采集系统范文10篇

时间:2023-03-23 10:12:37

采集系统

采集系统范文篇1

关键词:DSP;高速信号处理;船舶数据采集;系统设计

船舶数据采集是通过传感器等敏感元件对船舶的环境信息、自身信息以及海洋周边信息进行采集和信息处理的集成系统,船舶数据采集系统采集的船舶数据主要包括船舶的振动噪声数据、机械数据、电机数据、海洋混响数据以及目标声呐数据等,通过对船舶数据进行准确实时采集,实现对船舶的运行工况和运行状态监测,提高船舶的稳定运行能力。同时,进行船舶数据的优化采集,在船舶目标识别、水下探测识别、船舶故障诊断以及船舶工况评估等领域具有很好的应用价值[1]。随着高速信号处理芯片的运用和发展,采用集成的DSP芯片进行船舶数据采集系统设计具有可行性,DSP是专门用于信号处理的微处理器,通过敏感传感器进行船舶数据的原始信息采样,对采样的船舶数据进行自适应滤波和信息融合处理,利用DSP芯片进行系统设计,实现船舶采集数据的信号分析和滤波检测,提高船舶数据的集成分析和处理能力[2],本文提出基于DSP技术的船舶数据采集系统设计方案,采用TMS320C50DSP芯片作为船舶数据采集系统的核心处理芯片,数据采集系统包括传感器模块、滤波模块、信号检波模块以及PCI总线传输模块,首先进行系统的硬件总体设计构架,然后进行船舶数据采集系统的功能模块化设计,最后进行实验分析,展示了本文方法在提高船舶数据采集能力方面的优越性。

1系统总体设计构架

1.1系统设计指标及器件选择。本文设计的船舶数据采集系统能实现船舶回波检测、水声测量和信号滤波检测功能,采集的船舶数据主要包括船舶的噪声信息、振动数据以及混响数据,系统具有信号检波滤波和频谱分析功能,在船舶数据采集系统设计中,数据采集与信号处理系统设计是船舶数据采集系统的核心,在DSP中对接收的船舶数据进行FFT处理,分析船舶数据的频谱信息,在原始数据采集中,采用水声换能器基阵组成船舶传感器网络,传感器基阵采用均匀线列阵布置,传感器分为振动传感器、声传感器和压电磁场传感器,船舶数据采集系统采用前向和后向双通道数据采集模式设计,最后通过PCI集成总线进行多通道数据传输和物理信息转换,提高船舶数据的集成处理能力[3]。1.2系统总体设计构架及功能模块组成。本文设计的船舶数据采集系统分为3个主要模块,分别为传感器控制模块、数据处理模块、船舶数据是输出模块,根据上述技术指标和功能结构分析,得到本文设计的船舶数据采集系统的总体结构和模块组成如图1所示。根据上述总体设计构架,得出本文设计的船舶数据采集系统的功能模块主要包括传感器模块、滤波模块、信号检波模块以及PCI总线传输模块[4]。根据上述功能分析,得到本文设计的船舶数据采集系统的功能模块组成如图2所示。

2系统硬件模块化开发设计

本文设计的基于DSP技术的船舶数据采集系统以TMS320C50DSP芯片作为船舶数据采集系统的核心处理芯片[5],在集成开发环境下进行船舶数据采集系统的硬件模块化设计,其中DSP信号处理器对船舶传感数据进行合理采样,设定合理的采样率,本文设计的船舶数据采集系统的硬件模块主要包括传感器模块、滤波模块、信号检波模块以及PCI总线传输模块,对各个功能模块组件的硬件设计具体描述如下:1)传感器模块。传感器模块采用传感器基阵接收船舶及周围环境产生的噪声信号和振动信号,并通过信号处理器进行检测和频谱分析,通过PCI总线将采集的传感器信息输入到信号检波器中进行包络放大和数据滤波处理,传感器的输出电压信号在0~4.55V之间,宽带阻抗匹配滤波增益为12dB,数据采集基阵的传送率可达132MB/s,系统的数据传输速率通过ISA,EISA及MCA总线实现自适应控制,传感器模块的PCI9054LOCAL总线支持主模式(DirectMaster)和从模式(DirectSlave)的2种数据采集协议。2)滤波模块。滤波模块是船舶数据采集的噪声滤波功能,由Mux101多路ADSP21160处理器对船舶数据采集系统的滤波电路进行单周期控制,采用自适应均衡处理方法进行船舶数据输出通道的自适应均衡处理,考虑到输入信号的倍频特征,在滤波器的末端加入阻抗电容进行信号增益控制,使用一个5阶开关电容低通滤波器进行级联滤波,用DSP控制PPI_CLK周期,降低电路之间的相互干扰。4)信号检波模块。信号检波模块采用通用PPI模式进行船舶数据采集后的信号检波和增益放大处理,采用DSP作为信号处理器进行集成信号处理,采用并行外设接口(PPI)进行交流耦合处理,实现信号检波和时序逻辑控制,信号检波模块的电路设计如图3所示。5)PCI总线传输模块。PCI总线传输模块利用PCI建立船舶数据采集系统的桥接芯片,在每个功能模块中进行多通道的船舶数采集,船舶数据采样的总线时钟由CLKBUF给出,采用CAN总线驱动器实现1.15~5.5V电平的自由转换,得到船舶数据采集系统的总线传输模块电路设计如图4所示。根据上述设计,在PCB中进行船舶数据采集系统的集成开发设计。

3仿真实验与结果分析

为了测试本文方法在实现船舶数据采集系统实现船舶数据优化采集的性能,进行仿真实验,对船舶数据采集的实验平台建立在VisualDSP++开发环境基础上,数据采集的初始采样频率设定为200kHz,采样时间间隔为12ms,船舶数据采样时长为1024,数据采样转换脉冲频谱增益为24dB,得到数据采集输出如图5所示,分析可知,采用本文方法进行船舶数据采集,接收信号具有较高的频谱增益,输出信噪比较高,测试结果表明,本文方法进行数据采集增益放大倍数为12dB,数据采集的时钟频率为33MHz,总线传输速率可达到264MB/s,具有卓越的指标性能表现。

4结 语

采集系统范文篇2

关键词:USBRS485数据采集

在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D卡以及422、485等总线板卡。采用板卡不仅安装麻烦、易受机箱内环境的干扰,而且由于受计算机插槽数量和地址、中断资源的限制,不可能挂接很多设备。而通用串行总线(UniversalAerialBus,简称USB)的出现,很好地解决了以上这些冲突,很容易就能实现低成本、高可靠性、多点的数据采集。

1USB简介

USB是一些PC大厂商,如Microsoft、Intel等为了解决日益增加的PC外设与有限的主板插槽和端口之间的矛盾而制定的一种串行通信的标准,自1995年在Comdex上亮相以来至今已广泛地为各PC厂家所支持。现在生产的PC几乎都配备了USB接口,Microsft的Windows98、NT以及MacOS、Linux、FreeBSD等流行操作系统都增加了对USB的支持。

1.1USB系统的构成

USB系统主要由主控制器(HostController)、USBHub和USB外设(PeripheralsNode)组成系统拓扑结构,如图1所示。

1.2USB的主要优点

·速度快。USB有高速和低速两种方式,主模式为高速模式,速率为12Mbps,另外为了适应一些不需要很大吞吐量和很高实时性的设备,如鼠标等,USB还提供低速方式,速率为1.5Mb/s。

·设备安装和配置容易。安装USB设备不必再打开机箱,加减已安装过的设备完全不用关闭计算机。所有USB设备支持热拔插,系统对其进行自动配置,彻底抛弃了过去的跳线和拨码开关设置。

·易于扩展。通过使用Hub扩展可拨接多达127个外设。标准USB电缆长度为3m(5m低速)。通过Hub或中继器可以使外设距离达到30m。

·能够采用总线供电。USB总线提供最大达5V电压、500mA电流。

·使用灵活。USB共有4种传输模式:控制传输(control)、同步传输(Synchronization)、中断传输(interrupt)、批量传输(bulk),以适应不同设备的需要。

2采用USB传输的数据采集设备

2.1硬件组成

一个实用的USB数据采集系统包括A/D转换器、微控制器以及USB通信接口。为了扩展其用途,还可以加上多路模拟开关和数字I/O端口。

系统的A/D、数字I/O的设计可沿用传统的设计方法,根据采集的精度、速率、通道数等诸元素选择合适的芯片,设计时应充分注意抗干扰的性能,尤其对A/D采集更是如此。

在微控制器和USB接口的选择上有两种方式,一种是采用普通单片机加上专用的USB通信芯片。现在的专用芯片中较流行的有NationalSemiconductor公司的USBN9602、ScanLogic公司的SL11等。笔者曾经采用Atmel公司的89c51单片机和USBN9602芯片构成系统,取得了良好的效果。这种方案的设计和调试比较麻烦,成本相对而言也比较高。

另一种方案是采用具备USB通信功能的单片机。随着USB应用的日益广泛,Intel、SGS-Tomson、Cypress、Philips等芯片厂商都推出了具备USB通信接口的单片机。这些单片机处理能力强,有的本身就具备多路A/D,构成系统的电路简单,调试方便,电磁兼容性好,因此采用具备USB接口的单片机是构成USB数据采集系统较好的方案。不过,由于具备了USB接口,这些芯片与过去的开发系统通常是不兼容的,需要购买新的开发系统,投资较高。

USB的一大优点是可以提供电源。在数据采集设备中耗电量通常不大,因此可以设计成采用总线供电的设备。

2.2软件构成

Windows98提供了多种USB设备的驱动程序,但好象还没有一种是专门针对数据采集系统的,所以必须针对特定的设备来编制驱动程序。尽管系统已经提供了很多标准接口函数,但编制驱动程序仍然是USB开发中最困难的一件事情,通常采用WindowsDDK来实现。目前有许多第三方软件厂商提供了各种各样的生成工具,象Compuware的driverworks,BlueWaters的DriverWizard等,它们能够很容易地在几分钟之内生成高质量的USB的驱动程序。

设备中单片机程序的编制也同样困难,而且没有任何一家厂商提供了自动生成的工具。编制一个稳定、完善的单片机程序直接关系到设备性能,必须给予充分的重视。

以上两个程序是开发者所关心的,用户不大关心。用户关心的是如何高效地通过鼠标来操作设备,如何处理和分析采集进来的大量数据,因此还必须有高质量的用户软件。用户软件必须有友好的界面,强大的数据分析和处理能力以及为用户提供进行再开发的接口。

3实现USB远距离采集数据传输

传输距离是限制USB在工业现场应用的一个障碍,即使增加了中继或Hub,USB传输距离通常也不超过几十米,这对工业现场而言显然是太短了。

现在工业现场有大量采用RS-485传输数据的采集设备。RS-485有其固有的优点,即它的传输距离可以达到1200米以上,并且可以挂接多个设备。其不足之处在于传输速度慢,采用总线方式,设备之间相互影响,可靠性差,需要板卡的支持,成本高,安装麻烦等。RS-485的这些缺点恰好能被USB所弥补,而USB传输距离的限制恰好又是RS-485的优势所在。如果能将两者结合起来,优势互补,就能够产生一种快速、可靠、低成本的远距离数据采集系统。

这种系统的基本思想是:在采集现场,将传感器采集到的模拟量数字化以后,利用RS-485协议将数据上传。在PC端有一个双向RS-485~USB的转换接口,利用这个转接口接收485的数据并通过USB接口传输至PC机进行分析处理。而主机向设备发送数据的过程正好相反:主机向USB口发送数据,数据通过485~USB转换口转换为485协议向远端输送,如图3所示。

在图3的方案中,关键设备是485~USB转换器。这样的设备在国内外都已经面市。笔者也曾经用NationalSemiconductor公司的USBN9602+89c51+MAX485实现过这一功能,在实际应用中取得了良好的效果。

需要特别说明的是,在485~USB转换器中,485接口的功能和通常采用485卡的接口性能(速率、驱动能力等)完全一样,也就是说,一个485~USB转换器就能够完全取代一块485卡,成本要低许多,同时具有安装方便、不受插槽数限制、不用外接电源等优点,为工业和科研数据采集提供了一条方便、廉价、有效的途径。

4综合式采集数据传输系统的实现

现在的数据采集系统通常有分布式和总线两种。采用USB接口易于实现分布式,而485接口则易于实现总线式,如果将这两者结合起来,则能够实现一种综合式的数据采集系统。实现方法是:仍然利用上面提到过的USB~485转换器实现两种协议的转换。由于USB的数据传输速率大大高于485,因此在每条485总线上仍然可以挂接多个设备,形成了图4所示的结构,其中D代表一个设备。

这种传输系统适用于一些由多个空间上相对分散的工作点,而每个工作点又有多个数据需要进行采集和传输的场合,例如大型粮库,每个粮仓在空间上相对分散,而每个粮仓又需要采集温度、湿度、二氧化碳浓度等一系列数据。在这样的情况下,每一个粮仓可以分配一条485总线,将温度、湿度、二氧化碳浓度等量的采集设备都挂接到485总线上,然后每个粮仓再通过485总线传输到监控中心,并转换为USB协议传输到PC机,多个粮仓的传输数据在转换为USB协议后可以通过Hub连接到一台PC机上。由于粮仓的各种数据监测实时性要求不是很高,因此采用这种方法可以用一台PC机完成对一个大型粮库的所有监测工作。

5前景展望

采集系统范文篇3

关键词:电力企业;电力营销;用电信息采集系统

目前,电力使用情况与之前存在很大不同,尤其是不同季节人们生产生活所需电量存在较大差异。为更好地满足人们的用电需要,电力企业紧跟时展潮流,充分利用现代先进科学技术构建用电信息采集系统,并将其应用到电力营销中,不但极大减少了用电信息误差,提高了精准度,还能够结合用户实际情况有针对性地提供用电服务,促使我国电力产业得到了进一步发展。基于此,对用电信息采集系统在电力营销中的应用进行分析和探讨。

1用电信息采集系统基本概述

1.1概念。用电信息采集系统主要是指电力企业采集用户用电信息的系统,如图1所示。它不仅可以准确采集用户用电信息,还能够实时监控和处理用户用电信息,为后期电力营销管理中阶梯定价和负荷管理奠定良好了基础,显著提高了电力营销服务水平,也更好地满足了人们的电力需求[1]。同时,用电信息采集系统的有效应用,也为电力企业开展抄表、错峰用电等工作提供了便利,使得用电成本显著下降。目前,用电信息采集系统在电力行业中已经得到广泛应用。该系统主要由主站层、数据采集层和采集点监控设备层等结构组成。1.2功能。用电信息采集系统功能包含:(1)准确收集用电数据信息,通过用电信息采集系统,结合不同业务实际需求,制定相对应数据信息采集任务,并监督和管理任务执行过程;(2)用电数据管理,在有效收集用户用电信息数据前提下,计算和分析数据合理性,实现数据信息的储存和管理;(3)定值控制,通过对该系统实施远方控制,可以充分发挥系统功率、电量费率定值控制功能;(4)综合应用,除了具备自动抄表、用电管理、用电异常检查等功能外,能够对整个运行过程实施管理和控制,其中包含系统时间设置及调整、权限密码管理、系统运行监测、报表管理等,还能有效确保不同种业务之间衔接顺畅。

2用电信息采集系统采集方式分析

用电信息采集系统在开展信息采集工作时可以运用三种方式展开。第一种,自动采集。用电信息采集系统可以根据制定的采集任务,结合所设定时间间隔,定时完成数据采集任务。无论是采集时间、时间间隔,还是采集数据对象和内容,都能够根据实际情况进行设置和调整。若是采取该种方式没有完成数据采集,系统主站则需要具备补采能力,以保证数据完整性和有效性。第二种,随机召测。系统根据实际需求,以人工方式完成数据召测。若是出现警告事件,系统可以及时召测涉及的关键数据,以满足事故分析要求。第三种,主动上报。通过该系统存在的主动上报功能,终端可以自动将各项数据上传到主站,还可以以任务设置的方式定时报送数据信息[2]。

3用电信息采集系统在电力营销中的应用

3.1电费管理。电费管理作为电力营销管理中的重要内容,在整个电力系统中占据着重要地位。如果电力企业没有及时、足额的收取电费,会对电力企业正常、稳定运行造成极大影响。尤其是随着近几年我国社会经济不断发展,我国加大了供电网络建设规模,使电费管理工作的有效开展面临着巨大挑战。电费管理工作任务量不断增多,电费管理成为一项复杂且艰巨的任务。针对这一情况,将用电信息采集系统应用其中,可以很好地收集用户用电信息数据,并根据用户用电实际需求给出合理用电建议。针对电费管理方面,可以设置用电量阈值,超过阈值范围实施停电措施。用户也可以直接通过网络终端及时查询用电量并及时缴费。3.2远程抄表。在我国社会经济和科学技术不断发展的背景下,我国加快了智能电网建设进程,电能表安装数量不断增多。如果依然采用传统人工抄表方式统计电能,无论是抄表效率,还是抄表质量,都将无法得到有效保证,甚至还会影响电费结算工作的顺利实施。但是,通过用电信息采集系统,借助终端设备和网络通道技术可以实现远程抄表,不但可以确保抄表数据完整性和准确性,还能够极大提高工作效率。同时,远程抄表工作有效实施也为各项电力营销管理工作顺利实施提供了有利条件,包含电能损耗分析、节约用电管理等。此外,远程抄表作为该系统的一项重要营销业务,其实现也离不开网络信道、智能电表、信息采集终端等技术。它的业务流程包含:(1)业务应用层,该部分由操作人员制定抄表规则和任务,然后结合路线、布局、集中器等,完成远程自动抄表工作;(2)业务执行层,主要涉及数据采集系统,如远程抄表主要是对终端设备采集数据及时接收并将之上报给主站中心,然后存储这些数据信息;(3)业务支撑层,该部分主要由计量器具和采集终端组合而成,针对采集系统发出指令及时给出回应,并按照指令要求执行,最终将所得数据信息发送给计量器具[3]。3.3电能损耗分析。电能损耗不仅影响人们的正常用电,还会对供电企业经济效益造成不良影响。同时,由于电力系统中出现电能损耗不容易被发现且追补困难,如果不对其进行有效处理,将对电力企业健康发展造成极大影响。通过构建用电信息采集系统并将其充分应用到电能损耗分析中,可以更加科学地分析电能损耗,为采取具有针对性的解决措施提供有力支撑,同时确保电力企业健康、稳定和持续发展。用电信息采集系统通过运行数据提取、维护计算模型、汇总报表等分析电能数据,一定程度上能够减少电能损耗,甚至能够通过网络终端对电能供应来源实施有效控制,确保供电平衡性,减少电能浪费。

4结论

探讨用电信息采集系统在电力营销中的应用,从用电信息采集系统基本概述展开,阐述其概念和功能。其中,用电信息采集系统功能主要体现在准确收集用电数据信息、用电数据管理、定值控制和综合应用四个方面。同时,分析用电信息采集系统自动采集、随机召测、主动上报三种采集方式,详尽探讨了用电信息采集系统在电力营销中的应用。可见,加强用电信息采集系统在电力营销中的应用研究,无论是对我国电力行业健康发展,还是对我国智能化电网建设,都具有十分深远的现实意义。

参考文献:

[1]吕海侠.探讨电力用户用电信息采集系统在电力营销管理中的应用[J].科技与企业,2013,(22):33.

[2]江贵梅.用电信息采集系统在电力营销中的应用探讨[J].低碳世界,2017,(20):103-104.

采集系统范文篇4

关键词:电厂电能量自动采集系统平衡率

在电力市场运营过程中,买卖双方交易的物理量是电能量,对发、供电量、联络线交换电量、网损(线损)电量及分时、分类电量的采集、监视、统计、分析、运算是电力市场运营的主要内容;建设电能量自动采集系统是实现电力市场运营的基础。对火力发电厂,主要对发、供电量进行统计,对机组平衡率、交接班电量等进行统计计算,以加强管理,并采取相应措施降低损耗,提高效率。

以我们江苏新海发电有限为例,每天分四班,传统的方式是每次交接班时抄表,人工录入进行统计计算;这种人工抄表、统计不能满足实时、分时及动态分析管理的要求,电能量采集方式的改变已势在必行。江苏新海发电有限公司电能量自动采集系统于2001年9月底基本建成。该系统已采集了所有机组的全部电能量数据,完成了电能量的自动采集、存储、总加计算、统计、报表打印等功能;系统代替了人工抄表,提高了数据的同步性、及时性、准确性和完整性;系统对全公司发电情况和各类平衡率进行自动统计,提高了统计计算速度和自动化水平;利用系统进行分班次考核,提高了企业的管理水平和效率;各部门可通过Web查看所有数据和报表,进行不同的二次开发,提高了电能数据的利用率。系统(如图1所示)分主站和采集终端(ERTU)两部分,主站与ERTU之间采用网络通信方式进行数据传输。主站采用南京华瑞杰自动化设备有限公司的COM-2000系统、厂站采用该公司的MPE-III电能量远方数据终端。

1、江苏新海发电有限公司电能量自动采集系统配置

1.1主站系统配置

该系统采用高性能的PC机作为硬件平台,系统的数据库服务器采用双机备份,互为热备用,并保持数据的一致性;前置机负责采集数据,连接GPS用于全网对时,后置机负责处理并保存数据,报表工作站负责所有报表的编辑和打印,Web服务器提供Web浏览,各MIS工作站通过Web可查看所有数据和报表;主网采用10/100M网,由交换机来连接服务器和所有计算机。

系统操作系统采用目前广泛使用的、安全性能较高的Windows2000Server,网络通信采用TCP/TP协议,数据库采用具有Client/Server模式的商用数据管理系统SQLServer2000,编程全部采用VC、VB、Delphi等,集成EXCEL作为报表工具生成图文并茂的图形报表。

1.2主站系统主要功能模块

(1)数据库管理系统

COM-2000数据库管理系统采用标准的商用数据管理系统。数据处理是整个系统的核心,它涉及到数据结构、数据存取、数据维护、数据共享等多方面的管理

数据库大致分四部分,即系统信息数据库(档案信息库)、原始数据库、二次统计数据库和公式统计库。系统数据库存放了有关系统的配置、参数等信息,原始数据库主要数据来源于各采集终端的电表数据,二次统计数据库主要存放来源于原始数据库,经过计算、统计的数据。公式统计数据库来源于二次统计数据库,存放了公式的计算结果。

(2)WEB服务管理系统

WEB服务管理系统响应来自Internet/Intranet的WEB服务请求,提供客户端请求的数据库数据和WEB页面格式。

(3)前置通讯及数据处理管理系统

此系统完成电能量自动采集系统对采集终端数据的采集和处理,数据采集采用大容量高速数据传输部件,保证准确性。全部操作均为在线完成,随输随用,响应性好。具体功能为:对所接收的报文完成规约转换、系数处理和合理性检查,将处理结果交给数据库。可即时查看通讯状况及具体通讯报文。

(4)数据统计及公式管理系统

该系统完成统计计算公式的设定和定时统计任务,如班次电量、日电量、月电量、年电量及电能量总加、平衡、线损、变损等数据的定时统计任务。

(5)报表图形设置显示打印系统

用户可根据实际需要设置报表和图形显示的格式,完成班次电量、日电量、月电量、年电量等报表数据的定时打印,并可根据用户要求对任意电表、任意采集终端或全厂的历史数据的显示及打印。

(6)终端、电表参数设置下装及召唤系统

该系统完成从主站对采集终端中各电表的基值、转比、时段方案、PT、CT等参数的在线设置和下装,并在线查看终端、电表状态和参数。

(7)内部网络通讯管理系统

该系统是整个系统中各个子系统之间的纽带,其功能为:在操作系统所提供的网络支持的基础上实现面向应用的高层网络通讯;根据应用所定义的数据流动模式确定数据流向,提高应用的通信效率。该系统采用完全的Client/Server模式,基于TCP/TP协议,保证了整个平台在不同网络通信协议之间的可移植性。

(8)告警管理系统

该系统根据用户的要求和数据处理的结果,以及设备状态的变化,对系统中发生的特定变化进行提示和告警。如电量值越界、设备异常等,可进行弹出提示框、语音等多种方式告警,对告警信息,可进行打印和保存,可分时段查询和检索。

(9)远程诊断管理系统

该系统用以完成对用户已投运的系统的诊断和维护。系统可通过拨号MODEM和用户系统连接,对其运行情况进行分析诊断;可远程更新系统程序,排除系统故障;并可远程系统更新消息,提高系统使用水平。

(10)安全机制管理系统

该系统完成安全性校核,防止非法操作。对使用用户进行分级管理,根据用户的类别赋予不同的操作权限;在进行关键操作时,对使用者身份的操作权限进行合法性检查;记录关键操作过程,提高系统管理水平。1.3电能量采集装置

采用MPE-III电能量远方数据终端,装置采用交、直流双电源,同时对全厂的脉冲和数字电表进行采集。每时段的电能量均带时标,并保留1个月;采用Polling方式实现远程通信;具备接受当地或远方参数下装、自诊断、远方诊断、自恢复等功能;中文液晶显示;设置、查看、核对具有密码保护;具有输入、输出电压、电流保护、防雷保护、直流反极性输入保护。

1.4通信方式

主站系统与远方电能量采集终端之间的通信方式采用网络方式通讯,由于距离较小,各采集终端直接连接在主站系统网络交换机上。电能量采集终端与电能表之间直接通过RS-485口进行数据传输,对脉冲电表增加脉冲采集板。

2、火电厂电能量自动采集系统建设中的几个问题

2.1主站系统建设

(1)电能量自动采集系统有别于SCADA/EMS系统。当电力工业转向市场化运营后,电网的生产和经营工作将更加细化,电能量自动采集系统必将成为一个独立的系统。

(2)电能量自动采集系统的建设,必须符合相应的国家计量管理标准和技术规范。

(3)数据库的设计。在选用数据库时,一方面要考虑性能和功能;另一方面,还要考虑和现有调度自动化系统数据库的继承,以及开放平台和数据接口等问题。电能量自动采集系统数据库内容的设计,要涉及到今后兼容的问题。我国的电能量自动采集系统从无到有,市场规则一定会不断的修改和完善,应尽量减少和避免数据库结构和内容的变动。完善的数据库系统是研究和设计电能量自动采集系统的一项重要工作。

(4)系统的安全性。电能量自动采集系统实现的功能涉及到企业的切身利益,系统应当具备很强的抗干扰能力,系统运行必须稳定可靠。

(5)数据的完整性。由于电能消耗是前后连贯的,因此电能计量的是一系列随时间递增的电能量累加值,要求在计量、采集、传输、存储和处理的整个过程中,保证在任何环节出现故障时,都不允许丢失数据。特别是在进行分班次电能量统计和结算时,数据的完整性成为电能量自动采集系统的基础。系统数据处理应采用分层处理方式存储数据,确保电能量数据的安全性和完整性。

(6)数据的修改。系统必须保证采集的电能量原始数据完整准确。存入的原始电能量数据只能查看,不能修改;各电能量备份数据有权限才能修改,并保存修改记录档案。

(7)数据的可恢复性。对意外情况引起的系统故障,系统应具有恢复数据的能力,保证电能量数据的安全和完整。

(8)数据的及时性。电能量数据应以5min(或1min)为单位进行带时标采集、传送和存储,便于电能量的统计、分班次考核。

(9)系统的时间性,整个电力系统一直处于电能的发、变、输、配、用的动态平衡状态中,电力交易的产、售、购是同时进行的,电能量自动采集系统应以标准时钟(GPS)为基准,以保证各个计量点基于相同的时间基准完成对电能量的计量及电能量数据带时标的存储。主站系统连接GPS时钟,系统对采集终端对时,采集终端对电表对时(要求电表支持)。

(10)系统的容错性。电能量自动采集系统的软件和硬件设备应具有良好的容错能力。当各软件、硬件功能发生一般故障,以及运行人员或维护工程师在操作中发生一般性错误时,均不引起系统的主要功能丧失或影响系统的正常运行。

(11)系统的灵活性。目前我国的电力市场有其特殊性,电能量自动采集系统的应用功能应当具有很大的灵活性,能够适应政策和市场的变化,并符合不同用户的要求。

(12)系统的扩展性。系统设计必须采用标准化、模块化结构,功能扩展部分的安装要简单、方便,对系统不造成有害影响。

(13)系统的开放性。电能量自动采集系统在保证安全的情况下,要求系统的开放性强,保证电力市场运营的公平、公正、公开的原则,提高电力企业的信誉。

(14)系统的可维护性。电能量自动采集系统的软件和硬件设备应便于运行维护。系统应具有在线维护处理功能,电能量自动采集系统的维护处理必须在不中断和不干扰系统正常工作的情况下进行,确保系统安全。

(15)系统的接口。电能量自动采集主站系统要为SCADA、EMS以及MIS等系统提供标准接口,实现数据共享。

(16)系统的权限管理,系统的安全性、可靠性和数据的准确性,直接关系到企业的经济利益,电能量自动采集系统必须具有严格的权限管理功能。

2.2电能量采集终端

(1)采集终端要求有很高的稳定性和可靠性,主要部件应有备份。

(2)采集终端与电能表之间的通信宜采用RS-485数据通信。

2.3电能表

(1)电能表是电能量自动采集系统的基础,数量非常大。电能表要求运行稳定可靠、精度高、使用寿命长、通信可靠、易于安装维护等。

(2)电能表与电能量自动采集系统之间能进行自动对时,实现统一时钟,

采集系统范文篇5

1.1概念。就低电力线载波技术来说,它主要是指一种被应用在用电通讯中方法,它的使用,不仅能够将信号的接收范围扩大,而且这种技术更加的方便于进行使用,在满足电力线条件的情况下就可以促进信息的有效传输,并且能够有效的将通信路线进行减少,从而达到降低开支成本的作用。针对电力线的线路和其频率资源来说,要想促进其被充分的进行利用,还具有一定的困难,在将其低压电力线载波技术进行应用的过程中,其可能存在电网信号相对较弱的情况,或是出现线路发生变化,存在噪声干扰等问题,这都严重影响了电压电力线载波技术的作用发挥。在一般情况下,低压电力线的载波技术主要是应用窄带载波技术,从而对其配电网的通讯信号通常度进行确定,但同时也极易造成载波通信技术存在物理层性能的限制,还需要将路由机制进行应用,从而促进其通信的有效率提高。1.2应用原理。就低压载波线来说,将其应用在用电采集信息系统中时,其主要的应用原理分为两个部分。首先,是载波调制技术,其次是载波路由技术。针对这两方面展开阐述。在低压电力线载波技术将相关数据进行发送的过程中,需要将县滚到数据调为高频率信号,在保证其成功率的基础上,在促进其不断扩大,使电力线形成耦合效果,并对电力线进行对接发送,从而实现传输的过程。在此基础上,促进接收方将相关的耦合电力进行高频率信号的接收,促进其对电路进行自主调解,从而使数字信号被有效还原。但是针对之前说过的载波通信在其物理层面上具有一定的限制性,导致其信息传输不能够被长效展开,要想将这样的问题进行调整,就需要将路由引入其中,使其与中继技术进行结合使用,从而有利于将载波的通信能力进行提高。但是在这一过程中,其采集信息系统对信息传输的成功率,主要与路由技术的优劣相联系,并且其运行方式也不尽相同,主要被分为静态路由方式和动态路由方式,分布式路由方式等。1.3应用意义。随着当前国家建设发展的逐渐推进,我国国民经济发展水平得到一定程度的提升,人们生产生活的推进都离不开电力的支持,这为电力企业的高效发展和推进带来了一定的难题。在开展电力供应的相关工作过程中,要想使电力为人们带来更好的服务,电力企业除了要满足人们对电力的基本需求,还要尽可能的保证人们的用电安全,这就使得供电系统运行中,电力信息采集工作变的至关重要。在电力企业发展过程中,信息采集系统是整个电力系统中的重要内容,它不仅能够保证电力的正常运输,而且能够对电路中存在的问题进行有效的判断,为企业的建设发展作出积极贡献。但是这一系统在实际的运行过程中,常常伴随着各种问题的产生和出现,严重限制了电力的高效运输,还需要将低压电力线载波技术进行应用,从而促进各项工作的稳定运行,将其电力发展中存在的问题进行改善,促进电力企业的健康发展。

2具体应用

2.1在组网方案方面。在促进低压电力线载波技术应用在用电新系统采集系统的过程中,首先需要开展信息组网方案的设定。这也是其应用的主要表现方式。在具体的工作建设过程中,人员要对载波抄表系统进行明确。其主要包括集中器,采集器和相应的电能表,这些是构成载波抄表系统的重要内容。其中,电能表主要有载波电能表和普通电能表两种类型,在将载波电能表与普通电能表进行相比较的过程中,其具有一定通信优势,能够将自身的载波线进行应用,促进其与集中器结合,加快通信效率。这正是普通电能表难以做到的,它只能在进行应用的过程中,将采集器进行利用,实现对信息的有线采集,从而促进电力线载波将信息进行系统集中器的传输。2.2在信息数据进行抄表方面。就低压电力线的组网工作来说,其在进行组装的过程中,通常都会将集中器安装在变压力器的附近,从而实现更加方便的为集中器提供运行所需的电源。而载波电表则需要与集中器进行统一,将其安装在电力用户处,这能够有助于其为变压器的有效输出提供三相供电。在这样的基础上,实现对电网系统集中器的通信工作,则需要对集中器进行指令发放,这主要是抄读信息的指令,从而促进载波电表和相应的采集器进行一定的反应,实现电力线的信息传达,能够将其通过电力线向集中器中进行传输,在经过集中器对信息的读取和分析之后,对数据进行相关保存,从而实现抄表过程。2.3在模块应用方面。要想实现低压电力线载波技术在用电信息采集系统进行建设应用,则需要对相关的采集器和载波电表等进行设计,其中,载波通信模块是较为重要的内容。在一般情况下,低压电力线都是应用专用的载波通信模块,而相关的载波系统和采集器则是将单项通用载波模块进行应用。因此,也就是说,在将其进行应用的过程中,促进信息的传播,则需要将集中器中不同的载波模块进行结合,促进其进行相互通信,促进他们进行三项数据的传输。但是就信息采集系统来说,其主要是应用半双向的问答方式进行数据传输,这就是使得其在同一个时间内难以形成向上对用的模块响应。2.4在技术优化方面。在将低压电力线载波通信技术应用字在电能表布线工作中,是相对困难的,其不仅受到电能表位置分散等因素的影响,而且其变化较小,具有一定的用电负荷特性。在将其应用在城乡地区就会促进其通信网络的快速传输,具有较强的适应性,从而有利于实现对用户电表的数据进行控制。但是,其低压电力线载波技术在进行应用的过程中,具有较大的噪音,对应的信号强度相对较弱,并且存在负载重问题。这会导致其信息传输存在错误,影响信息的可靠性。因此,还需要相关人员对组网进行技术优化和加强,从而促进电力企业的进一步发展。

3结语

在开展电力建设工作的过程中,促进低压电力线载波技术在用电信息采集系统中的建设应用,就需要相关工作人员针对低压电力线载波技术的性质,促进组网方案的合理化发展,并加强信息数据的抄表工作,促进其在模块中的应用,从而对相关技术进行优化,保证各项工作的顺利推进,为人们带来更多更好的用电体验。

参考文献

[1]游坤城.低压电力线载波技术在用电信息采集系统建设中的应用[J].科技与创新,2015(7):125.

[2]徐伟,王斌,姜元建.低压电力线载波通信技术在用电信息采集系统中的应用[J].电测与仪表,2010,47(07):44~47.

[3]李荣幸.低压电力线载波通信技术在用电信息采集系统中的应用研究[J].科技展望,2015(10).

[4]杨俊,张忠兴.关于用电信息采集系统中低压电力线载波技术的实践应用研究[J].科技尚品,2016(10).

采集系统范文篇6

1用电信息采集系统基本介绍

针对不同用户用电使用情况进行全方面的信息采集,然后整理数据信息,根据数据信息结果对其进行用户分析,这一系统不仅能够实现大量数据信息采集,而且还能进行信息分类,以此实现用户用电情况的自动化显示,与此同时,还能针对电能装置进行状态检测,分析电能计量装置的合理性,此外,有利于实现电网信息化,有利于提高电能计量准确性。该系统主要组成部分有三种:①主站;②采集设备;③通信通道。在社会经济持续发展的影响下,这一系统能够实现全覆盖效果,即对广大用户进行全面信息采集和使用监控,以此优化电能质量,提高电能管理效果[1]。

2计量异常分类

由于现实生活中计量异常现象较多,针对这一现象进行细分,具体分类表现在如下四方面:①异常种类差异,异常状况主要发生在计量设备和用电两方面;②采集设备异常差异,异常状况出现在集抄设备、公用配变以及负控设备等方面;③异常特征差异,异常状况常见于超载、电流、功率因数、电压等方面;④异常原因差异,导致原因为电能表异常、计量回路异常、采集回路异常以及采集设备异常。

3计量异常原因分析

3.1接线盒故障。设备实际应用的时间较长,投入使用的过程中会产生接触不良状况,具体原因:连接片长时间暴露于空气中会发生不同程度的氧化现象,因此会影响接触效果;接线盒增热后,会出现接触松动问题;接线盒内部螺丝稳定性较弱,在实际安全过程中还会出现多种安装问题,造成线头压接不稳定等情况。在日常工作中应提高对这一问题的重视程度,只有这样才能有效避免接线盒故障。3.2表计故障。这一故障的发生次数较多,导致这一故障的原因主要有电池故障(电池内部电能过高或者过低)、计度器故障、液晶屏故障、存储器故障、表计故障、电子器件故障等。此外,用电负荷也会导致这一故障现象发生。3.3终端故障。常见故障形式主要表现在两方面:①通讯终端;②电源终端。虽然这两种故障类型发生的几率较低,但是这并不意味着故障一定不会发生,其中,造成第二方面故障的原因主要有接口故障、屏幕故障、软件设备故障等,一旦发生故障就会出现数据丢失现象。3.4互感器故障。这一故障虽然在发生几率方面同上述故障类型一样,对此进行故障原因分析时,常见导致因素主要有熔丝烧毁、互感器放电、二次开路、接线错误、励磁特性失稳[2]。3.5通讯故障。造成这一故障的原因主要有两方面,分别是人为因素和数据采集因素。人为因素:部分用户受长期应用老式机械表的不良习惯影响,应用现代化智能表时会因传统习惯出现数据采集失误现象,由于现代化智能表灵敏度较高,不规范操作行为能够被及时记录,因此,导致通信故障频繁发生。数据采集失误:由于用电现场数据采集内容较多,用户用电信息采集系统应用初期会因考虑片面出现误填问题,进而不利于数据准确录入,影响数据信息的完整性。

4计量异常改进方法

4.1优化计量装置。计量失误多半原因由计量装置自身导致,为了降低计量装置方面出现失误几率,应从以下几方面努力。①工作人员应定期检查用户电能表,从电能表型号以及工作性能等方面进行检测,对于质量低下、型号不符的电能表及时更换。②安全监控装置用以监督接线盒的应用情况,这不仅能够优化接线盒运行效果,而且还会减小负荷现象。③强化互感器工作效能,并且根据用户需要做好接线工作。④加强系统采集终端监控,避免出现参数失准现象,同时,针对异常数据详细记录、具体分析,以此减少异常数据出现,完成数据信息采集工作后,全面调试终端,只有各项工作符合应用标准后,才能将其投入到具体应用中来。当系统工作期间出现采集信号波动时,这时要将检点投入到终端天线中,观察问题出现在天线短路还是接触不良,当问题确定为天线短路时,应及时更换新的天线。当上述两种问题均不属于,但仍发生信号波动时,这时要对参数设置全面分析,必要时重置数据卡。此外,工作人员还应制定具体可行的巡检方案,以此为依据解决数据计量问题,确保数据计量准确率的提高。4.2做好系统统筹。用电信息采集系统要想在电能计量中发挥应用作用,在正式投入使用之前,应对用户对象进行全面的调查和分析,针对用户用电情况以及用电规律性全面检查,这不仅能够促进数据信息采集工作有序开展,而且还会优化采集流程,提高采集效率,避免计量异常状况出现。除此之外,工作人员还可以通过先进技术进行干扰源排查,对于发现的干扰源及时处理。同时,集中器具体安装时,应细致观察所要安装的区域环境,最终选择干扰较小的地区进行位置安装,这不仅会增加系统运行的稳定性,而且还会降低计量失误数据的发生率。做到上述基本工作的基础上,还应适当规划电能表数量,如果电能表数量过多,那么计量准确性会相应降低,集中器数量与电能表数量要求相反,适当增量能够实现任务有效分担,有利于稳定集中器工作状态,优化信息数据质量。4.3完善计量环境。用电信息采集系统运行效果受环境因素影响明显,如果运行环境不够优良,环境中存在的干扰因素较多,那么极易影响数据信息的接收的完整性,同时,不利于数据信息整合,极易出现数据异常现象,影响系统工作状态以及工作效果。采集系统现场设备应结合用电检查、周期性核抄、现场校验等工作同步开展常规巡视。其中常见的巡视内容包括:(1)终端、箱门的封印是否完整,计量箱及门是否有损坏。(2)采集终端的线头是否松动或有烧痕迹,液晶显示屏的是否清晰或正常显示。(3)采集终端外置天线是否损坏,无线公网信道信号强度是否满足要求。(4)采集终端环境是否满足现场安全工作要求,有无安全隐患。(5)检查控制回路接线是否正常,有无破环。(6)电能表、采集设备是否有报警、异常等情况发生。所以在巡视过程中注意环境中多样性设备间的组合情况以及数量、质量情况,对于长时应用的设备应定期检查,做好设备检修和保养工作,针对设备运行过程中出现的线路老化问题及时处理,避免设备应用后期出现故障,与此同时,合理规划电能接线,避免出现电线私接、交叉现象,在通信质量提高方面,还应不断增强线路强度、选用适合的发射方式,以此提高通信的稳定性和安全性。在处理相对复杂的接线方式时,为了确保信息系统能够充分发挥应用作用,应结合用户用电实际情况选用适合的通信方式,其中,微功率无线通讯方式在实际应用中取得了良好的使用效果,在发挥应用优势的同时,还能在网络保护方面做出积极贡献。在环境优化方面,提高先进技术应用率,这不仅能够解决信道切换问题,而且还能有效降低投资成本,这对用电信息采集系统有序运行具有重要作用[3]。

5结论

综上所述,电能计量异常现象现已成为电网运行的常见现象,应用用电信息采集系统对其进行全面分析,在掌握原因的基础上,通过优化计量装置、做好系统统筹、计量环境完善等方式减少计量异常现象,提高计量准确率,优化计量方式。这不仅能够促进用电信息采集系统稳健运行,而且还会为用户提供稳定电能。

作者:姜宾 单位:国网山东省电力公司莘县供电公司

参考文献

[1]吴嘉轶.基于用电信息采集系统的电能计量装置异常智能分析方法研究[J].科技创新与应用,2016(27):216.

采集系统范文篇7

(一)传统营销管理存在的问题。受到科学技术的方方面面限制,在一定程度上传统的营销管理还是存在一定问题的,传统电力系统用户信息采集使用的是人工抄袭方法,这种方法最大的弊端就是面对外界不确定因素太多,很容易受到干扰,影响工作人员核查效率。传统营销管理中的抄表方式还要提前合理规划好电力营销范围,对不同区域进行划分,然后针对该区域情况再采用不同的抄表方式,这种落后的电力营销方式对人力、物力和财力都是不小的耗费。而且一旦抄表过程中有不准确的问题出现,为减少企业损失,还要及时保护用户信息收集和处理,又会耗费更多的精力。(二)用电信息采集系统的产生。国家电网公司早在2009年就提出了建设坚强型智能电网的发展战略建议,随着用电信息采集系统的开发和运用,目前电力系统已经进入到全面推行用电信息采集系统的阶段。电力用户用电信息采集系统也是一种电力营销技术,这种技术融合了多种高科技信息技术,比如计算机技术、通信技术、现代电子信息技术和智能电表等。用电信息采集系统能针对电力用户的实际情况对采集到的数据进行监控和分析,这也是目前电力市场营销主要信息采集手段。该系统能通过电力信息系统对用户信息进行自动化采集,整个数据的分析都是远程独立完成的。目前国家电网公司的信息采集覆盖率逐步完善,还未实现全覆盖,要建设用电用户全面用电信息系统的采集,首先要对电力用户和管口进行全覆盖,在系统采集信息时,管理人员要全面监测用户的电量和负荷,实时采集用电信息,所以在电力营销中应用用电信息采集系统能帮助管理人员准确及时地为整个电力系统提供基本数据,为系统内各环节运行提供策略支持,这样不仅有助于企业做好经营管理工作,也能实现智能双向互动支持服务。(三)用电信息采集系统的组成部分。电力用户用电信息采集系统是通过采集和分析配电变压器及终端用户的用电数据来对用电量进行解控,实行阶梯定价和线损分析,并最终实现错峰用电和节约用电成本等多个目的。要建立全面的用电信息采集系统,需要建设信息主站、信息采集设备和传输信息及智能电表。虽然目前我国电网还没有实现信息采集系统的全覆盖,但从每年的数据来看,覆盖率在逐年上升。信息采集终端按照应用场所具体分为集中抄表终端、专变采集终端以及分布式能源监控终端等,能实现电表数据的采集、数据传输和管理、执行命令等。

二、用电信息采集系统在营销一线中的功能与应用

(一)功能简介。在电力企业用电系统中,应用用电信息采集系统的目的是为了实时采集用电信息,提高电力营销管理效率。电力系统采用的是运行管理系统、电负荷管理系统和电能采集量采集系统,有时还会采用低压集中抄袭系统,它的符合管理系统是针对大容量用户进行用电信息采集的,也就是我们通常认为的工业用电和商业用电,会采用集中抄表的方式进行采集,进而在分析数据的基础上快速找到电力营销的方法。(二)应用概况。1、电能损耗管理。通过用电信息采集系统能实时分析电能损耗管理,并根据最终分析归纳出的数据结果来确定最优的降损方案,一来能提升电能供应质量,二来能降低电能损耗率,节约成本。用电信息采集系统在管理电能损耗时会涉及到多个方面,比如计算机模型维护、时间计算、能耗分析、归纳数据和制定降损方案等,这一整套的流程衔接有序,在技术层面上为电能损耗管理工作提供了平稳运行的技术保障,让后期管理工作更加持续有效。2、远程抄表管理。远程抄表也是电力营销管理工作的一个核心内容,所以应用用电信息采集系统后也能提升本项工作的进度。远程抄表管理工作需要采用采集终端技术、网络信息通道、智能电表和主站等技术,多种技术合为一体共同支持远程查表管理工作的顺利进行。传统的抄表工作是工作人员去挨家挨户查抄电表,不仅需要大量的人力,也浪费了很多的时间和财力,不利于电力企业运营的成本节约。如今应用用电信息采集系统后,展开远程抄表工作不仅降低了电力企业方方面面的资源浪费,更极大程度地提高了用电信息采集的准确性,对于用户而言,用电安全性的问题也得到了有效解决。所以说用电信息采集系统在远程抄表管理工作中也发挥了强势的科技水平和优势。3、智能电费管理。将电力用户用电信息采集系统应用到智能电费管理工作中也是该系统的另一项特别重要的功能,它主要是将主站、电能表和终端技术等不同环节的技术合为一体进行管理控制,我们进一步将其细分为主站电费控制管理、电能表电费控制管理和采集终端的电费控制管理等几方面工作内容。当对用电用户进行电费管控时就可以根据用户电能表数据和电费信息来计算用电费用,假如用户的电费余额逼近警戒值时可以及时向用户发送缴费提醒,当用户缴纳电费后系统又发送继续供电指令,整个过程完全实现了智能电费管理。应用这种智能电费管理功能可以保证让电费管理工作更加精确和高效,还能统一归纳电费价格波动。4、有序供用电。在电力系统信息采集系统的应用中不仅能保证实施采集信息还可以确保用电的真实性,为了实现供用电的有序性,系统管理者要综合考虑到每个行业和用户的信息,并对采集到的用户信息进行分析处理,对负荷指标和电力进行分解后将限电控制在传统模式之上,如果需要改变错峰方式的话要基于改变移峰方式基础上,这样不仅能实现电量控制,还能降低限制电量带来的不良影响。

三、结语

随着我国社会经济的高速发展和电力市场的不断发展,无论是电力企业还是电力用户对电力营销一线的管理工作都提出了非常高的要求,为了提高自身工作效率,为用户提供更优质的服务,电力企业引入了用电信息采集系统,该系统的投入使用在一定程度上保证了电力用户的日常生产生活用电,加强了供电企业管理工作的信息化和自动化,有效带动了我国电力事业的发展。

参考文献:

[1]王爱博,李刚.用电信息采集系统的自动抄表技术在电力营销中的探讨[J].城市建设理论研究,2016(02).

[2]吕海侠.探讨电力用户用电信息采集系统在电力营销管理中的应用[J].科技与企业,2017(33).

[3]赵李鹏.浅谈用电信息采集系统在供电新型营销发展中的作用[J].科技致富向导,2014(13).

[4]谭雄前.基于用电信息采集系统应用的供电企业营销管理实践分析[J].通讯世界,2017(20).

[5]刘爱民.电力用户用电信息采集系统应用过程中常见问题及解决措施[J].工程技术:文摘版,2016(11).

采集系统范文篇8

关键词:电厂电能量自动采集系统平衡率

在电力市场运营过程中,买卖双方交易的物理量是电能量,对发、供电量、联络线交换电量、网损(线损)电量及分时、分类电量的采集、监视、统计、分析、运算是电力市场运营的主要内容;建设电能量自动采集系统是实现电力市场运营的基础。对火力发电厂,主要对发、供电量进行统计,对机组平衡率、交接班电量等进行统计计算,以加强管理,并采取相应措施降低损耗,提高效率。

以我们江苏新海发电有限为例,每天分四班,传统的方式是每次交接班时抄表,人工录入进行统计计算;这种人工抄表、统计不能满足实时、分时及动态分析管理的要求,电能量采集方式的改变已势在必行。江苏新海发电有限公司电能量自动采集系统于2001年9月底基本建成。该系统已采集了所有机组的全部电能量数据,完成了电能量的自动采集、存储、总加计算、统计、报表打印等功能;系统代替了人工抄表,提高了数据的同步性、及时性、准确性和完整性;系统对全公司发电情况和各类平衡率进行自动统计,提高了统计计算速度和自动化水平;利用系统进行分班次考核,提高了企业的管理水平和效率;各部门可通过Web查看所有数据和报表,进行不同的二次开发,提高了电能数据的利用率。系统(如图1所示)分主站和采集终端(ERTU)两部分,主站与ERTU之间采用网络通信方式进行数据传输。主站采用南京华瑞杰自动化设备有限公司的COM-2000系统、厂站采用该公司的MPE-III电能量远方数据终端。

1、江苏新海发电有限公司电能量自动采集系统配置

1.1主站系统配置

该系统采用高性能的PC机作为硬件平台,系统的数据库服务器采用双机备份,互为热备用,并保持数据的一致性;前置机负责采集数据,连接GPS用于全网对时,后置机负责处理并保存数据,报表工作站负责所有报表的编辑和打印,Web服务器提供Web浏览,各MIS工作站通过Web可查看所有数据和报表;主网采用10/100M网,由交换机来连接服务器和所有计算机。

系统操作系统采用目前广泛使用的、安全性能较高的Windows2000Server,网络通信采用TCP/TP协议,数据库采用具有Client/Server模式的商用数据管理系统SQLServer2000,编程全部采用VC、VB、Delphi等,集成EXCEL作为报表工具生成图文并茂的图形报表。

1.2主站系统主要功能模块

(1)数据库管理系统

COM-2000数据库管理系统采用标准的商用数据管理系统。数据处理是整个系统的核心,它涉及到数据结构、数据存取、数据维护、数据共享等多方面的管理

数据库大致分四部分,即系统信息数据库(档案信息库)、原始数据库、二次统计数据库和公式统计库。系统数据库存放了有关系统的配置、参数等信息,原始数据库主要数据来源于各采集终端的电表数据,二次统计数据库主要存放来源于原始数据库,经过计算、统计的数据。公式统计数据库来源于二次统计数据库,存放了公式的计算结果。

(2)WEB服务管理系统

WEB服务管理系统响应来自Internet/Intranet的WEB服务请求,提供客户端请求的数据库数据和WEB页面格式。

(3)前置通讯及数据处理管理系统

此系统完成电能量自动采集系统对采集终端数据的采集和处理,数据采集采用大容量高速数据传输部件,保证准确性。全部操作均为在线完成,随输随用,响应性好。具体功能为:对所接收的报文完成规约转换、系数处理和合理性检查,将处理结果交给数据库。可即时查看通讯状况及具体通讯报文。

(4)数据统计及公式管理系统

该系统完成统计计算公式的设定和定时统计任务,如班次电量、日电量、月电量、年电量及电能量总加、平衡、线损、变损等数据的定时统计任务。

(5)报表图形设置显示打印系统

用户可根据实际需要设置报表和图形显示的格式,完成班次电量、日电量、月电量、年电量等报表数据的定时打印,并可根据用户要求对任意电表、任意采集终端或全厂的历史数据的显示及打印。

(6)终端、电表参数设置下装及召唤系统

该系统完成从主站对采集终端中各电表的基值、转比、时段方案、PT、CT等参数的在线设置和下装,并在线查看终端、电表状态和参数。

(7)内部网络通讯管理系统

该系统是整个系统中各个子系统之间的纽带,其功能为:在操作系统所提供的网络支持的基础上实现面向应用的高层网络通讯;根据应用所定义的数据流动模式确定数据流向,提高应用的通信效率。该系统采用完全的Client/Server模式,基于TCP/TP协议,保证了整个平台在不同网络通信协议之间的可移植性。

(8)告警管理系统

该系统根据用户的要求和数据处理的结果,以及设备状态的变化,对系统中发生的特定变化进行提示和告警。如电量值越界、设备异常等,可进行弹出提示框、语音等多种方式告警,对告警信息,可进行打印和保存,可分时段查询和检索。

(9)远程诊断管理系统

该系统用以完成对用户已投运的系统的诊断和维护。系统可通过拨号MODEM和用户系统连接,对其运行情况进行分析诊断;可远程更新系统程序,排除系统故障;并可远程系统更新消息,提高系统使用水平。

(10)安全机制管理系统

该系统完成安全性校核,防止非法操作。对使用用户进行分级管理,根据用户的类别赋予不同的操作权限;在进行关键操作时,对使用者身份的操作权限进行合法性检查;记录关键操作过程,提高系统管理水平。.3电能量采集装置

采用MPE-III电能量远方数据终端,装置采用交、直流双电源,同时对全厂的脉冲和数字电表进行采集。每时段的电能量均带时标,并保留1个月;采用Polling方式实现远程通信;具备接受当地或远方参数下装、自诊断、远方诊断、自恢复等功能;中文液晶显示;设置、查看、核对具有密码保护;具有输入、输出电压、电流保护、防雷保护、直流反极性输入保护。

1.4通信方式

主站系统与远方电能量采集终端之间的通信方式采用网络方式通讯,由于距离较小,各采集终端直接连接在主站系统网络交换机上。电能量采集终端与电能表之间直接通过RS-485口进行数据传输,对脉冲电表增加脉冲采集板。

2、火电厂电能量自动采集系统建设中的几个问题

2.1主站系统建设

(1)电能量自动采集系统有别于SCADA/EMS系统。当电力工业转向市场化运营后,电网的生产和经营工作将更加细化,电能量自动采集系统必将成为一个独立的系统。

(2)电能量自动采集系统的建设,必须符合相应的国家计量管理标准和技术规范。

(3)数据库的设计。在选用数据库时,一方面要考虑性能和功能;另一方面,还要考虑和现有调度自动化系统数据库的继承,以及开放平台和数据接口等问题。电能量自动采集系统数据库内容的设计,要涉及到今后兼容的问题。我国的电能量自动采集系统从无到有,市场规则一定会不断的修改和完善,应尽量减少和避免数据库结构和内容的变动。完善的数据库系统是研究和设计电能量自动采集系统的一项重要工作。

(4)系统的安全性。电能量自动采集系统实现的功能涉及到企业的切身利益,系统应当具备很强的抗干扰能力,系统运行必须稳定可靠。

(5)数据的完整性。由于电能消耗是前后连贯的,因此电能计量的是一系列随时间递增的电能量累加值,要求在计量、采集、传输、存储和处理的整个过程中,保证在任何环节出现故障时,都不允许丢失数据。特别是在进行分班次电能量统计和结算时,数据的完整性成为电能量自动采集系统的基础。系统数据处理应采用分层处理方式存储数据,确保电能量数据的安全性和完整性。

(6)数据的修改。系统必须保证采集的电能量原始数据完整准确。存入的原始电能量数据只能查看,不能修改;各电能量备份数据有权限才能修改,并保存修改记录档案。

(7)数据的可恢复性。对意外情况引起的系统故障,系统应具有恢复数据的能力,保证电能量数据的安全和完整。

(8)数据的及时性。电能量数据应以5min(或1min)为单位进行带时标采集、传送和存储,便于电能量的统计、分班次考核。

(9)系统的时间性,整个电力系统一直处于电能的发、变、输、配、用的动态平衡状态中,电力交易的产、售、购是同时进行的,电能量自动采集系统应以标准时钟(GPS)为基准,以保证各个计量点基于相同的时间基准完成对电能量的计量及电能量数据带时标的存储。主站系统连接GPS时钟,系统对采集终端对时,采集终端对电表对时(要求电表支持)。

(10)系统的容错性。电能量自动采集系统的软件和硬件设备应具有良好的容错能力。当各软件、硬件功能发生一般故障,以及运行人员或维护工程师在操作中发生一般性错误时,均不引起系统的主要功能丧失或影响系统的正常运行。

(11)系统的灵活性。目前我国的电力市场有其特殊性,电能量自动采集系统的应用功能应当具有很大的灵活性,能够适应政策和市场的变化,并符合不同用户的要求。

(12)系统的扩展性。系统设计必须采用标准化、模块化结构,功能扩展部分的安装要简单、方便,对系统不造成有害影响。

(13)系统的开放性。电能量自动采集系统在保证安全的情况下,要求系统的开放性强,保证电力市场运营的公平、公正、公开的原则,提高电力企业的信誉。

(14)系统的可维护性。电能量自动采集系统的软件和硬件设备应便于运行维护。系统应具有在线维护处理功能,电能量自动采集系统的维护处理必须在不中断和不干扰系统正常工作的情况下进行,确保系统安全。

(15)系统的接口。电能量自动采集主站系统要为SCADA、EMS以及MIS等系统提供标准接口,实现数据共享。

(16)系统的权限管理,系统的安全性、可靠性和数据的准确性,直接关系到企业的经济利益,电能量自动采集系统必须具有严格的权限管理功能。

2.2电能量采集终端

(1)采集终端要求有很高的稳定性和可靠性,主要部件应有备份。

(2)采集终端与电能表之间的通信宜采用RS-485数据通信。

2.3电能表

(1)电能表是电能量自动采集系统的基础,数量非常大。电能表要求运行稳定可靠、精度高、使用寿命长、通信可靠、易于安装维护等。

(2)电能表与电能量自动采集系统之间能进行自动对时,实现统一时钟,

采集系统范文篇9

关键词:船舶机电设备;振动采集系统;故障诊断

船舶在运行过程中需要专业和先进的技术对船舶的运行进行监督和检测。目前,我国较为常用的是机电设备振动采集系统,对运行中的船舶进行数据收集,再对相应的信息进行整合,通过这种方法可以更好地对故障发生位置和具体问题进行准确判断,这种可视化的分析有利于船舶行业的发展。

1研究背景

船舶在运行过程中需要多种机电设备为其提供更多的动力,在这过程中,各种机电设备运行时会产生大量的噪声,一旦机电设备出现问题可能会被产生的噪声所掩盖,不容易发现问题的所在之处,需要不断地通过技术进步来解决。通过使用振动采集系统的方法,可以自动的对发生问题的机电设备进行定位,并通过计算获得更加准确的数据,针对发生的故障问题采取合适的解决措施,避免问题发展到难以解决的地步[1]。这类采集系统在运行过程中的原理主要是采集机电设备在发生故障时发出的各种波和振动。出现问题的机器,无论是在振动程度或者是波长上都与正常工作的机器存在差异,振动采集系统对获得的不同振动进行分析。采集系统对于船舶的正常运行十分重要,一旦采集系统出现问题,会导致严重的航行问题,影响航行的质量。掌握更加先进科学的采集系统,故障诊断技术可以在有效时间内排除采集系统的故障,使采集系统正常工作,船舶可以正常的运行,确保工作人员以及船舶的安全。

2计算机电设备振动采集系统故障参数

机电设备振动采集系统在设计过程中,可以通过对具体参数进行分析对设备可能存在的故障进行甄别。对于获得的一些存在差异的数据来说,需要更加准确的知晓其来源,并清楚地了解可能产生这些差异数据的原因,在某种程度上差异数据的出现是某些故障达到某种阈值的体现。通过对振动采集系统对数据的采集和分析进行研究,来确定船舶在运行时可能出现的故障问题,为故障处理提供更多可靠的数据。分析时可以通过专业的软件对数据进行整理,数据的判断也有利于在判断过程中建立与振动采集相关的数据库。一旦出现问题,通过数据库数据匹配以及比对的方式更容易分析问题所在。对于获得的数据,根据实际情况进行排除或筛选,并不是所有数据信息均需要作为在分析处理过程中的参考数据。采集系统在运行时具有固定的故障参数值,根据参数值可以计算出需要使用到的全部信息,再根据参数推断合适的数据公式。公式中有多项数值会对参数信息产生影响,最终也会对故障诊断结果造成影响,因此需要按照参数进行排除,并不是所有的信息均可以利用在公式推算中。排除了可能干扰诊断结果的其他混杂因素之后,可以更加充分准确地获得故障诊断结果。这种方式更加有利保证计算过程更加稳定,不会由于一些故障问题的出现,反而增加了故障的解决难度。

3机电设备振动采集系统的故障定位

对于智能采集系统来说最为重要的工作内容是对出现故障的位置进行定位。前期已经通过诊断系统的一系列操作对具有混杂影响的参数进行排除,这样更有利于寻找到故障出现的位置。但目前对于我国采用的各类振动采集系统来说,出现故障的种类较多也较为复杂。例如常见的故障类型包括损坏类故障、失调类故障等,这都需要在船舶运行时,利用振动采集系统发现故障问题产生的主要原因。多类参考数值结合的方式,更加准确地分析出现故障的类型以及具体问题的概况,做到对采集系统的具体诊断,为分析提供精准的数据支持[2]。对于出现的故障位置进行定位,可以采用多种方法,目前使用的最为广泛的是红外测温技术。这类技术的主要优势在于简单、快捷、投入成本少等。采集系统在运行过程中会产生大量的热量,一般情况下会将温度控制在合适的范围内,一旦出现系统温度变化较大的情况,均可以在一定程度上表示着系统的运行状态存在问题。对温度检测完成之后,可以利用射线对多项参数的改变进行监控,监控完成后获得的数据可以在系统内将其扫描成图谱,这样有利于机电设备对产生故障的位置进行准确定位。除了对温度进行检测之外,还可通过对其他重要参数进行检查的方式,辅助对出现问题的位置进行定位。通过对重要参数进行连接和调试也可以确保采集系统正常的运行。温度测量完毕后再使用射线,射线的工作原理是可以对采集的内容进行介质密度分析,2项工作混合完成之后便可以全面地获得故障发生的主要原因。在监测过程中需要对系统进行扫描,扫描的位置要更加的完整和准确,这样也有利于快速的发现故障的问题所在。因此,在船舶运行过程中,应将故障位置定位作为检测故障的重要内容。

4故障诊断可视化分析

在对故障进行检测时,为了保证故障检测人员具有更加方便的检测条件,可以利用可视化分析的方式,让故障分析过程变得更加容易和便捷。首先是通过智能采集系统对出现的故障进行定位,判断故障主要发生的位置,在这种情况下,诊断系统会反馈给工作人员一系列故障数据参数,故障参数较为抽象,在对其进行故障分析时,可以通过参数导入方程的方式以一种更加便捷的操作行为将其转化成逻辑关系图。获得逻辑关系图之后并不意味着操作的完成,在后期还可通过图像处理的方式,获得容易观察、容易读懂的图像,有效地保障了故障分析的质量和效率。系统在运行过程中首先是要在采集系统的基础上添加对逻辑关系图的分析,获得最初的对故障类型的判断结果,将结果进行明确的标记。后期再针对不同的故障类型,选择合适的解决方法排除故障。对故障进行分析时,需要利用多种分析方式去中,最为常用的是仿真系统,仿真系统分析之后,可以形成与故障相关的数据代码,通过代码比对故障问题的所在,这种方式更加有利于准确的对故障进行判断。振动系统在工作过程中获得了相应的故障参数,计算完成之后,可以对故障发生的位置进行较为精准的定位,在利用数据分析以及公式转换的方式,将其以可视化的形式展现出来。这种方法是分析采集系统出现问题的最常用的方法。

5仿真试验

在对船舶进行运行过程中的障碍分析时,需要获得更加准确的技术信息,才能保证障碍处理时更加全面和精准,促进故障分析的顺利完成。目前有较多的检测方式可以提高故障技术的可靠性,其中最为广泛应用的是仿真实验和分析方法。主要作用在于通过对获得的信息进行评估,有效地掌握处理方式。传统的诊断方式与仿真分析相比,主要区别在于传统的诊断方法不能获得更加可靠的信息数据,在判断故障位置以及故障程度上具有一定的偏差,仿真分析可以更好地避免这类问题的发生,以更加真实、准确的形式展现故障内容[3]。与传统故障分析方法相比在准确度上可以提升将近1/3的准确度,具有良好的诊断效果。对于出现故障的类别进行判断时,可以通过对出现故障的不同方面数量进行判断来决定。船舶在运行过程中需要注重对于船舶的故障检测,目前我国最为常用的检测方法是利用机电设备振动采集系统,对发现故障的位置进行定位,并及时通过信息获取的方式将其转化为可视性的故障信号。这种发现故障的方式与传统方式下需要工作人员及时发现的方法相比具有更好的准确性以及及时性。不同的故障类别在判断时,也要按照较为标准的故障图谱进行比对,标注具有明显故障问题的位置,寻找合适的方法给予解决和验证。

6结语

随着科学技术的不断发展与进步,我国在进行船舶运行方面故障检测时,更加倾向于使用机电设备采集系统。设备在运行过程中可以有效的对发生故障的位置进行诊断,帮助工作人员较为稳定的运行船舶。方法是否可靠也需要更多的方式进行验证,其中最为常见的是仿真实验方法,为船舶正常运行带来了更多的方便。

参考文献:

[1]王强.探讨船舶机电设备振动采集系统的故障诊断技术[J].舰船科学技术,2019,41(12):139-140.

[2]梁丹.船舶机电设备振动采集系统的故障诊断技术的发展[J].中国舰船技术,2019,(8):86-87.

采集系统范文篇10

关键词:USBRS485数据采集

在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D卡以及422、485等总线板卡。采用板卡不仅安装麻烦、易受机箱内环境的干扰,而且由于受计算机插槽数量和地址、中断资源的限制,不可能挂接很多设备。而通用串行总线(UniversalAerialBus,简称USB)的出现,很好地解决了以上这些冲突,很容易就能实现低成本、高可靠性、多点的数据采集。

1USB简介

USB是一些PC大厂商,如Microsoft、Intel等为了解决日益增加的PC外设与有限的主板插槽和端口之间的矛盾而制定的一种串行通信的标准,自1995年在Comdex上亮相以来至今已广泛地为各PC厂家所支持。现在生产的PC几乎都配备了USB接口,Microsft的Windows98、NT以及MacOS、Linux、FreeBSD等流行操作系统都增加了对USB的支持。

1.1USB系统的构成

USB系统主要由主控制器(HostController)、USBHub和USB外设(PeripheralsNode)组成系统拓扑结构,如图1所示。

1.2USB的主要优点

·速度快。USB有高速和低速两种方式,主模式为高速模式,速率为12Mbps,另外为了适应一些不需要很大吞吐量和很高实时性的设备,如鼠标等,USB还提供低速方式,速率为1.5Mb/s。

·设备安装和配置容易。安装USB设备不必再打开机箱,加减已安装过的设备完全不用关闭计算机。所有USB设备支持热拔插,系统对其进行自动配置,彻底抛弃了过去的跳线和拨码开关设置。

·易于扩展。通过使用Hub扩展可拨接多达127个外设。标准USB电缆长度为3m(5m低速)。通过Hub或中继器可以使外设距离达到30m。

·能够采用总线供电。USB总线提供最大达5V电压、500mA电流。

·使用灵活。USB共有4种传输模式:控制传输(control)、同步传输(Synchronization)、中断传输(interrupt)、批量传输(bulk),以适应不同设备的需要。

2采用USB传输的数据采集设备

2.1硬件组成

一个实用的USB数据采集系统包括A/D转换器、微控制器以及USB通信接口。为了扩展其用途,还可以加上多路模拟开关和数字I/O端口。

系统的A/D、数字I/O的设计可沿用传统的设计方法,根据采集的精度、速率、通道数等诸元素选择合适的芯片,设计时应充分注意抗干扰的性能,尤其对A/D采集更是如此。

在微控制器和USB接口的选择上有两种方式,一种是采用普通单片机加上专用的USB通信芯片。现在的专用芯片中较流行的有NationalSemiconductor公司的USBN9602、ScanLogic公司的SL11等。笔者曾经采用Atmel公司的89c51单片机和USBN9602芯片构成系统,取得了良好的效果。这种方案的设计和调试比较麻烦,成本相对而言也比较高。

另一种方案是采用具备USB通信功能的单片机。随着USB应用的日益广泛,Intel、SGS-Tomson、Cypress、Philips等芯片厂商都推出了具备USB通信接口的单片机。这些单片机处理能力强,有的本身就具备多路A/D,构成系统的电路简单,调试方便,电磁兼容性好,因此采用具备USB接口的单片机是构成USB数据采集系统较好的方案。不过,由于具备了USB接口,这些芯片与过去的开发系统通常是不兼容的,需要购买新的开发系统,投资较高。

USB的一大优点是可以提供电源。在数据采集设备中耗电量通常不大,因此可以设计成采用总线供电的设备。2.2软件构成

Windows98提供了多种USB设备的驱动程序,但好象还没有一种是专门针对数据采集系统的,所以必须针对特定的设备来编制驱动程序。尽管系统已经提供了很多标准接口函数,但编制驱动程序仍然是USB开发中最困难的一件事情,通常采用WindowsDDK来实现。目前有许多第三方软件厂商提供了各种各样的生成工具,象Compuware的driverworks,BlueWaters的DriverWizard等,它们能够很容易地在几分钟之内生成高质量的USB的驱动程序。

设备中单片机程序的编制也同样困难,而且没有任何一家厂商提供了自动生成的工具。编制一个稳定、完善的单片机程序直接关系到设备性能,必须给予充分的重视。

以上两个程序是开发者所关心的,用户不大关心。用户关心的是如何高效地通过鼠标来操作设备,如何处理和分析采集进来的大量数据,因此还必须有高质量的用户软件。用户软件必须有友好的界面,强大的数据分析和处理能力以及为用户提供进行再开发的接口。

3实现USB远距离采集数据传输

传输距离是限制USB在工业现场应用的一个障碍,即使增加了中继或Hub,USB传输距离通常也不超过几十米,这对工业现场而言显然是太短了。

现在工业现场有大量采用RS-485传输数据的采集设备。RS-485有其固有的优点,即它的传输距离可以达到1200米以上,并且可以挂接多个设备。其不足之处在于传输速度慢,采用总线方式,设备之间相互影响,可靠性差,需要板卡的支持,成本高,安装麻烦等。RS-485的这些缺点恰好能被USB所弥补,而USB传输距离的限制恰好又是RS-485的优势所在。如果能将两者结合起来,优势互补,就能够产生一种快速、可靠、低成本的远距离数据采集系统。

这种系统的基本思想是:在采集现场,将传感器采集到的模拟量数字化以后,利用RS-485协议将数据上传。在PC端有一个双向RS-485~USB的转换接口,利用这个转接口接收485的数据并通过USB接口传输至PC机进行分析处理。而主机向设备发送数据的过程正好相反:主机向USB口发送数据,数据通过485~USB转换口转换为485协议向远端输送,如图3所示。

在图3的方案中,关键设备是485~USB转换器。这样的设备在国内外都已经面市。笔者也曾经用NationalSemiconductor公司的USBN9602+89c51+MAX485实现过这一功能,在实际应用中取得了良好的效果。

需要特别说明的是,在485~USB转换器中,485接口的功能和通常采用485卡的接口性能(速率、驱动能力等)完全一样,也就是说,一个485~USB转换器就能够完全取代一块485卡,成本要低许多,同时具有安装方便、不受插槽数限制、不用外接电源等优点,为工业和科研数据采集提供了一条方便、廉价、有效的途径。

4综合式采集数据传输系统的实现

现在的数据采集系统通常有分布式和总线两种。采用USB接口易于实现分布式,而485接口则易于实现总线式,如果将这两者结合起来,则能够实现一种综合式的数据采集系统。实现方法是:仍然利用上面提到过的USB~485转换器实现两种协议的转换。由于USB的数据传输速率大大高于485,因此在每条485总线上仍然可以挂接多个设备,形成了图4所示的结构,其中D代表一个设备。

这种传输系统适用于一些由多个空间上相对分散的工作点,而每个工作点又有多个数据需要进行采集和传输的场合,例如大型粮库,每个粮仓在空间上相对分散,而每个粮仓又需要采集温度、湿度、二氧化碳浓度等一系列数据。在这样的情况下,每一个粮仓可以分配一条485总线,将温度、湿度、二氧化碳浓度等量的采集设备都挂接到485总线上,然后每个粮仓再通过485总线传输到监控中心,并转换为USB协议传输到PC机,多个粮仓的传输数据在转换为USB协议后可以通过Hub连接到一台PC机上。由于粮仓的各种数据监测实时性要求不是很高,因此采用这种方法可以用一台PC机完成对一个大型粮库的所有监测工作。

5前景展望