯片功能于一个芯片当中提供了可能。这样做可以使系统结构紧凑,可靠性增强,相应的系统成本也会大幅的降低。当然这样的系统对于系统的散热处理,芯片的封装技术等方面提出了更加严格的要求。

BCD技术同时具有DMOS,CMOS,Bipolar结构,这使基于BCD的产品可以集成复杂的控制功能,这对动力系统的功能模块划分产生了影响。越来越多地功能在系统功能模块划分中被转移到功率器件当中。以前很多功能需要专用芯片来完成,或者需要占用很多微处理器资源,现在都被集成在功率器件当中。比如在汽油直喷系统中,系统需要一个PeakandHold的功能,这个功能就能够由基于BCD技术的功率半导体芯片非常有效的实现。智能功率半导体芯片还集成了保护和诊断功功能,可以自动诊断短路,过流,过温开路等错误。并且可以对这些错误状态做出相应的处理,比如说过温过流情况下的自动关断。这些诊断信息经过编码后,还可以通过串行通信接口和微处理器进行通信。

汽车传感器的广泛应用

最初传感器在汽车引擎控制里的应用是引擎点火器的控制,系统基于负载和转速来决定点火角度和点火时间。通过这种技术实现的点火控制很简单,已经远远不能适应今天越来越严格的油耗,排放以及动力性能的要求。在现代的系统中,除了负载,转速信号传感器以外,引擎温度,进气管温度,进气量,节气阀位置,氧传感器信号等等都必须被采集和处理。只有采集了这些信号,并对这些信号进行处理,引擎控制系统才能准确掌握引擎的状态,从而完成准确的控制。相比于被动传感器来说,半导体传感器拥有高准确度,高抗干扰性能和很好的耐久性能等优点。因而半导体传感器在汽车领域里逐渐取代被动传感器,得到了越来越广泛的应用。

半导体传感器不仅具有感知部件,还往往集成了很多别的功能,比如信号的预处理,诊断以及信号接口处理等等。英飞凌的集成压力和电磁传感器件,已经在汽车动力系统中,无数次的被应用于测量进气压力,大气压力,传动转速,爆震检测,节气门位置检测,油门位子检测等等。

图3:8缸发动机控制ECU基于英飞凌汽车电子器件。

总结和展望

在半导体芯片在动力总成系统中的应用方面,英飞凌做了许多系统上的工作。英飞凌应用32位单片机、智能功率器件以及部分传感器,成功研制一款8缸发动机的控制器ECU,可以控制所有实际的发动机管理系统负载,并且在这款ECU中不仅仅实现了发动机系统的管理,而且集成了自动变速箱的控制,因此这块ECU被称为动力总成系统电控单元。通过图3、图4可以看到该电控单元的框图,其中主要分为以下几个部分:

1.计算单元;

2.电源单元;

3.传感器以及传感器信号调理单元;

4.发动机管理系统负载驱动单元;

5.自动变速箱系统负载驱动单元;

6.总线传输单元;

7.调试接口单元;

8.发动机及变速箱模拟单元,包括爆震信号模拟等。

图4:8缸发动机控制ECU框图。

通过这一综合的电控单元,可以十分轻松的调试系统,为32位的高速的发动机管理系统以及变速箱管理体统的开发提供了有力的支持。这个系统的主要器件都是基于英飞凌的产品,体现了英飞凌完整的汽车电子产品线。

半导体产品:微处理器,功率芯片和传感器组成了整个动力电子控制系统。汽车电子动力系统对于高集成度的要求,以及控制系统的复杂性的提高必然会导致半导体技术的进一步革新,和一系列新的产品的出现。

在微处理器方面英飞凌将继续上面介绍的AUDO构架,进一步完善产品线。基于AUDO构架卓越的运算能力以及优秀的实时处理能力,英飞凌会推出低端32位微处理器,以适应不同市场的需求。AUDO微处理器的主频将进一步提高。外设功能也将得到进一步的加强。并且AUDO微处理器非常重视可扩展性和软件的兼容性,这为软件的重复使用创造了很好的条件。

在功率器件方面,将越来越注重灵活性,模块性和可扩展性。产品向高集成度方面发展。以一个4缸的引擎控制作为例子,在功率半导体方面,只要一个多通道低端开关,一个芯片完成电源供应,监视和通信。一个全桥芯片管理节气们体和4个IGBT来完成点火功能就可以组成一个完整的4缸引擎的控制。英飞凌正在推出一个快速的串行接口。这个接口已经被集成在英飞凌的很多产品当中。这个接口将一方面提高数据传输的带宽,另一方面将有效的降低系统对于微处理器I/O资源的要求。

电子爆震控制范文篇9

关键词:现代汽车;故障诊断;数据流分析

现代汽车故障诊断期间使用数据流分析方式,有利于获取准确的数据信息,形成自动化的诊断系统,合理检测电器元件工作状态,转变传统诊断技术方式,提升检测工作效果,使得工作人员可以准确且快速的掌握故障点,并合理的进行维修与保养,延长现代汽车的使用寿命,为人们提供高质量服务。

1汽车数据流定义与表现形式分析

1.1定义分析

数据流主要就是电子控制单元(ECU)与传感器、执行器交流的数据参数通过诊断接口由专用诊断仪读取的数据编码信息,数据流随时间和工况而变化(动态)。对于汽车电子控制系统而言,主要将传感器结构、电子控制单元结构、执行器结构等整合,传感器执行电信号从ECU中输入到电路转换系统的任务,使其转换成为二进制数,同时通过I/O系统输入到CPU中。而CPU系统在运行期间可开展控制指令处理工作,经过I/O系统进行输出处理,然后从ECU中输入到电路转换系统中,转换成为控制信号,针对执行器结构进行合理的协调。在系统运行中传感器与其他结构之间会形成连续性信号传输机制,汽车数据流可供给ECU实现对象工况与状态信号获取,并全面了解控制信号内容。在状态信号与控制信号形成数据流之后,通过ECU中会以二进制数进行传输,可形成数据的流动系统,将其称之为数据流。

1.2表现形式分析

汽车故障诊断工作中,可形成故障诊断仪的连接系统,获取ECU中的二进制数据信息,在仪器的诊断之下,形成译码,通过文字与波形的方式进行表达。在此期间可以使用万用表设备与示波器设备等开展检测工作,创建数据流分析模式,提升故障诊断数据流的分析效果。

第一,可形成连续性的模拟电压模式。在故障诊断中将电压高低数据作为依托表示数据值,例如:在节气门位置设置传感器可通过电压高低数据信息,获取准确的输出信号,并形成良好的管理体系。

第二,脉冲电压幅值模式。可将脉冲电压幅值作为数据值的反应标准,在传感器的支持下,向ECU中传输信号,形成诊断数据流的分析模式。

第三,脉冲电压频率模式分析。可将频率作为数据值的反应载体,例如:在发动机设备、车速系统中设置传感器,然后向系统中输送脉冲信号,用来表达数据流。

第四,高低电平模式。就是将电平的高低作为载体用来标识数据值,例如:在节气门结构安装传感器,获取自动变速器的数据信息,明确是否存在问题,然后向系统中传送信号,可提升诊断数据的准确性。

在使用数据流分析方式进行故障诊断期间,还可以形成其他的信号模式,例如:氧传感器信号模式,可通过IV电压信号对混合气体数据信息进行表达,如果数据在0.2V以下,就证明混合气体过于稀薄。同时可以使用爆震传感器系统,通过脉冲电压波形的设定方式获取数据流,分析是否出现了爆震故障问题。为了更好的进行故障诊断工作,还需凭借以往的工作经验开展管理工作,保证故障诊断数据流的准确性,并明确故障位置,提升工作效果。

2现代汽车故障诊断数据流问题

在现代汽车故障诊断期间使用数据流分析方式,可以将其划分成为数据参数类型与状态参数类型两种模式。其中,数据参数类型的诊断方式主要就是统一数据变化范围,并开展电控装置工作电压参数、时间参数与温度参数的分析工作,在明确数据之后进行故障诊断。状态参数类型诊断模式就是在系统运行中针对开关状态、高低状态等进行分析,了解元件的实际运行情况,并形成合理的诊断模式。可以结合ECU的运行原理,实现数据流的分析工作,选择参数分析的方式完成当前任务,提升整体诊断工作水平。

2.1缺乏完善的诊断步骤

在实际工作期间,未能合理完善诊断工作步骤,缺乏针对性与现代化的工作方法,没有建立完善的管控体系与模式,甚至会影响整体工作效果,无法满足当前的故障诊断数据信息的分析要求。例如:出现某种诊断故障代码(DTC)时,动力系统控制模块没有发出指令,冷却风扇一直运转,工作人员未能完善诊断流程与步骤,缺乏科学化的工作方式。

2.2缺乏针对性的工作方法

在故障数据流分析工作中,没有开展严格的管理工作,难以创建精细化的工作模式与体系,在缺乏完善工作方法的情况下,难以创建先进性与针对性的管理体系,严重影响整体工作的合理发展。例如:点火开关在运行(RUN)位置时,故障指示灯(MIL)不启亮;发动机运行时,故障指示灯(MIL)保持启亮。在出现此类故障问题的时候未能选择针对性的诊断方式开展工作,导致故障诊断工作质量降低。

2.3测量方式落后

在故障数据流分析的过程中,没有使用先进的测量方式开展工作,缺乏科学化与合理化的测量工作形式,难以使用合理的方法对其进行管理与控制,严重影响测量工作的可靠性与有效性。

3现代汽车故障诊断中数据流分析的应用

在现代企业故障诊断的过程中,数据流分析方式具有较高的应用价值,有利于提升故障诊断准确性,改革传统的诊断方式与方法,保证数据信息获取便捷性,满足当前的管理与发展需求,形成现代性的工作模式。

3.1完善诊断步骤内容

在使用数据流分析方式期间,应完善现代汽车故障诊断步骤,创建科学化与合理化的工作模式。首先,在诊断期间需针对故障码进行合理分析,明确是否存在故障码,结合检测标准等进行综合化的分析与研究。在全面分析之后,检测人员需根据故障码原因与情况进行分析,使用数组与波形分析方式明确汽车的故障位置,确保可以提升故障诊断工作效率与水平,优化整体管控模式,其次,如果现代汽车数据流分析中没有发现故障码,在检测的时候就要尽量找出故障码,明确故障情况。检测人员可以结合系统的实际运行原理与参数等开展各方面的分析工作,并全面分析数据参数内容。且在数据分析的时候,还需全面分析维修系统原理,明确维修参数内容,在认真分析的情况下,准确判断故障情况,提升自身工作效果。例如:当空调系统制冷剂压力高时,动力系统控制模块(PCM)利用该信息接通发动机冷却液风扇并在空调系统制冷剂压力过高或过低时,保持压缩机分离。

3.2针对性的进行故障诊断

第一,合理检查点火位置。现代汽车中点火系统的运行较为重要,应进行合理的检查,明确是否存在故障问题。检修工作人员需先将汽车各个缸的高压线路拔下来,将火花塞插在其中,在此期间高压线与点火线圈就会连接形成一体化结构,检测人员需针对点火开关进行开启,使得起动机能够正常运行,在起动机运行之后,检测人员应仔细针对各个缸火花进行观察,如果火花呈现强烈的蓝色,可以证明系统运行正常。在拆卸火花塞之后,如果电极燃烧正常,颜色为棕黄色,就可以证明系统正常。另外,在火花实验期间还需进行断火实验,提升诊断工作准确性。

第二,针对燃油供给结构进行检查。在检查工作中,应切断分配管结构与橡胶管结构,将其串联在压力表中,开启发动机,可获取准确的数据信息形成数据流,以便于进行诊断。

第三,实现数据流的合理分析。检测工作人员需针对解码器故障码进行合理的查询,明确每辆汽车的故障检查情况,如果没有故障码,就要使用计算机数据块开展数据流的分析工作,在每个数据模块中都要显示具体的故障结果,以此形成科学的分析系统与模式。检测人员可以使用数据流分析的方式,开展传感器的检测工作,在形成数据流之后使用计算机设备等进行验证,明确数值是否处于正常范围。例如:在氧传感器检测的时候,使用计算机数据模块进行数据流的分析,如果区域中显示的数据信息为空气流量计的问题,就要进行零部件的更换,在更换之后排除问题。

第四,数据流的进一步分析。在分析数据流之后还需进行进一步的分析,明确现代汽车零部件的故障原因与实际位置,并了解故障程度,在明确具体故障程度之后,采取科学合理的方式开展分析与研究等工作,充分发挥数据流在现代企业故障诊断中的积极作用,促进汽车故障诊断工作中数据流的严格应用。

3.3现代汽车故障诊断数据流测量方式

通常情况下,在使用数据流分析方式进行现代汽车故障诊断的时候,应科学开展数据流的测量工作,使用计算机系统获取数据流,在控制系统的支持下,使得故障数据通信线路传递出真实数据信息,通过串行方法将数据输入到计算机诊断仪中。在此期间,数据流中含有的内容较为广泛,例如:故障类型、运行类型、控制指令类型参数。在诊断仪接收数据之后,结合通信协议翻译成为数码或是文字,使得维修工作人员全面了解汽车的故障情况,合理开展分析工作。对于计算机诊断仪而言,可以划分成为通用类型与专用类型设备。对于通用类型设备而言,应用的范围很广,可检测车型较多,在故障检测期间通过机电系统识别方式、故障码识别清除方式、监测数据信息获取显示方式与参数设计方式等完成任务,但是,此类设备无法针对特殊故障问题进行监测,不利于开展全方位的诊断工作。对于专用设备而言,应用范围很窄,通常情况下是现代汽车生产厂家设计的专用测试仪器,适合应用在企业生产企业故障诊断中,其他汽车无法进行检测,虽然应用范围狭窄,但是可以针对特殊故障问题进行诊断。

4结语

在现代企业故障诊断中使用数据流分析方式,应树立正确观念,保证数据信息的准确性,并了解分析工作流程创建框架系统,在详细研究的情况下促进各项工作的合理实施,增强整体故障诊断工作效果。

参考文献

[1]吴熙.雅阁2.4轿车自动变速器换挡冲击大疑难故障排解[J].汽车维修,2017,(10):38-42.

[2]高恩娟.1.8T迈腾运转不良故障诊断[J].科学与财富,2017,(19):283-283,284.

电子爆震控制范文篇10

关键词:汽车电子控制系统;计算机控制技术;应用研究

相关研究表明,汽车不安全问题的根源有九成以上是公路交通事故,而在事故问题中,车辆碰撞、追尾等比重非常高。为了提高行车的安全性,减少这种事故发生概率,我国投入了大量资金和资源,来研究汽车的自动安全技术。而很显然这需要计算机控制技术的介入和使用,所以怎样通过计算机控制技术的运用来大大改善汽车性能水平,是当前汽车行业着重研究的课题之一。

1汽车电子控制系统简述

1.1汽车电子控制系统含义

最近几年电子技术、汽车行业发展迅捷,两者结合的程度也颇高,汽车电子技术便由此诞生。该技术的应运而生对我国汽车行业发展而言具有变革性意义。新的时代背景下,衡量汽车智能化水平高低的一大指标就是汽车的电子化[1]。自技术上看,汽车电子技术既能够改善设备的质量性,又能够丰富和拓展汽车的功能性。汽车电子控制系统分作四类,其一是动力发动机集中控制系统。它又分作很多子系统,比如发动机集中控制系统、自动化变速控制系统等。其二是智能车身电子系统,它也囊括了诸多子系统,像是自动调节座椅系统、汽车夜视系统等。其三安全系统、底盘综合控制。比如驾驶员智能支持系统、车辆稳定控制系统等。其四是娱乐通讯系统。比如音响系统、导航系统等[2]。当前大众在购买汽车时,汽车电子功能是否多样和先进成为挑选汽车的重要指标之一。

1.2汽车电子技术的优点

第一,汽车修复时间大大减少。相关研究证实,汽车总故障中汽车电气设备故障占比高达1/3,众所周知,汽车的构造比较复杂,其中零部件非常多,加上湿度、道路、环境等诸多外界因素的影响,汽车最终的可靠度和质量性是无法完全保障的,换言之,汽车性能还存在较大的提升空间。如今,伴随着汽车功能的增加,汽车零部件也显著增多,电气设备故障率也随之明显上涨。而电子控制汽车中大部分都装设了自诊断系统,该系统可精准评判故障类型,提高诊断速率,令汽车修复时间大大缩短。第二,节油效果突出。相较于传统油器式发动机,汽车发动机多施行的是电子综合优化管控,这种方式燃油消耗量大大减少,平均降低13%左右。因为汽车控制机械参数颇为复杂,所以实行电子技术优化管控后,计算机能够对控制对象的压力、温度等各种参数进行采样,通过科学规范的数据分析实现对汽车执行机构的合理控制[3],这样便可以确保汽车运行状态良好的同时,还能大大节省耗油量。第三,降低污染。发动机空燃相较于闭环控制系统对发动机传感器的依赖度更重,在控制系统的帮助下,可完成实际空燃的范畴管控,技术工作者经由增设三元催化精华、废气再循环等装置,大大节约燃油量,还可分解排放气体,减轻对大气环境的污染程度。第四,降低交通事故发生率。交通事故的产生原因有两点,人为和客观。而增加电子装置可实现对人为、客观因素的把控,从而减少事故发生概率。人为因素把控的电子装置包含检测人的反应时间、心理状况、预防酒驾等,客观因素把控的电子装置包括安全气囊、电子控制防滑装置等。最后,增强乘坐的舒适感。现代化汽车运行系统中应用汽车电子技术,可加强对路况等的了解和掌握,从而实现对减震器等的参数控制,提升乘坐人员的舒适度和体验感。而且大众还可按照自身需求来进行参数调节,令汽车自动控制程度更符合现代人个性化需求。

2汽车自动控制系统的分类

汽车自动控制系统分类有两种方法,其一是依据控制系统是否存在反馈环节来分类,其二是按照系统传输信号对时间的关系来分类。第一种方式可分成开环控制系统、闭环控制系统。第二种方式可分作连续控制系统、离散控制系统。开环控制系统,指的是汽车自动系统控制作用是受到系统输出量的影响,每个单元精度对开环控制系统的控制精度具有决定性影响。因此该系统多应用在精度要求偏低的情况下,而且由于该系统结构不复杂,所以更适合干扰因素少的场合下使用。闭环控制系统,指的是系统输出经由检测反馈单元直接反馈回来,然后作用到控制部,从而形成一种闭合的结构系统。该系统最大的优点是能够对自动化系统参数内变化或者外部干扰形成的偏差进行纠正,而且缺点在于精确度偏低[4],而且系统元件存在间隙,这会使得系统存在不稳定风险,从而影响汽车最终的运行状态。连续控制系统其控制作用信号具备一定的连续化、模拟化特征。离散控制系统,又被称作采样控制系统,它最大的特征是系统控制信号采样数量、连续两、数字量的不同。通常来讲,凡是采样数值计算机控制系统,大部分都属于离散系统。

3汽车电子控制系统中计算机控制技术的应用

3.1汽车发动机方面的具体应用

汽车发动机主要构成包括点火时间控制装置、燃油喷射控制装置、怠速运转控制装置、再循环控制装置。发动机速度、进气量的不同,会令点火延迟控制系统点火时间有所差别,想要确保点火时间的最优化,务必要对发动机进气量、速度展开科学化的合理管控,确保速率固定值的最佳化,从而实现汽车燃料消耗的最低值。爆震传感器通过闭环系统把搜罗到的数据反馈至开环控制系统中,对废气排放加以把控,最大化减少废气排放量,实现管控的最终目的。另外汽车发动机中,通过计算技术所获取的反馈信息,可加强对参数、发动机冷却温度等的优化调节,令汽车发动机空转转速在合适的体系中稳妥的状态下。若想进一步提升发动机运行的态势,则要对其充气效率施行科学把控,并采取手段减轻汽车运行压力。可以对汽车气缸喷射予以健全拓展,运用汽车电子技术来提高自然吸气发动机的性能水平。

3.2汽车底盘方面的具体应用

汽车底盘电子控制系统中关键构成部分是驱动防滑控制系统、防抱死制动控制系统。汽车驱动安全装置中,牵引力控制系统、防抱死控制系统缺一不可。要想推动汽车底盘系统的良好运行,必须要把计算机控制技术运用到其中。驱动防滑控制系统可借助于计算机的精准来确保车辆启动、转向时通过加速轮的启动转动,建立起协同效应,从而令汽车的运行态势步入良好轨道中,实现驾驶和乘坐人员体验感的大幅提升。因为计算机控制技术的精确把控,我们在控制汽车系统时,令其按照移位特征来对变速比展开高精准的控制,减轻燃料的消耗,同时大大提高效率[5]。而且因为由计算机控制技术的调整,汽车换挡也更为平滑和舒适,从而令汽车的优势更凸显出来,且大大增加了汽车的使用寿命。

3.3汽车安全控制系统中计算机控制技术的具体应用

因为道路状况复杂多变,汽车运行速度又比较快,所以汽车的安全性必须要依赖高科技术来实现,确保汽车安全控制系统功能最大化发挥。汽车电子安全系统包括了车身系统内的全部电子设备,像是碰撞警示、安全气囊等,这些电子安全系统会大大提高和改善乘客驾驶人员的体验感,使其更感舒适。例如,安全气囊装置中采用计算机控制技术,能够最大化确保驾驶人员的人身安全。防御系统、碰撞系统则能够有效躲避和降低倒车、追尾事故的发生概率。当汽车行驶过程中,倘若发生两辆车辆安全距离缩短的状况时,系统会自动警示,驾驶人员获得提醒做出调整,以防两辆车出现碰撞。驾驶员倒车时也因为有碰撞警示、预防系统,可以更为安全和高效的躲开障碍物,防止发生不必要的事故。制动防抱死系统是当前汽车中极为普遍的一个系统,传统的汽车防抱死系统是通过机械原理完成刹车时轮胎锁死,防止出现追尾、翻车等不安全事故。但是最近几年计算机技术获得显著发展,电子制动分配技术由此诞生,它比传统防抱死系统的动力性更强,可大大提高制动效果,还可确保车辆的安全。电子制动分配技术和制动防抱死系统的有效联动,可让车辆按照车身重量、车速、路况等信息对刹车制动力加以合理化分配,对前后轮的制动进行科学化调节,进而确保车辆总体的平稳和安全,最大化规避驾驶员紧急制动而可能造成的侧翻等状况。通过电子稳定装置来提高汽车的平稳性,尤其雨后湿滑路况下驾驶员紧急刹车,也会因电子稳定装置而保障车辆的不侧翻和安全运行。

3.4汽车电子监控系统方面的具体应用

计算机系统和汽车电子监控系统的链接,是把服务器发出的信号进行连接,为驾驶人员提供具体的行车信息。此外电子监控系统还能够依据驾驶时间来适时提醒不可疲劳驾驶,保障全车人员的生命安全。电子监控系统作用颇大,车主可借助于卫星定位系统随时随地监督车辆,假如车辆受损或者丢失,车主可参考电子通信监控系统,对车辆进行定位,更好的找回失车,或者查看车辆受损具体情况。计算机技术还可对车辆展开自检,运用车载控制器更好的了解车辆的行驶里程、各构件状态、耗损度等,并第一时间对故障进行筛选排除,保证车辆的安全运行。一些配置有车辆自检系统的汽车,可把在线监控器检测端口和计算机进行连结,这样能够第一时间获悉车辆故障信息,为车辆的使用提供最大便利性。

3.5汽车信息系统方面的具体应用

车载信息系统是现代化汽车的标配系统,该系统可以更好的满足大众需求。汽车信息系统的发挥得益于计算机电子控制技术的发展。如今汽车信息系统越发复杂,电子控制器的运用也更加多变,但几乎都是通过实现网络的连接来更好的完成汽车子单元的通信功能,从而加强对各部件功能的精准把控。监控电子控制单元是其中一项重要系统,凭借自身的通信功能可完成对汽车控制系统数据的搜集,包含有里程讯息、燃油量等,建立完整的信息处理体系。在计算机技术的支持下,汽车信息系统得以不断完善和更新,令汽车的驾驶朝着无人驾驶的方向进一步发展。大数据时代下,大众对于汽车影音导航系统的依赖程度越来越高,该系统功能需要搭配适合的gps接收器才能发挥作用,而该接收器亦是需要计算机技术来完成功能分配和衔接,确保其形成统一化系统,从而提供更全面的信息。

4结语

总而言之,伴随着计算机技术的更新和发展,汽车电子控制系统的发展空间也越来越大,在计算机技术的深度全面应用下,大众对汽车显然有了全新的认知,很多自动化系统得到了大众的认可和支持,而这也是汽车行业未来的发展趋向。所以计算机基础上的汽车电子控制系统也必然会获得更深层次的发展,不断开发创新下,其必然朝着集成向、智能化、网络化方向转变,这是未来汽车产业持续化发展不可逆的趋势,也是业内人为之努力的方向。

参考文献:

[1]包蕾.汽车智能电子控制系统设计开发与研究[J].汽车实用技术,2018(02):43-46.

[2]邓添.自动控制系统下的汽车电子技术研究[J].内燃机与配件,2019(08):57-59.

[3]陈金.自动控制系统下的汽车电子电工应用分析[J].中国新通信,2019(14).

[4]杨明东.数字信号处理器在汽车电子控制中的应用[J].科技经济导刊,2019(3).