催化剂范文10篇

时间:2023-03-17 17:59:27

催化剂范文篇1

[关键词]光催化剂;刚果红;电子-空穴;铁酸铋

随着经济的快速发展,人类活动对自身的生存环境造成不同程度的破坏,直接或间接影响人类健康以及社会经济的可持续健康发展[1]。难降解有机污染物在水体中广泛且持久存在。中国在全球范围内属于湖泊密度较大的国家之一,湖泊在供给淡水、渔业、维护生态环境等多个方面占有重大比重。水体中常见的有机污染物有以下几种:酚类化合物、苯胂酸类化合物、石油类、苯系物、有机氯农药、有机磷农药、多环芳烃、多氯联苯等。其中,染料废水是常见的有机工业废水,在实际工程中常常伴有染料废水的处理,常见的试验目标染料污染物有刚果红、罗丹明B、甲基橙、孔雀石绿等。铁酸铋(BiFeO3,简写BFO)是一种常见的新型的多铁性光催化材料,具有铁电性和反铁磁性以及较窄的禁带能隙,是当前多铁材料研究热点之一。BFO不仅在自旋电子器件和铁电储存方面有较大的应用潜力,而且在光催化降解方向也有着非常大的前景。BFO作为一种典型的钙钛矿材料,其本身的禁带能隙为2.2~2.8eV,对紫外光和可见光都能产生响应,表现出较好的光催化活性,在光催化降解污染物、环境净化及光解水制氢等方面有着诱人的前景[2]。但是在光催化实验中,此材料有光生空穴与电子对分离困难、材料表面吸附性能相对较差,导致可见光光电子产率低以及光生电子和空穴易于复合等缺点。

1Bi1-xYxFeO3光催化剂的表征

1.1不同Y掺杂量BFO样品的红外光谱分析

图1为不同Y掺杂量的BFO样品的FT-IR谱图。从图1中可以看出,在500℃下煅烧2h的所有样品的红外谱图均相似,在550cm-1和440cm-1处有明显的属于FeO6八面体中的Fe-O和Bi-O键的2个吸收峰。与萨特勒标准红外光栅光谱集对照发现,特征峰的位置和形状并不是完全相同,表明此次合成的样品是有杂质的,与上述的XRD分析结果一致。综上所述,Y掺杂量的增加引起晶粒尺寸减小、比表面积增加、吸收峰发生蓝移等[3]。图1不同含量Y掺杂BFO的红外光谱图

1.2不同Y掺杂量BFO的磁滞回线分析

图2为室温下不同含量Y掺杂BFO光催化粉末的M-H关系图。由图2可以看出,随着Y的掺杂,BFO的磁化强度并没有显著变化,而光催化效果最好的Y5反而磁化强度最小,可能是因为Y3+本身为非磁性电子,Y的掺杂没有起到增加磁化强度的作用。除此之外,由XRD和FT-IR可知,样品中存在Bi2O3杂质,也可能是因为杂质的存在造成磁化强度的降低。

2Bi1-xYxFeO3光催化剂的光催化及分析

2.1不同Y掺杂量BFO的光催化性能分析

不同Y掺杂的BFO催化剂对刚果红随时间变化的降解曲线见图3。由图3可知,刚果红浓度与其初始浓度之比随时间的变化成指数关系,符合拟一级反应动力学方程[4]。在20mg/L刚果红溶液中加入0.1g光催化粉末进行光催化降解,通过比较发现,未掺杂的BFO对刚果红的降解率最低,仅仅达到30%左右;随着掺杂Y浓度增加,降解效率也随着增加,在掺杂浓度5%Y时,也就是Y5对刚果红的降解效果达到最好,光反应120min降解率可达到86%,比未掺杂的样品催化效果提高56%左右。但是当Y的掺杂浓度达到7.5%时,对刚果红的降解率反而下降。上述结果说明,适当掺杂Y可以提高BFO的催化性能。由以上各项表征结果可知,Y的掺杂抑制了BFO晶体增长,引起晶体畸变,产生缺陷能级,适当缺陷的存在可以扩展对光的吸收范围,提高光生载流子的分离效率[5],降低光生电子与空穴的复合概率;同时颗粒粒径减小,比表面积增大,活性位点增多,加快光生电子-空穴的扩散速率,提高光催化材料性能。

2.2不同Y掺杂量BFO对于水中COD降解分析

不同Y掺杂的BFO催化剂对COD的降解曲线见图4。此次实验污水选自某污水厂进水水样,水样含悬浮物、浑浊、含黑色污泥、恶臭。取500ml废水水样分别加入0.1gBiFeO3、Bi0.95Y0.05FeO3光催化剂,经暗反应30min后,利用300W氙灯照射120min,将光催化反应后的上清液取300ml左右用于COD含量检测。通过试验检测结果,原废水水样的COD含量为85mg/L,加入BFO纳米颗粒后的水样COD浓度减小到70mg/L,而加入Bi0.95Y0.05FeO3光催化纳米粉体后的水样COD浓度为58mg/L。结果显示,加入催化剂后实验过后的水样,悬浮物明显减少,更加清澈,微微浑浊[6],轻微臭味,烧杯底部白色絮状物,加入BFO后COD浓度减少17%;而加入Bi0.95Y0.05FeO3后COD的浓度含量降解31%。铁酸铋催化剂对水中的COD浓度有一定的降解作用,掺杂Y后催化剂比纯铁酸铋对COD的降解效果更好[7]。

3结论

催化剂范文篇2

关键词:变换催化剂;中毒;氯

1分析原因

问题出现后,该企业多次更换部分催化剂并试用了不同厂家的同类催化剂,均出现了催化剂快速中毒的现象。在排除了催化剂本身的质量因素后,该企业对中毒催化剂进行了分析化验。化验结果表明,中毒催化剂中的氯含量为1.56%,远远超出了正常值(10×10-6),其他组分含量正常。氯有未成键孤对电子,并有很大的电子亲和力,易与金属离子反应,造成催化剂活性组分流失、孔道阻塞或结构破坏,导致催化剂中毒。氯还具有很高的迁移性,常随工艺气向下游迁移,造成催化剂全床层性中毒。在实际生产中,氯引起的“累积效应”常造成各种催化剂中毒据此推断,该公司的变换催化剂失活是由于系统中的氯含量过高。

2排查来源

为明确中毒原因,查明中毒来源,该企业变换催化剂中毒的氯的来源开展排查。原料气中氯的来源主要有原料煤、工艺水和空气这3个途径。

2.1排查原料煤

原料煤中氯元素以无机和有机两种形式存在,无机氯在造气过程中会随炉渣或造气循环水排出系统,不会进入变换工段,理论上不会导致变换催化剂中毒。有机氯在造气炉干馏段(300℃)内由固态变成气态,由于有机物不溶于水,不能被造气冷却水洗涤脱除,就随粗煤气进入到了变换工段。变换工段温度、压力升高,在H2氛围和金属氧化物存在的条件下,有机氯与H2发生取代反应,将有机氯化物转化成无机氯,主要是氯化氢。氯化氢与催化剂中的金属离子反应,导致催化剂中毒失效。

2.1.1煤质

我国煤中氯含量一般较低,通常都在0.101%~0.120%,晋城矿区的煤属于特低氯煤。此次事件中该企业使用的原料煤主要是来自B、C、D、E4个矿井。煤炭科学研究总院(北京煤化工分院)2014年对其进行过取样测定,这4个矿井的块煤平均含氯量。井的煤本身含有的氯元素较少,远低于上述标准。

2.1.2原煤生产

自2015年起,B、D矿商品块煤的生产工艺进行了改进和调整,在原煤生产过程中为加固顶板,确保生产安全,使用了有机注浆材料。有机注浆材料是一种有机合成高分子材料,遇水或反应时发生膨胀,发泡生成多元网状密弹性体,注入煤层时可将裂缝充填,在原煤生产过程中工作面遇构造时用来对煤层和顶板进行加固,凝固后呈大块琥珀状,不易破碎。其中的阻燃剂中含有有机氯元素,其氯元素含量为3.25%~3.75%。由于其密度与水相似,不能通过洗选除去,加之其用量不稳定,在商品煤中分布不均匀,局部集聚,可能导致催化剂氯中毒。

2.1.3洗选

洗选过程使用的煤泥水处理药剂中含有氯元素,主要为碱式氯化铝(聚合氯化铝),在煤泥水处理环节使用,随煤泥大量排出,在循环清水中残留较少,且为无机态氯,理论上不会进入变换系统导致催化剂中毒。

2.1.4运输

根据环保要求,煤炭运输必须使用抑尘剂进行喷涂处理,抑尘剂中可能含有氯化钙和氯化镁成分,为无机态氯,理论上不会进入变换系统导致催化剂中毒。综上所述,无烟煤本身氯含量很低;洗选、运输过程中带入的氯含量很少,且为无机态;而原煤生产时使用的有机注浆材料中含有有机氯可能会造成变换催化剂中毒。

2.2排查工艺水

经检测,原水、化学水、锅炉给水、蒸汽冷凝液各项指标均合格,推断进入变换系统的蒸汽中没有过量的氯元素。在当前环保形势严峻、零排放呼声高涨的情况下,减少或禁止循环水的排放可能会造成氯离子的累积,影响循环水的洗涤溶解效果,使系统中的无机氯离子不能随循环水带走而留在系统中,对变换系统催化剂造成影响。

2.3排查大气

有文献报道称,大气中的氯也可能通过空气压缩机进入系统中。例如,辽宁锦天化公司低变催化剂氯中毒,经过调查,导致催化剂失活的主要原因是氯中毒,来源是由原料空气带入。该企业经排查未发现空气组分异常情况。

2.4排查结果

综上所述,此次造成变换催化剂中毒的氯来自于原煤生产过程中加入的有机注浆材料,其含有的有机氯在气化炉中释放出来,由于其不溶于水不能被洗涤水洗脱而进入变换工段,在催化剂和氢气作用下反应生成HCl,与催化剂中的金属离子反应造成中毒失活。

3结论及建议

变换技术作为煤化工生产的一个重要环节,无论是传统煤化工还是现代煤化工,都是不可或缺的。催化剂的使用寿命是制约变换工艺稳定运行和运行成本的最重要的一个环节。此次变换催化剂的中毒事件不仅影响全系统的连续正常运行,还造成了巨大的经济损失,为防止此类事件的再次发生,需从以下几点入手,协同保障系统的安全稳定运行。

3.1更换注浆材料

建议将有机注浆材料更换为无机材料或复合注浆材料,另外,在不影响井下安全生产的前提下,通过提前预加固等途径尽量减少有机注浆材料的用量。

3.2严格把控入厂原料煤煤质

由于有机注浆材料呈琥珀大块状,分布极其不均匀,在原料煤取样分析时可能没取到,不能及时发现原料煤的问题。应通过增加原料煤筛分,加强人工巡查等方式,及时将大块状注浆料进行分拣。

3.3加强循环水水质化验

增加循环水中氯含量检测频次,严格控制氯离子含量,必要的情况下增加膜分离装置对氯离子进行脱除。

3.4加强各工段各环节的管理

引起催化剂中毒的原因很多,包括操作不当引起的系统温度增高、氧含量增高及带水、带灰、带油等。必须加强管理,严格按照规程进行操作,发现问题及时处理,避免对催化剂造成影响。

参考文献:

[1]李新怀,吕小婉,李耀会,等.脱氯剂在氮肥和甲醇生产中的工业应用[J].气体净化,2007,7(3):14-17.

[2]姜英.我国煤中氯的分布及其分级标准[J].煤炭技术,1998(5):7-8.

催化剂范文篇3

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的可能给物理、化学、材料、生物、医药等学科的带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

1.在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化不可忽视的重要研究课题,很可能给催化在上的应用带来革命性的变革。

2.在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

3.在其它精细化工方面的

精细化工是一个巨大的领域,产品数量繁多,用途广泛,并且到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。

4.在医药方面的应用

21世纪的健康科学,将以出入意料的速度向前,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向,已提到日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。

微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。

纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。

催化剂范文篇4

新课标倡导学生作文的个性化。引导是小学生个性化习作的催化剂,,有效的引导可以促发学生个性化习作,教师可以在校内活动中引导、在班级交流中引导、在师生谈话中引导、在媒体观看中引导、在事件反思中引导、在多元评价中引导、在作品展示中引导。

新课标指出摘要:“为学生自主写作提供有利条件和广阔空间,减少对学生写作的束缚,鼓励自由表达和有创意的表达。提倡学生自主拟题,少写命题作文”,使学生懂得“写作是为了自我表达和和人交流”,并“珍视个人的独特感受”。新课标对写作的“评价建议”中指出摘要:“应重视对写作过程、方法、情感和态度的评价,是否有写作的喜好和良好的习惯,是否表达了真情实感,对有创意的表达应予鼓励。”这些要求的主要精神,就是倡导学生作文的个性化。根据新课标精神,我们要打破传统的作文教学模式,开放课堂教学内容,提倡课外练笔,让生活走进作文,让作文走进生活。教师可从校内活动、班级交流、师生谈话、媒体观看、事件反思、多元评价、作品展示中引导学生进行观察、争议、思索,从而张扬个性,乐于表达,写出富有个性化的习作。

(一)在校内活动中引导

学校、班级中经常开展各种各样的活动,教师也会让学生在活动之后写写日记。可是学生写出来的日记却以“流水账”为多,效果欠理想。难道说学生参加的活动是同样的,写出的作文也必然是同样的吗?当然不是,教师若能细心引导,活动日记也可以写得千变万化、有声有色。因为,就同一件事来说,不同的人会产生不同的感受。

有一次,学校组织学生搞大扫除。在活动过程中,笔者抓住契机,在三三两两的学生之间巡回,有意识地对不同的学生进行不同的引导摘要:“你觉得现在我们大扫除的情形像什么?”“你是班里唱歌最好的,现在唱支什么歌最合适?”“咦,你刷的地面不如小芳多呀,怎么办?”“这个活动什么地方让你觉得最开心?”再布置几个性格外向、敢说敢问的学生充当小记者,而性格内向、平时写作也一般的学生充当记录员,对平行班的同学进行了有关此活动的即兴采访。后来交上来的习作中,作文个性便丰富了,有的学生把搞大扫除比作一场攻坚战,有的把自己比作“南泥湾开荒者”,达观的学生在习作中更多地描写自己愉快的心情,争强好胜的人则为了擦的窗户不如别人的干净而耿耿于怀。平时写作一般的学生因为经历了一次采访,从他人处得到启发,也写得比较灵活。

在各种活动中,教师如能引导学生亲历体验,抓住感受中最独到之处,即使相同的事件,写出的作文必然也会各不相同。

(二)在班级交流中引导

交流的一种方式是讨论。讨论是学生在团体中发表自己的意见,同时又听取他人的意见,以促进学生对事物感悟的活动。讨论可以是口头的,也可以是书面的。通过讨论,学生思想和情感都处于活跃状态,各种不同的想法都汇集在一起,有利于学生拓宽思维,产生个性的思维火花。为了让学生畅所欲言,教师可以提供给学生两个平台,即书面平台“班级日记”和口头平台“每日回顾”。

“班级日记”是一本硬面抄,天天由值日班长记载班级或学校发生的一些事。天天放学前,老师根据“班级日记”中的记载提出一个主题,供每个小组成员参和讨论,在学生手中相互传阅,轮流发言。有话则长,无话则短,鼓励图文并茂,提倡关注别人的看法,并在“空间”里体现成员之间的思想交流。由于学生性格多样,有的学生非常希望别人知道自己的想法,有的却对畅所欲言尚存顾忌,因此,为了防止一部分学生因为性格原因而不愿参和,规定在班级日记里发表见解的学生可以署名,也可以不署名。这样的形式一方面可以作为一次练笔,更重要的是让每个学生从他人的练笔中汲取有益的东西,提高思辨能力。

“每日回顾”则是利用作业活动时间中的几分钟,让学生说说今天在自己身上或同学、老师身上发生过的事,并谈谈自己的感受和看法,听众们如有不同意见也可以讨论讨论。学生们很喜欢这样的小活动,觉得这样的小活动轻松有趣,不轻易厌倦。很多学生说,自己天天都盼望着这个时间的来到,急切地想听听同学的故事。每次放学,学生们都是边讨论边离开教室的,他们的日记里也少了很多无意义的流水账,取而代之的是对人对事的反思和创见。

(三)在师生谈话中引导

这里的谈话,主要是指师和生之间的谈话。教师有丰富的人生经历,学生有无拘无束的灵感,一对一的谈话,能在朋友般的气氛中挖掘出学生内心深处最富个性的想法,从而引导学生记录成文,同时又防止了教师因沟通不到位而轻易否定学生刚刚产生的想法和感受。

有一次在春游途中看到了一头带着牛犊的老水牛,班上一个女孩子兴奋地指给大家看。笔者觉得这是一个很好的题材,因为一看到这个场景,“舔犊情深”这个词马上跳进了脑中。于是抓住这个时机问摘要:“你想到了什么?”出乎意料的是,她说摘要:“我想起了电视上经常放的斗牛。”笔者觉得有点好笑,刚想把“舔犊情深”这个词语告诉她,话到口边又咽了下去,改口问摘要:“为什么?”女孩子说摘要:“因为这是两种不同的牛,但是牛性格却不同,其实是因为它们有不同性格的主人。”笔者暗暗惊奇于学生的想法,连忙点头赞同,继续顺着学生的想法问摘要:“你以前跟牛打过交道吗?你最喜欢哪一种牛?”过了几天,这个女孩交上来一篇习作,她先写斗牛摘要:“那是一种威风凛凛、让人敬畏的牛——斗牛。它们和它们的主人——斗牛士一样,一生都是在观众们的喝彩中度过的。它们性格暴烈,眼神锐利。”又将旅途中看到的老水牛和牛犊写得活灵活现摘要:“到了河边,母牛低下头,先用舌头微微触碰一下水面,再用肚皮试一试水温,然后才慢吞吞地趟进水里。急性子的小牛则不等母牛,嘴里还嚼着草呢,就躺进水里舒舒适服地享受开了。那头母牛用一种暖和的眼神看着小牛犊,又看着四周的景致。”还回忆了自己小时候坐在牛背上的经历摘要:“不知害怕的我总爱去逗逗大公牛,扯扯牛尾巴,抱抱牛后腿,它也不恼。外公见我如此喜欢它,就将我一把抱起放在牛背上。而那头被我骑在胯下的,不知比我大多少倍的大公牛,眼睛里仍是温顺的,和气的……”结尾是这样写的摘要:“其实,正确地说来,牛的一生都把握在人的手里,水牛的平淡一生也好,斗牛的威风一生也好,看的都是它们主人的心。总觉得,我更爱眼前这种不会要求什么、全心全意地做着份内事的水牛。”这篇文章是那次对话的结晶,回想起来假如缺少了那次对话,这篇作文诞生的可能性就小了,就算写出来了,可能也不会融入作者的那么多思索。

(四)在媒体观看中引导

曾听到多少家长、多少老师视各种媒体为抢夺学生学习时间的最大敌人。然而我们生活在信息化的现代社会,若是一味“两耳不闻窗外事,埋头只读圣贤书”,那无异于闭目塞听,制造新一代的“书呆子”。仔细想来,电视、报纸使我们的眼界越来越广,坐在家中可以很轻松地游览祖国的山山水水,了解世界上的大小事件,解读神秘的科学现象,探索奇趣的野生乐园。对于学生来说,这源源不断的知识会在他们脑海里引发多少联想和幻想?他们不能亲历这些,但是便捷的媒体则是学生了解世界的良好途径。每周,笔者都会把电视节目报拿到学校中,和学生们一起讨论本周值得一看的电视节目,如《狂野周末》《为您服务》《发现》以及各地方新闻等,布置学生观看。结合看电影和电视,我指导学生写观后感,评论电影(或电视)中的人物,是培养学生独特感悟的好方法。结合看报和杂志,指导学生做读书笔记,摘录好词好句的数量不是最重要的,主要目的是让孩子们思索对自己有非凡启发或感悟的地方并写下来,有话则长,无话则短。有的同学可能因一个词而写下长长一段话,也有对一段话发表自己的评论,还有的同学看了文章后,写下了一篇读后感。渐渐地,学生都敢于表白自己独特的见解,班里形成了“百家争鸣”的氛围。不同的情感,从笔端汩汩流泻。作文的天地,宽了;稚嫩的心灵,细了。

(五)在事件反思中引导

学生的校内外生活中,经常会发生许多偶然的事件,这类事件看起来不过是一件件小事,然而细究起来却蕴含深意。教师要在这个时候及时引导,让学生进行反思,即透过表面现象深入到事物的实质或背后。经过反思,学生的作文不再停留于运用好词好句描写见闻这一层次,更加入了自己的思索,文章的层次得到了提升,鲜明的个性在字里行间得到充分的张扬。

记得有一次,有一对不知名的鸟儿在教学楼的树丛里做窝产蛋。雏鸟孵出后,学生们很是喜欢,于是一会儿去看看,一会儿又去摸摸,一会儿又有人为它们做了个遮雨的顶棚,老师们多次阻止也无济于事。最终有一天,雏鸟死了。笔者发现了这件事,就和学生一起讨论雏鸟死亡的原因,并让学生说说人类到底应该怎么和动物相处。当学生发现雏鸟的死亡竟然源于他们过度关心,他们从心里感到非常后悔,同时也明白了什么样的行为才算是真正爱动物的行为。他们的习作中写下的不仅是一件事情,更是一串串思索。如《距离营造美》摘要:“我总以为和小鸟玩玩会让鸟儿更快乐,可是我们的好意却害死了小鸟。我看着那只空空的鸟窝,心里很不是滋味。老师说,我们和野生动物相处,应该‘小心翼翼’地和它们保持距离。我想老师说得很对,小鸟是野生的,它们有它们的生活和世界,要是我们不打搅它们的安宁,可能它们已经长出了羽毛,学会了翱翔。”

可见,在这样的习作中,学生在反思。他们眼光已不仅仅停留在“雏鸟死了”的现象上,而是深入到了实质中,写出的作文,深度自然不可同日而语。

(六)在多元评价中引导

在评价中对学生的见解持肯定态度,引导其继续对事物进行探究和思索,这是一种赞同型评价。学生究竟是未成年人,当思想情感产生偏差反映在习作中时,教师可采用一种“商榷型”评价,用商量的语气来进行引导,这样既不会落入说教的旧窠,又用巧妙的语言引导学生换位思索,由此产生新的写作思路。对于学生在习作中记录的趣事,教师可以在评语中和学生聊天,通过“聊天型评价”这种方式来使学生发现表达独特情感的乐趣。

学生小青平时作文一般,有一次她在周记里写了她新养的两只小猫,这篇日记她写得很是非凡,把小猫当作孩子来写,喜爱之情跃然纸上。于是笔者在评语中也谈起了自己小时候养猫的经历,写得比她还多,同时又表扬了她善于观察和联想。日记发下去后,笔者留意到她津津有味地读着那些评语,笑脸不时地浮现在她脸上。后来,她更是留意观察这两只小猫,记录下不少小猫在生活中可爱可亲之处。当她的这些日记在校红领巾广播站播出后,她对作文的喜好一下子被激发出来,作文水平也有了很大进步。

在这样的评价中,教师的身份不再是高高在上的评判者,而是放低姿态,作为一名参和者加入学生的讨论,不再对句法和用词过度挑剔,不再板起脸来对学生进行说教,不再把自己的意志强加给学生,而是对学生的各种见解采取包容的态度。

(七)在作品展示中引导

在班级的后墙上,笔者开辟了一块习作园地,名为“七彩文苑”,在这片园地中,经常展示一些学生颇具灵感的习作和片断。在这里,同样的写作材料却能展示出不同的思想,颇有点“百家争鸣”意味。当新的习作张贴出来时,很多学生会驻足观看,笔者就趁势对这些作文进行点评。

如前面提过的《牛》的习作,在没有张贴之前,故做神秘地对学生说摘要:“今天我在张贴新习作之前先要让同学说说,假如你看到一头老水牛带着一头小牛犊,你会想到些什么?”当学生纷纷说起亲情、母爱时,我说摘要:“是的,我也和大家一样,当看到这一情景,脑中想的也是这些,这些都是没错的,写出来,都可以很出色。然而,有一位同学,她却联想到了性格暴烈的斗牛,这是怎么回事呢?同学们看了这篇习作就明白了,对同样的一件事物,她是站在什么样的角度去思索的,我们平时应该怎么看待事物。”习作展示后,学生们都说摘要:“原来作文可以是这样的,同样的见闻不一定要写同样的东西。我们以后也应该多想想那些看来的、听来的东西。”

作文个性化写作的途径是多种多样的,然而只有教师把学生个性的“初芽”当作珍宝一样地呵护时,个性化写作才有可能成为学生的自觉意识。通过实践,学生的作文呈现出“百家争鸣”的喜人场面,写作能力大大地提高了,有多篇习作在报刊中发表,并在几次征文和现场作文比赛中获得不少奖项,这真是“一枝独放不是春,百花齐放春满园”。

参考文献摘要:

[1教育部.语文课程标准[S.北京摘要:北京师范大学出版社,2002.

[2维果茨基.思维和语言[M.杭州摘要:浙江教育出版社,1997.

[3刘云生.放飞我们的心灵[J.中国小学语文教学论坛,2005,(6).

[4张田若.教小学生作文可以向美术老师学习[J.小学语文教师,2007,(4).

新课标倡导学生作文的个性化。引导是小学生个性化习作的催化剂,,有效的引导可以促发学生个性化习作,教师可以在校内活动中引导、在班级交流中引导、在师生谈话中引导、在媒体观看中引导、在事件反思中引导、在多元评价中引导、在作品展示中引导。

新课标指出摘要:“为学生自主写作提供有利条件和广阔空间,减少对学生写作的束缚,鼓励自由表达和有创意的表达。提倡学生自主拟题,少写命题作文”,使学生懂得“写作是为了自我表达和和人交流”,并“珍视个人的独特感受”。新课标对写作的“评价建议”中指出摘要:“应重视对写作过程、方法、情感和态度的评价,是否有写作的喜好和良好的习惯,是否表达了真情实感,对有创意的表达应予鼓励。”这些要求的主要精神,就是倡导学生作文的个性化。根据新课标精神,我们要打破传统的作文教学模式,开放课堂教学内容,提倡课外练笔,让生活走进作文,让作文走进生活。教师可从校内活动、班级交流、师生谈话、媒体观看、事件反思、多元评价、作品展示中引导学生进行观察、争议、思索,从而张扬个性,乐于表达,写出富有个性化的习作。

(一)在校内活动中引导

学校、班级中经常开展各种各样的活动,教师也会让学生在活动之后写写日记。可是学生写出来的日记却以“流水账”为多,效果欠理想。难道说学生参加的活动是同样的,写出的作文也必然是同样的吗?当然不是,教师若能细心引导,活动日记也可以写得千变万化、有声有色。因为,就同一件事来说,不同的人会产生不同的感受。

有一次,学校组织学生搞大扫除。在活动过程中,笔者抓住契机,在三三两两的学生之间巡回,有意识地对不同的学生进行不同的引导摘要:“你觉得现在我们大扫除的情形像什么?”“你是班里唱歌最好的,现在唱支什么歌最合适?”“咦,你刷的地面不如小芳多呀,怎么办?”“这个活动什么地方让你觉得最开心?”再布置几个性格外向、敢说敢问的学生充当小记者,而性格内向、平时写作也一般的学生充当记录员,对平行班的同学进行了有关此活动的即兴采访。后来交上来的习作中,作文个性便丰富了,有的学生把搞大扫除比作一场攻坚战,有的把自己比作“南泥湾开荒者”,达观的学生在习作中更多地描写自己愉快的心情,争强好胜的人则为了擦的窗户不如别人的干净而耿耿于怀。平时写作一般的学生因为经历了一次采访,从他人处得到启发,也写得比较灵活。

在各种活动中,教师如能引导学生亲历体验,抓住感受中最独到之处,即使相同的事件,写出的作文必然也会各不相同。

(二)在班级交流中引导

催化剂范文篇5

[关键词]风险投资风险投资后管理内容增值服务和监控

风险投资后管理包括了除现金投入外的其他一系列投入(Fried和Hisrich,1995),Tyebjee和Bruno(1984)将风险投资后管理的内容归纳为4个方面:帮助招募关键员工、帮助制定战略计划、帮助筹集追加资本、帮助组织兼并收购或公开上市等。随着风险投资实践的发展,国内外一些学者在Tyebjee和Bruno的基础上对风险投资后管理的内容作了进一步的研究。

一、国外研究综述

Gorman和Sahlman(1989)发现风险投资家在投资后参与管理活动上大约花费60%的时间,他们根据对风险投资家的调查得出如下的结论:风险投资除了向被投资企业提供资金外,还提供建立投资者网络、评估和制定经营战略、为管理团队物色合适人选等三方面的支持。

Barney等(1996)发现风险投资家为被投资企业提供的帮助可以分为两类:一类是经营管理建议,包括提供有效的财务建议,提供合理化的经营建议、提供合理化的管理建议等;另一类是运营帮助,包括为被投资企业介绍客户、介绍供应商、帮助被投资企业招募员工等。

Dotzler(2001)发现风险投资家的管理参与活动包括融资顾问、战略建议、招募高层管理者、充当CEO智囊团、组织和激励体系建设、管理层业绩反馈、选择其他专业服务(如法律等)、与其他公司的战略联系、营销、工程技术咨询等多个方面。Knockaert等(2005)将风险投资后管理活动分为监控活动和增值活动两部分,其中,风险投资家的监控活动包括监控财务状况、监控市场营销状况、监控股权变动、监控CEO的报酬、监控追加借款等;增值活动包括制定战略计划、充当管理团队的参谋、招募CEO或CFO等高层管理人员、招募新员工、联系潜在客户、组建有效运行的董事会、运作管理等。

二、国内研究综述

王益和许小松(1999)将“Post-investmentActivities”译为“投资后管理”,并指出其内容包括“设立控制机制以保护投资、为企业提供管理咨询、募集追加资本、将企业带入资本市场运作以顺利实现必要的兼并收购和发行上市”。项喜章(2002)指出风险投资后管理的主要内容可分为两部分即增值服务和监控,增值服务是风险投资家为被投资企业所提供的一系列咨询服务,具体内容包括:帮助寻找和选择重要管理人员、参与制定战略与经营计划、帮助企业筹集后续资金、帮助寻找重要的客户和供应商、帮助聘请外部专家、帮助实现并购或公开上市。

付玉秀(2003)通过调查发现风险投资企业对被投资企业监控主要包括对重大决策的制定、重大人事变动、资金运用、财务状况、市场营销等活动的监控,对经营计划的制订的监控强度一般,而对被投资企业的融资行为和日常经营监控较弱;风险投资家向被投资企业提供的增值服务主要是参与制定战略与经营计划、辅助财会管理、帮助企业筹集后续资金、帮助聘请外部专家、提供管理技术/经验知识、传授营销技能开拓市场、帮助寻找重要的客户和供应商。公务员之家

三、国内外研究述评

综合国内外有关风险投资后管理内容的研究,本文归纳出风险投资后管理的主要内容包括增值服务和监控两部分,并认为,增值服务主要包括风险投资企业为被投资企业提供的战略上的支持、关系网络资源上的支持、人力资源管理上的支持、后续融资上的支持、生产运作上的支持等几方面(Liu、Cui和Fan,2006;Liu和Fan,2006);风险投资企业对被投资企业的监控主要包括对被投资企业重大决策、经营计划的制定、重大人事变动、市场营销状况、财务状况、资金运用、运营绩效等的监控。

参考文献:

[1]FriedVH.andHisrichRD.Theventurecapitalist:Arelationshipinvestor[J].CaliforniaManagementReview,1995,37(2):101~113

[2]TyebjeeT.T.,BrunoA.V.Amodelofventurecapitalistinvestmentactivity[J].ManagementScience,1984,30(9):1051~1066

[3]GormanM.andSahlmanW.A.Whatdoventurecapitalistsdo?[J].BusinessVenturing,1989,4:231~248

[4]BarneyJ.B.,BusenitzL.W.,FietJ.O.,etal.Newventureteams''''assessmentoflearningassistancefromventurecapitalfirms[J].JournalofBusinessVenturing,1996,11(4):257~272

[5]DotzlerF.Whatdoventurecapitalistsreallydo,andwheredotheylearntodoit[J].TheJournalofPrivateEquity,2001,winter:6~12

[6]KnockaertM.,LockettA.,ClarysseB.,etal.Dohumancapitalandfundcharacteristicsdrivefollow-upbehavourofearlystagehightech.VCS[A].VlerickLeuvenGentManagementSchoolWorkingpaper,2005,20

催化剂范文篇6

炭纤维是一种主要以sp2杂化形成的一维结构炭材料。根据其合成方式和直径不同可分为:有机前躯体炭纤维(PAN基、粘胶丝基、沥青基炭纤维)、气相生长炭纤维(Vapor-growncarbonfiber简称VGCF)、气相生长纳米炭纤维(Vapor-growncarbonnanofiber简称VGCNF)、炭纳米管(carbonnanotube简称CNT),如图1所示。自从1991年Iijima[1]发现纳米炭管以来,由于其特殊的物理性能和力学性能而引起科学家们的广泛兴趣,同时也促进了气相生长炭纤维在纳米尺度上即气相生长纳米炭纤维的研究。

气相生长纳米炭纤维一般以过渡族金属Fe、Co、Ni及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873K~1473K下生成的一种纳米尺度炭纤维。它与一般气相生长炭纤维(VGCF)所不同的是,纳米炭纤维除了具有普通VGCF的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。Tibbetts[2]在研究了VGCF的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。

Endo[3]用透射电镜观察到气相生长法热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。

另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。

2气相生长纳米炭纤维的制备方法与影响因素

刘华的实验结果表明VGCF的强度随着直径的减小而急剧增大[4]。Tibbetts[2]在研究VGCF的物理特性时,也预测小直径的VGCF要比大直径的VGCF强度要大得多。由于VGCF的直径主要是由催化剂颗粒的大小来决定的[5],因此大批量生产VGCNF的关键问题是催化剂颗粒的细化。

目前,VGCNF的制备主要有三种方法:基体法[6,7]、喷淋法或者流动催化剂法[8]和改进的流动催化剂法[9]。所谓的基体法是将石墨或陶瓷作基体,施以纳米级催化剂颗粒做“种籽”,高温下通入碳氢气体化合物,在催化剂的作用下碳氢气体分解并在催化剂颗粒的一侧析出纳米级纤维状炭。例如,Rodriguez[10]在基体上喷洒超细催化剂粉末,即用所谓的基体法高温降解碳氢化合物气体制备出50nm~80nm的VGCNF。这种基体催化剂方法可以制备出高质量的VGCNF。但是,超细催化剂颗粒的制备非常困难,在基体上喷洒不均匀,而且纳米炭纤维只在有催化剂的基体上生长,因而产量不高,不可能工业化生产。Tibbetts[8]用喷淋法或者流动催化剂法在一个垂直的炉子里成功地制备出了50nm~100nm的VGCNF。虽然这种方法提供了大量制备VGCNF的可能性,但是由于催化剂与碳氢气体化合物的比例难以优化,喷洒过程中铁颗粒分布不均匀,且喷洒的催化剂颗粒很难以纳米级形式存在,因此在制备纤维的过程中纳米级纤维所占比例少,而且总是伴有大量的炭黑生成。

为了解决以上两种方法的不足,充分利用基体法和喷淋法各自的优点,本研究小组用改进的气相流动催化剂法,在水平反应炉里,生长出10nm~100nm的VGCNF[9]。改进的流动催化剂法的主要特征是,催化剂并不是附着在基体上,也不象制备VGCNF所用的喷淋法或者流动催化剂法,将催化剂前驱体溶解在碳源溶液中,而是以气体形式同碳氢气体一起引入反应室,经过不同温区完成催化剂和碳氢气体的分解,分解的催化剂原子逐渐聚集成纳米级颗粒,因此分解的碳原子在催化剂上将会以纳米级形式析出纤维状炭。由于从有机化合物分解出的催化剂颗粒可以分布在三维空间内,因此其单位时间内产量可以很大,可连续生产,有利于工业化生产。

影响气相生长炭纤维的因素很多,研究也较充分,如氢气的纯度、碳氢气体化合物的分压、氢气和碳氢气体化合物的比例、反应温度、催化剂(颗粒大小、形状、结晶构造)的选取、气体的流量、微量元素的添加(如S)等都会影响到VGCF的生长。由于VGCNF和VGCF一样也是双层结构,即由两种不同结构的炭组成,内部是结晶程度比较好、具有理想石墨结构、中间空心的初期纤维;外层是结晶程度比较差、具有乱层结构的热解炭层[9]。因此,影响气相生长炭纤维的因素,也将影响着VGCNF的生长。

(1)氢气除了作载气外,还用以将Fe、Co、Ni等的金属化合物还原成为起催化作用的Fe、Co、Ni等单质。另外,还具有下列作用:(a)H2在金属表面上的化学吸附可以阻止石墨炭层的凝聚反应;(b)H2在金属表面上的化学吸附也可以弱化金属与金属间的结合力,使金属颗粒的大小适合于生长炭纤维[10];(c)H2的存在也可以使催化剂颗粒重构,以形成可以大量吸附碳氢化合物的表面[11]。

(2)其它元素如硫的加入对VGCF的生长也产生很大影响,Kim[12]在研究硫的吸附与碳在Co做催化剂析出时的相关作用时发现:少量的硫可以促进金属表面的重构,防止催化剂失活。硫量过大,则会生成过多的硫化物,抑制催化剂的催化活性。另外,少量的硫也可以促进催化剂颗粒分裂,这对于生长高质量的纳米级VGCF具有非常重要的作用。

(3)为了高效率生长VGCNF,催化剂一直是研究的热点。Baker发现在铁磁性金属中添加第二种金属可以改变炭纤维的生长特性,产生非常高的有序结构[13],生长多种形态的炭纤维。而且可以减少催化剂颗粒直径,VGCF的产量和生长速率也有所提高[14]。人们也发现往过渡族金属(Fe、Co、Ni)中引入第二种金属同样也能影响VGCNF的形貌和特性[6,7].Chambers等在研究往Co里加入Cu对VGCNF的结构和性能的影响后,发现所制备的VGCNF具有非常高的结晶性[7]。

另外,Rodriguez[6]用纯铁作催化剂制备出石墨片层平行于纤维轴向的ribbon型的纳米炭纤维;用Fe-Cu(7:3)作催化剂制备出石墨片层与纤维轴向呈一定角度的herringbone型的纳米炭纤维;用硅基铁作催化剂制备出石墨片层垂直于纤维轴向的纳米炭纤维。所有这些现象都说明了催化剂颗粒的特性影响着纳米炭纤维的生长。

总之,氢气的分压、催化剂的选取、碳氢化合物的流量、微量元素的加入都会影响炭纤维的生长,对于VGCNF的制备,所有这些因素都必须加以考虑。

3气相生长纳米炭纤维的生长机理

一般认为,VGCNF与VGCF一样是由两种不同结构的炭组成的,内层是结晶比较好的石墨片层结构(即纳米炭管),外层是一层很薄的热解炭,中间是中空管。这些结构特性决定了VGCNF两个不同的生长历程。即先是在催化剂表面气相生长纳米纤维,然后是在其上面热解炭沉积过程。其中,在催化剂表面气相生长纳米炭纤维可以分为以下几个过程:

(1)碳氢气体化合物在催化剂表面的吸附;

(2)吸附的碳氢化合物催化热解并析出碳;

(3)碳在催化剂颗粒中的扩散;

(4)碳在催化剂颗粒另一侧的析出,纤维生长;

(5)催化剂颗粒失活,纤维停止生长。

目前,世界各国的科学家对VGCNF的生长机理还没有一个统一的认识,在许多方面还有争议。

例如:碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力;真正起催化作用的是金属单质还是金属碳化物至今也是一个争论的焦点。

Oberlin[5]用Fe-苯-H2体系生成了VGCF,并对催化剂颗粒的电子衍射进行分析,发现有渗碳体Fe3C的存在。Audier[15]用选区电子衍射技术也发现了Fe5C2和Fe3C的存在。Baker[16]在研究了各种Fe的氧化物和碳化物的反应活性之后不同意渗碳体有催化活性的观点。当用很高浓度的渗碳体做催化剂时,没有发现炭纤维生长。

Yang在研究H2对碳降解的作用时发现,Fe3C表面对苯的热解无活性,通H2后恢复了金属性,则生长炭纤维的活性也恢复了。尽管金属碳化物有催化活性的说法与实验结果不符合,但碳化物的表面作用不可忽视。

另外,碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力也是一个争论的焦点。最初,Baker[16]假定碳在催化剂颗粒中的扩散是靠温度梯度为推动力的。碳氢气体化合物在催化剂颗粒一侧放热分解,而在另一侧吸热析出。这样,就在催化剂颗粒中存在一个温度差,从碳氢气体化合物分解出的碳原子在这种温度梯度的作用下从催化剂颗粒的另一侧析出,生长炭纤维。

而Holstein[18]则认为碳在催化剂颗粒中的扩散是等温扩散,是靠浓度梯度为推动力的。Rostrup-Nielsen和Trimm[19]也认为碳在催化剂颗粒中的扩散是靠浓度梯度为推动力的。Holstein和Boudart[20]通过计算得出当金属催化剂表面发生放热反应的时候,在气体/金属界面和金属/纤维界面所产生的温度差小于0.1K可以忽略。另外,Rostrup-Nielsen[19,21]也发现在催化剂颗粒表面发生吸热反应的纤维生长。因此,他们认为碳在催化剂颗粒的扩散是靠浓度梯度为推动力而不是靠温度梯度为推动力的。不论靠什么作推动力,炭纤维的生长速度主要由碳原子在催化剂颗粒中的扩散速率决定,则是不容置疑的[18]。当催化剂表面被热解碳完全覆盖而失去催化活性时,纤维就停止生长。

对于碳氢气体化合物催化热解析出碳和催化剂失活的问题,许多科学家研究了金属与气体的界面反应。碳作为碳氢气体热解的最终产物有三种聚集状态:颗粒、片状及纤维状。随着反应条件不同,三种形态所占的比例将有所变化。当碳氢气体分子与催化剂颗粒相撞时,碳-氢、碳-碳键被削弱,再与气氛中的氢作用,各原子将重新组合,有人认为这时将产生一种活性很高的过渡态碳原子[22],它继续变化的方向有以下几个:

(1)再与吸附在铁表面的氢和碳氢化合物结合;

(2)与同类碳原子相连形成表面包覆碳;

(3)进行催化剂体内扩散;

(4)析出、连续长出炭纤维;

其中(2)与催化剂失活有关。

尽管上述生长过程,为典型的晶须状纤维提供了一个合理的解释,但对于分叉状、多方向状、螺旋状VGCF却不能自圆其说。对于VGCF的分叉现象,可能是由于碳以固态形式从催化剂中析出,这会对催化剂颗粒产生排挤力,这种排挤作用可能会使催化剂颗粒分裂为两个或更多的小颗粒,这些小颗粒对纤维的生长仍然起着催化作用,结果导致了VGCF的分叉。

对于双向状、多方向状、螺旋状VGCF的生长机理,人们还没有统一和明确的认识。目前也仅仅是一些推测,认为氢气和第二种金属的加入,会使催化剂颗粒重构,形成适于生长VGCF的多个晶面[15],然后是碳原子在颗粒中的扩散,在晶面上析出,生长VGCF。气相生长炭纤维尽管有大约二十年的研究和发展历史,但由于其生长过程的复杂性,人们对其生长机理的认识还远未完成,随着实验技术的发展,认识将更加深入。

4气相生长纳米炭纤维的性能及应用前景

作为一维结构的VGCNF具有许多优越的性能,因此它的潜在应用十分广阔。

由于VGCNF的缺陷数量很少、结构致密,所以VGCNF具有高强度、高比模量的力学性能,其强度比普通VGCF大。并且VGCNF具有直径小、长径比大的特点,因此可以用于高级复合材料的增强体,也可以用于航空、航天、环境、工民建材料及日常生活用品及其它高科技领域。

VGCNF表面具有分子级细孔,内部也具有细孔,比表面积大,气体可以在VGCNF中凝聚,因此可以吸附大量气体,是极具潜力的储氢材料,也可用作高效吸附剂、催化剂和催化剂载体。

另外,纳米炭纤维还具有较高的导电性,可望用于锂离子二次电池阳极材料、双电层电容器电极等。

直径为10nm~20nm的炭纤维在结构上和纳米管的结构相似,使气相生长法代替电弧法制备高纯度的纳米炭管成为可能。总之,高质量的纳米级VGCF的大量制备、充分利用其特性,开发新的应用领域,将是人们为之努力的方向。

5改进流动催化剂法制备的VGCNF

很久以前,人们就发现碳氢气体化合物通过过渡族金属表面催化降解可以析出微米级炭纤维,但直到九十年代才发现此种技术也可用来制备纳米炭纤维和纳米炭管。

本研究小组根据纤维直径大小主要由催化剂颗粒大小决定的这一事实,我们用易挥发的过渡族金属有机化合物析出的Fe、Co、Ni原子可以凝聚成纳米级催化剂颗粒的特点,采用改进的流动催化剂法制备出纯净的纳米炭纤维。如以苯为碳源,以二茂铁为催化剂前驱体,以氢气为载气,在1373K~1473K下成功地制备出直径在5nm~500nm内可控的纳米炭纤维。并且经过一系列的实验研究,发现了一种VGCNF的生长促进剂-含硫化合物,它一方面可以有效地阻止无定形碳、炭黑等杂质的生成,另一方面可以大大增加VGCNF的产量和收率。实验装置如图2。得到的VGCNF外观上有两种形式。一种为薄膜状“织物”,非常薄;一种为块状,有弹性,得到的产物如图3(a),3(b)所示。

实际上这些束状纤维是由许多单壁或者多壁纳米炭管组成的[23]。图5(a)和5(b)是块状产物的SEM和TEM形貌。从SEM图中可以看出块状产物也非常纯净。纤维直径分布比较均一,而且大部分纤维可以观察到中空管的存在,纤维的表面也非常光滑。

用改进的流动催化剂法制备VGCNF不仅设备简单,而且能半连续或连续生产,制备的VGCNF具有直径分布比较均匀、产品纯度高等优点,目前正在深入研究该方法的放大技术。

6小结

VGCNF是一种十分独特的纳米炭材料,具有许多与众不同的特性,如非常小的尺寸、独特的电学性能、特别优良的力学性能及吸附与催化特性。VGCNF具有十分广阔的应用前景,对其进行广泛而深入的基础和应用研究,具有十分重要的科学意义。

参考文献

[1]IijimaS.Helicalmicrotubulesofgraphiticcarbon[J].Nature,1991,354(6348):56

[2]TibbettsGG,DollGL,GorkiewiczDW,etal.Physicalpropertiesofvapor-growncarbonfibers[J].Carbon,1993,31(7):1039

[3]EndoM,TakeuchiK,Koborik,etal.Pyrolyticcarbonnanotubesfromvapor-growncarbonfibers[J].Carbon,1995,33(7):873

[4]刘华.气相生长炭纤维的结构及生长机理的研究[D].硕士毕业论文,沈阳:中科院金属研究所,1985

[5]OberlinA,EndoM,koyamaT.Filamentousgrowthofcarbonthroughbenzenedecomposition[J].JCrystGrowth,1976,32(2):335

[6]RodriguezNM,ChambersA,BakerRTK.CatalyticEngineeringofcarbonnanostructures[J].Langmuir,1995,11:3862

[7]ChambersA,RodriguezNM,BakerRTK.Influenceofcopperonthestructuralcharacteristicsofcarbonnanofibersproducedfromthecobalt-catalyzeddecompositionofethylene[J].JMaterRes,1996,11(2):430

[8]TibbettsGG,GorkiewiczDW.Anewreactorforgrowingcarbonfibersfromliquid-andvapor-phasehydrocarbons[J].Carbon,1993,31(5):809

[9]Yue-YingFan,FengLi,Hui-MingCheng,etal.Preparation,morphologyandmicrostructureofdiameter-controllablevapor-growncarbonnanofibers[J].JMaterRes,1998,113(8):2342

[10]RodriguezNM.Areviewofcatalyticallygrowncarbonnanofibers[J].JMaterRes,1993,8(12):3233

[11]KrishnankuttyN,RodriguezNM,BakerRTK.Effectofcopperonthedecompositionofethyleneoveranironcatalyst[J].JCatal,1996,158(1):217转

[12]KimMS,RodriguezNM,BakerRTK.Theinterplaybetweensulfuradsorptionandcarbondepositiononcobaltcatalysts[J].JCatal,1993,143(2):449

催化剂范文篇7

关键词:催化加氢技术;精细化工;催化剂

1加氢催化剂

在还原反应中,加氢催化剂是其重要的组成部分,现阶段,我国所开展的研究工作中主要使用的是Pd/Pct/骨架镍这类催化剂。1.1镍系催化剂。镍系催化剂主要分为两种,其分别是硅藻土以及二氧化硅。其相关的化工人员选用沉淀的方式,把硝酸镍进行沉淀的处理,将其放置到载体上面,在实际的使用过程中,要对其进行利用氢催化的形式,确保其催化剂在400℃左右,且其上下浮动不超过50℃时,不会产生不良的自烧等反应。骨架镍是一种会经过强碱腐蚀处理的物质,其会以一个多孔海绵的状态呈现,所以在实际的制备过程中,其应当在钛中添加一些较为稳量的元素,这样会改良其各类合金的性能,在实际的催化剂应用过程中,无论是酸碱度还是腐蚀度都会在一定程度上影响到其催化剂的性能。镍系的催化剂具有极强的经济性,所以在实际的使用中比较便捷,同时其应用的空间也比较大。1.2钯系催化剂。钯系催化剂的制作方式比较简单,其先要进行氯化钯的溶解处理,让其物质更好地溶解到盐酸溶液当中,之后再添加一定量的活性炭,让钯可以充分的作用,在浸染之后,对活性炭进行干燥的处理,还原其氢气,控制好其产生还原反应时的温度,这种制备方式主要被应用于大部分的催化剂的制作过程,其制作过程要控制好其活性物质组成的迁移频率。1.3铂系催化剂。铂系催化剂的制备方式主要把氯铂酸放置到水中,并在水中添加过量的硝酸钠,对其进行烘干的处理,将其烘干的温度调整到35℃,让其可以快速地熔融以及发生分解的反应,进而产生出二氧化氮气体,同时还会带有褐色沉淀物质的现象,待其产生了该化学反应之后,要再次调整其温度,让其温度上升到500℃,继而分解之后产生二氧化铂加氢催化剂。1.4活性炭/载体物质活性炭/载体物质具有极为高效的催化能力,所以其会对活性炭自身性能的要求会比较高,活性炭这类物质和其他的机械类杂质等不能混合在一起,其所选择的材料大部分都是果核类的物质。1.5铜系催化剂。铜系催化剂的面积比较大,另外其物质自身的活性也会比较高,会将其用于烯烃的加氢反应,如果其催化剂在实际的使用中为单独的方式,那么其就极容易产生烧结的现象,一旦产生了烧结的现象,就给其制备过程带来困扰,想要避免产生该类问题,就需要使用载体进行处理。

2催化加氢技术的运用

2.1氨基酚。氨基苯的制作主要是将硝基苯放置到稀硫酸当中,让其通过介质的效用产生重排反应,进而得到氨基酚,其所选用的催化剂主要是5%Pt/C。需要对贵金属与硝基苯的质量比进行调控,让其比值始终为(0.0005~0.0050)∶1。控制好其使用的温度,让其温度始终保持在80℃左右。压力控制在11~12MPa,最后利用过氧化氢处理,10%的稀硫酸为介质进行反应。2.2催化加氢制备。2,2-二氯氢化偶氮苯2-二氯化偶氮苯采用0.8%Pd/C的催化剂,以甲苯为溶剂,在反应过程中加入表面活性剂和助催化剂,将邻硝基氯化苯在0.6MPa、55~75℃下,加氢3h。以上做法是宋东明化学家提出的方法,而美国申请专利最早使用方法是在碱性条件下邻硝基氯化苯液相加氢制备2,2-二氯氢化偶氮苯,为固-液-气三相反应。主催化剂为0.5%~1%Pd/C或Pt/C,贵金属与硝基物重量比为(0.0002~0.0010)∶1。2.3催化加氢制备邻氯苯胺。邻硝基苯加氢还原生成邻氯苯胺,主催化剂为0.8%Pd/C,贵金属与硝基氯苯质量比为(0.0001~0.0005)∶1。助催化剂为亚磷酸钠,在甲苯为溶剂,温度控制在60~80℃,氢气压力为0.6~2MPa。制得的纯度可以达到99.7%,收率达到92%。与传统相比,大大减少了三废的生产。

3结语

催化加氢技术和其他化工技术有着很大的差异性,其技术所制备出的产品大多是产物和水,不会产生较多的废弃物质,具有极强的环保节能效用。随着我国可持续发展战略思想的推广,绿色化学已经成为了现阶段我国城市发展的风向标,大部分的科学研究项目都成为了其所要考虑的一部分内容,催化加氢技术应用下所制备出的产品收率比较高,且其实际的质量也比较好,整体所需要的化学反应条件极为温和,所以其技术的应用污染性低下,可操作性比较强,应当不断地改进该技术,完善其生产过程。

参考文献

催化剂范文篇8

气相生长纳米炭纤维一般以过渡族金属Fe、Co、Ni及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873K~1473K下生成的一种纳米尺度炭纤维。它与一般气相生长炭纤维(VGCF)所不同的是,纳米炭纤维除了具有普通VGCF的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。Tibbetts[2]在研究了VGCF的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。

Endo[3]用透射电镜观察到气相生长法热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。

另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。

2气相生长纳米炭纤维的制备方法与影响因素

刘华的实验结果表明VGCF的强度随着直径的减小而急剧增大[4]。Tibbetts[2]在研究VGCF的物理特性时,也预测小直径的VGCF要比大直径的VGCF强度要大得多。由于VGCF的直径主要是由催化剂颗粒的大小来决定的[5],因此大批量生产VGCNF的关键问题是催化剂颗粒的细化。

目前,VGCNF的制备主要有三种方法:基体法[6,7]、喷淋法或者流动催化剂法[8]和改进的流动催化剂法[9]。所谓的基体法是将石墨或陶瓷作基体,施以纳米级催化剂颗粒做“种籽”,高温下通入碳氢气体化合物,在催化剂的作用下碳氢气体分解并在催化剂颗粒的一侧析出纳米级纤维状炭。例如,Rodriguez[10]在基体上喷洒超细催化剂粉末,即用所谓的基体法高温降解碳氢化合物气体制备出50nm~80nm的VGCNF。这种基体催化剂方法可以制备出高质量的VGCNF。但是,超细催化剂颗粒的制备非常困难,在基体上喷洒不均匀,而且纳米炭纤维只在有催化剂的基体上生长,因而产量不高,不可能工业化生产。Tibbetts[8]用喷淋法或者流动催化剂法在一个垂直的炉子里成功地制备出了50nm~100nm的VGCNF。虽然这种方法提供了大量制备VGCNF的可能性,但是由于催化剂与碳氢气体化合物的比例难以优化,喷洒过程中铁颗粒分布不均匀,且喷洒的催化剂颗粒很难以纳米级形式存在,因此在制备纤维的过程中纳米级纤维所占比例少,而且总是伴有大量的炭黑生成。

为了解决以上两种方法的不足,充分利用基体法和喷淋法各自的优点,本研究小组用改进的气相流动催化剂法,在水平反应炉里,生长出10nm~100nm的VGCNF[9]。改进的流动催化剂法的主要特征是,催化剂并不是附着在基体上,也不象制备VGCNF所用的喷淋法或者流动催化剂法,将催化剂前驱体溶解在碳源溶液中,而是以气体形式同碳氢气体一起引入反应室,经过不同温区完成催化剂和碳氢气体的分解,分解的催化剂原子逐渐聚集成纳米级颗粒,因此分解的碳原子在催化剂上将会以纳米级形式析出纤维状炭。由于从有机化合物分解出的催化剂颗粒可以分布在三维空间内,因此其单位时间内产量可以很大,可连续生产,有利于工业化生产。

影响气相生长炭纤维的因素很多,研究也较充分,如氢气的纯度、碳氢气体化合物的分压、氢气和碳氢气体化合物的比例、反应温度、催化剂(颗粒大小、形状、结晶构造)的选取、气体的流量、微量元素的添加(如S)等都会影响到VGCF的生长。由于VGCNF和VGCF一样也是双层结构,即由两种不同结构的炭组成,内部是结晶程度比较好、具有理想石墨结构、中间空心的初期纤维;外层是结晶程度比较差、具有乱层结构的热解炭层[9]。因此,影响气相生长炭纤维的因素,也将影响着VGCNF的生长。

(1)氢气除了作载气外,还用以将Fe、Co、Ni等的金属化合物还原成为起催化作用的Fe、Co、Ni等单质。另外,还具有下列作用:(a)H2在金属表面上的化学吸附可以阻止石墨炭层的凝聚反应;(b)H2在金属表面上的化学吸附也可以弱化金属与金属间的结合力,使金属颗粒的大小适合于生长炭纤维[10];(c)H2的存在也可以使催化剂颗粒重构,以形成可以大量吸附碳氢化合物的表面[11]。

(2)其它元素如硫的加入对VGCF的生长也产生很大影响,Kim[12]在研究硫的吸附与碳在Co做催化剂析出时的相关作用时发现:少量的硫可以促进金属表面的重构,防止催化剂失活。硫量过大,则会生成过多的硫化物,抑制催化剂的催化活性。另外,少量的硫也可以促进催化剂颗粒分裂,这对于生长高质量的纳米级VGCF具有非常重要的作用。

(3)为了高效率生长VGCNF,催化剂一直是研究的热点。Baker发现在铁磁性金属中添加第二种金属可以改变炭纤维的生长特性,产生非常高的有序结构[13],生长多种形态的炭纤维。而且可以减少催化剂颗粒直径,VGCF的产量和生长速率也有所提高[14]。人们也发现往过渡族金属(Fe、Co、Ni)中引入第二种金属同样也能影响VGCNF的形貌和特性[6,7].Chambers等在研究往Co里加入Cu对VGCNF的结构和性能的影响后,发现所制备的VGCNF具有非常高的结晶性[7]。

另外,Rodriguez[6]用纯铁作催化剂制备出石墨片层平行于纤维轴向的ribbon型的纳米炭纤维;用Fe-Cu(7:3)作催化剂制备出石墨片层与纤维轴向呈一定角度的herringbone型的纳米炭纤维;用硅基铁作催化剂制备出石墨片层垂直于纤维轴向的纳米炭纤维。所有这些现象都说明了催化剂颗粒的特性影响着纳米炭纤维的生长。

总之,氢气的分压、催化剂的选取、碳氢化合物的流量、微量元素的加入都会影响炭纤维的生长,对于VGCNF的制备,所有这些因素都必须加以考虑。

3气相生长纳米炭纤维的生长机理

一般认为,VGCNF与VGCF一样是由两种不同结构的炭组成的,内层是结晶比较好的石墨片层结构(即纳米炭管),外层是一层很薄的热解炭,中间是中空管。这些结构特性决定了VGCNF两个不同的生长历程。即先是在催化剂表面气相生长纳米纤维,然后是在其上面热解炭沉积过程。其中,在催化剂表面气相生长纳米炭纤维可以分为以下几个过程:

(1)碳氢气体化合物在催化剂表面的吸附;

(2)吸附的碳氢化合物催化热解并析出碳;

(3)碳在催化剂颗粒中的扩散;

(4)碳在催化剂颗粒另一侧的析出,纤维生长;

(5)催化剂颗粒失活,纤维停止生长。

目前,世界各国的科学家对VGCNF的生长机理还没有一个统一的认识,在许多方面还有争议。

例如:碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力;真正起催化作用的是金属单质还是金属碳化物至今也是一个争论的焦点。

Oberlin[5]用Fe-苯-H2体系生成了VGCF,并对催化剂颗粒的电子衍射进行分析,发现有渗碳体Fe3C的存在。Audier[15]用选区电子衍射技术也发现了Fe5C2和Fe3C的存在。Baker[16]在研究了各种Fe的氧化物和碳化物的反应活性之后不同意渗碳体有催化活性的观点。当用很高浓度的渗碳体做催化剂时,没有发现炭纤维生长。

Yang在研究H2对碳降解的作用时发现,Fe3C表面对苯的热解无活性,通H2后恢复了金属性,则生长炭纤维的活性也恢复了。尽管金属碳化物有催化活性的说法与实验结果不符合,但碳化物的表面作用不可忽视。

另外,碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力也是一个争论的焦点。最初,Baker[16]假定碳在催化剂颗粒中的扩散是靠温度梯度为推动力的。碳氢气体化合物在催化剂颗粒一侧放热分解,而在另一侧吸热析出。这样,就在催化剂颗粒中存在一个温度差,从碳氢气体化合物分解出的碳原子在这种温度梯度的作用下从催化剂颗粒的另一侧析出,生长炭纤维。

而Holstein[18]则认为碳在催化剂颗粒中的扩散是等温扩散,是靠浓度梯度为推动力的。Rostrup-Nielsen和Trimm[19]也认为碳在催化剂颗粒中的扩散是靠浓度梯度为推动力的。Holstein和Boudart[20]通过计算得出当金属催化剂表面发生放热反应的时候,在气体/金属界面和金属/纤维界面所产生的温度差小于0.1K可以忽略。另外,Rostrup-Nielsen[19,21]也发现在催化剂颗粒表面发生吸热反应的纤维生长。因此,他们认为碳在催化剂颗粒的扩散是靠浓度梯度为推动力而不是靠温度梯度为推动力的。不论靠什么作推动力,炭纤维的生长速度主要由碳原子在催化剂颗粒中的扩散速率决定,则是不容置疑的[18]。当催化剂表面被热解碳完全覆盖而失去催化活性时,纤维就停止生长。

对于碳氢气体化合物催化热解析出碳和催化剂失活的问题,许多科学家研究了金属与气体的界面反应。碳作为碳氢气体热解的最终产物有三种聚集状态:颗粒、片状及纤维状。随着反应条件不同,三种形态所占的比例将有所变化。当碳氢气体分子与催化剂颗粒相撞时,碳-氢、碳-碳键被削弱,再与气氛中的氢作用,各原子将重新组合,有人认为这时将产生一种活性很高的过渡态碳原子[22],它继续变化的方向有以下几个:

(1)再与吸附在铁表面的氢和碳氢化合物结合;

(2)与同类碳原子相连形成表面包覆碳;

(3)进行催化剂体内扩散;

(4)析出、连续长出炭纤维;

其中(2)与催化剂失活有关。

尽管上述生长过程,为典型的晶须状纤维提供了一个合理的解释,但对于分叉状、多方向状、螺旋状VGCF却不能自圆其说。对于VGCF的分叉现象,可能是由于碳以固态形式从催化剂中析出,这会对催化剂颗粒产生排挤力,这种排挤作用可能会使催化剂颗粒分裂为两个或更多的小颗粒,这些小颗粒对纤维的生长仍然起着催化作用,结果导致了VGCF的分叉。

对于双向状、多方向状、螺旋状VGCF的生长机理,人们还没有统一和明确的认识。目前也仅仅是一些推测,认为氢气和第二种金属的加入,会使催化剂颗粒重构,形成适于生长VGCF的多个晶面[15],然后是碳原子在颗粒中的扩散,在晶面上析出,生长VGCF。气相生长炭纤维尽管有大约二十年的研究和发展历史,但由于其生长过程的复杂性,人们对其生长机理的认识还远未完成,随着实验技术的发展,认识将更加深入。

4气相生长纳米炭纤维的性能及应用前景

作为一维结构的VGCNF具有许多优越的性能,因此它的潜在应用十分广阔。

由于VGCNF的缺陷数量很少、结构致密,所以VGCNF具有高强度、高比模量的力学性能,其强度比普通VGCF大。并且VGCNF具有直径小、长径比大的特点,因此可以用于高级复合材料的增强体,也可以用于航空、航天、环境、工民建材料及日常生活用品及其它高科技领域。

VGCNF表面具有分子级细孔,内部也具有细孔,比表面积大,气体可以在VGCNF中凝聚,因此可以吸附大量气体,是极具潜力的储氢材料,也可用作高效吸附剂、催化剂和催化剂载体。

另外,纳米炭纤维还具有较高的导电性,可望用于锂离子二次电池阳极材料、双电层电容器电极等。

直径为10nm~20nm的炭纤维在结构上和纳米管的结构相似,使气相生长法代替电弧法制备高纯度的纳米炭管成为可能。总之,高质量的纳米级VGCF的大量制备、充分利用其特性,开发新的应用领域,将是人们为之努力的方向。

5改进流动催化剂法制备的VGCNF

很久以前,人们就发现碳氢气体化合物通过过渡族金属表面催化降解可以析出微米级炭纤维,但直到九十年代才发现此种技术也可用来制备纳米炭纤维和纳米炭管。

本研究小组根据纤维直径大小主要由催化剂颗粒大小决定的这一事实,我们用易挥发的过渡族金属有机化合物析出的Fe、Co、Ni原子可以凝聚成纳米级催化剂颗粒的特点,采用改进的流动催化剂法制备出纯净的纳米炭纤维。如以苯为碳源,以二茂铁为催化剂前驱体,以氢气为载气,在1373K~1473K下成功地制备出直径在5nm~500nm内可控的纳米炭纤维。并且经过一系列的实验研究,发现了一种VGCNF的生长促进剂-含硫化合物,它一方面可以有效地阻止无定形碳、炭黑等杂质的生成,另一方面可以大大增加VGCNF的产量和收率。实验装置如图2。得到的VGCNF外观上有两种形式。一种为薄膜状“织物”,非常薄;一种为块状,有弹性,得到的产物如图3(a),3(b)所示。

实际上这些束状纤维是由许多单壁或者多壁纳米炭管组成的[23]。图5(a)和5(b)是块状产物的SEM和TEM形貌。从SEM图中可以看出块状产物也非常纯净。纤维直径分布比较均一,而且大部分纤维可以观察到中空管的存在,纤维的表面也非常光滑。

用改进的流动催化剂法制备VGCNF不仅设备简单,而且能半连续或连续生产,制备的VGCNF具有直径分布比较均匀、产品纯度高等优点,目前正在深入研究该方法的放大技术。

6小结

VGCNF是一种十分独特的纳米炭材料,具有许多与众不同的特性,如非常小的尺寸、独特的电学性能、特别优良的力学性能及吸附与催化特性。VGCNF具有十分广阔的应用前景,对其进行广泛而深入的基础和应用研究,具有十分重要的科学意义。

参考文献

[1]IijimaS.Helicalmicrotubulesofgraphiticcarbon[J].Nature,1991,354(6348):56

[2]TibbettsGG,DollGL,GorkiewiczDW,etal.Physicalpropertiesofvapor-growncarbonfibers[J].Carbon,1993,31(7):1039

[3]EndoM,TakeuchiK,Koborik,etal.Pyrolyticcarbonnanotubesfromvapor-growncarbonfibers[J].Carbon,1995,33(7):873

[4]刘华.气相生长炭纤维的结构及生长机理的研究[D].硕士毕业论文,沈阳:中科院金属研究所,1985

[5]OberlinA,EndoM,koyamaT.Filamentousgrowthofcarbonthroughbenzenedecomposition[J].JCrystGrowth,1976,32(2):335

[6]RodriguezNM,ChambersA,BakerRTK.CatalyticEngineeringofcarbonnanostructures[J].Langmuir,1995,11:3862

[7]ChambersA,RodriguezNM,BakerRTK.Influenceofcopperonthestructuralcharacteristicsofcarbonnanofibersproducedfromthecobalt-catalyzeddecompositionofethylene[J].JMaterRes,1996,11(2):430

[8]TibbettsGG,GorkiewiczDW.Anewreactorforgrowingcarbonfibersfromliquid-andvapor-phasehydrocarbons[J].Carbon,1993,31(5):809

[9]Yue-YingFan,FengLi,Hui-MingCheng,etal.Preparation,morphologyandmicrostructureofdiameter-controllablevapor-growncarbonnanofibers[J].JMaterRes,1998,113(8):2342

[10]RodriguezNM.Areviewofcatalyticallygrowncarbonnanofibers[J].JMaterRes,1993,8(12):3233

[11]KrishnankuttyN,RodriguezNM,BakerRTK.Effectofcopperonthedecompositionofethyleneoveranironcatalyst[J].JCatal,1996,158(1):217

[12]KimMS,RodriguezNM,BakerRTK.Theinterplaybetweensulfuradsorptionandcarbondepositiononcobaltcatalysts[J].JCatal,1993,143(2):449

催化剂范文篇9

炭纤维是一种主要以sp2杂化形成的一维结构炭材料。根据其合成方式和直径不同可分为:有机前躯体炭纤维(PAN基、粘胶丝基、沥青基炭纤维)、气相生长炭纤维(Vapor-growncarbonfiber简称VGCF)、气相生长纳米炭纤维(Vapor-growncarbonnanofiber简称VGCNF)、炭纳米管(carbonnanotube简称CNT),如图1所示。自从1991年Iijima[1]发现纳米炭管以来,由于其特殊的物理性能和力学性能而引起科学家们的广泛兴趣,同时也促进了气相生长炭纤维在纳米尺度上即气相生长纳米炭纤维的研究。

气相生长纳米炭纤维一般以过渡族金属Fe、Co、Ni及其合金为催化剂,以低碳烃化合物为碳源,氢气为载气,在873K~1473K下生成的一种纳米尺度炭纤维。它与一般气相生长炭纤维(VGCF)所不同的是,纳米炭纤维除了具有普通VGCF的特性如低密度、高比模量、高比强度、高导电等性能外,还具有缺陷数量非常少、比表面积大、导电性能好、结构致密等优点,可望用于催化剂和催化剂载体、锂离子二次电池阳极材料、双电层电容器电极、高效吸附剂、分离剂、结构增强材料等。Tibbetts[2]在研究了VGCF的物理特性以后,发现小直径气相生长炭纤维的强度比大直径的强度要大。

Endo[3]用透射电镜观察到气相生长法热解生成的炭纳米管和电弧法生成的炭纳米管的结构完全相同。所有这些,都使气相生长纳米炭纤维的研制工作进入了一个新阶段。

另外,从图1的直径分布来看,纳米炭纤维处于普通气相生长炭纤维和纳米炭管之间,这决定了纳米炭纤维的结构和性能处于普通炭纤维和纳米炭管的过渡状态,因而,研究普通炭纤维、纳米炭纤维、纳米炭管的结构和性能的差异将具有重要的意义。

2气相生长纳米炭纤维的制备方法与影响因素

刘华的实验结果表明VGCF的强度随着直径的减小而急剧增大[4]。Tibbetts[2]在研究VGCF的物理特性时,也预测小直径的VGCF要比大直径的VGCF强度要大得多。由于VGCF的直径主要是由催化剂颗粒的大小来决定的[5],因此大批量生产VGCNF的关键问题是催化剂颗粒的细化。

目前,VGCNF的制备主要有三种方法:基体法[6,7]、喷淋法或者流动催化剂法[8]和改进的流动催化剂法[9]。所谓的基体法是将石墨或陶瓷作基体,施以纳米级催化剂颗粒做“种籽”,高温下通入碳氢气体化合物,在催化剂的作用下碳氢气体分解并在催化剂颗粒的一侧析出纳米级纤维状炭。例如,Rodriguez[10]在基体上喷洒超细催化剂粉末,即用所谓的基体法高温降解碳氢化合物气体制备出50nm~80nm的VGCNF。这种基体催化剂方法可以制备出高质量的VGCNF。但是,超细催化剂颗粒的制备非常困难,在基体上喷洒不均匀,而且纳米炭纤维只在有催化剂的基体上生长,因而产量不高,不可能工业化生产。Tibbetts[8]用喷淋法或者流动催化剂法在一个垂直的炉子里成功地制备出了50nm~100nm的VGCNF。虽然这种方法提供了大量制备VGCNF的可能性,但是由于催化剂与碳氢气体化合物的比例难以优化,喷洒过程中铁颗粒分布不均匀,且喷洒的催化剂颗粒很难以纳米级形式存在,因此在制备纤维的过程中纳米级纤维所占比例少,而且总是伴有大量的炭黑生成。

为了解决以上两种方法的不足,充分利用基体法和喷淋法各自的优点,本研究小组用改进的气相流动催化剂法,在水平反应炉里,生长出10nm~100nm的VGCNF[9]。改进的流动催化剂法的主要特征是,催化剂并不是附着在基体上,也不象制备VGCNF所用的喷淋法或者流动催化剂法,将催化剂前驱体溶解在碳源溶液中,而是以气体形式同碳氢气体一起引入反应室,经过不同温区完成催化剂和碳氢气体的分解,分解的催化剂原子逐渐聚集成纳米级颗粒,因此分解的碳原子在催化剂上将会以纳米级形式析出纤维状炭。由于从有机化合物分解出的催化剂颗粒可以分布在三维空间内,因此其单位时间内产量可以很大,可连续生产,有利于工业化生产。

影响气相生长炭纤维的因素很多,研究也较充分,如氢气的纯度、碳氢气体化合物的分压、氢气和碳氢气体化合物的比例、反应温度、催化剂(颗粒大小、形状、结晶构造)的选取、气体的流量、微量元素的添加(如S)等都会影响到VGCF的生长。由于VGCNF和VGCF一样也是双层结构,即由两种不同结构的炭组成,内部是结晶程度比较好、具有理想石墨结构、中间空心的初期纤维;外层是结晶程度比较差、具有乱层结构的热解炭层[9]。因此,影响气相生长炭纤维的因素,也将影响着VGCNF的生长。

(1)氢气除了作载气外,还用以将Fe、Co、Ni等的金属化合物还原成为起催化作用的Fe、Co、Ni等单质。另外,还具有下列作用:(a)H2在金属表面上的化学吸附可以阻止石墨炭层的凝聚反应;(b)H2在金属表面上的化学吸附也可以弱化金属与金属间的结合力,使金属颗粒的大小适合于生长炭纤维[10];(c)H2的存在也可以使催化剂颗粒重构,以形成可以大量吸附碳氢化合物的表面[11]。

(2)其它元素如硫的加入对VGCF的生长也产生很大影响,Kim[12]在研究硫的吸附与碳在Co做催化剂析出时的相关作用时发现:少量的硫可以促进金属表面的重构,防止催化剂失活。硫量过大,则会生成过多的硫化物,抑制催化剂的催化活性。另外,少量的硫也可以促进催化剂颗粒分裂,这对于生长高质量的纳米级VGCF具有非常重要的作用。

(3)为了高效率生长VGCNF,催化剂一直是研究的热点。Baker发现在铁磁性金属中添加第二种金属可以改变炭纤维的生长特性,产生非常高的有序结构[13],生长多种形态的炭纤维。而且可以减少催化剂颗粒直径,VGCF的产量和生长速率也有所提高[14]。人们也发现往过渡族金属(Fe、Co、Ni)中引入第二种金属同样也能影响VGCNF的形貌和特性[6,7].Chambers等在研究往Co里加入Cu对VGCNF的结构和性能的影响后,发现所制备的VGCNF具有非常高的结晶性[7]。

另外,Rodriguez[6]用纯铁作催化剂制备出石墨片层平行于纤维轴向的ribbon型的纳米炭纤维;用Fe-Cu(7:3)作催化剂制备出石墨片层与纤维轴向呈一定角度的herringbone型的纳米炭纤维;用硅基铁作催化剂制备出石墨片层垂直于纤维轴向的纳米炭纤维。所有这些现象都说明了催化剂颗粒的特性影响着纳米炭纤维的生长。

总之,氢气的分压、催化剂的选取、碳氢化合物的流量、微量元素的加入都会影响炭纤维的生长,对于VGCNF的制备,所有这些因素都必须加以考虑。

3气相生长纳米炭纤维的生长机理

一般认为,VGCNF与VGCF一样是由两种不同结构的炭组成的,内层是结晶比较好的石墨片层结构(即纳米炭管),外层是一层很薄的热解炭,中间是中空管。这些结构特性决定了VGCNF两个不同的生长历程。即先是在催化剂表面气相生长纳米纤维,然后是在其上面热解炭沉积过程。其中,在催化剂表面气相生长纳米炭纤维可以分为以下几个过程:

(1)碳氢气体化合物在催化剂表面的吸附;

(2)吸附的碳氢化合物催化热解并析出碳;

(3)碳在催化剂颗粒中的扩散;

(4)碳在催化剂颗粒另一侧的析出,纤维生长;

(5)催化剂颗粒失活,纤维停止生长。

目前,世界各国的科学家对VGCNF的生长机理还没有一个统一的认识,在许多方面还有争议。

例如:碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力;真正起催化作用的是金属单质还是金属碳化物至今也是一个争论的焦点。

Oberlin[5]用Fe-苯-H2体系生成了VGCF,并对催化剂颗粒的电子衍射进行分析,发现有渗碳体Fe3C的存在。Audier[15]用选区电子衍射技术也发现了Fe5C2和Fe3C的存在。Baker[16]在研究了各种Fe的氧化物和碳化物的反应活性之后不同意渗碳体有催化活性的观点。当用很高浓度的渗碳体做催化剂时,没有发现炭纤维生长。

Yang在研究H2对碳降解的作用时发现,Fe3C表面对苯的热解无活性,通H2后恢复了金属性,则生长炭纤维的活性也恢复了。尽管金属碳化物有催化活性的说法与实验结果不符合,但碳化物的表面作用不可忽视。

另外,碳在催化剂颗粒中的扩散是靠温度梯度为推动力还是靠浓度梯度为推动力也是一个争论的焦点。最初,Baker[16]假定碳在催化剂颗粒中的扩散是靠温度梯度为推动力的。碳氢气体化合物在催化剂颗粒一侧放热分解,而在另一侧吸热析出。这样,就在催化剂颗粒中存在一个温度差,从碳氢气体化合物分解出的碳原子在这种温度梯度的作用下从催化剂颗粒的另一侧析出,生长炭纤维。

而Holstein[18]则认为碳在催化剂颗粒中的扩散是等温扩散,是靠浓度梯度为推动力的。Rostrup-Nielsen和Trimm[19]也认为碳在催化剂颗粒中的扩散是靠浓度梯度为推动力的。Holstein和Boudart[20]通过计算得出当金属催化剂表面发生放热反应的时候,在气体/金属界面和金属/纤维界面所产生的温度差小于0.1K可以忽略。另外,Rostrup-Nielsen[19,21]也发现在催化剂颗粒表面发生吸热反应的纤维生长。因此,他们认为碳在催化剂颗粒的扩散是靠浓度梯度为推动力而不是靠温度梯度为推动力的。不论靠什么作推动力,炭纤维的生长速度主要由碳原子在催化剂颗粒中的扩散速率决定,则是不容置疑的[18]。当催化剂表面被热解碳完全覆盖而失去催化活性时,纤维就停止生长。

对于碳氢气体化合物催化热解析出碳和催化剂失活的问题,许多科学家研究了金属与气体的界面反应。碳作为碳氢气体热解的最终产物有三种聚集状态:颗粒、片状及纤维状。随着反应条件不同,三种形态所占的比例将有所变化。当碳氢气体分子与催化剂颗粒相撞时,碳-氢、碳-碳键被削弱,再与气氛中的氢作用,各原子将重新组合,有人认为这时将产生一种活性很高的过渡态碳原子[22],它继续变化的方向有以下几个:

(1)再与吸附在铁表面的氢和碳氢化合物结合;

(2)与同类碳原子相连形成表面包覆碳;

(3)进行催化剂体内扩散;

(4)析出、连续长出炭纤维;

其中(2)与催化剂失活有关。

尽管上述生长过程,为典型的晶须状纤维提供了一个合理的解释,但对于分叉状、多方向状、螺旋状VGCF却不能自圆其说。对于VGCF的分叉现象,可能是由于碳以固态形式从催化剂中析出,这会对催化剂颗粒产生排挤力,这种排挤作用可能会使催化剂颗粒分裂为两个或更多的小颗粒,这些小颗粒对纤维的生长仍然起着催化作用,结果导致了VGCF的分叉。

对于双向状、多方向状、螺旋状VGCF的生长机理,人们还没有统一和明确的认识。目前也仅仅是一些推测,认为氢气和第二种金属的加入,会使催化剂颗粒重构,形成适于生长VGCF的多个晶面[15],然后是碳原子在颗粒中的扩散,在晶面上析出,生长VGCF。气相生长炭纤维尽管有大约二十年的研究和发展历史,但由于其生长过程的复杂性,人们对其生长机理的认识还远未完成,随着实验技术的发展,认识将更加深入。

4气相生长纳米炭纤维的性能及应用前景

作为一维结构的VGCNF具有许多优越的性能,因此它的潜在应用十分广阔。

由于VGCNF的缺陷数量很少、结构致密,所以VGCNF具有高强度、高比模量的力学性能,其强度比普通VGCF大。并且VGCNF具有直径小、长径比大的特点,因此可以用于高级复合材料的增强体,也可以用于航空、航天、环境、工民建材料及日常生活用品及其它高科技领域。

VGCNF表面具有分子级细孔,内部也具有细孔,比表面积大,气体可以在VGCNF中凝聚,因此可以吸附大量气体,是极具潜力的储氢材料,也可用作高效吸附剂、催化剂和催化剂载体。

另外,纳米炭纤维还具有较高的导电性,可望用于锂离子二次电池阳极材料、双电层电容器电极等。

直径为10nm~20nm的炭纤维在结构上和纳米管的结构相似,使气相生长法代替电弧法制备高纯度的纳米炭管成为可能。总之,高质量的纳米级VGCF的大量制备、充分利用其特性,开发新的应用领域,将是人们为之努力的方向。

5改进流动催化剂法制备的VGCNF

很久以前,人们就发现碳氢气体化合物通过过渡族金属表面催化降解可以析出微米级炭纤维,但直到九十年代才发现此种技术也可用来制备纳米炭纤维和纳米炭管。

本研究小组根据纤维直径大小主要由催化剂颗粒大小决定的这一事实,我们用易挥发的过渡族金属有机化合物析出的Fe、Co、Ni原子可以凝聚成纳米级催化剂颗粒的特点,采用改进的流动催化剂法制备出纯净的纳米炭纤维。如以苯为碳源,以二茂铁为催化剂前驱体,以氢气为载气,在1373K~1473K下成功地制备出直径在5nm~500nm内可控的纳米炭纤维。并且经过一系列的实验研究,发现了一种VGCNF的生长促进剂-含硫化合物,它一方面可以有效地阻止无定形碳、炭黑等杂质的生成,另一方面可以大大增加VGCNF的产量和收率。实验装置如图2。得到的VGCNF外观上有两种形式。一种为薄膜状“织物”,非常薄;一种为块状,有弹性,得到的产物如图3(a),3(b)所示。

实际上这些束状纤维是由许多单壁或者多壁纳米炭管组成的[23]。图5(a)和5(b)是块状产物的SEM和TEM形貌。从SEM图中可以看出块状产物也非常纯净。纤维直径分布比较均一,而且大部分纤维可以观察到中空管的存在,纤维的表面也非常光滑。

用改进的流动催化剂法制备VGCNF不仅设备简单,而且能半连续或连续生产,制备的VGCNF具有直径分布比较均匀、产品纯度高等优点,目前正在深入研究该方法的放大技术。

6小结

VGCNF是一种十分独特的纳米炭材料,具有许多与众不同的特性,如非常小的尺寸、独特的电学性能、特别优良的力学性能及吸附与催化特性。VGCNF具有十分广阔的应用前景,对其进行广泛而深入的基础和应用研究,具有十分重要的科学意义。

参考文献

[1]IijimaS.Helicalmicrotubulesofgraphiticcarbon[J].Nature,1991,354(6348):56

[2]TibbettsGG,DollGL,GorkiewiczDW,etal.Physicalpropertiesofvapor-growncarbonfibers[J].Carbon,1993,31(7):1039

[3]EndoM,TakeuchiK,Koborik,etal.Pyrolyticcarbonnanotubesfromvapor-growncarbonfibers[J].Carbon,1995,33(7):873

[4]刘华.气相生长炭纤维的结构及生长机理的研究[D].硕士毕业论文,沈阳:中科院金属研究所,1985

[5]OberlinA,EndoM,koyamaT.Filamentousgrowthofcarbonthroughbenzenedecomposition[J].JCrystGrowth,1976,32(2):335

[6]RodriguezNM,ChambersA,BakerRTK.CatalyticEngineeringofcarbonnanostructures[J].Langmuir,1995,11:3862

[7]ChambersA,RodriguezNM,BakerRTK.Influenceofcopperonthestructuralcharacteristicsofcarbonnanofibersproducedfromthecobalt-catalyzeddecompositionofethylene[J].JMaterRes,1996,11(2):430

[8]TibbettsGG,GorkiewiczDW.Anewreactorforgrowingcarbonfibersfromliquid-andvapor-phasehydrocarbons[J].Carbon,1993,31(5):809

[9]Yue-YingFan,FengLi,Hui-MingCheng,etal.Preparation,morphologyandmicrostructureofdiameter-controllablevapor-growncarbonnanofibers[J].JMaterRes,1998,113(8):2342

[10]RodriguezNM.Areviewofcatalyticallygrowncarbonnanofibers[J].JMaterRes,1993,8(12):3233

[11]KrishnankuttyN,RodriguezNM,BakerRTK.Effectofcopperonthedecompositionofethyleneoveranironcatalyst[J].JCatal,1996,158(1):217

[12]KimMS,RodriguezNM,BakerRTK.Theinterplaybetweensulfuradsorptionandcarbondepositiononcobaltcatalysts[J].JCatal,1993,143(2):449

催化剂范文篇10

关键词:低温等离子体;协同作用;大气污染控制

Abstract:Asanewprocesstechnology,Catalysis-assistednon-thermalplasmatechniquehasitsadvantages,suchaslessenergyconsumption,higherremovalefficiency,etc.ThetechniqueintreatingVOCs,NOxandengineoff-gaseshavelargedevelopmentprospects.Becauseoftheimmaturepracticalapplication,itneedtoincreaseeffortstoconductmorein-depththeoreticalandpracticalresearch.Catalysis-assistednon-thermalplasmatechniquewillbeabletoplaytheimportantroleinthetreatmentofwastegases.

Keywords:non-thermalplasma;synergisticeffect;airpollutioncontrol

目前,各种有毒有害气体的排放已造成严重的环境污染。低浓度有害气态污染物(如SO2、NOx、VOCs、H2S等)广泛地产生于能源转化、交通运输、工业生产等过程中。国际条例加强了对这些有害废气的限制。传统的治理方法如液体吸收法、活性炭吸附法、焚烧和催化氧化等已很难达到国际排放标准[1]。

近年来兴起的低温等离子体催化(non-thermalplasmacatalysis)技术解决了传统的净化方法所不能解决的问题。用该项技术处理有机废气具有以下优点:①能耗低,可在室温下与催化剂反应,无需加热,极大地节约了能源;②使用便利,设计时可以根据风量变化以及现场条件进行调节;③不产生副产物,催化剂可选择性地降解等离子体反应中所产生的副产物;④不产生放射物;⑤尤其适于处理有气味及低浓度大风量的气体。但以下两方面还有待改进:①对水蒸气比较敏感,当水蒸气含量高于5%时,处理效率及效果将受到影响;②初始设备投资较高。该项技术在环境污染物处理方面引起了人们的极大关注,被认为是环境污染物处理领域中很有发展前途的高新技术之一。本文将探讨其与污染气体的作用过程及两者协同作用机理,并概述这一技术在废气治理方面的进展。

1低温等离子体技术原理与协同作用机理

1.1低温等离子体技术原理

等离子体是含有大量电子、离子、分子、中性原子、激发态原子、光子和自由基等组成的物质的第四种形态。其总正负电荷数相等宏观上呈电中性,但具有导电和受电磁影响的性质,表现出很高的化学活性。根据体系能量状态、温度和离子密度,等离子体通常可分为高温等离子体和低温等离子体(包括热等离子体和冷等离子体)。高温等离子体的电离度接近,各种粒子的温度几乎相同,并且体系处于热力学平衡状态,它主要应用于受控热核反应研究方面。低温等离子体则处于热力学非平衡状态,各种粒子温度并不相同。

低温等离子体可通过前沿陡、脉宽窄(纳秒级)的高压脉冲放电在常温常压下获得,其中的高能电子和O、OH等活性粒子可与各种污染物如CO、HC、NOX、SOX、H2S、RSH等发生作用,转化为CO2、H2O、N2、S、SO2等无害或低害物质,从而使废气得到净化。它可促使一些在通常条件下不易进行的化学反应得以进行,甚至在极短时间内完成,故属低浓度VOCs治理的前沿技术。

1.2协同作用机理

低温等离子体和催化协同作用处理废气的主要原理如下:等离子体中可源源不断地产生大量极活泼的高活性物种,这在普通的热化学反应中不易得到,这些活性物种(特别是高能电子)含有巨大的能量,可以引发位于等离子体附近的催化剂,并可降低反应的活化能。同时,催化剂还可选择性地促进等离子体产生的副产物反应,得到无污染的物质。但是目前国内外在等离子体和催化协同作用机理方面的分析和研究比较少,在这方面的认识还远远不够。

有学者认为,固相催化剂的活性是由它们的化学和物相组成,晶体结构以及活性比表面所决定。在等离子体的作用下,催化剂表面将形成超细颗粒(平均颗粒直径为5-500nm,比表面约为100m2/g),这将大大增加催化剂的比表面积,并且破坏催化剂的晶体结构,拥有更多的空穴,从而导致高的催化活性。相比普通的催化剂,等离子体作用后的催化剂有如下独特之处:①具有高度分布的活性物种,②能耗减少,③加强了催化剂的活性和选择性,延长了催化剂寿命;④缩短了制备时间。另外,等离子体的作用可促进催化剂中的组分均匀分布,降低对毒物的敏感程度。这些特性将使得等离子体—催化技术有更大的应用前景。

2.研究进展

欧美和日本等国对低温等离子体催化技术的研究开展得比较早,主要把该技术应用于脱硫脱硝、消除挥发性有机化合物、净化汽车尾气、治理有毒有害化合物等方面。目前,很多国家的学术机构、政府和商业机构都在积极地开展此类研究。近年来,国内有很多学者在等离子体烟气脱硫脱硝、汽车尾气净化、有机废气处理等方面取得了较多实验结果,在这方面的研究已比较成熟。

3.1处理VOCs进展

国内外大量研究表明,等离子体-催化协同作用相比单个作用时能大大增强净化效果。KangM等人在常压下用等离子体/TiO2催化体系去除苯,催化剂的质量百分比为3%,苯的浓度为1000mg/m3,在仅有氧气等离子体没有TiO2催化剂时,40%的苯分解;在TiO2/O2等离子体下,脱除率达到70%;在O2等离子体中,TiO2负载于γ-Al2O3上时甲苯的转化率达到80%。

FutamuraS等[2]对有害大气污染物(HAP)在低温等离子体化学处理中金属氧化物的催化活性进行了研究,在没有MnO2作催化剂时,苯的摩尔转化率为30%,而在有MnO2作催化剂时,苯的摩尔转化率可以大大提高。FranekeKP等人[3]研究指出,在仅有催化剂时,20%的DCE(二氯乙烯)转化成CO2;仅放电条件下,转化70%的DCE;只有当两者协同作用时,有90%的DCE被去除,并且CO2为主要氧化产物。

秦张峰等[4]应用低温等离子体催化净化甲苯废气,采用了含CuO、Pd、Pt等活性组分的催化剂,当反应气流速为50-500mL/min,甲苯初始浓度为2000-20000mg/m3时,甲苯去除率为70%-95%,脱除量可达110mg/h。李锻等[5]将双极性脉冲高压引入介质阻挡反应器对氯苯和甲苯的分解特性进行了实验研究,而以冯春杨[6]、晏乃强[7]和黄立维[8]等人开展了脉冲电晕去除多种有机废气的研究,初始浓度为76.8mg/m3,苯的去除率达到61.4%,并对比了线—筒式和线—板式二种反应器对甲苯的去除率,在以Mn、Fe等作为催化剂时,可使去除率提高,催化剂活性的排序为Mn>Fe>Co>Ti>Ni>Pd>Cu>V,在去除各种有机废气中,甲醛最易去除,二氯甲烷最难,甲苯、乙醇、丙酮则处于其间。

3.2处理氮氧化合物进展

RajanikanthBS等[9]人对模拟气体在等离子体放电催化中NOx的去除进行了实验研究,指出介质填充床的存在可使NO在低电压下有更高的去除效率。实验对三种不同的催化剂(Al2O3、BaTiO3、Al2O3+Pd)进行了探讨,发现BaTiO3颗粒在气体组成为NO、O2、N2以及NO在N2中时有更高的去除效率。在NO的初始浓度为265mg/m3时,NO的去除效率几乎达到99%。在模拟汽车尾气(组成为NO∶O2∶CO2∶N2)中,相比其他介质,涂了Pd的Al2O3催化剂有更高的NO去除效率,在室温下NO去除效率相当于300℃甚至更高温度下尾气在惯常催化剂作用下的效率。

FranekeKP等[10]研究指出,仅在放电条件下,部分NO被氧化成NO2;在仅有氨作为还原剂,沸石作为催化剂时,可去除20%的NO;当等离子体置于催化之后,仅少量NO氧化成NO2;放电置于催化之前,约50%NO被去除;而当等离子体靠近催化放置时,有超过80%的NO转化成N2。

3.3净化机动车尾气进展

为实现美国环保局(EPA)提出的机动车尾气中NOx必须还原90%以上的目标,等离子体协同的催化体系在治理机动车排气方面有了很大进展。目前,用该项技术NOx的还原效率可达到65%以上,同时,该项技术还可脱除92%~96%的颗粒物,去除甲醛40%以上。

美国学者指出,在富氧废气中采用低温等离子体技术处理汽车尾气,可使NO在O2和碳氢化合物的协同作用下转变为NO2。而随后的金属氧化物催化剂可使NO2转化为N2。该方法强化了机动车排气中氮氧化物的还原,特别是那些有相对较高硫含量的汽车尾气。MiessnerH等[11]也指出,SCR和低温等离子体相结合净化机动车排气,加强了整体反应,在相对低的温度下就能有效地去除NOx。Al2O3和ZrO2作为催化剂的加入,促进了反应向有利方向进行。当供给每个NO分子30ever的能量,温度为300℃,气速为20000/h时,500mg/m3的NO能还原一半以上。

国内学者发明了一种后置式汽车尾气净化器,尾气经锥体分散后进入电场的催化剂中,在低温等离子体和催化剂的协同作用下,尾气净化率大大提高。该净化器一方面可使催化剂活性增加,转化率提高;另一方面可避免催化剂烧结,从而降低汽车尾气中有害气体的排放。与现有技术相比,该净化器具有以下优点:①将低温等离子体技术与催化技术相结合,技术得到升级;②适用于各种车型,不受汽车的原始排放限制,不同于现有的三元催化装置;③没有起燃温度限制,对冷车启动同样有效,且适用范围广;④结构紧凑,设计独特、新颖。

3.展望

低温等离子体技术应用的可行性和条件试验已较充分,也有了大量理论基础,已为这项工艺简单、适用性强、流程短、能耗低、易于操作和自动化的新技术早日工业化打下了充分的基础。但在低温等离子体技术与催化协同作用方面研究较少,是一项全新的处理技术,二者相结合,等离子体场产生高能量活性粒子,促进催化反应,减少能耗;催化主导反应方向,让反应具有选择性,并能大大减少反应副产物,该技术被认为在处理VOCs、氮氧化物、机动车尾气方面都有着广阔的发展前景,但实际应用还很不成熟,必须投入足够力量进行更加深入的理论和实践研究。

参考文献

[1]吕唤春,潘洪明,陈英旭.低浓度挥发性有机废气的处理进展[J].化工环保,2001,21(6):324-327.

[2]FutamuraS,ZhangAH,EinagaH,etal.Involvementofcatalystmaterialsinnonthermalplasmachemicalprocessingofhazardousairpollutants[J].CatalysisToday,2002,72:259-265.

[3]FranckeKP,MiessnerH,RudolphR.Plasmacatalyticprocessesforenvironmentalproblems[J].CatalysisToday,2000,59:411-416.

[4]秦张峰,关春梅,王浩静,等.有害废气的低温等离子体脱出研究[J].宁夏大学学报,2001,22(2):201-210.

[5]李锻,刘明辉,吴彦,等.双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J].中国环境科学2006,26:23~26.

[6]冯春杨,赵君科.脉冲电晕技术在处理挥发性有机化合物中的应用研究[J].安全与环境学报,2004,4(1):59~61.

[7]晏乃强,吴祖成,谭天恩.脉冲电晕放电治理有机废气的研究—放电反应器结构[J].上海环境科学,2000,19(6):278~281.

[8]黄立维,林鑫海,顾巧浓,等.电晕-吸收法治理甲苯废气实验研究[J].环境科学学报,2006,26(1):17~21.

[9]RajanikanthBS,RoutS.Studiesonnitricoxideremovalinsimulatedgascompositionsunderplasma-dielectric/catalyticdischarges[J].FuelProcessingTechnology,2001,74:177-195.