通信发展论文范文

时间:2023-03-18 04:15:46

导语:如何才能写好一篇通信发展论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

通信发展论文

篇1

(一)普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

(二)核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

(三)接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

(四)室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

(五)电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。

参考文献:

[1]辛化梅、李忠,论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04)

[2]毛谦,我国光纤通信技术发展的现状和前景[J].电信科学,2006,(8).

[3]王磊、裴丽,光纤通信的发展现状和未来[J].中国科技信息,2006,(4):59-60.

篇2

论文摘要:21世纪移动通信技术和市场飞速发展,在新技术和市场需求的共同作用下,未来移动通信技术将呈现以下几大趋势:网络业务数据化、分组化,移动互联网逐步形成;网络技术数字化、宽带化;网络设备智能化、小型化;应用于更高的频段,有效利用频率;移动网络的综合化、全球化、个人化;各种网络的融合;高速率、高质量、低费用。这正是第四代(4G)移动通信技术发展的方向和目标。

一、引言

移动通信是指移动用户之间,或移动用户与固定用户之间的通信。随着电子技术的发展,特别是半导体、集

成电路和计算机技术的发展,移动通信得到了迅速的发展。随着其应用领域的扩大和对性能要求的提高,促使移动通信在技术上和理论上向更高水平发展。20世纪80年代以来,移动通信已成为现代通信网中不可缺少并发展最快的通信方式之一。

回顾移动通信的发展历程,移动通信的发展大致经历了几个发展阶段:第一代移动通信技术主要指蜂窝式模拟移动通信,技术特征是蜂窝网络结构克服了大区制容量低、活动范围受限的问题。第二代移动通信是蜂窝数字移动通信,使蜂窝系统具有数字传输所能提供的综合业务等种种优点。第三代移动通信的主要特征是除了能提供第二代移动通信系统所拥有的各种优点,克服了其缺点外,还能够提供宽带多媒体业务,能提供高质量的视频宽带多媒体综合业务,并能实现全球漫游。现在用的大多是第二代技术,第三代技术还不太成功,但已有了第四代技术的设想。第四代移动通信系统(4G)标准比第三代具有更多的功能。

二、4G移动通信简介

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

三、4G移动通信的接入系统

4G移动通信接入系统的显著特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

四、4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。

(二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。

五、OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

六、结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

参考文献:

1、谢显忠等.基于TDD的第四代移动通信技术[M].电子工业出版社,2005.

篇3

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

篇4

我国的应急通信技术的发展则经历了以下的三个时间段。第一个时间段是从抗洪救灾到国家信息的产业部门的改革阶段。第二个时间段是2004年的非典时间阶段。第三个时间段是2008年汶川地震时期。在这三个具有代表性的发展阶段当中,期间也出现了一些相关的技术革新,例如在2004我国开启了对应急通信行业的技术标准的相关研究。而几乎在同意时间段上,国内的通信企业也随之推出具有自身特色的应急通信产品,从而顺应应急通信市场发展的趋势。

2应急通信技术的相关特点

应急通信技术的发展具有多种多样的特点。其技术的使用过程、使用规范和相关的热点技术都是组成其特点的主要方面。这些技术特点可以理解为其技术上的优点,但在其实际的使用过程当中也存在着一些问题和难点,对其向纵深方向发展起到了阻碍的作用。应急通信技术的优点。应急通信技术的优点主要表现在其应急手段的多样性和应急速度的及时性。应急通信技术的使用热点主要体现在以下三个方面:拥有一个完备的效率高的应急指挥中心,公众设备通信网络或专门化通信网络和相应的应急场所等。在应急指挥中心中,其主要的功能就是为其他的通信设备的相关操作和运用提供必要的临时指挥和指导。而公众设备通信网络其中所设计的技术热点分别有优先路由、相关的应急通信能力技术的支持和对用户的方位进行分析定位等环节。而在应急通信场所方面,主要涉及到保障指挥通信畅通和提供对移动中通信的支持等当面。同时,也需要建立起现场监测和预警机制,对现场所出现的各种突发性事故提供实时的信息。应急通信技术的难点。在应急通信技术的发展过程中,由于要满足实效性,及时性,安全性和可靠性的技术要求,在部署相关的应急通信设备中要对以下的技术难点进行逐一的了解和找出相应的解决办法:电源的便捷程度和对设备用电功率的设置、通信设备的可扩展性、设备的跟踪定位能力和通信设备的可用性和简易的部署。这些问题都是在发展应急通信技术当中首先需要解决的主要问题。

3通信技术问题的解决措施

针对上述的通信技术的发展现状和其相关的特点,我们提出了一些具有针对性的问题解决方案,希望为其问题的处理提供一定的参考:完善应急通信网络的构成。通信网络的一个以多种通信网络设备和技术所组成的综合性异构网络。它的构成主要包括了有线固定网络、互联网等公众网络设备,同时也包括有卫星通信、集群通信和广播电视通信网络等相关的专门化网络结构。公网的作用大多是用于进行公众之间的信息交流和通信等。而专网则普遍地应用于应急通信的基本指挥调度的工作当中。应急通信网络的这一构成特点使其网络的构成具有不稳定性和动态性。因此,在此过程中应该以解决异构网络的融合互通和配合通信技术手段去进行处理。加强对应急通信的保障性需求的应对。在应急通信技术的使用过程中,应急通信并不是一个孤立存在的技术使用方面,它需要和其他相关的各类技术进行适当的配合,才能为应急预警工作提供必要的保障。因此,在这种过程中则有必要对其相关的技术有一个全面的掌握,以便应急通信技术在突发事件中的应用达到最佳的效果。具体的工作应该包括有:加强对通信基础设备与其他关联的组件(如缆线和交换设备等)的紧密联系,防止其出现信号中断的情况;对通信设备的供电系统要进行定期的检查,使其在日常工作当中保持良好的工作状态。

4结语

篇5

关键词:光纤通信核心网接入网光孤子通信全光网络

光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

一、我国光纤光缆发展的现状

1.1普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

1.2核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

1.3接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

1.4室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

1.5电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(1)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(2)光孤子通信光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(3)全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

参考文献

篇6

关键词:光纤通信技术发展现状趋势展望

一、光纤通信技术的发展及现状

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

篇7

关键词:第三代移动通信;TD-SCDMA,关键技术;HSPA;WI-MAX;MPLS;技术融合

一、TD-SCDMA简要介绍

TD-SCDMA是中国提出的时分双工模式的第三代移动通信技术。TD-SCDMA采用智能天线、同步CDMA技术、多用户联合检测技术、动态信道分配技术、软件无线电、接力切换等一系列高新技术,具有高频谱利用率、低成本、上下行不对称信道可适用于不对称业务等特点。

中国移动2007年在全国选取8个城市建立TD的试验网,2008年奥运期间得到试用,在此之前和奥运期间都存在一个明显的问题:高掉话率。GSM网络由建立到成熟经历了一个漫长的过程,TD一个刚刚应用的技术也一定需要一段过渡时间来慢慢成熟。2009年中移动全面在二级城市展开TD建设,并着手LTE即第四代网络演进做出预测及初步部署。

二、3G发展预测

(一)3G与无线局域网高速传输技术融合互补趋势

随着无线技术在各个领域的发展,新的技术和应用不断涌现。尤其在移动通信领域,除3G技术外,比较引人注目的还有几种技术WLAN、WiMax,以及Bluetooth。在此背景下,已经有人提出以下几个问题:3G会受到2.5G与WLAN的联合夹击?WiMax会是3G的掘墓者?而Bluetooth在这种关系中又处于何种地位?这几种技术彼此之间有什么关系?

实际上3G、Bluetooth、WLAN、WiMax这几种技术在本质上存在互补性,尽管它们之间在边缘上是竞争的,无线接入全球标准中可以看出这几种技术各自的定位。Bluetooth主要定位于最后10m的接入,即个人区域(PAN,PersonalAreaNetwork);WLAN主要定位于最后100m的接入,即局域网(LAN,LocalAreaNetwork);WiMax遵循802.16标准,主要是定位于城域网(MAN,MetropolitanAreaNetwork)建设的标准;而3G是定位于广域网(WAN,WideAreaNetwork)建设的标准。

其他几种技术在本文不加详述,这里主要来谈谈WiMax技术与3G的关系。经过对两者仔细地分析,我们会发现普遍流传的一种预言,即WiMax将成为3G的杀手,是一个错误的定论。3G网络的核心功能是提供移动电话服务,也可以用来传输数据;WiMax的标准是高速率的数据传输,语音质量并不是其关键要求。因此这两种技术各自的任务和目标都不相同。WiMax的着眼点是实现宽带无线化,而3G则更多地倾向于实现无线宽带化。两者从根本上说完全可以技术互补,并不存在谁是谁的杀手。

实际上,如果运营商选择WiMax,更多的用于接入层上,可以更加迅速的占领移动高速无线接入市场。WiMax最初的市场定位也是最后一公里的接入,这样就省去很多基础网络的建设和运营维护,从而与3G运营商实现技术资源互补达到双赢。一再强调事实上竞争力不在一个层面上的WiMax和3G技术是互相竞争对立,这样是盲目而不客观的。

作为分别着眼于MAN与WAN两个层面分明的领域内的技术,WiMax与3G并非冤家对头,而是总体网络框架中优势互补的有机组成部分。

(二)国内的通信产业演进方向的预测

目前国内重组后的三大运营商都着手于网络向3G演进的工作。中移动于2008年启动28个城市的TD试验网,另外把原电信的两个城市的TD试验网也接手。2009年中移动在全网一二线主要城市全面展开TD网络建设。电信更是在2008年9月份开始在很多城市开展无线局域网的应用和试商用。网通也于2008年开始着手占用3G资源频率的小灵通全面退网工作。

为了彻底解决运营商基础设施重复建设问题,广东移动内部人士称,国家正考虑组建一家“国”字头企业,运营全国网络,而移动、联通、电信则向该公司租赁网络。以后所有的运营商都得租国资委下面一个骨干网络公司的网络资源,包括基站光纤等。暂不说消息的可靠性,但租凭网络在国外非常盛行,而此时针对重复性建设的问题提出这个建议看见也并非空穴来风。此前,工业和信息化部联合国资委《关于推进电信基础设施共建共享的紧急通知》(以下简称“通知”),要求电信运营商实行基础设施共建共享。工信部更制定了严厉的共享共建考核制度,还将成立专门领导小组,要求运营商“不折不扣地坚决执行”。采取网络一家接管,运营商租赁,一方面可以彻底杜绝电信设施重复建设。同时,由于WTO条款原因,外资纷纷入股电信商,原目前联通第二大股东即是外资,采取上述制度有利于国家安全,因为骨干网络被外资介入显然不是件好事情。其实,网络租凭在中国电信行业已经有了先例,比如,铁通网络出口原则上由总部统一租用电信的,但是个别省也有私下租的。此前电信也租赁了原联通的C网运营。

纵观国内通信产业全局从运营商到用户都在期待3G网络的早日铺设调测完毕,国家也在先期通信网络建设和运营方面汲取了宝贵的经验和教训,一切都为了3G顺利实现打下了良好的铺垫和坚实地支撑,相信以个人通信为目标的3G离我们已经越来越近。

(三)移动通信咨询设计行业的简单展望和预测

随着技术变革的加大,技术复杂度的加深,对从事设计咨询行业人员的素质要求会越来越高,专业化和综合化人才两极发展需求逐渐增强,传统的核心网专业、数据专业、传输设备专业、传输线路专业、基站设备专业、基站电源专业等划分将打破模糊界限,各专业融合逐渐体现。各专业配合的重要性日益加强,重复型、劳动密集型转向集团协同作业和技术型作业转换,与此同时将会衍生新的更加细化的专业划分。具体的运行模式目前正处于酝酿期,一旦形成适用的高效的运转模式,将会在行业内迅速复制。现有的管理模式将逐渐演变,而项目负责人的作用和权限将会在设计人员素质达到一定标准和具备相应资质后得到极大的提升。

对此,我们从事设计咨询的人员要看清大势所趋,抓紧时间选取自己的发展方向,有意识培养自己的专业方向能力和项目总体管理能力,为即将到来的机遇做好充分准备。

机会是留给做准备的人,这句话既做为本小节的结,也用以作为本文的尾。

最后祝愿我们的行业蓬勃发展的同时,通信人特别是从事咨询设计的通信人水平节节攀升,抓住历史的机遇展现自我的风采。祝愿我国的通信产业蒸蒸日上,继续为我国的经济建设和人民生活做出更多的贡献。

参考文献:

[1]李世鹤.TD-SCDMA第三代移动通信系统标准.北京:人民邮电出版社.2003

[2]广东杰赛通信规划设计院.TD-SCDMA规划设计手册.北京:人民邮电出版社,2007

篇8

4G移动通信技术可以弥补3G移动通信技术在覆盖范围、通信质量和宽频带的现有不足。4G移动通信技术可以容纳海量移动通信用户,改善网络通信质量,提高数据传输速率。4G移动通信技术提供高速数据和高分辨率的无线网络,它包括语音、数据、影像等信息的传输。3D视频技术也将会应用到4G通信上,可以在4G手机上看立体的视频。

24G移动通信关键技术

4G移动通信信道传输、抗干扰、多接入等功能的实现依靠无线网络的结构,4G移动通信系统网络结构分为:物理网络层、中间环节层和应用网络层。三个分层,物理网络可提供网络接入和网络路由选择功能;中间环节层的主要功能是实现映射、地址变换和实现管理的子系统,是主要的控制功能层;应用网络层实现着数据无缝高速连接,可以运用多个频带实现跨网络、地域和标准的服务。

2.1OFDM技术

4G移动通信系统主要以OFDM技术为核心,OFDM技术是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流。OFDM技术具有较高的频谱利用率,其频谱效率比其他串行系统高将近一倍;OFDM技术具有较强的抗衰落能力,OFDM通过多子载波传输,使子载波信号与相同速率的单载波信号时间长,从而降低了其衰落能力;OFDM技术具有较高的传输速率,其采用自适应调制机制使变化调制方式。通过信道和加载算法来提高信息传送的速率;OFDM技术抗码间干扰能力强,用循环前缀的方式对抗码间的干扰。

2.2智能天线技术(SA)

SA技术选择的是空时多址技术,利用信号在传传输方向上的差异性,将同频率、同时隙的传输信号进行区分。通过智能天线技术可以有效改善信号质量,增强其抗干扰能力,增加数据传输容量。

2.3多输入多输出技术(MIMO)

MIMO技术是指在基站和移动终端利用多发射、多接受天线进行空间分集和空间复用的技术。能有效地将通信信道分解成多信道,从而降低了系统的衰减性,提高了系统通信质量、传输速率和天线系统的容量。

2.4软件无线电技术

4G移动通信技术是以软件无线电为基础,软件无线电技术以开放性的平台构造一个具有开放性、标准化、模块化的通用硬件平台,允许多方运营的介入。其具有灵活性和适应性,能兼容不同接口的多模式终端设备和基站。

2.5IPv6技术

IPv6具有巨大的网络地址的空间,其能提供一个独一无二的地址给通信网络中的所有设备;IPv6具有自动配置路由地址能力;IPv6具有移动性,IPv6技术可以帮助移动通信设备在保证通信质量不变的情况下改变地理位置;IPv6服务质量高于传统的IPv4,便于形成基于服务级别的系统。

34G移动通信技术的展望

篇9

关键词:光纤通信技术特点发展趋势光纤链路现场测试

一、光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。

二、光纤通信技术的特点

2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。

2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。

2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。

三、不断发展的光纤通信技术

3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。

3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。

3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。

3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。

3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。

综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。

四、光纤链路的现场测试

4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。

4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。

虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).

篇10

手机上网业务的发展现状

中国移动互联网从2005年开始快速增长、与此同时,独立的免费WAP网站开始出现并流行。目前免费WAP站点8370个(包括个人站点)。截至2005年11月底,中国免费WAP站点静态网页数为264.2万,与SP站点、移动梦网、互动视站点的网页总数基本相当。

与移动梦网相比,免费WAP网站由于低廉的价格(免信息费)、灵活的机制、更贴近用户的内容整合等因素,培养了大批忠实用户,促进了移动互联网的繁荣。根据对免费网站用户消费行为的分析,用户对资讯信息类、互动娱乐类和无线社区类业务有很强的潜在需求。而与互联网相结合的IM业务也显现出其竞争优势。如腾讯QQ访问量始终在免费门户首位。在促进移动互联网发展的同时,免费WAP网站也带来了一些问题。如除风险投资外,大部分免费网站相当的收入来源来自于对收费业务的宣传,有些甚至以各种手段,引诱用户订阅收费内容。为此,中国移动要求移动梦网合作伙伴,严禁在梦网以外的WAP网站上作业务推广和引导订购,同时,限制对免费网站的手机信息传送,以约束免费网站的违规行为。

制约手机上网业务发展的因素

资费因素:在某种程度上,资费影响着用户对业务的使用。目前,手机上网业务资费主要由通信费和信息费两部分构成,通信费主要指GPRS流量费,归中国移动所有,信息费与SP进行分成。较高的资费势必影响用户对业务的接受程度,如何在保障收入和吸引用户中取得平衡,是数据业务定价需要考虑的问题。

终端因素:目前市场上终端对于支持GPRS和WAP功能已有了较大改善,2005年国内手机出货8468万部,其中超过87%的产品具备了WAP浏览功能,但各款终端仍然存在着屏幕大小、显示内容支持等各种不一致之处,对手机上网业务的开发和推广造成一定困难。其对于kjave下载、手机电视等应用的制约影响则更为明显。另一方面,终端的设置较复杂,使用门槛高。使用手机上网业务,首先必须申请开通GPES功能,其次对于非定制终端需要进行设置,用户再通过浏览器登陆到“移动梦网”方可访问到业务。对于不同的终端,设置参数的位置和浏览器名称及位置都不尽相同,赠加了指导用户使用的难度。

宣传推广手段因素:手机上网业务较短信而言较教育用户,因为用报纸,用群发这些以前短信上最有效的手段已经难以说得清楚。新的、有效的宣传推广手段对于GPRS业务的发展十分重要。新业务推广,需要改变用户的使用习惯,培养用户的使用兴趣。对于手机上网业务,缺少像短信、彩信那样,通过用户之间互相转发的方式,培养用户使用习惯的方式。

SP的管理问题:业务发展中,存在部分SP/CP在高额利润的诱惑下,采用违规手段,发展用户,谋取暴利。这种行为不仅损害运营商的信誉和客户满意度,也会直接影响整个产业的发展。目前中国移动梦网的合作sP近千家,同时大量新的公司提出申请,大发展的现状导致SP发展迅速,鱼龙混杂。其中最严重的问题就是收费陷阱。加强SP的控制,是当前移动增值业务价值链的当务之急,也是未来3G业务价值链演进的重要趋势。推动手机上网业务发展的一些举措

优化GPRS网络,推进GPRS开通工作:在网络方面,不断优化GPRS网络,在几个业务量大的省份建设WAP网关,提高手机上网的速率和稳定性,改善了用户体验。由于使用GPES类数据业务之前,用户必须开通GPRS功能。GPRS开通工作对发展新业务具有积极意义。

大力推广终端定制:终端方面,中国移动广泛开展了预存话费换手机的活动,并联合终端厂商一起推出“心”机,大大降低了用户在终端的花费,加上手机的制造技术不断成熟,具备彩信/KJAVA功能将逐步成为了一般手机的标准配置,扩大了业务的潜在用户基数。在终端设置方面,终端制造厂商不断改进设置方式,简化了设置步骤,降低用户设置的难度。同时,中国移动广泛采取为用户预先设置的方式,在用户购买手机时就为用户设置好相关参数,让用户不再为设置烦恼。在终端的互联互通性方面,相关标准不断成熟,各个终端厂商对标准的理解逐渐趋向一致,运营商也加强了对终端的规范,使得终端的互联互通性不断得到改进。

开发新的推广手段:为了解决WAP门户业务表现空间有限的问题,中移动提出并实施了WAPPUSH、WAP直通车等技术手段,打破WAP业务Portal首页空间有限的问题,引导SP的注意力从对排名的争夺转向业务质量和市场营销。

WAPPUSH即通过短信群发技术将业务链接地址和业务介绍宣传同时下发用户,用户只要点击或回复就可以直接达到该业务的页面进行操作。通过WAPPUSH可将企业信息直接“推送”给目标用户,从而达到与短信业务的短信群发类似的对WAP业务的推广效果。

门户营销和品牌营销:目前,“移动梦网”的手机上网门户为:。通过门户站点来管理梦网业务,用户就可以方便的通过访问门户来找到需要的业务,并在门户上完成业务的定制和退定等。将SP的业务整合在一起,以统一的门户提供给用户,在整合营销资源、方便宣传推广、加强业务管理等方面的好处明显。