电站轴范文10篇

时间:2023-04-06 17:43:21

电站轴

电站轴范文篇1

贯流式水轮机的流道形式和轴流式水轮机不同,为保证向导水机构均匀供水和形成必要的环量,保证导叶较平滑绕流,轴流式水轮机需设置蜗壳,其流道由蜗壳、导水机构和弯肘型尾水管组成。贯流式水轮机没有蜗壳,流道由圆锥形导水机构和直锥扩散形或S型尾水管组成。通常采用卧轴式布置,从流道进口到尾水管出口,水流沿轴向几乎呈直线流动,避免了水流拐弯形成的流速分布不均导致的水流损失和流态变坏,水流平顺,水力损失小,尾水管恢复性能好,水力效率高。灯泡贯流机组的发电机装置在水轮机流道中的灯泡形壳体内,采用直锥扩散形尾水管,流道短而平直对称,水流特性好。大型贯流机组几乎都是灯泡机组,中小型多采用轴伸式、竖井式等形式。

贯流式水轮机单位过流量大,转速高,水轮机效率高,且高效区宽,加权平均效率也较高,具有比轴流式水轮机更优良的能量特性。其特征参数比转速ns、可达1000以上,比速系数可达3000以上。与轴流式水轮机相比,在相同水头和相同单机容量时,其机组尺寸小,重量轻,材料消耗少,机组造价低。贯流机组电站还可获得年发电量的增加。

贯流式水轮机的空化性能和运行稳定性也优于轴流式水轮机,其空化系数相对较小,机组可靠性高,运行故障率低,可用率高,检修时间缩短,检修周期延长。对于低水头资源开发,贯流式水轮机的稳定运行范围宽,在极低水头时也能稳定运行(如超低水头1.5m以下),是其他类型的水轮机不可比的。如广东白垢电站,额定水头6.2m,最大水头10.0m,但在1.3m水头时仍能稳定运行。

贯流式水轮发电机组结构紧凑,布置简洁,厂房土建工程量较小,可节省土建投资。贯流机组设备运输和安装重量较轻,施工和设备安装方便,可缩短工期,实现提前发电。根据国内外有关水电站的统计资料,采用灯泡贯流机组比相同容量轴流转桨机组,电站建设投资一般可节省10%~25%,年发电量可增加约3%~5%。如我国广东白垢和广西马骝滩水电站,投资节省分别达22.6%和24%。小型水电站采用轴伸贯流机组与立式轴流机组比较,也可节省建设投资约10%~20%。由此可见,贯流式水轮机是开发低水头水能资源的一种最经济、适宜的水轮机形式,具有资源利用充分、投资节省的优势和电量增值、综合效益增值的效果。

2国内外贯流式水轮机的应用现状

贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。

我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量最大的灯泡贯流机组。国内已运行的灯泡贯流式水轮机最大转轮直径已达7.5m。目前规划或在建的贯流式水电站遍布全国各地,在建的广西长洲水电站装机15台,总装机容量达621.3MW。在西北地区,20世纪80年代开始贯流式水电站的规划设计,并完成了柴家峡等电站的可行性研究。在黄河干流上现已建成青海尼那电站,宁夏沙坡头电站即将竣工,甘肃柴家峡、青海直岗拉卡等电站在建。尼那电站是我国海拔最高的大型灯泡贯流机组电站,沙坡头则是应用于高含沙水流的第一座大型灯泡贯流机组电站,各具特色,为贯流式水电站的开发提供了新的经验。

对于低水头小型水电站,轴伸贯流水轮机和竖井贯流水轮机具有与灯泡贯流水轮机相当的技术经济优势,国外20m以下的小水电开发,已逐步取代轴流机组。据文献介绍,国外已运行的轴伸贯流式水轮机转轮直径达8.6m,单机容量达到31.5MW,最大使用水头达到38m。我国轴伸贯流式水轮机的技术开发起步较晚,自行研制的GZ006、GZ007(5叶片)等转轮的性能达到或超过国际先进水平,但尚没有得到普遍的技术推广和形成相应的生产和市场规模。国内已运行的轴伸贯流水轮机多采用定桨式转轮,最大转轮直径2.75m,单机容量3.5MW,最大使用水头22m。而竖井贯流和全贯流机组技术开发程度较低,应用很少,与国外存在明显差距。

3贯流式水轮机的应用及技术发展探讨

我国水电资源丰富,第四次水力资源复查成果显示,全国江河水电资源蕴藏量达7亿kW,可开发量5亿kW,经济可开发量4亿kW。现已开发量1亿kW,只占到经济可开发量的25%。我国江河的低水头水力资源,根据文献估算,水头在10m左右的资源量占到可开发资源的约500,达0.2亿kW以上。此外,我国大陆和岛屿海岸线蕴藏着巨大的海洋潮汐能资源,可开发量超过0.21亿kW,尚未进行规模开发。以上数据说明,我国适用于贯流式水轮机开发的低水头水能资源蕴藏巨大,贯流式水轮机应用前景广阔,需求巨大。经过40余年的研究与实践,我国对贯流机组设备开发、研制以及贯流水电站设计和运行技术都取得了很大的发展和成就。对于25m以下低水头水电开发,优先选择贯流机组,已基本形成共识。但目前国内贯流机组设备技术和供给能力还不能满足水电建设的需要,许多大型或顶级的机组设备需要国际市场供货,国内外同类产品在设备性能、单位千瓦材料消耗等技术方面存在着较明显的差别,中小型贯流机组产品的多样性和技术适应性也不能满足国内或适应国际市场的需求。由于研发能力和技术水平的限制,又影响贯流式水轮机的广泛应用。因此,全面提升我国贯流式水轮机的技术水平,任务迫切,意义深远。

推进我国贯流水轮机技术的进步,应当关注贯流机组大型化技术的发展,并致力于提高国内贯流机组整体技术水平。

根据对贯流式水轮机的应用及其技术发展的分析,应用水头逐渐提高、贯流机组大型化是国际贯流水轮机技术发展的趋势,这也和我国低水头水电开发对大型贯流机组的应用需求相吻合。贯流机组对开发低水头水电资源具有优势,而这些资源的开发地点往往位于经济发达、人口稠密的平原或河谷地区,自然资源富集或处于交通要道(如黄河上游等地区)。这类水电资源经济合理的开发,要求实现发电、防洪、航运等综合利用功能,保护生态环境和土地资源,减少移民搬迁及交通设施等淹没、浸没及赔偿,修建高坝大库通常已不适宜。为了优化开发方案和工程总体布置,便于工程综合功能经济地实现,有利于保护生态和环境等资源,往往需要采用单机容量(机组尺寸)更大或应用水头更高的贯流机组。

大型化贯流式水轮机的水力设计不存在重大的技术难题,但机组设计、制造与安装等方面的一些关键技术,以灯泡机组为例,灯泡体及水轮机的支承结构,轴系的分析计算、大吨位轴承的设计制造,发电机的设计,发电机的通风冷却,机组的刚度及振动特性的评估、优化,大尺寸机组的安装技术等,存在较大的技术难度和经济风险。近年,我国水电业界结合湖南洪江、广西恶滩扩建工程、四川桐子林等水电站机组的选型设计,对此进行了研究。在洪江水电站,对采用灯泡贯流机组的关键技术及制造难度,与日本只见、俄罗斯萨拉托夫等电站的大型灯泡机组进行了对比研究,结论是技术可行。该工程已成功实施,成为我国贯流电站技术进步的典型案例。而恶滩扩建工程采用灯泡贯流机组方案,其应用水头和单机容量等设计参数,机组设计制造的技术难度均已超越了世界上已运行的同类电站机组,研究表明采用灯泡贯流机组在技术上是可行的。两座电站的经济分析数据也都表明,可节省建设投资和获得年电量的增加,特别是恶滩扩建工程采用8台75MW灯泡贯流机组与采用4台150MW轴流转桨机组的方案比较,前者首台机组提前9个月发电,工程总工期缩短一年,其提前发电的电费收入,与比后者高出的投资差基本相抵(贯流机组方案设备投资概算按采用2台进口、6台合作编制),每年还可多获得约3%的电量增加,其经济性明显优越。上述研究也说明,开发、应用25~35m水头段的贯流式水轮机和单机容量75MW及以上的灯泡贯流机组,技术上可行,经济上仍处于有利和合理范畴。

全面提高我国贯流式水轮机的整体技术水平,实现包括产品研制技术(水力开发、结构分析、制造工艺、试验研究等)及产品的技术性能、贯流式水轮机应用开发和运行等技术水平的全面提升,结合国内实际和借鉴国际先进经验,应加强计算机及信息技术如计算机CFD、FE、CAD/CAM等及现代制造技术在贯流式水轮机开发、研制和运行等领域的推广和应用,还应加强对国际先进技术的引进、消化和吸收.研究具有自主知识产权的贯流式水轮机产品和技术,这是提升我国贯流式水轮机技术和产业竞争力的必然途径。此外,我国的各类水电资源开发,包括广大农村中小低水头资源及海洋潮汐能源的规模开发,需要技术经济特性优越的,包括各类贯流式水轮机在内的多样性的水轮发电机组设备,因此,应加强对轴伸贯流式水轮机的研究和推广应用,完善轴伸贯流水轮机转轮的研究并形成系列型谱;应加强对用于潮汐能源开发的双向可逆贯流机组、全贯流机组及竖井贯流机组的技术开发和研究;对齿轮增速技术及设备在贯流机组的应用,以及贯流水轮机适用的调速设备的开发等技术课题,应进行全面的规划布局和系统的研究。

电站轴范文篇2

贯流式水轮机的流道形式和轴流式水轮机不同,为保证向导水机构均匀供水和形成必要的环量,保证导叶较平滑绕流,轴流式水轮机需设置蜗壳,其流道由蜗壳、导水机构和弯肘型尾水管组成。贯流式水轮机没有蜗壳,流道由圆锥形导水机构和直锥扩散形或S型尾水管组成。通常采用卧轴式布置,从流道进口到尾水管出口,水流沿轴向几乎呈直线流动,避免了水流拐弯形成的流速分布不均导致的水流损失和流态变坏,水流平顺,水力损失小,尾水管恢复性能好,水力效率高。灯泡贯流机组的发电机装置在水轮机流道中的灯泡形壳体内,采用直锥扩散形尾水管,流道短而平直对称,水流特性好。大型贯流机组几乎都是灯泡机组,中小型多采用轴伸式、竖井式等形式。

贯流式水轮机单位过流量大,转速高,水轮机效率高,且高效区宽,加权平均效率也较高,具有比轴流式水轮机更优良的能量特性。其特征参数比转速ns、可达1000以上,比速系数可达3000以上。与轴流式水轮机相比,在相同水头和相同单机容量时,其机组尺寸小,重量轻,材料消耗少,机组造价低。贯流机组电站还可获得年发电量的增加。

贯流式水轮机的空化性能和运行稳定性也优于轴流式水轮机,其空化系数相对较小,机组可靠性高,运行故障率低,可用率高,检修时间缩短,检修周期延长。对于低水头资源开发,贯流式水轮机的稳定运行范围宽,在极低水头时也能稳定运行(如超低水头1.5m以下),是其他类型的水轮机不可比的。如广东白垢电站,额定水头6.2m,最大水头10.0m,但在1.3m水头时仍能稳定运行。

贯流式水轮发电机组结构紧凑,布置简洁,厂房土建工程量较小,可节省土建投资。贯流机组设备运输和安装重量较轻,施工和设备安装方便,可缩短工期,实现提前发电。根据国内外有关水电站的统计资料,采用灯泡贯流机组比相同容量轴流转桨机组,电站建设投资一般可节省10%~25%,年发电量可增加约3%~5%。如我国广东白垢和广西马骝滩水电站,投资节省分别达22.6%和24%。小型水电站采用轴伸贯流机组与立式轴流机组比较,也可节省建设投资约10%~20%。由此可见,贯流式水轮机是开发低水头水能资源的一种最经济、适宜的水轮机形式,具有资源利用充分、投资节省的优势和电量增值、综合效益增值的效果。

2国内外贯流式水轮机的应用现状

贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。

我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量最大的灯泡贯流机组。国内已运行的灯泡贯流式水轮机最大转轮直径已达7.5m。目前规划或在建的贯流式水电站遍布全国各地,在建的广西长洲水电站装机15台,总装机容量达621.3MW。在西北地区,20世纪80年代开始贯流式水电站的规划设计,并完成了柴家峡等电站的可行性研究。在黄河干流上现已建成青海尼那电站,宁夏沙坡头电站即将竣工,甘肃柴家峡、青海直岗拉卡等电站在建。尼那电站是我国海拔最高的大型灯泡贯流机组电站,沙坡头则是应用于高含沙水流的第一座大型灯泡贯流机组电站,各具特色,为贯流式水电站的开发提供了新的经验。

对于低水头小型水电站,轴伸贯流水轮机和竖井贯流水轮机具有与灯泡贯流水轮机相当的技术经济优势,国外20m以下的小水电开发,已逐步取代轴流机组。据文献介绍,国外已运行的轴伸贯流式水轮机转轮直径达8.6m,单机容量达到31.5MW,最大使用水头达到38m。我国轴伸贯流式水轮机的技术开发起步较晚,自行研制的GZ006、GZ007(5叶片)等转轮的性能达到或超过国际先进水平,但尚没有得到普遍的技术推广和形成相应的生产和市场规模。国内已运行的轴伸贯流水轮机多采用定桨式转轮,最大转轮直径2.75m,单机容量3.5MW,最大使用水头22m。而竖井贯流和全贯流机组技术开发程度较低,应用很少,与国外存在明显差距。

3贯流式水轮机的应用及技术发展探讨

我国水电资源丰富,第四次水力资源复查成果显示,全国江河水电资源蕴藏量达7亿kW,可开发量5亿kW,经济可开发量4亿kW。现已开发量1亿kW,只占到经济可开发量的25%。我国江河的低水头水力资源,根据文献估算,水头在10m左右的资源量占到可开发资源的约500,达0.2亿kW以上。此外,我国大陆和岛屿海岸线蕴藏着巨大的海洋潮汐能资源,可开发量超过0.21亿kW,尚未进行规模开发。以上数据说明,我国适用于贯流式水轮机开发的低水头水能资源蕴藏巨大,贯流式水轮机应用前景广阔,需求巨大。经过40余年的研究与实践,我国对贯流机组设备开发、研制以及贯流水电站设计和运行技术都取得了很大的发展和成就。对于25m以下低水头水电开发,优先选择贯流机组,已基本形成共识。但目前国内贯流机组设备技术和供给能力还不能满足水电建设的需要,许多大型或顶级的机组设备需要国际市场供货,国内外同类产品在设备性能、单位千瓦材料消耗等技术方面存在着较明显的差别,中小型贯流机组产品的多样性和技术适应性也不能满足国内或适应国际市场的需求。由于研发能力和技术水平的限制,又影响贯流式水轮机的广泛应用。因此,全面提升我国贯流式水轮机的技术水平,任务迫切,意义深远。

推进我国贯流水轮机技术的进步,应当关注贯流机组大型化技术的发展,并致力于提高国内贯流机组整体技术水平。

根据对贯流式水轮机的应用及其技术发展的分析,应用水头逐渐提高、贯流机组大型化是国际贯流水轮机技术发展的趋势,这也和我国低水头水电开发对大型贯流机组的应用需求相吻合。贯流机组对开发低水头水电资源具有优势,而这些资源的开发地点往往位于经济发达、人口稠密的平原或河谷地区,自然资源富集或处于交通要道(如黄河上游等地区)。这类水电资源经济合理的开发,要求实现发电、防洪、航运等综合利用功能,保护生态环境和土地资源,减少移民搬迁及交通设施等淹没、浸没及赔偿,修建高坝大库通常已不适宜。为了优化开发方案和工程总体布置,便于工程综合功能经济地实现,有利于保护生态和环境等资源,往往需要采用单机容量(机组尺寸)更大或应用水头更高的贯流机组。

大型化贯流式水轮机的水力设计不存在重大的技术难题,但机组设计、制造与安装等方面的一些关键技术,以灯泡机组为例,灯泡体及水轮机的支承结构,轴系的分析计算、大吨位轴承的设计制造,发电机的设计,发电机的通风冷却,机组的刚度及振动特性的评估、优化,大尺寸机组的安装技术等,存在较大的技术难度和经济风险。近年,我国水电业界结合湖南洪江、广西恶滩扩建工程、四川桐子林等水电站机组的选型设计,对此进行了研究。在洪江水电站,对采用灯泡贯流机组的关键技术及制造难度,与日本只见、俄罗斯萨拉托夫等电站的大型灯泡机组进行了对比研究,结论是技术可行。该工程已成功实施,成为我国贯流电站技术进步的典型案例。而恶滩扩建工程采用灯泡贯流机组方案,其应用水头和单机容量等设计参数,机组设计制造的技术难度均已超越了世界上已运行的同类电站机组,研究表明采用灯泡贯流机组在技术上是可行的。两座电站的经济分析数据也都表明,可节省建设投资和获得年电量的增加,特别是恶滩扩建工程采用8台75MW灯泡贯流机组与采用4台150MW轴流转桨机组的方案比较,前者首台机组提前9个月发电,工程总工期缩短一年,其提前发电的电费收入,与比后者高出的投资差基本相抵(贯流机组方案设备投资概算按采用2台进口、6台合作编制),每年还可多获得约3%的电量增加,其经济性明显优越。上述研究也说明,开发、应用25~35m水头段的贯流式水轮机和单机容量75MW及以上的灯泡贯流机组,技术上可行,经济上仍处于有利和合理范畴。

全面提高我国贯流式水轮机的整体技术水平,实现包括产品研制技术(水力开发、结构分析、制造工艺、试验研究等)及产品的技术性能、贯流式水轮机应用开发和运行等技术水平的全面提升,结合国内实际和借鉴国际先进经验,应加强计算机及信息技术如计算机CFD、FE、CAD/CAM等及现代制造技术在贯流式水轮机开发、研制和运行等领域的推广和应用,还应加强对国际先进技术的引进、消化和吸收.研究具有自主知识产权的贯流式水轮机产品和技术,这是提升我国贯流式水轮机技术和产业竞争力的必然途径。此外,我国的各类水电资源开发,包括广大农村中小低水头资源及海洋潮汐能源的规模开发,需要技术经济特性优越的,包括各类贯流式水轮机在内的多样性的水轮发电机组设备,因此,应加强对轴伸贯流式水轮机的研究和推广应用,完善轴伸贯流水轮机转轮的研究并形成系列型谱;应加强对用于潮汐能源开发的双向可逆贯流机组、全贯流机组及竖井贯流机组的技术开发和研究;对齿轮增速技术及设备在贯流机组的应用,以及贯流水轮机适用的调速设备的开发等技术课题,应进行全面的规划布局和系统的研究。

电站轴范文篇3

贯流式水轮机的流道形式和轴流式水轮机不同,为保证向导水机构均匀供水和形成必要的环量,保证导叶较平滑绕流,轴流式水轮机需设置蜗壳,其流道由蜗壳、导水机构和弯肘型尾水管组成。贯流式水轮机没有蜗壳,流道由圆锥形导水机构和直锥扩散形或S型尾水管组成。通常采用卧轴式布置,从流道进口到尾水管出口,水流沿轴向几乎呈直线流动,避免了水流拐弯形成的流速分布不均导致的水流损失和流态变坏,水流平顺,水力损失小,尾水管恢复性能好,水力效率高。灯泡贯流机组的发电机装置在水轮机流道中的灯泡形壳体内,采用直锥扩散形尾水管,流道短而平直对称,水流特性好。大型贯流机组几乎都是灯泡机组,中小型多采用轴伸式、竖井式等形式。

贯流式水轮机单位过流量大,转速高,水轮机效率高,且高效区宽,加权平均效率也较高,具有比轴流式水轮机更优良的能量特性。其特征参数比转速ns、可达1000以上,比速系数可达3000以上。与轴流式水轮机相比,在相同水头和相同单机容量时,其机组尺寸小,重量轻,材料消耗少,机组造价低。贯流机组电站还可获得年发电量的增加。

贯流式水轮机的空化性能和运行稳定性也优于轴流式水轮机,其空化系数相对较小,机组可靠性高,运行故障率低,可用率高,检修时间缩短,检修周期延长。对于低水头资源开发,贯流式水轮机的稳定运行范围宽,在极低水头时也能稳定运行(如超低水头1.5m以下),是其他类型的水轮机不可比的。如广东白垢电站,额定水头6.2m,最大水头10.0m,但在1.3m水头时仍能稳定运行。

贯流式水轮发电机组结构紧凑,布置简洁,厂房土建工程量较小,可节省土建投资。贯流机组设备运输和安装重量较轻,施工和设备安装方便,可缩短工期,实现提前发电。根据国内外有关水电站的统计资料,采用灯泡贯流机组比相同容量轴流转桨机组,电站建设投资一般可节省10%~25%,年发电量可增加约3%~5%。如我国广东白垢和广西马骝滩水电站,投资节省分别达22.6%和24%。小型水电站采用轴伸贯流机组与立式轴流机组比较,也可节省建设投资约10%~20%。由此可见,贯流式水轮机是开发低水头水能资源的一种最经济、适宜的水轮机形式,具有资源利用充分、投资节省的优势和电量增值、综合效益增值的效果。

2国内外贯流式水轮机的应用现状

贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。

我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量最大的灯泡贯流机组。国内已运行的灯泡贯流式水轮机最大转轮直径已达7.5m。目前规划或在建的贯流式水电站遍布全国各地,在建的广西长洲水电站装机15台,总装机容量达621.3MW。在西北地区,20世纪80年代开始贯流式水电站的规划设计,并完成了柴家峡等电站的可行性研究。在黄河干流上现已建成青海尼那电站,宁夏沙坡头电站即将竣工,甘肃柴家峡、青海直岗拉卡等电站在建。尼那电站是我国海拔最高的大型灯泡贯流机组电站,沙坡头则是应用于高含沙水流的第一座大型灯泡贯流机组电站,各具特色,为贯流式水电站的开发提供了新的经验。

对于低水头小型水电站,轴伸贯流水轮机和竖井贯流水轮机具有与灯泡贯流水轮机相当的技术经济优势,国外20m以下的小水电开发,已逐步取代轴流机组。据文献介绍,国外已运行的轴伸贯流式水轮机转轮直径达8.6m,单机容量达到31.5MW,最大使用水头达到38m。我国轴伸贯流式水轮机的技术开发起步较晚,自行研制的GZ006、GZ007(5叶片)等转轮的性能达到或超过国际先进水平,但尚没有得到普遍的技术推广和形成相应的生产和市场规模。国内已运行的轴伸贯流水轮机多采用定桨式转轮,最大转轮直径2.75m,单机容量3.5MW,最大使用水头22m。而竖井贯流和全贯流机组技术开发程度较低,应用很少,与国外存在明显差距。

3贯流式水轮机的应用及技术发展探讨

我国水电资源丰富,第四次水力资源复查成果显示,全国江河水电资源蕴藏量达7亿kW,可开发量5亿kW,经济可开发量4亿kW。现已开发量1亿kW,只占到经济可开发量的25%。我国江河的低水头水力资源,根据文献估算,水头在10m左右的资源量占到可开发资源的约500,达0.2亿kW以上。此外,我国大陆和岛屿海岸线蕴藏着巨大的海洋潮汐能资源,可开发量超过0.21亿kW,尚未进行规模开发。以上数据说明,我国适用于贯流式水轮机开发的低水头水能资源蕴藏巨大,贯流式水轮机应用前景广阔,需求巨大。经过40余年的研究与实践,我国对贯流机组设备开发、研制以及贯流水电站设计和运行技术都取得了很大的发展和成就。对于25m以下低水头水电开发,优先选择贯流机组,已基本形成共识。但目前国内贯流机组设备技术和供给能力还不能满足水电建设的需要,许多大型或顶级的机组设备需要国际市场供货,国内外同类产品在设备性能、单位千瓦材料消耗等技术方面存在着较明显的差别,中小型贯流机组产品的多样性和技术适应性也不能满足国内或适应国际市场的需求。由于研发能力和技术水平的限制,又影响贯流式水轮机的广泛应用。因此,全面提升我国贯流式水轮机的技术水平,任务迫切,意义深远。

推进我国贯流水轮机技术的进步,应当关注贯流机组大型化技术的发展,并致力于提高国内贯流机组整体技术水平。

根据对贯流式水轮机的应用及其技术发展的分析,应用水头逐渐提高、贯流机组大型化是国际贯流水轮机技术发展的趋势,这也和我国低水头水电开发对大型贯流机组的应用需求相吻合。贯流机组对开发低水头水电资源具有优势,而这些资源的开发地点往往位于经济发达、人口稠密的平原或河谷地区,自然资源富集或处于交通要道(如黄河上游等地区)。这类水电资源经济合理的开发,要求实现发电、防洪、航运等综合利用功能,保护生态环境和土地资源,减少移民搬迁及交通设施等淹没、浸没及赔偿,修建高坝大库通常已不适宜。为了优化开发方案和工程总体布置,便于工程综合功能经济地实现,有利于保护生态和环境等资源,往往需要采用单机容量(机组尺寸)更大或应用水头更高的贯流机组。

大型化贯流式水轮机的水力设计不存在重大的技术难题,但机组设计、制造与安装等方面的一些关键技术,以灯泡机组为例,灯泡体及水轮机的支承结构,轴系的分析计算、大吨位轴承的设计制造,发电机的设计,发电机的通风冷却,机组的刚度及振动特性的评估、优化,大尺寸机组的安装技术等,存在较大的技术难度和经济风险。近年,我国水电业界结合湖南洪江、广西恶滩扩建工程、四川桐子林等水电站机组的选型设计,对此进行了研究。在洪江水电站,对采用灯泡贯流机组的关键技术及制造难度,与日本只见、俄罗斯萨拉托夫等电站的大型灯泡机组进行了对比研究,结论是技术可行。该工程已成功实施,成为我国贯流电站技术进步的典型案例。而恶滩扩建工程采用灯泡贯流机组方案,其应用水头和单机容量等设计参数,机组设计制造的技术难度均已超越了世界上已运行的同类电站机组,研究表明采用灯泡贯流机组在技术上是可行的。两座电站的经济分析数据也都表明,可节省建设投资和获得年电量的增加,特别是恶滩扩建工程采用8台75MW灯泡贯流机组与采用4台150MW轴流转桨机组的方案比较,前者首台机组提前9个月发电,工程总工期缩短一年,其提前发电的电费收入,与比后者高出的投资差基本相抵(贯流机组方案设备投资概算按采用2台进口、6台合作编制),每年还可多获得约3%的电量增加,其经济性明显优越。上述研究也说明,开发、应用25~35m水头段的贯流式水轮机和单机容量75MW及以上的灯泡贯流机组,技术上可行,经济上仍处于有利和合理范畴。

全面提高我国贯流式水轮机的整体技术水平,实现包括产品研制技术(水力开发、结构分析、制造工艺、试验研究等)及产品的技术性能、贯流式水轮机应用开发和运行等技术水平的全面提升,结合国内实际和借鉴国际先进经验,应加强计算机及信息技术如计算机CFD、FE、CAD/CAM等及现代制造技术在贯流式水轮机开发、研制和运行等领域的推广和应用,还应加强对国际先进技术的引进、消化和吸收.研究具有自主知识产权的贯流式水轮机产品和技术,这是提升我国贯流式水轮机技术和产业竞争力的必然途径。此外,我国的各类水电资源开发,包括广大农村中小低水头资源及海洋潮汐能源的规模开发,需要技术经济特性优越的,包括各类贯流式水轮机在内的多样性的水轮发电机组设备,因此,应加强对轴伸贯流式水轮机的研究和推广应用,完善轴伸贯流水轮机转轮的研究并形成系列型谱;应加强对用于潮汐能源开发的双向可逆贯流机组、全贯流机组及竖井贯流机组的技术开发和研究;对齿轮增速技术及设备在贯流机组的应用,以及贯流水轮机适用的调速设备的开发等技术课题,应进行全面的规划布局和系统的研究。

电站轴范文篇4

关键词:顶盖排水系统;顶盖积水;渗漏积水;梨园水电站

梨园水电站地处金沙江中游,机组型式为混流式机组,装机容量4×600MW,额定水头106m。受机组结构的限制,水轮机顶盖排水采用水泵强迫排水方式,在电站建设期,按照设计将顶盖排水泵安装在顶盖支臂上,其高程为1496m。顶盖排水系统配备了3台三级自吸泵,互为备用,水泵型号为QXN30-60A/3-11,额定流量30m3/h、扬程60m。梨园水电站自4台机组投运以来,机组顶盖排水泵单次运行时间均在40min以上,排水泵运行时间[1]过长,严重影响到水泵寿命和机组安全稳定[2]运要从事水电站机械设备检修维护工作。*行(期间已损坏5台水泵)。结合问题的症结,根据顶盖排水形式合理地改造了顶盖排水系统,优化排水泵的运行方式,降低了顶盖排水泵运行时间。

1问题症结及原因分析

针对梨园水电站顶盖排水泵运行时间长的问题,从问题本质出发就水的源头和水的去向两个方面展开分析,提出了两种推断:顶盖漏水量大和顶盖排水系统排水量小。通过对2号机组顶盖漏水量[3]及顶盖排水泵流量进行多次测量得知,机组顶盖漏水量高达11.5m3/h,排水泵流量低至20m3/h。由此,判定顶盖排水泵运行时间长的症结为:①顶盖漏水量大;②顶盖排水系统流量小。针对问题症结,经过资料查询和现场检查确定找出了以下3个主要原因。

1.1顶盖排水管路长、弯头过多

3台水泵出口排水支管汇成1根总管将顶盖积水由顶盖经尾水平台排至尾水闸门后,管路出口高程1523.5m,如图1所示。现场实际测量排水管路长度为120m,弯头数量11个。由于排水管路长、弯头多导致顶盖排水泵排水过程沿程损失和局部损失[4]过大,进而影响排水效率。

1.2止回阀失效

经检查在2号机组1号顶盖排水泵运行期间,另外两台停泵管路存在明显的返水情况,通过测量发现返水流量高达2m3/h左右。2号机组检修期间,检查确认3台顶盖排水泵出口水平布置的对夹式止回阀均出现了不同程度的卡塞,其中两个止回阀的弹簧已经断裂、阀已失效。水平布置的止回阀由于受力不均极易造成阀的卡涩甚至损坏,进而导致主用泵运行排水倒灌回备用泵管路中,造成水泵排水效率低,减少了顶盖排水系统排水流量。1.3大轴水腔密封条老化断裂梨园水电站主轴密封[5]分为工作密封和检修密封。工作密封主要由滑环、密封环、嵌入式密封环、支持环、主轴密封供水管路以及大轴水腔密封箱等组成。大轴水腔密封箱体中的水来自于顶盖与大轴间漏水和主轴密封技术供水,它主要依靠工作密封和其上部一圈φ9mm水腔密封条进行密封,2号机组检修期间,拆卸大轴水腔密封箱体检查发现,水腔密封条已严重老化多处断裂,密封已失效,造成顶盖漏水量增大。

2优化改造过程

综合以上主要原因,经过与水泵厂家和设计单位的沟通交流,最终确定了顶盖排水系统的针对性优化改造方案。

2.1改造顶盖排水管路

顶盖排水管路改造项目将管路由顶盖经尾水平台排至尾水改为经顶盖平压管排至尾水管中,如图2所示。改造后,顶盖排水管路出口高程由原来的1523.5m降至1494.8m,管路长度减少至55m,弯头个数减为5个,降低了整个排水过程水力损失。改造完成后,顶盖排水泵排水流量增大至28m3/h,排水量效率大大提高,降低了顶盖排水泵的运行时间。

2.2止回阀布置方向水平改垂直

在顶盖排水泵出口管路上,将原来水平布置的对夹式升降直通蝶形止回阀[6]改为垂直布置方式,如图3所示。使止回阀在工作状态中受力均匀,止回严密,解决了顶盖排水泵管路返水问题,有效的提高了水泵排水效率。

2.3更换新材料大轴水腔密封

结合大轴水腔密封的结构特点、工作原理以及工作环境对密封材料进行选取,最终采用适用于多泥沙水电站耐磨损、耐腐蚀性更强的SOROTHURN丁晴橡胶O型密封条。为了保证安装质量,密封条安装完成后利用塞尺对水腔密封四周8个方向间隙进行了测量,间隙值均小于10道。此外,利用超声波流量计对顶盖漏水量进行了复测,漏水量降至6m3/h,有效减少了顶盖漏水量。

2.4优化水泵控制逻辑

根据顶盖排水管路改造和新材料水腔密封更换后的运行情况,进一步优化顶盖排水泵的控制逻辑,保留原来基于顶盖水位采取的一主一辅一备3台水泵交替循环运行的控制方式,在此基础上将PLC[7]水泵控制环节中加入时间控制单元。具体为:以水泵连续运行40min为时间节点,当主用泵运行时长到达条件,自动轮换到辅助泵运行;辅助水泵运行时长达到条件,自动轮换到备用泵运行。加入时间节点的轮换控制机制,起到了后备保护作用避免顶盖排水泵长时间运行,提高了水泵寿命。

3实施效果

梨园水电站顶盖排水系统改造方案已成功应用于2号机组中,整个顶盖排水系统优化改造后,经运行实践证明顶盖排水泵运行时间由原来的40min减少至28min。该改造方案有效地解决了顶盖排水泵排水能力差、启停频繁、运行时间长的问题,达到了预期的改造效果。增强了顶盖排水系统可靠性,进而保障了机组安全稳定运行。

4结语

顶盖排水系统优化改造项目在梨园水电站的成功实施和应用,保证了机组安全稳定运行,有效避免了因顶盖排水泵损坏导致水淹水导轴承造成机组非停给整个电网带来的冲击,保障了正常的社会生产、生活秩序。同时,为同类型相同顶盖排水结构的电站提供了成功的改造经验。

参考文献:

[1]丁文华,马加娇.水电厂顶盖排水系统运行效能分析的实践[J].云南水力发电,2019,35(5):192-194.

[2]许乾,耿岳维,李鹏,等.田庄水电站顶盖排水系统改造[J].小水电,2019,(4):55-56.

[3]王卫刚,刘兴平.龙口电站轴流式水轮机顶盖排水系统改造[J].中国水能及电气化,2013,(5):33-35.

[4]刘东东,邓成洪.围海水电站水轮机顶盖排水系统改造[J].小水电,2014,(1):48-49.

[5]苏家敏,陈昌凡.六甲1#、2#机组水轮机顶盖排水系统改造[J].广西水利水电,2014,(6):58-59.

[6]李新.喜河水电站机组顶盖排水系统改造[A].全国大中型水电厂技术协作网技术交流文集(十三)水电厂改造专集[C].2010:191-196.

电站轴范文篇5

1底流消能雾化的数学模型[1]

洪水在下泄和消能过程中,由于水流与空气边界的相互作用,使得水流自由面失稳和水流紊动加剧[2],进而部分水体以微小水滴的形式进入空气中,产生某种形式的雾源。雾源在自然风和水舌风的综合作用下,向下游扩散,使水雾分布在下游的一定空间中。之后,水雾经自动转换过程和碰并过程转变为雨滴,以及水雾和水汽之间发生雾滴的蒸发或凝结过程。如图1所示,因雨滴数较雾滴少得多,故在本数学模型中不考虑雨滴的蒸发过程和水汽凝结为雨滴的过程,在图1中用带虚线箭头来表示。

1.1水雾雾源量的计算根据雾源产生的机理不同,底流消能雾化的雾源可分为二个;第一是溢流坝面自掺气而产生雾源;第二是水跃区强迫掺气而产生雾源。理论分析[3]和原型观测[4]都表明,后者为主要雾源,故在本数学模型中仅考虑第二雾源,而不计第一雾源对下游的影响。如图2所示,高速水流流经水跃区发生强迫掺气,其中跃首处旋涡最强,可以认为掺气点发生在此处,从而形成水气两相流。被旋涡挟持进水中的空气形成气泡,气泡在水中随着旋涡运动,有的气泡脱离自由面的束缚以水滴、水雾的形式跃出水面,从而形成雾源[5]。根据底流消能[6]的雾化机理,得到下式:

式中:ql为单位长度线源的水雾雾源量,kg/(s·m);ρ为水的密度;Lj为水跃的长度,Lj=10.8hc(Fr1-1)0.93,hc为跃首处的水深;vc为跃首处的流速;q为单宽流量,m2/s·m;u′2为跃首处的脉动速度均方根;uw为自然风和水舌风的合成风速。

选取ρ、Lj、vc为基本物理量,令qe=ρLjvc,利用量纲分析方法式(2)可得:

根据湾塘水电站雾化原型观测的数据[4},应用逐步回归分析方法[7],试建立式(3)的回归模型:以ql/qe为因变量,以Fr1、Nt1和uw/vc作为可能的自变量,计算表明,在显著性水平为0.05,Fr1、Nt1和uw/vc这三个量对因变量ql/qe的影响都不显著;以ql为因变量,以qe作为可能的自变量,在显著性水平为0.05,qe对因变量ql的影响显著。故对ql和qe作线性回归,求得:

1.2水雾扩散的数学模型

1.2.1基本假设(1)水雾雾源位于跃首的上方,且为连续线源;(2)水雾扩散满足高斯扩散模式,扩散参数采用布鲁克海汶扩散(BNL)参数系统,时空为小尺度模式;(3)水雾在峡谷内扩散,水雾在下垫面发生沉降和反射;(4)地形采用VALLEY(山谷)修正模式。

1.2.2风向与线源垂直时水雾的扩散[8]图4是一个高架连续线源扩散的示意图,坐标系oxyz的y轴与坝轴线平行,x轴为水流方向,z轴为垂直向上,点o位于跃首上方,且高程等于下游水位。设P为下游空间的任意一点,其坐标分别为x、y、z,其水雾的浓度为:

式中:σy为水雾在y方向的浓度分布方差;σz为水雾在z方向的浓度分布方差;h为水雾线源的高度,h=(05~1)(h″c-hc),h″c为hc的共轭水深。y1为水雾线源起点y坐标;y2为水雾线源终点y坐标;φ为下垫面的反射系数。

考虑到峡谷内盛行山谷风,并且其风向变化不大。故扩散参数选用布鲁克海纹扩散(BNL)参数系统(阵风度等级为D):

1.2.3风向与线源成任意角时水雾的扩散在坐标系oxyz中,假定自然风速为uw1,其风向与x轴正向成β1角;水舌风速为vjw,其风向沿x轴的正向,则自然风速和水舌风速的合成速度为uw,其风向与x轴正向成β2角,规定:从x轴的正向开始,绕点o逆时针转动时,角β为正值;反之,角β为负值,如图5所示。建立风坐标系ox1y1z,使x1轴与uw平行,坐标系oxyz、ox1y1z的z轴相重合。将线源在y1轴上投影,分别得到虚拟线源在y1轴上的起点和终点坐标:y01=y1cosβ2;y02=y2cosβ2。这样,合成风速uw与线源成任意角的情况就转化为合成风速uw垂直流过虚拟线源的情况。参照式(8),得到下游任意一点的水雾浓度分布:

1.2.4地形的修正模式因峡谷内盛行山谷风,并且其风向变化不大,故雾流扩散属于中性或弱不稳定的情形。选取美国国家环保局(EPA)的VALLEY(山谷)模式,地形的修正模式主要体现在修正雾源的排放高度上。在中性或不稳定的情况下,假定雾流中心平行于地面,始终保持其初始的高度。

1.3雾滴、雨滴和水汽之间的相互转换过程

1.3.1雾雨自动转换过程雾雨自动转换过程就是雾滴之间相互结合形成雨滴胚胎的过程,它是雾中出现雨滴的起始过程。Kessler(1969)给出了云雨自动转换率的关系式,它也适用于雾雨自动转换过程。

式中:Erc为雨滴对雾滴的碰并效率,qc为单位质量空气中水雾的质量(kg/(空气kg)),qr为单位质量空气中雨滴的质量(kg/(空气kg))。

1.3.3雾滴的凝结和蒸发过程[9]根据平衡法,来计算雾滴的凝结和蒸发。即在过饱和空气中发生凝结,减少了空气中的水汽量,直到空气达到饱和为止;在不过饱和空气中雾滴发生蒸发,增加了空气中的水汽量,直到空气达到饱和或雾滴蒸发完毕为止。

假定未发生泄流时,空气的温度和水汽比湿分别为T1和q1,若凝结量等于x时空气达到饱和,此时,空气的温度和水汽比湿分别达到T和q,存在以下关系式:

x>0,表示在过饱和空气中,空气发生凝结,x为空气达到饱和的所凝结的水汽量;x<0,表示在不饱和空气中,空气发生蒸发,|x|为空气达到饱和的所蒸发的水汽量。当qc<|x|时,蒸发量就等于qc,即雾滴全部蒸发完,空气尚处于未饱和状态。所以凝结量为:

2湾塘水电站消能雾化的数值计算

2.1湾塘水电站雾化原型观测工况观测工况情况见表1。

2.2湾塘水电站气象条件湾塘水电站未泄流的气象条件,如表2所示。表中风向:0°和360°表示正北;90°表示正东;180°表示正南;270°表示正西。

2.3湾塘水电站泄流雾化数学模型计算结果

2.3.1泄流雾化的雾源量由湾塘水电站雾化原型观测工况表1和气象条件表2等,根据式(4)计算得到湾塘水电站泄流雾化的雾源量,如表3所示。

2.3.2计算结果的等值线图从图6~9可见,水雾浓度、相对湿度、温度和降雨强度等值线大部分在消力池的范围内。在消力池中心线截面上,各点的温度和相对湿度等值线如图10和图11,温度和相对湿度的高值集中在局部的范围内。

2.4湾塘水电站雾化参数的计算值和原观值

2.4.1断面2中点雨强的计算值与原观值在断面2(桩号为0+56.05)上,取y=0与高程分别等于394m和395m的两点,它们的雨强计算值与原观值见表4,对应的分布图如图12所示。可以看到:雨强的原观值和计算值都随跃首单宽流量的增大而增大,并且两者基本一致。

2.4.2断面2空气含水量计算值和原观值的对比湾塘水电站泄流时,断面2空气含水量的计算值和原观值见图13~17,可见,除图16外,其他工况的空气含水量计算值和原观值基本一致。

电站轴范文篇6

采用移动式启闭设备与自动抓梁配合启闭多孔口检修闸门、叠梁闸门和拦污栅等。该布置方式有利于简化布置,降低工程造价,运行管理灵活简便。

1.1多孔口的检修闸门操作

当采用移动式启闭设备对多孔口的闸门进行操作时,如采用吊杆,则装卸繁琐费时;采用固定式启闭机则造价偏高。以某工程尾水检修闸门为例,该工程尾水设3扇检修闸门,孔口尺寸为6.095m×2.456m(宽×高),底槛中心高程为2562.686m,检修平台高程为2579.570m,3扇闸门共用1台移动式双吊点电动葫芦2×100kN-18m配合自动抓梁启闭。如采用吊杆,每扇闸门吊杆长度约15m,3m一节,人工穿卸销轴、起吊一扇闸门需近1小时,且检修平台须留有吊杆堆放空间,该方案耗时耗力,运行管理极为不便,在新建工程设计中除非有特殊要求,已很少采用该启闭方式。如三扇闸门各设一台固定式卷扬式启闭机,布置闸房、排架,该方案操作简便,但工程造价偏高。通过方案比较(如表1),采用移动式启闭机设备配合自动抓梁可以减少人工工作量,缩短操作时间,工程造价适中,更为经济、合理。

1.2叠梁闸门操作

对叠梁闸门进行操作时,如设计采用整体闸门,一方面启闭机的容量会增加,其次对应排架或者门机高度必须增加。以某工程溢洪道叠梁检修闸门为例,该工程溢洪道设1孔叠梁检修闸门,孔口尺寸为10m×11.2m,闸门总重量约为53t,闸门分为3节,运行方式为静水启闭,充水平压方式为动水提上节门叶(上节门叶重量约为18t),启闭机采用MQ2×250kN;非检修期间,闸门存放于门库内。该工程如采用整体闸门,闸门重量约为48t,门机的轨上扬程须由6.6m调整至12m,考虑充水平压后1m水头差计算启闭机容量,采用门式启闭机MQ2×400kN,由于轨上扬程增加、启闭机吨位增加,因此设备造价远大于设计采用的MQ2×250kN和自动抓梁配合启闭的方案。通过方案比较(表2),采用自动抓梁配合启闭叠梁闸门方案更为经济、合理。对于多孔口的闸门,采用自动抓梁配合启闭设备启闭闸门对门槽的施工安装精度要求较高,便于自动抓梁对门槽的适应;对于后水封的闸门,考虑水流扰动对自动抓梁抓脱的稳定性的影响,因此要求自动抓梁的转动、导向、定位装置均灵活可靠。

2自动抓梁结构型式

自动抓梁主要分为机械式和液压式。机械式可细分为重锤式、吊环式、挂钩式、挂脱自如式等。

2.1机械式自动抓梁

机械式自动抓梁工作原理为自重平衡,以密云式自动抓梁为例:在销轴右侧设配重块,销轴左重右轻。当自动抓梁空载下降时,碰到闸门吊耳,由于右侧设有配重块,销轴倾斜后滑入闸门吊耳后;由于销轴左重右轻,即可导入吊耳完成挂钩。自动抓梁持重下降时,由于闸门自身重量较大,销轴无法上翘,当闸门下降至底槛位置时,挂钩不承受闸门自重,此时销轴倒向配重块一侧,完成脱钩。在多个工程中应用较多的挂脱自如式自动抓梁,也是利用卡体在自由状态时,头部稍向下倾平衡,碰到挂体后转动,挂体通过后,提升抓梁,卡体与挂体配合,从而实现自动挂脱。《水电站机电设计手册-金属结构(一)》中对各种机械式自动抓梁做了详细介绍,笔者在此不再做详细描述。

2.2液压自动抓梁

液压自动抓梁在我国最早应用于三门峡水电站工程,以后推广到刘家峡、丹江、龚咀、富春江等水电站工程。一般由抓梁梁体、液压销轴、液压泵站、水密接线盒、导向装置、传感器等组成,如图1所示。液压自动抓梁沿闸门门槽下降,当抓梁接近水下闸门时,抓梁上的导向装置首先插入闸门上的定位管,使抓梁与闸门前后左右位置对应。然后随着抓梁的进一步下降,抓梁下降至穿轴位置时,两侧就位传感器发出就位信号(通过在操作柜上的显示屏可以显示信号),抓梁在垂直高度已经到位,不再下降。下一步进行穿轴动作,液压泵站内的油泵电机启动,电磁阀穿轴电磁体通电,液压销轴装置开始向前移动穿轴,穿轴到位后,液压销轴穿轴位置传感器发出信号,关闭开关,油泵电机停转,电磁阀复位,油路系统锁死,穿轴过程结束,如图2。在液压自动抓梁就位过程中,导向装置、下降就位传感器、闸门高度指示器、启闭机荷载传感器等多个环节共同保护、判断,因此笔者认为液压自动抓梁的水下穿轴的可靠性可以得到保障。由于液压自动抓梁采用液压销轴自动穿轴,因此闸门的吊耳结构宜采用梨形孔结构,液压销轴的穿轴位置对应的圆弧半径宜对于销轴半径20mm以上;闸门长期浸泡在水下,如将导向套设置在闸门顶梁腹板,则水下杂物很容易进入导向套内,从而导致导向装置失效,因此导向装置中,导向棒宜设置在闸门顶梁腹板,导向套设置在液压自动抓梁梁底。

2.3适用范围

机械式自动抓梁结构形式简单,造价低,其缺点是穿轴的可靠性相对较弱,适用于抓脱过程便于观察的表孔闸门。在黑河水库工程溢洪道表孔检修闸门、泾惠渠加坝加闸工程溢洪道表孔检修闸门等工程中使用机械式自动抓梁,运行可靠、效果良好。液压自动抓梁的结构形式复杂,造价高,水密性的要求很高,其优点是液压穿轴装置的可靠性很高,适用于深孔闸门、拦污栅。在扭子水电站工程尾水检修闸门、花园水电站进水口拦污栅等工程中使用液压自动抓梁,效果良好。

3结语

电站轴范文篇7

关键词:水利工程;边坡稳定性;软弱岩体;含水率;夹层倾角;力学试验

水利工程尤其是大型水电站常常建设在山区,高山较多、地质构造运动复杂,因此水利工程边坡稳定性存在很大的风险,对水电站工程安全性也是很大的威胁[1-3]。因此,研究水利工程边坡含夹层软弱岩体的工程力学性质具有重要意义。受地质构造运动影响,岩体边坡中常存在一定的软弱夹层,威胁了水利工程的长期安全性。大量现有研究表明,我国山区边坡中岩体较为常见的软弱夹层为泥岩或破碎风化岩,导致岩体的力学性质变差,同时在降雨条件下也更容易出现边坡失稳滑动的问题[4-6]。此外,部分学者指出,含水率是影响边坡岩体力学性质的重要参数。一般而言,含水率越高,岩石内部结构之间的胶结能力也就越弱;同时水分会导致岩石内部颗粒流失,岩石内部产生一定范围的孔隙。因此,学者们认为,含水率越高,岩石的承载能力就越弱,则边坡的稳定性也就越差[7-9]。综上所述,现有研究关于不同含水率下含软弱夹层岩体工程力学性质的综合研究较少。因此,本文基于单轴压缩力学试验,对不同含水率、不同夹层倾角条件下的含软弱夹层岩体的力学性质展开了综合研究。研究成果为我国水利工程边坡设计提供了一定的数据借鉴作用。

1试验

1.1试样制备

本次研究依托于四川省某大型水电站山体边坡加固工程,该工程主要服务为满足水力发电及蓄洪功能需求,此外还需要服务区域部分地区的水利灌溉作用。根据资料调查及前期工程现场工程地质勘察资料可知,该水电站边坡岩的主要组成为砂岩,但是,受区域地质构造运动影响,水电站边坡内发现大范围的薄层泥岩软弱夹层的存在。经过现场调查,发现地区软弱泥岩夹层的平均厚度约为30mm。此外,根据现有研究发现,相较于砂岩岩块,薄层泥岩的强度较低,且遇水易变形软化,力学性质变差。因此可见,薄层泥岩对水电站边坡的稳定性具有很大的影响。参照现有组合岩体室内模拟试验,利用混凝土制备材料和石膏分别模拟夹层岩体中的硬、软岩部分,其中石膏层厚为20.00mm夹层倾角分别为0°、30°、45°和60°。按照相关试验规范要求,对软、硬部分进行组合、胶结,最终制备得到直径为50mm、高度为100mm的标准工程试验岩体[10],其具体物理参数见表1。

1.2试验设计

本次试验分别研究了夹层倾角、含水率对软弱岩体力学性质的影响,室内对含软弱夹层复合岩体开展了力学实验。在试验过程中,首先以1kN的轴向荷载将含软弱夹层岩体试样固定在如图1所示试验台上,此后,利用位移控制模式进行加载,加载速度为0.01mm/min,直至试样破坏。在试验过程中,利用试验设备电子位移计全程对岩体的轴向变形进行测量与记录,以得到岩体完整的应力-应变曲线试验结果,分析其变形特性。

2试验结果分析

2.1应力-应变曲线特征

基于室内含软弱夹层岩体试样的单轴压缩试验得到图2,由图2可知,当轴向荷载较小时,岩体内的原生孔隙得到压密;此后,随着轴向荷载的增大,岩体的应力-应变曲线进入弹性变形阶段,此阶段岩体的轴向变形随荷载增大而呈现出线性增大的变化关系。在此之后,岩体屈服直至破坏,试验结束。分析岩体变形破坏后特征可以发现,当夹层倾角为0°时,含软弱夹层岩体试样的应力-应变曲线呈脆性破坏特征,达到峰值应力后其应力-应变曲线迅速跌落;而当夹层倾角为30°、45°和60°时,含软弱夹层岩体试样的应力-应变曲线呈现出一定的脆-延性破坏特征,达到峰值应力后其应力-应变曲线下降速度慢,且具有较明显的峰后残余强度特征。

2.2含水率影响分析

基于室内单轴压缩应力-应变曲线试验结果,得到在相同夹层倾角条件下(0°),含夹层软弱岩体的抗压强度随含水率变化关系见表2。由表可知,随着含水率的增加,含夹层软弱岩体的抗压强度呈现出逐渐变小的变化趋势。当含夹层软弱岩体的含水率为3%时,岩体的抗压强度为11.06MPa。此后,随着含水率的增加,岩体的抗压强度逐渐降低。当岩体的含水率分别为6%和9%,此时其强度则分别为9.85MPa和8.33MPa,相对含水率3%时降低10.94%和18.19%,强度下降幅度非常明显。分析认为,这是由于当岩体中存在大量水分子时,组合岩体尤其是其软岩部分内部胶结结构会被破坏;此外,在通过浸水对岩石含水率进行控制和调整的过程中,由于水分的流失会带走岩石内部细小颗粒,导致岩石内部的结构逐渐破坏、流失,岩石内部会形成一定数量的孔隙。综上所述,岩体的抗压强度随着含水率的增加而逐渐降低[10-11]。

2.3夹层倾角影响分析

当含水率均为3%时,不同夹层倾角条件下含夹层软弱岩体的抗压强度见表3。由表3可知,随着夹层倾角的逐渐增大,含夹层软弱岩体的抗压强度呈现先降低后增大的变化规律。当含夹层软弱岩体的夹层倾角为0°时,岩体的抗压强度为11.06MPa。此后,随着夹层倾角的增加,岩体的抗压强度分别为8.87MPa、6.78MPa和7.52MPa。由此可见,软弱夹层倾角对组合岩体力学性质的影响较为复杂,当夹层倾角为45°时,岩体的单轴抗压强度最低,较含水平软弱夹层的岩体下降了39.70%,下降幅度非常明显。

3结论

电站轴范文篇8

1.4H型尾水管弯管段的几何形状

4H型尾水管几何形状以弯管段最为复杂,体形如图1所示,它是由圆环面(A)、斜圆锥面(B)、斜平面(C)、水平圆柱面(D)、垂直圆柱面(E)、立平面(F)及水平面(G)组成。各曲面关系分述如下:

圆环面(A):是由以R1为半径的一段圆弧绕机组中心线旋转而成,其几何尺寸由R1、R4H1、R0确定,见图2(1-1);

斜圆锥面(B):各水平截面圆心轨迹为图2(1-1)中OK,半径为R0+ei,其几何尺寸是由R0和e0确定的;

斜平面(C):此平面与圆环面(A)相割,与斜圆锥面(B)相切,底部与立平面(F)相交同一高程水平面上,见图2中(1-1);

水平圆柱面(D):是由圆心为O2及半径R2所决定的,见图2中(1-1);

立平面(F):该平面与垂直圆柱面(E)相切,与斜平面(C)相交,见图2中(1-1)、(2-2);

垂直圆柱面(E):其圆心轨迹为图2(1-1)所示kk′,其半径由R0和e0决定,见图2中(1-1)、(2-2);

水平面(G):是由圆环面(A)延续部分,与圆环面(A)相切,详见图2(1-1)、(2-2)。

图24H型尾水管弯段形状示意图

2.尾水管单线图简便计算方法

4H型尾水管因厂房布置等原因,分为有偏角和无偏角尾水管。无偏角尾水管是指尾水管中心线与机组中心线重合,有偏角尾水管是指尾水管中心线与机组中心线不重合,存在一定的夹角。

2.1无偏角4H型尾水管单线图计算原理

尾水管单线图计算包括水平剖面和垂直剖面的计算,计算内容如下:

2.1.1水平剖面的计算

建立如图3所示的坐标系。

(1)斜圆锥面(B)的半径R3i的计算:

根据斜圆锥面(B)的特点可知,第i-i水平剖面与斜圆锥面(B)交线aibi的半径R3i为:

(当zi小于h1时)(2-1)

(zi>h1时,垂直柱面(E)与i-i水平面相交)

式中:R0-尾水管肘管段进口半径;zi-第i水平面距xoy平面的距离;e0-斜圆锥面圆心与机组中心线最大偏距;ei-第i水平剖面与斜圆锥面交线圆弧aibi圆心距机组中心线的距离;R3i-第i水平剖面处斜圆锥面的半径。

(2)肘管段平面角θ的计算:

在图3(2-2)剖面中

(2-2)

式中:B-尾水管扩散段出口宽度;l0-尾水管弯管段的长度。

(3)水平剖面C(C′)点坐标的计算:

C点为斜平面(C)与圆环面(A)相交之点,只要求出水平剖面与斜平面(C)相交得到的直线方程和与圆环面(A)相交得到的圆弧方程,C点坐标即可确定。

①求第I剖面中biCi直线的方程:(见图3i-i剖面)

设biCi直线方程为:

y=xtgθ+bi(2-3)

ki点到该直线的距离为R3i,ki点坐标为(ei,0),所以有:

(2-4)

②求圆弧CiCi的方程:

圆弧半径R4i为(如图3I-Ii-i剖面)

(2-5)

式中:R4H1-圆心O3至机组中心线的距离(如图3I-I剖面);R1-圆环面(A)与通过圆心O径向垂直剖面交线圆弧的半径;h1-尾水管肘管段上部高度。

CiCi方程为:

x2+y2=R4i2

③求Ci(Ci′)点的坐标

只有当zi≤h1时圆环面(A)才与斜平面(C)相交,所以zi≤h1时Ci(xci,yci)座标为:

解得:

(2-6)

当zi>h1时斜平面(C)已不与圆环面(A)相交,假定:

(2-7)

(4)求Ci点与圆心O点连线和正x轴方向的夹角βci:

(2-8)

当xci=0时,βci=0,βci在0°~180°范围内。

(5)b(b′)点坐标的计算

在第i水平剖面中(如图3中i-i剖面),bi点为直线biki与biCi的交点,且biki垂直于bici,已知ki点坐标为(ei,0)

biki方程为:

(2-9)

联立(2-3)与(2-9)方程即可求得bi点座标(xbi,ybi)

(2-10)

(6)求a点的座标

①当zi≤υ时,水平剖面与斜圆锥面(B)、斜平面(C)和圆环面(A)相交,ai点坐标为:

(2-11)

②当zi>υ时,水平剖面分别与斜圆锥面(B)(或垂直圆柱面(E))、水平圆柱面(D),斜平面(C)和圆环面(A)相交。

水平柱面(D)与第i水平剖面交线aiai′方程为:

(2-12)

式中:u-圆柱面(D)圆心的x坐标,u=R2-R0;υ-圆柱面(D)圆心的y座标。

斜圆锥面(B)(垂直柱面(E))与i水平剖面交线方程为:

(x-ei)2+y2=R3i2(2-13)

联立(2-12)和(2-13)方程求解,即可确定ai(xai,yai)点座标

(2-14)

如果ai点的x坐标xai大于bi点的x座标xbi(即xai>xbi),则水平柱面(D)已不与垂直柱面(E)相交,而与垂直平面(F)相交,那么bi点x、y座标皆为0。

即(2-15)

而ai点的坐标为

(2-16)

(7)求ai、bi点与x轴负半轴方向的夹角αai、αbi

(2-17)

若xai,xbi为0,则αai=αbi=0,αai、αbi在0~180°范围内。至此水平剖面的形状已完全确定了。

2.1.2垂直剖面的计算

垂直剖面的形式有两种,一是通过水轮机主轴呈放射状的径向垂直剖面(简称径向垂直剖面);一种平行于x轴方向的平行垂直剖面(简称平行垂直剖面)。从工程来看平行垂直剖面没有什么意义且计算繁琐,我们这里指的垂直剖面是径向垂直剖面。

垂直剖面的计算是建立在水平剖面计算基础之上的,这可以使垂直剖面的计算大为简化。径向垂直剖面在不同部位切割尾水管所得垂直剖面的形状不同,从垂直剖面的形式大体可分为两类,下面对这两类垂直剖面分别计算。

(1)第一类垂直剖面

在没有计算第一类垂直剖面以前,首先作一条假定,径向垂直剖面与斜圆锥面的交线,从理论上讲应为椭圆曲线,但由于斜圆锥面锥顶很高且锥底偏心距相对锥高而言很小,故假设径向垂直剖面与斜圆锥面交线为直线。

第一类垂直剖面用O-Iai表示(0-Iai表示通过第Ⅰ水平剖面ai点的垂直剖面),当zi≤υ不计算与此水平剖面对应的垂直剖面,因为此剖面的形状为已知。

图34H型尾水管单线图示意图

①当zi≤h1时:径向垂直剖面的形式如图3中0-Iai剖面所示,只要确定了d(i+j)(0≤j≤n-i),该剖面的形式也就确定了。

0-Iai剖面的方程为:

y=xtg(π-αai)

d(i+j)为第Ⅰ个水平剖面aiai′线与0-Iai径向垂直剖面在水平面投影直线交点xy坐标的平方和之根。

(2-18)

(2-19)

式中:0≤j≤n-i,n-水平剖面个数。

②当zi>h1时:垂直剖面的形式如图3中0-3a3所示,只要确定了Fi和d(i+j)该剖面也就确定了。

d(i+j)的计算方法与(2-18)、(2-19)相同,

Fi=di(2-20)

(2)第二类垂直剖面

第二类垂直剖面用O-Ici表示(表示通过第Ⅰ个水平剖面Ci点的径向垂直剖面)。

①当zi≤h1时:从图3中0-Ici剖面可以看出,只要确定了gi,Rgi和zei,该剖面也就确定了。

gi为第Ⅰ个水平剖面Ci点至圆心O点的距离即:

gi=R4i(2-21)

当βci≤180°-αβ时:αβ为z=h1水平剖面bi和原心O连线与x轴负方向的夹角。

Rgi为z=h1水平剖面biCi线与0-Ici垂直剖面在水平剖面的投影直线交点的xy座标平方和之根。

解得:

(2-22)

(2-23)

zei为水平柱面(D)、垂直平面(F)与0-Ici垂直平面交点的z坐标各曲面方程如下:

b(m)为z=h1水平剖面biCi直线y轴的截距,再用(2-3)式计算。

解得:(2-24)

当180°-αβ<βci≤90°+θ时,Rg为z=h1平面中aibi弧与0-Ici面水平投影直线交点平方和之根。

解得:(2-25)

(2-26)

式中:R3m-垂直柱面(E)的半径,即R3m=R0+e0;zei为水平柱面(b),垂直柱面(E)和0-Ici垂直平面交点的z坐标。

各曲面方程如下:

解之得:(2-27)

②当zi>h1时,垂直剖面为已知,不作计算。

2.2有偏角α的4H型尾水管单线图的计算

由于布置上的要求,扩散段中心线往往与机组中心线有一偏距d,尾水管需要绕机组中心线一个角度α(见图4)。

有偏角尾水管单线图的计算与无偏角的计算基本相同,建立如图4所示的坐标系,只要求出D点的x、y方向的坐标坐标,以下的计算同无偏角的相同,在此不再赘述。

D点坐标为:

电站轴范文篇9

关键词:深度学习;智能变电站;继电保护;二次回路;故障监测系统

随着智能变电站建设规模的不断增大,需要构建优化的智能变电站继电保护二次回路控制模型,结合故障融合和特征检测技术,进行智能变电站继电保护控制,在继电保护二次回路中,受到环境工况信息的影响,导致智能变电站继电保护二次回路输出稳定性不好,容易出现故障,需要构建优化的智能变电站继电保护二次回路故障监测系统,通过故障状态信息融合和特征优化提取技术,进行智能变电站继电保护二次回路控制和故障监测,提取故障工况下的状态参数,结合大数据分析技术,实现故障状态参数融合,研究智能变电站继电保护二次回路故障监测系统,在提高变电站的输出稳定性和可靠性方面具有重要意义[1]。对智能变电站继电保护二次回路故障监测是建立在对故障信息大数据采样和特征分析基础上,构建智能变电站继电保护二次回路故障分布式数据监测和信息融合模型,结合模糊度特征辨识智能变电站继电保护二次回路故障参数分析基础上,通过分析智能变电站继电保护二次回路故障原始参数信息[2],结合智能变电站继电保护二次回路故障的模糊度参数分析结果,实现对智能变电站继电保护二次回路故障的可靠性诊断和识别。提出基于深度学习的智能变电站继电保护二次回路故障监测方法。构建变电站继电保护二次回路参数辨识模型,结合深度学习方法进行智能变电站继电保护二次回路故障特征分类检测,根据故障特征属性的分类结果,实现智能变电站继电保护二次回路的故障监测,并通过仿真测试进行性能验证,展示了本方法在提高智能变电站继电保护二次回路故障监测能力方面的优越性能。

1变电站继电保护二次回路参数分析和样本数据采集

1.1变电站继电保护二次回路参数分析

为了实现基于深度学习的智能变电站继电保护二次回路故障监测,采用电阻支路的电流特征分析方法[3],构建变电站继电保护二次回路的等效电路分析模型,如图1所示。根据图1所示的变电站继电保护二次回路分析,构建变电站继电保护二次回路参数约束控制模型[4],得到电机全速范围控制下智能变电站继电保护二次回路在高频输出电压信息为:(1)使用磁链、转矩联合控制的方法,得到智能变电站继电保护二次回路的故障工况下的样本融合参数分布模型[5],结合电阻参数的动态寻优方法,得到变电站继电保护二次回路的励磁电感电流:(2)其中,an表示并联智能变电站继电保护二次回路的励磁电感电流偏移量,结合电感电流的观测和控制结果,采用样本相关性检测的方法,得到样本检测方法进行并联智能变电站继电保护二次回路故障输出样本数据融合处理[6],得到关联规则项表示为:(3)分析励磁电感支路电流d、q轴的参数解析特征量,建立闭环控制参数约束模型,得到智能变电站继电保护二次回路的电流输出故障演化特征集合X分为K类,采用磁链、转矩联合控制的方法,进行变电站继电保护二次回路参数的大数据信息融合[7],继电保护二次回路故障信号的高阶谱特征量表达式为:

1.2故障样本数据采集

根据智能变电站的工况和稳压参数的变化特征量进行故障信息采集,采用励磁电感支路电流综合特征分析方法[8],得到智能变电站继电保护二次回路的故障演化控制的参数特征提取结果。

2二次回路故障监测优化

根据智能变电站继电开关校正系统的转差频率进行故障状态下的误差补偿控制,建立智能变电站继电保护的闭环控制参数解析控制模型,得到智能变电站继电保护二次回路的阻抗判别模型,采用阻抗分析法[10],得到变电站继电保护二次回路的能量输出均值为:根据线性寻优控制和深度学习,求得上述控制方程的最优解,实现故障监测优化。

3系统仿真实验与结果分析

在上述进行了智能变电站继电保护二次回路的故障监测算法设计的基础上,采用B/S构架和嵌入式的ARM控制方法,构建智能变电站继电保护二次回路故障监测系统,采用PCI总线控制方法,构建智能变电站继电保护二次回路故障监测系统的串行EEPROM电路,采用匹配滤波检测,得到系统的时钟控制电路,采用DSP集成信息处理方法,得到智能变电站继电保护二次回路故障监测系统的硬件结构模型如图2所示。

4结语

电站轴范文篇10

本设计是关于普通钻床改造为多轴钻床的设计。普通钻床为单轴机床,但安装上多轴箱就会成为多轴的钻床,改造成多轴钻床后,能大大地缩短加工时间,提高生产效率。因此本设计的重点是多轴箱的设计,设计内容包括齿轮分布与选用、轴的设计、多轴箱的选用、导向装置设计等。

关键词:多轴钻床;生产效率;多轴箱

Abstract

Thedesignisaboutreconstructingtheordinarydrilltoamultipledrill.Theordinarydrillisasingledrill.Itwillimproveitsproductiveefficiency,shortenitsprocessingtimeifassembledamultiplespindlecaseon.Thatsocallsamultipledrill.Hereby,thekeystoneofthisdesignpaperishowtodesignamultiplespindleheads.Thedesignsubjectsincludetheselectionanddistributionofgearwheel,thedesignofspindle,andtheguidingequipmentandselectionofthemultiplespindleheads,etc.

Keywords:multipledrill;productiveefficiency;multiplespindleheads

多轴加工应用

据统计,一般在车间中普通机床的平均切削时间很少超过全部工作时间的15%。其余时间是看图、装卸工件、调换刀具、操作机床、测量以及清除铁屑等等。使用数控机床虽然能提高85%,但购置费用大。某些情况下,即使生产率高,但加工相同的零件,其成本不一定比普通机床低。故必须更多地缩短加工时间。不同的加工方法有不同的特点,就钻削加工而言,多轴加工是一种通过少量投资来提高生产率的有效措施。

多轴加工优势

虽然不可调式多轴头在自动线中早有应用,但只局限于大批量生产。即使采用可调式多轴头扩大了使用范围,仍然远不能满足批量小、孔型复杂的要求。尤其随着工业的发展,大型复杂的多轴加工更是引人注目。例如原子能发电站中大型冷凝器水冷壁管板有15000个ψ20孔,若以摇臂钻床加工,单单钻孔与锪沉头孔就要842.5小时,另外还要划线工时151.1小时。但若以数控八轴落地钻床加工,钻锪孔只要171.6小时,划线也简单,只要1.9小时。因此,利用数控控制的二个坐标轴,使刀具正确地对准加工位置,结合多轴加工不但可以扩大加工范围,而且在提高精度的基础上还能大大地提高工效,迅速地制造出原来不易加工的零件。有人分析大型高速柴油机30种箱形与杆形零件的2000多个钻孔操作中,有40%可以在自动更换主轴箱机床中用二轴、三轴或四轴多轴头加工,平均可减少20%的加工时间。1975年法国巴黎机床展览会也反映了多轴加工的使用愈来愈多这一趋势。

生产任务

在一批铸铁连接件上有同一个面上有多个孔加工。在普通立式钻床上进行孔加工,通常是一个孔一个孔的钻削,生产效率低,用非标设备,即组合机床加工,生产效率高,但设备投资大。

但把一批普通立式普通单轴钻床改造为立式多轴钻床,改造后的多轴钻床,可以同时完成多个孔的钻、扩、铰、等工序。

目录

目录………………………………………………………………………………………………………1

中文摘要…………………………………………………………………………………………………2

ABSTRACT…………………………………………………………………………………………………2

第1章绪纶……………………………………………………………………………………………3

1.1多轴加工应…………………………………………………………………………………3

1.2多轴加工的设备……………………………………………………………………………4

1.3多轴加工的趋势……………………………………………………………………………5

第2章普通钻床改为多轴钻床……………………………………………………………………6

2.1生产任务……………………………………………………………………………………6

2.2普通立式钻的选型……………………………………………………………………………6

第3章多轴齿轮传动箱的设计………………………………………………………………………7

3.1设计前的准备…………………………………………………………………………………7

第4章多轴箱的结构设计与零部件图的绘制………………………………………14

4.1箱盖、箱体和中间板结构…………………………………………………………………14

4.2多轴箱轴的设计..............................................................................14

4.3轴坐标计算………………………………………………………………………30

第5章导向装置的设计…………………………………………………………………31

第6章接杆刀具…………………………………………………………………………31

外文文献………………………………………………………………………………………………31

总结………………………………………………………………………………………36