纳米医学论文十篇

时间:2023-04-02 01:07:13

纳米医学论文

纳米医学论文篇1

1.1药物载体

许多药物都有细胞毒性,在杀死病毒细胞的同时,也会对正常细胞造成损伤。因而,理想的药物载体不仅应有较好的生物相容性、较高的载药率,还应具有靶向性,即到达目标病灶部位才释放药物分子。无机纳米材料的大小和表面的电荷等理化性质决定了纳米材料的性能,研究这些可控特性可应用在生物医学领域中。例如,用多孔硅作为药物载体递送柔红霉素,治疗视网膜疾病持续时间从几天延长到3个月。通过调控将纳米粒子孔径从15nm变为95nm,使柔红霉素的释放率增大了63倍,从而调控药物的释放。用介孔二氧化硅纳米粒子运载化疗药物、探针分子向肿瘤细胞进行递送,可用于癌症等疾病的靶向性治疗和早期诊断。介孔二氧化硅在药物传输、靶向给药、基因转染、组织工程、细胞示踪、蛋白质固定与分离等方面有广泛的应用。碳纳米管及其衍生材料可开发用于电敏感的透皮药物释放,又可作药物载体进行持续性释放。比如,用超支化聚合物修饰碳纳米管,可以从复合物的羟基末端聚集活性基团,从而增强溶解性能,作为抗癌的药物载体,也可以用作药物缓释载体。用聚乙烯亚胺修饰多壁碳纳米管,分散性好,能降低对细胞的毒性,进一步结合在壳聚糖/甘油磷酸盐上,能增加凝胶的机械强度。同时,改变溶液的pH值、温度等来构建具有双缓释功能的温敏性凝胶,能减少凝胶的突释现象。纳米钻石(dND)装载化疗药物具有较低的毒性和较高的生物兼容性。将叶酸等靶向分子修饰纳米钻石表面,用于装载抗癌药物,以H2N-PEG-NH2作为桥梁分子,形成纳米靶向载药系统,对C6细胞具有靶向作用,为研制肿瘤靶向治疗提供了参考依据。为了避免被单核细胞、巨噬细胞系统等非特异性吸收,并让药物优先进入肿瘤细胞,用超支化缩水甘油(PG)修饰纳米钻石得到dND-PG,有较好的生物相容性,能避免被正常细胞的巨噬细胞非特异性摄取。加载抗癌药物阿霉素显示出对肿瘤细胞具有选择性的毒性作用,可作为肿瘤药物载体,对肿瘤细胞进行选择性给药。将药物分子插入LDHs的层间形成药物-LDHs的纳米杂化物,药物与LDHs层间的相互作用以及空间位阻效应能有效地控制药物释放,减少药物发生酶解作用。LDHs表面存在大量的羟基,便于进行表面功能化修饰,增强靶向性,避免被巨噬细胞吞噬而从人体内清除,提高药物的输送效率。LDHs适合装载不同类型的药物,将药物插入到LDHs的层间结构,药物以阴离子形式装载并被控释。通过共沉淀法在LDHs层间成功地嵌入维生素C,维生素C的阴离子垂直插于LDHs层间,热稳定性显著增强。通过离子交换反应来释放维生素C,延长释放时间。

1.2蛋白质载体

纳米材料在诊断、药物输送、生物功能材料、生物传感器等方面得到了迅猛的发展,出现了疾病治疗、诊断、造影成像等多种功能的组合。无机纳米材料在生物大分子药物的载体,包括运载蛋白质、多肽、DNA和siRNA等方面的研究较多。纳米多孔硅有较好的生物相容性、生物可降解性和可调控的纳米粒径,可作为药物输送系统。壳聚糖修饰多孔硅后可用于运载口服给药的胰岛素,改善胰岛素的跨细胞渗透,增加与肠道细胞黏液层的表面接触,提高细胞的摄入,可用于口服递送蛋白质和多肽。纳米羟基磷灰石与蛋白质分子有高亲和性,可用作蛋白质药物缓释载体,能提供钙离子,造成肿瘤细胞过度摄入,从而抑制肿瘤细胞活性,诱导肿瘤细胞凋亡。

1.3基因载体

基因治疗是遗传性疾病的临床治疗策略,主要依赖于发展多样性的载体。无机纳米材料用于基因疗法是利用无机粒子和可生物降解的多聚阳离子合成新型的纳米药物载体,如介孔二氧化硅作为基因载体可用于肿瘤治疗,促进体外siRNA的递送。乙醛修饰的胱氨酸具有自身荧光的特点,可对pH值和谷胱甘肽进行响应。通过荧光标记类树状大分子的二氧化硅纳米载体具有分级的孔隙,不仅毒性低、基因装载率高,转染率也较高。引发谷胱甘肽二硫键裂解,可促进质粒DNA(pDNA)释放,并能使用自发荧光来实时示踪。又如,通过π-π共轭、静电作用等非共价键作用力结合,能将DNA、RNA等生物大分子和化学药物固定在氧化石墨烯上。

1.4骨移植

临床上可用自体骨移植来治疗创伤、感染、肿瘤等造成的骨缺损,由于骨移植的来源有限,且手术时间长,易导致失血过多和供骨区并发症等,应用受到限制。将异体骨用作骨移植,则存在免疫排斥反应,且易被感染。而人工骨同自体骨有相近的疗效,人工骨材料可采用钛、生物陶瓷、纳米骨、3D模拟人工骨髓等纳米材料。例如,纳米二氧化硅可替代骨组织,促进人工植入材料与肌肉组织融合。纳米羟基磷灰石与人体内的无机成分相似,其粒子有小尺寸效应、量子效应及表面效应等,可用作牙种植体或作为骨骼材料,能避免产生排斥反应,促进血液循环,促进人体骨组织的修复、整合和骨缺损后的治愈。

1.5临床诊断和治疗

磁性氧化铁纳米粒子可作为造影剂用于肿瘤诊断中,对肿瘤分子产生磁共振分子影像或多模态肿瘤分子影像,也可用于循环肿瘤细胞的分离、富集。免疫磁分离法基于磁性杂化材料可导电,在外部磁场下积累,可用于临床热疗。磁热疗以磁流体形式进入肿瘤组织,利用肿瘤细胞与正常细胞之间不同的热敏感度,将外部磁场产生的磁能转化成热能从而杀死肿瘤细胞。磁性纳米粒子还可用于生物传感器中,利用磁现象和纳米粒子从液相中分离并捕获生物分子。用绿色荧光蛋白标记,形成温敏的磁性纳米固相生物传感器,用磁性材料制成固相生物传感器的支架,在磁场作用下,响应更快,表面易于更新,可用于免疫诊断。磁性纳米氧化铁作为临床应用的磁性纳米材料,受到人们的广泛关注。Fe3O4和γ-Fe2O3的特殊磁性质使其在靶向肿瘤药物载体、磁疗、热疗、核磁共振成像、生物分离等生物医学领域中得以应用。用无机纳米材料制作激发荧光探针进行临床诊断,如用介孔二氧化硅制成的细胞荧光成像探针利用量子点良好的光稳定性、较长的荧光寿命和较高的生物相容性,结合介孔二氧化硅可特异性地识别Ramos细胞的特点,并用激光共聚焦显微镜对Ramos细胞进行荧光成像,实现了对肿瘤细胞的早期诊断、检测成像。富勒烯特殊的结构和性质使其可以广泛地应用于光热治疗、辐射化疗、癌症治疗等医学领域,也可作为核磁共振成像的造影剂用于临床诊断。但富勒烯不溶于水,对生物体存在潜在的毒性,限制了其在临床的应用。富勒烯结合含羟基的亲水性分子可改善其溶解性,羟基化富勒烯无明显毒性,可作为抗氧化剂。聚羟基富勒烯利用近红外光激活体内的纳米材料,用光热对肿瘤细胞定位,避免了金纳米粒子、碳纳米管等在体内造成聚积,利用免疫刺激作用来抑制肿瘤细胞的转移、生长,从而减小肿瘤的尺寸,最终造成肿瘤细胞凋亡。因此,改造碳纳米结构,在成像、吸附、药物装载与靶向运输等生物医学工程方面有潜在的应用价值。银纳米粒子杀菌活性远高于银离子,在杀菌抑菌方面得到广泛的应用,可用于外科手术中的伤口愈合、药学、生命科学等生物和临床医学领域。金纳米粒子有较好的生物相容性,功能化的金纳米粒子可用于生物分析、药物检测、临床诊断等生物医药领域,可作为纳米探针检测重金属离子、三聚氰胺等小分子,也可检测DNA、蛋白质等生物大分子,还可以用于对细胞表面和细胞内部的多糖、核酸、多肽等的精确定位。镍纳米粒子固定在海藻酸水凝胶中,通过热敏感粒子与镍磁纳米粒子交联形成囊状结构,组成热磁双敏感的磁性纳米粒子。在交变磁场下缓慢释放水凝胶中的镍纳米粒子,通过远程调控来激发水凝胶中成纤维细胞的凋亡。无机纳米材料的类别不同,在尺寸、形貌上有很大的变动范围,因其核心材料的量子特性,已日益成为涉及临床诊断、成像和治疗的手段,为纳米材料在生物医学上的应用提供更多的可能。

2展望

纳米技术作为新时代的疾病治疗模式,为未来的临床用药提供了新的可能,在生物医学的应用上有很大的前景。目前,癌症治疗主要包括手术、放疗和化疗等手段,而药物剂量增多会造成副作用。纳米粒子可以作为靶向药物载体、成像造影剂、化疗、热疗、磁疗系统,可通过血脑屏障,在治疗神经系统疾病中有很大的潜力,有望成为攻克癌症的新手段。无机纳米材料在药物载体、临床诊断和治疗等方面有广阔的应用前景,但目前的研究大多处于实验阶段。无机纳米材料在生物医学应用中有待解决的问题包括:

(1)提高疾病治疗的针对性、靶向性和可调控性;

(2)使无机纳米材料相对固定在肿瘤细胞表面,不至于扩散到正常组织,从而提高肿瘤部位的有效浓度,减少毒副作用;

(3)纳米材料有潜在的毒性,可降低纳米材料的毒副作用以达到临床应用的标准;

(4)寻找优质材料,优化结构,提高材料的生物相容性、生物安全性,并针对不同的药物溶解性设计特定的载体和功能材料骨架,增加细胞的摄取和利用;

(5)生物合成方法与其他合成方法相结合,无机与有机材料组合成复合材料,组装成集检测与治疗于一体、多靶点的功能材料;

纳米医学论文篇2

1纳米医药发展前景分析

纳米医药是最近才出现的一个多学科交叉的领域。虽然目前已经进入市场的纳米医药产品不多,而且这一高风险高回报的领域还并没有充分确立,但是,利用纳米技术的药释系统、诊断方法和药物研发方法正在使药物的版图发生革命性变化,尤其是靶向特异性药释系统很有可能解决许多医学问题。尽管人们对纳米医药的预测是十分鼓舞人心的,但是纳米医药研发也面临着巨大的挑战,主要包括:①成本高。②在没有相关的安全指南出台前,很难得到公众的信任。③能得到的风险投资相对较少。④人们对纳米材料与活细胞之间关系(如生物相容性问题和纳米材料的毒性)了解较少。⑤大型制药公司不愿意向纳米医药投资。⑥生产缺少质量控制,重复性差等。⑦专利局(如美国专利与商标局)和药物审批部门(如FDA)管理措施混乱和滞后。⑧媒体对纳米材料尤其是纳米医药负面影响(尤其是环境、健康和安全性)的关注。为了在政策上适应并促进纳米医药的发展,各国政府也采取了各种措施,希望解决上述问题。各国专利局都在不断改进对纳米医药相关专利的审查,各国政府管理部门也正在制定纳米药物的相关安全指南,以便适应纳米医药产品的发展需求。下面将对美国纳米医药审查体系进行详细介绍和分析。

2纳米医药专利发展现状

在过去十年中纳米医药领域的研究文献和专利申请都迅速增长。欧洲专利局的一项调查显示,向欧洲专利局提交的纳米医药专利已经由1993年的220件上升到了2903年的2000件。根据欧洲专利局的统计结果,在纳米医药专利申请方面,美国一直处于全球领先的地位,从1993—2003年间,其专利申请约占全球总申请量的54%,随后依次是德国占12%,日本占5%,法国和英国均占3%。我国目前只有清华大学材料系研究的纳米人工骨在美国获得了专利。从全球纳米医药专利申请所涉及的领域来看,药释放系统专利最多,约占全球纳米医药专利申请总数的59%,接下来依次是体外诊断方法、成像技术和生物材料专利,分别占14%,13%,8%,药物、治疗和活性移植物方面的专利相对较少,各占3%左右。无论是研究人员、生意人还是专利从业者都意识到纳米医药专利的重要性,都在努力获得尽可能广泛的纳米高分子材料的专利保护。市场上的纳米医药产品相对缺乏也推动了纳米医药专利工作的发展。制药公司认为获得专利是证明自己实力、吸引风险投资的最佳途径。有一些公司认为如果他们不去抢先申请尽可能多的专利,就很可能会因为被别人抢先申请而使自己处于被动地位。同样,研究人员为了提高学术地位也感到申请专利的必要。大多数发明者发现在纳米医药专利出现的早期,PTO对纳米医药专利的管理是比较混乱的,但这正是对有价值的上游技术获得广泛专利保护的绝佳时期。在今后的几十年中,纳米医药将会不断的走向成熟并获得突破性的成果,专利将会给公司带来大量的实施许可费并成为公司交易和合并的杠杆。

3纳米药释系统专利的申请

3.1纳米药释系统专利开发的优势和方法

纳米医药对药释系统已经产生了重大影响,制药公司目前已经意识到药释系统的研究是他们研发过程中必不可少的一部分。根据来自《NanoMar-kets))的一份市场报告的测算,到2012年,纳米技术将使药释系统产生48亿美元的收入。该报告还指出,到2009年全球药释产品和服务市场的收入将超过670亿美元。另外一份来自《NanotechnologyLawBusiness))的市场报告也指出纳米技术能使药释系统市场的销售额从2005年的12.5亿美元增至2010生国堑堑苤查!!塑生塑!!鲞箜!!塑年的52.5亿美元,2015年会增至140亿美元。固体纳米微粒是尺度在1—1000nm的颗粒,能用于药释系统。由于它具有能将各种药物基团运送到身体不同位点,并延长药物作用的性质,因此在药释系统研究中具有重要作用。纳米颗粒的大小和表面性质决定了它在体内的活性。纳米颗粒的物理性质也决定了它在体内能够达到大颗粒所不能达到的地方。另外,粒子大小也影响药物在体内各部位的分布。粒子变小,它的表面积就会呈指数增加,溶解速率和饱和度都大大增加,从而改变在体内的性质。在某些情况下,纳米颗粒药物还能够帮助降低血浆药物浓度峰值,也能防止血浆药物浓度降低至有效治疗浓度之下。目前美国的专利法允许对老药的新剂型申请专利,纳米技术就能够为已经存在的化合物提供新的剂型。这些新剂型能够获得FDA和PTO的批准。只要老药的纳米剂型能够满足专利性的要求,就能申请专利。在美国,创新性的药释系统本身也可以申请专利。创新性的药释系统能够帮助制药公司对已经专利过期或即将过期的化合物设计出新剂型。这种策略能够拖延或打击非专利药对过期专利药的冲击,尤其是当改进剂型的药物优于原专利药时。实际上,这种策略也延长了原专利药物的生命周期,通常也被称为“常绿化”策略。

3.2纳米药释系统专利的审批和申请

3.2.1纳米药释系统新药的审批应当指出的是,把已有药物改造为纳米药物通常会导致产生创新性的新化学实体(NCE),因为纳米药物与原药物的药代动力学数据是完全不同,换句话说,就是不具有生物等效性,因此纳米制药公司并不能通过缩短的新药申请(ANDA)来通过FDA的审批。

3.2.2纳米药释系统专利的专利性审查标准我们现在还很难判断,纳米颗粒专利是否也将会面临电子商务和生物技术曾经面临的专利障碍。电子商务与生物技术专利最初是被认为不具有专利性的。无论如何,基于纳米颗粒的药物剂型和其他纳米发明一样,只要满足专利性的要求就可以申请专利。在美国,大小本身并不是专利性的标准,某个装置或方法如果只在大小上发生了改变,并不能使其具有专利性。事实上,法条中已经明确规定:如果仅对某种物质、装置的大小加以限定并不足以使其与现有技术相区别而具有专利性。美国联邦巡回法院(CAFC)也认为:如果权利要求中描述的发明仅大小上与现有技术相区别,而在作用上与现有技术没区别,那么,这项发明就不具有新颖性。也就是说,具有纳米级量纲的物质也必须具有新的功能才具有专利性。此外,产品发明者还必须能够证明他们的发明对于本领域普通技术人员来说,不是显而易见的。

3.2.3纳米药释系统专利申请中的困难——证明具有非显而易见性嵋。对已有药物的新剂型申请专利,最大的困难就是证明该项发明的非显而易见性。FrO常认为,新的药物剂型不过是药物的优化,因此,并不具有可专利性。如果剂型中改变的只不过是成分,并且新增的成分曾经被用在其他的剂型中,产生能够预期的作用,这种观点当然是很有道理的。专利申请者要想说服审查员所申请的剂型不具有显而易见性,就必须证明该剂型具有意想不到的优点或改进。例如,降低毒性、增加生物利用度或改变生物利用度、改变药物稳定性、溶解度或活性。这就需要在专利申请中递交相关的试验数据,其中还包括与申请的剂型最接近的现有技术中的剂型的试验数据。这样,专利申请者就能够证明自己的发明具有创新性。由于纳米微粒药物的现有技术还不是很成熟,纳米微粒的性质也常常是很难预测的,因此证明纳米药物与传统药物相比具有意想不到的优点,从而获得专利授权是相对容易的。然而,随着纳米药物现有技术的不断增加,这种专利申请的趋势终将会改变,也将会有越来越多的有关纳米技术的专利、法律问题显现出来。

4美国纳米医药专利体系存在的问题

4.1纳米技术的定义不准确纳米技术面临的一个问题是专家们对纳米技术的定义见仁见智。纳米技术是个概括性用语,它被用于定义产品、过程和特征,并覆盖了物理、化学和生命科学。美国国家纳米技术计划(NNI)中采用的纳米技术的定义是被引用最广泛的一种定义:“1~100nm尺寸问的物体,其中能有重大应用的独特现象的了解与操纵。”然而,一些专家反对给纳米技术限定如此严格的定义,他们认为应该强调数值范围的连续性而不是纳米到微米的界限。很显然,NNI的定义排除许多微米级的方法和材料,而许多纳米科学家都把微米量纲也纳入了纳米技术的范畴。实际上,许多政府机构都面临如何选用纳米技术的定义的问题。例如,FDA、PTO都采用了小于100nm的定义,也就是NNI的定义。这种定义就带来了许多麻烦,这不仅给纳米专利统计工作带来了困难,同时也给正确评估纳米技术的科学、法律、环生垦堑垫盘查!!塑生笙!!鲞篁!!塑境、管理和伦理学问题带来了麻烦。由于纳米技术需要许多技术的集合,每项技术又都有不同的特征和应用。小于100nm的大小可能对于纳米成像公司来说非常重要,因为量子效应直接依赖于粒子的大小。但是,这种大小的界限对于制药公司可能并不十分重要,因为从成分、剂型和有效性的角度来说,大于100nm的尺度也许才能获得某些理想的性质(如提高生物利用度、降低毒性、减少剂量、增强溶解度等)。有些专家指出,纳米技术并不是什么新的概念,因为许多生物分子都与纳米物质具有相似的大小。例如,肽分子的大小与量子相当(<10nm),一些病毒与用于药释系统的纳米微粒的大小类似(<100nrfl)。因此,大多数分子药物和生物技术都可以纳入到纳米技术的分类中。因此,一些研究者建议纳米技术的定义中对纳米微粒的定义不应仅仅局限于大小本身。欧洲科学基金会对医药领域的纳米技术作出了如下的定义:“采用分子手段和知识用于诊断、预防和治疗疾病,改善人们健康的科学和技术。”这种定义没有局限于分子的大小,而是强调了对纳米材料的可控性操作是否能够带来医疗效果的改进。对于这个问题,也有学者提出,在纳米医药领域,不应该采用NNI的有关大小的限制,而应该把纳米技术应被称为“微型技术”更加合适,这样才能把纳米技术和显微技术都包括在内。

4.2纳米技术的定义不准确导致专利分类产生偏差2004年11月,PTO公布了一个纳米技术的初步分类(被称为第977类),并且还正在不断补充977类下面的小类。2006年,12月,PTO把大约4500项专利申请纳入了第977类中。然而,这个数字实际上只是很粗略的估算,低于实际的纳米技术专利申请数量。这主要是因为FrO借用了NNI的非常狭窄的定义用于专利分类,就导致了专利分类系统产生偏差,尤其是对纳米医药和生物纳米技术有关的发明进行分类时,偏差就更加明显。另外,这种分类标准既不能很好地体现纳米医药发明特有的特征,也很难体现出纳米医药所包含的跨学科特征。PTO利用这种具有明显偏离的分类系统筛选出的几千项专利并没有达到当初建立977分类的目的,而当初的目的是:统计纳米技术领域的专利申请数量和授权数量、方便专利审查员和专利人进行纳米技术专利的检索。

4.3在纳米医药领域的现有技术检索中存在的问题和挑战

4.3.1审查员的检索资源和水平有限在纳米医药领域的检索中也存在着各种各样的问题。例如,一些专家认为PTO缺乏有效检索纳米医药现有技术的自动检索工具。另外,他们的数据库可能存在数据遗漏的问题。虽然,纳米医药专利的申请已经有显著增加,但是大多数的现有技术都被发表在杂志或书中。网站中的信息和公开的专利文献只是作为辅助的信息。而很多非专利文献,专利审查员是很难获得的,一方面是由于PTO并没有订购相关的商业数据库,另外一方面有些审查员在检索方面还不是非常专业。结果,专利审查员很可能会漏掉一些现有技术。这个问题可能并不仅仅是纳米医药专利审查中存在的问题,在其他技术领域的专利审查中也很常见。

4.3.2检索词难以确定由于目前广泛使用的纳米技术的定义常常相互重叠,就使对纳米技术相关专利的检索比其他技术领域的检索更加复杂。不同的检索词可能指的是相同的纳米材料和结构。例如,“nanofibers”、“fibrils”和“nanotubes”都可以代表多层碳纳米管,“singleshellnanocylinders”,“bucky—tubes”,“nanowires”and“nanotubes”都可以代表单层碳纳米管,因此要想精确作出纳米技术的专利地图是非常困难的。

4.3.3有些文献存在“假象”事实上,有些发明者在专利或出版物常常会把自己的发明撰写得十分隐蔽,以使自己潜在的竞争对手不会注意到他们的技术。另一方面,有一些具有商业头脑的发明者或发明的受让人,会把带有纳米的词汇加纳入到他们的专利或出版物中,以便获得较强的市场竞争力。因此,要在现有技术中找到真正的纳米技术,不但需要在检索专利和商业数据库时巧妙地选择关键词和专利分类代码,还要经过纳米技术专家的筛选,才能检索到最全面、最可靠的现有技术。十几年来,许多国家的专利局都面临着接受大量纳米医药相关专利申请的问题,PTO也不例外。随着纳米医药专利申请量的增多,其授权量也在不断猛增。但是由于PTO没能很好地解决审查工作质量低、专利授权量失控性猛涨以及职业道德降低的问题,将会对越来越紧迫的纳米医药的专利问题带来严重影响。归纳起来,PTO目前正面临的问题有:①审查员由于所能接触到的现有技术和检索水平有限,不能保证对每项纳米医药专利申请进行充分审查,做一】556一生垦堑堑苤查!!塑生笪!!鲞箜!!塑出授权决策依据的信息也往往有限。②审查员缺乏。③资金缺乏。④审查员的薪水只与审查数量挂钩,而不考虑审查质量,所以,审查质量低。⑤除了聘请过少数专家开展有关纳米医药讲座外,几乎没有聘请过外部的法律和技术专家。⑥Fro并不要求其审查员具有很高的学历。⑦没有专门针对纳米医药专利审查的培训教程和审查指南。

纳米医学论文篇3

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。?

?

1应用于生物医学中的纳米材料的主要类型及其特性?

1.1纳米碳材料?

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。?

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的afm探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属fe、co、ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 k~1473 k的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称dlc)是一种具有大量金刚石结构c—c键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。?

1.2纳米高分子材料?

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。?

1.3纳米复合材料?

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米zro2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。?

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。?

2纳米材料在生物医学应用中的前景?

2.1用纳米材料进行细胞分离?

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。?

2.2用纳米材料进行细胞内部染色?

比利时的de mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(haucl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。?

2.3纳米材料在医药方面的应用?

2.3.1纳米粒子用作药物载体?

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。?

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(pla)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(nps)在基因治疗中的dna载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料?

ag?+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。?

2.3.3智能—靶向药物?

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。?

2.4纳米材料用于介入性诊疗?

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用?

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。?

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为dna导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。?

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行或使引起癌症的dna突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(rom)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。?

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献?

[1]philippe p,nang z l ?et al?.science,1999,283:1513?

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441?

[3]赖高惠编译.化工新型材料,2002,(5):40?

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214?

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24?

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133?

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336?

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510?

[9]刘新云.安徽化工,2002,(5):27-29?

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71?

[11]李沐纯等.中国现代医学杂志,2003,13:140-141?

纳米医学论文篇4

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

纳米医学论文篇5

【关键词】纳米材料生物医学生物安全性

一、引言

纳米材料主要是指结构单元在纳米尺寸范围(1~100nm)内的一类材料,由于表面原子具有很大的比表面积,其表面能极高,从而获得较多的表面活性中心,化学性质十分活泼,因此纳米材料通常具有特异的性能。纳米材料的发现始于20世纪80年代初期,随后人们逐步发现其在光学、磁学、电学和力学方面具有比普通材料更加优越的特性,进而得到了多个领域的关注并逐渐发展起来,广泛应用于生物医学、环境、航空航天和石油钻探等领域的研究。尤其是在生物医学方面,基于纳米技术的药物和传感器已经应用到实际的医学应用中,而且能够得到是理想的治疗和诊断结果。通过从纳米尺度进行精确地制备纳米材料,人们打开了更小的微观世界,特别是生物体细胞层面上的化学反应都发生在纳米的度,纳米材料的使用能有效地检测或调控微观的生理和病理过程。纳米材料发展对医学诊断和医学治疗具有重大意义,已经成为医学界关注的热点和前沿,具有广泛的应用前景和产业化发展空间[1]。

二、纳米材料在医学诊断中的应用

2.1纳米生物传感器

纳米生物传感器是一种由纳米材料制成的检测装置,主要根据将检测到的信息按一定规律变换为电信号或以其他的形式输出,使人们能定量定性地分析检测物质。生物传感器的研发中人们使用纳米材料,能够提高生物传感器的灵敏度以及检测范围。同时以纳米材料制备的新型传感器具有稳定性好,成本低,生物相容性好等优点,在医学的临床诊断方面得到了高度重视,特别是作为一项新兴的前沿技术,纳米生物传感器的研发能够进行早期癌症的诊断。纳米传感器可以利用高灵敏度的特点,在血液中可通过微小的电流变化反映出癌细胞的种类和浓度。这种对癌细胞进行的精确分析,有望实现特殊疾病的无创、快速诊断,今后人们只需将纳米材料注入人体内,便能在短时间内完成确诊。

2.2纳米生物成像技术

在临床诊断中,通过对生物体内的细胞或特定组织进行直观的图像分析,能够迅速高效且准确地获得生理和病理信息。随着纳米技术的飞速发展,新型的纳米材料被不断制备出来,并且广泛应用于生物医学成像领域。碳纳米管具有良好的发光性能,而且毒性极低,具有良好的生物相容性,能够制备成生物荧光探针用于癌细胞的成像[2]。氧化铁磁性材料具有良好的超顺磁性,能够应用于核磁共振成像的研究中,由于其能在生物体内特异性的分布,该部位的肿瘤与正常组织的对比度能够显著提高。目前氧化铁磁性材料可作为造影剂广泛应用于临床的肿瘤及其他疾病的诊断[1]。另外,稀土离子掺杂的纳米材料具有良好的光学性质,能够实现多种颜色的可调发光,同时能够避免生物体自身产生的荧光干扰,极大地提升光学成像效果。总之,在未来的生物成像领域,新型功能的纳米材料将发挥至关重要的作用。

三、纳米材料在医学治疗中的应用

3.1纳米载药技术

纳米载药是指首先制备纳米级的载体,荷载药物后输入人体,最终在人体内控制释放的技术。作为一种新型的给药技术,纳米载药是多学科包括药理学、化学、临床医学交叉研究发展的产物,其最大的优点是具有靶向性和缓释性。靶向性可以使给药更加精确,不仅可以在增加生物体局部药物浓度的,而且同时可以控制其他部位的药物浓度,减少对其他组织部位的副作用。缓释可在保证药效的前提下减少药量,同时减少用药频率,进而减轻药物引起的不良反应。对于某些难溶性药物,纳米药物载体可有效减小药物粒径,从而增加其溶解度和溶出度,提高药物的溶解性提高治疗效果。另外,纳米载体提供了封闭包覆环境,药物能在到达作用部位之前尽量保持自身结构的完整性,维持较高的生物活性。目前,能够作为药物载体的纳米材料有介孔二氧化硅、纳米多孔硅和碳纳米管等,尽管短时间内对生物体无毒性,但其在生物体内的降解情况不理想。为了提高药物载体的降解特性,人们开始关注更易体内分解的高分子纳米材料,如聚合乳酸、乳酸-乙醇酸共聚物、聚丙烯酸酯类等,这些材料能在人体内可水解,降解成无毒产物,是十分有发展前景的药物载体。

3.2纳米生物医用材料和纳米生物相容性器官

纳米材料和生物组织在尺寸上存在着密切的联系,如核酸指导蛋白质合成过程种形成的核糖核酸蛋白的尺寸就在15-20nm之间,影响人体健康的病毒尺寸也在纳米的范围之内。纳米材料和生物医学的紧密结合,制备纳米医用复合材料及相容性器官,广泛应用于生物医学治疗的研究中,如制备人造皮肤、血管以及组织工程支架等[3]。在人造骨中,纳米钛合金具有促进骨细胞发育的功能,使骨细胞紧密贴壁生长,同时加速材料和组织的融合。同时,纳米级的羟基磷灰石或聚酰胺复合骨充填材料可以有效填补骨缺损,具有良好的生物相容性,并且能够促进骨细胞生长。根据血液中的红细胞具有运载氧气的功能,人们开发出纳米级的人造红细胞,实现了比普通红细胞更高的氧气运载能力。如果人体心脏因意外而停止跳动,可以立刻注入人工的纳米红细胞,提供更加充足的氧气[4]。此外该技术在贫血症和呼吸功能受损的治疗中发挥着重要的作用。

四、纳米材料的生物安全性问题

随着科技水平的不断提升,纳米材料在生物医学领域越来越广泛,但是纳米材料与人类接触的过程中依然受到安全性问题的困扰。某些纳米材料可以穿透皮肤,透过细胞膜破坏正常细胞引发炎症,造成免疫、生殖和脑部组织的损伤,如超小的TiO2纳米颗粒能引起严重的呼吸道组织变化,导致上皮组织渗透性增加,引起多种炎症。此外,许多物质在普通条件下并无生物毒性,而在降低到纳米尺寸下材料因难以通过正常代谢途径排出体外表现出蓄积毒性,因此纳米材料的生物安全性是亟需解决的问题。目前已经很多科研工作者积极致力于研究纳米材料的安全性问题,研究发现碳基纳米材料(如碳纳米管和石墨烯)会引起生物体内细胞膜磷脂的破坏,造成结构损伤破坏,引起细胞的功能异常;金属氧化物(氧化锌和二氧化钛)易发生氧化还原反应,因该过程会释放电子,会产生一定的细胞毒性,而且其纳米材料的尺寸越小,其比表面积越大活性越高,产生的电子所引起的毒性越强[5]。为了真正实现纳米材料在临床医学中的应用,人们采取了一系列策略降低纳米材料的毒性,如对纳米材料进行表面修饰提高其生物相容性,降低材料的使用剂量和暴露时间,调整纳米材料的反应环境,以及开发可降解的纳米材料。但是大多数纳米材料的毒性问题依然没有彻底解决,其生物安全问题依然是限制纳米材料临床使用的重要因素。

纳米医学论文篇6

怎么

【关键词】  纳米;辛夷;鼻黏膜;蛙上腭黏膜;过敏性鼻炎

         Influence of Magnolia Biondii Pamp Volotile Oil Nanometer Bangosome on Nasal Membrane and Ciliary  LU Wei-wei, WU Min, Xi Zheng-jun, et al Xinhua Hospital, Medical College of Shanghai Jiaotong University, Shanghai 200092, China    Abstract:Objective To investigate the toxicity of nasal membreane and ciliary of the Magnolia biondii Pamp volotile oil nanometer bangosome. Methods Toad palate and rat nasal membrane were used as experimental material, physiological saline and hydrochloride ephedrine as negative control. The Magnolia biondii Pamp volotile oil nanometer bangosome on ciliary movement were carried out using in vitro and electron microscope technique. Results The Magnolia biondii Pamp volotile oil nanometer bangosome had little cilitoxicity to toad palate and rat nasal membrane. Conclusion The Magnolia biondii Pamp volotile oil nanometer bangosome had little cilitoxicity to membrane.    Key words:nanometer bangosome;Magnolia biondii Pamp;nasal membrane;toad palate;allergic rhinitis    过敏性鼻炎是临床常见病,以鼻痒、喷嚏、鼻分泌亢进、鼻黏膜肿胀为主要特点,常伴发哮喘、鼻窦炎和分泌性中耳炎等上、下气道疾病,影响患者生活质量,增加经济负担。滴鼻剂、喷雾剂在治疗中起着重要的作用,但有些药物在鼻腔局部给药后,会影响鼻腔黏膜纤毛系统的功能[1]。辛夷具有散风寒、通鼻窍之功,主要有效成分是挥发油。本课题组在前期研究中采用纳米技术成功的制备了包含辛夷挥发油的纳米脂质体,通过动物实验证实纳米辛夷挥发油脂质体有抗炎、抗过敏作用。本实验进一步探讨其对蛙口腔黏膜纤毛活动的影响及对大鼠鼻黏膜毒性作用。现报道如下。

1  实验材料

1.1  动物及分组    蛙48只,体重30~40 g,雌雄不拘,上海交通大学医学院附属新华医院动物中心提供,使用许可证号:SYXK(沪)2003-0031。随机分为6组(每组8只):氯化钠溶液组、1%盐酸麻黄碱组、辛夷挥发油(相当于原药材55.6 g/mL)组、大剂量纳米辛夷挥发油脂质体(5.01 mg/mL)组、小剂量纳米辛夷挥发油脂质体(2.505 mg/mL)组、酮替酚组。清洁级SD大鼠16只,6~8周龄, 250 g左右,雄性,随机分为对照组、实验组,每组8只。1.2  仪器和试剂    光学显微镜(OLYMPUS BX51TF,Japan),电镜(飞利浦CM- 120),眼科剪,止血钳,注射器,蛙板,生理盐水,1%盐酸麻黄碱,辛夷花(上海华清中药饮片公司,批号2004102802),纳米辛夷挥发油脂质体(自制,5.01 mg/mL),酮替酚滴鼻液(山东鲁杭辰欣药业有限公司,批号0506271)等。

2  实验方法

怎么

2.1  纳米辛夷挥发油脂质体对蛙上腭黏膜纤毛活性的影响[2-3]

    将蛙仰卧固定在蛙板上,牵开蛙口,用眼科剪分离并剪下3 mm×3 mm上腭黏膜,用0.9%氯化钠溶液洗净表面的血液和粘液,黏膜面向上平铺于载玻片上,于黏膜表面滴0.2 mL实验药液,轻轻盖上盖玻片,在室温下置40倍光学显微镜下观察并记录从点药开始至纤毛停止摇动所经过的时间。在此期间要不断从盖玻片与载玻片的缝隙中滴加药液,使纤毛始终浸泡在药液中,总量不超过0.5 mL。计算各组纤毛自身摆动时间的均值和标准差,并做组间比较。

2.2  纳米辛夷挥发油脂质体对大鼠鼻黏膜毒性试验

    滴鼻给药,每日3次,共15 d。给药剂量:实验组用纳米辛夷挥发油脂质体(5.01 mg/mL)滴鼻3次,每次0.2 mL;对照组用氯化钠溶液滴鼻3次,每次0.2 mL。第15天实验结束,取1 mm3鼻中隔黏膜置于4%戊二醛缓冲液及锇酸进行固定、脱水、包埋,超薄切片及电子染色后,电镜观察。

2.3  观察指标

2.3.1  蛙上腭黏膜纤毛自身摆动时间

 

计算各组纤毛自身摆动时间的均值和标准差,并做组间比较。

2.3.2  电镜观察大鼠鼻黏膜

取1 mm3鼻中隔黏膜置于4%戊二醛缓冲液及锇酸中进行固定、脱水、包埋,超薄切片及电子染色后,电镜观察。

2.4  统计学方法

    采用SPSS11.0统计软件进行统计分析。对各组均数做组间t检验。

3  结果

怎么

3.1  纳米辛夷挥发油脂质体对蛙上腭黏膜纤毛活性的影响

(见表1)表1  纳米辛夷挥发油脂质体对蛙上腭纤毛运动的影响

(略)注:与生理盐水组比较,*P<0.05;与1%盐酸麻黄碱组比较,#P<0.05;与酮替酚滴鼻液组比较,P<0.05;与小剂量纳米辛夷组比较,P<0.05;与辛夷挥发油组比较,■P<0.05。

3.2  纳米辛夷挥发油脂质体对大鼠鼻黏膜毒性实验

  

纳米辛夷挥发油脂质体对大鼠鼻黏膜毒性实验的结果见图1。从图1可以看出,对照组给予生理盐水15 d后,电镜下可见纤毛细胞结构良好,胞质内线粒体等结构正常,细胞间连接良好。实验组给予纳米辛夷挥发油脂质体15 d后,电镜下可见超微结构与对照组基本相似,纤毛内部结构基本正常,细胞间连接结构存在。在上皮区域可见较多散在杯状细胞,在上皮细胞表面可见排列密集一致的纤毛。

4  讨论

    辛夷用于鼻炎的治疗[4-5]临床疗效确切,其主要成分为挥发油,具有广泛的药理活性,治疗的靶点较多,它可以通过抗组胺、抗过敏、抗炎和对肥大细胞的保护作用等多个环节发生影响。但由于其易挥发、吸收少、有一定刺激性、药物作用的靶向性不明了而限制了其在临床上的推广应用和疗效的发挥。纳米脂质体具有高效、低毒、可生物降解、生物膜通透性高的特点[6],成为中药纳米化最理想的载体材料之一。

    本课题组发挥中医特色,多年来对中药辛夷做了充分的研究[7-8],在纳米砂仁挥发油脂质体[9]研制的基础上,进一步研制出了纳米辛夷挥发油脂质体,以期达到增强疗效、增进稳定性、减少鼻黏膜刺激性等目的。通过动物实验证实了纳米辛夷挥发油脂质体有抗炎、抗过敏作用。本实验进一步探讨其对蛙口腔黏膜纤毛活动的影响及对大鼠鼻黏膜毒性作用。

  

鼻腔作为药物的给药部位日益受到关注,鼻腔给药后可获得满意的生物利用度,但必须注意对鼻纤毛的毒性作用。鼻腔黏膜表面覆盖着一层柱状纤毛,正常情况下,纤毛协调一致摆动,可以清除进入鼻腔的异物,起到保护作用。鼻腔给药后,纤毛运动受到不同程度的影响,从而影响鼻腔正常生理功能。药物对鼻黏膜的毒性主要表现为对黏膜纤毛的毒性,首先是对纤毛摆动的影响。而纤毛的毒性大小,受药物本身及其浓度大小、药物的渗透压、pH值等很多因素的影响。评价药物或辅料对鼻黏膜纤毛毒性的方法有在体动物模型试验法和离体动物模型试验法,选用动物模型主要有鸡胚胎气管黏膜纤毛、大鼠鼻黏膜纤毛和蛙或蟾蜍上腭黏膜纤毛,均与哺乳动物鼻黏膜纤毛相似。大鼠鼻黏膜和蛙或蟾蜍上腭黏膜模型法材料易得,操作简便,故应用较广。

怎么

    本实验以生理盐水和盐酸麻黄碱为阴性对照,采用蛙上腭黏膜及大鼠鼻黏膜,考察纳米辛夷挥发油脂质体对黏膜纤毛毒性。结果显示,生理盐水、1%盐酸麻黄碱、酮替酚及小剂量纳米辛夷挥发油脂质体对纤毛摆动的抑制作用低于大剂量纳米辛夷挥发油脂质体,但大剂量纳米辛夷挥发油脂质体对纤毛摆动的抑制作用明显低于辛夷挥发油(P<0.05);电镜结果显示,纳米辛夷挥发油脂质体对大鼠鼻黏膜的结构无明显影响。本制剂为中药挥发油纳米制剂,主要成分为临床上常用辛夷挥发油,由于辛夷挥发油刺激性很大,严重影响了临床应用,本课题组运用纳米技术成功制备了纳米辛夷挥发油脂质体,解决了这一难题。但是,纳米辛夷挥发油脂质体仍具有一定的粘稠度,其渗透压很难与生理盐水相等,这可能是对纤毛运动有抑制的主要原因。另外,分离黏膜时不可避免的会破坏粘液层,同时离体黏膜自身的缺血缺氧也是影响纤毛运动的重要原因。

【参考文献】

  1] 中华人民共和国卫生部药政局.中国医院制剂规范[M].第2版.北京:中国医药科技出版社,1995.162.

[2] 蒋新国,霍景斌,方晓玲,等.药物的鼻黏膜纤毛毒性及评价方法[J].药学学报,1995,30:848.

[3] Meun SG, Verhoef JC, Marttin E, et al. The effect of nasal drug formulation on ciliary beating in vitro[J].Int J Pharm, 1996,135:137-145.

[4] 李小莉,张永忠.辛夷挥发油的抗过敏实验研究[J].中国医院药学杂志,2002,22(9):520-520.

[5] 王文魁,张 映,沈映君,等.辛夷油的药效学实验研究[J].中国兽药杂志,2000,34(4):23-23.

[6] Lieb LM, Ramachandran C, Weiner N, et al. Follicular (pilosebaccous unit) deposition and pharmacological behavior of cimetidine as a function of formulation[J].Pharm Res,1994,11:419-423.

怎么

[7] 吴 敏,倪健俐,李 战.辛苍合剂对哮喘小鼠白细胞介素4、5的影响[J].上海中医药大学学报,2004,18(1):54-55.

纳米医学论文篇7

论文摘要:纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。

人类对物质世界的研究,曾小到原子、分子,大到宇宙空间。从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。物质是由原子或分子构成的,原子、分子是保持物质化学、物理理特性的最小微粒。这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。

随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值。

近年来,已在医药、生物、环境保护和化工等方面得到了应用,并显示出它的独特魅力。

1医学方面的应用:

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。

在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。4其他生活方面的应用:

纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。

总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。

参考文献

[1]赵清荣:雷达与对抗[J],2001,(3):20-23。

[2]秦嵘等。宇航材料工艺[J],1997,(4):17-20。

纳米医学论文篇8

论文摘要:纳米尺寸开辟科学新领域,介绍纳米材料的神奇特性及在生活中的应用。

人类对物质世界的研究,曾小到原子、分子,大到宇宙空间。从无限小和无限大两个物质尺寸去认识物质,使人们了解到世界是物质的。物质是由原子或分子构成的,原子、分子是保持物质化学、物理理特性的最小微粒。这为人类认识世界、改造世界推进科学的向前发展提供了坚实的理论基础,也产生了一个个的科学原理和定理,推动了人类生产和生活的不断向前发展。

随着科学研究的进一步发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值。

近年来,已在医药、生物、环境保护和化工等方面得到了应用,并显示出它的独特魅力。

1医学方面的应用:

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

4其他生活方面的应用:

纳米医学论文篇9

关键词:磁性纳米颗粒;细胞相容性;实验

中图分类号:Q6-3 文献标志码:A 文章编号:1008-2409(2016)03-0026-04

磁性纳米颗粒(magnetic nanometer microspheres,MNMs)作为磁控纳米载药系统的载体,载药后具有缓释药物、延长药物作用时间,使药物具有靶向性,使药物能浓集于靶器官而降低用药量,避免或减轻毒副作用等优点。磁性纳米颗粒已成为周内外物理材料科学与生物医学技术的前沿研究热点。但目前用于载药的磁性纳米微球种类不多,制备工艺复杂,用于与载体结合的药物种类的研究不多,且仅用于实验研究,使用范围极其有限。F3O4磁性纳米粒子由于其优良的磁性和易加工性,特别是超顺磁性,在生物、医疗等各个方面都得到了广泛应用,本实验研究用简便的方法制备Fe304磁性纳米微粒,研究其生物相容性,为其下一步的载药及临床应用打下实验基础。

1材料与方法

1.1药品与试剂

F3O4/石墨烯磁性纳米颗粒(由桂林理工大学材料科学与工程学院教育部重点实验室制备);MTT液(购自Sigma公司);二甲基亚砜(DMSO)、RPMI-1640及DMEM培养基均购自GBICO公司;小牛血清(FBs)、胰蛋白酶(Hyclon公司);其他常用试剂均购自Sigma公司。

1.2细胞株

人鼻咽癌CNE-2细胞株(桂林医学院生物技术学院中心实验室保存)。人滑膜细胞(桂林医学院附属医院骨二科提供)

1.3仪器

CO2培养箱(美国Thermo Fisher),倒置显微镜(Axiover-40,德国蔡司公司),SW-CJ-IF型超净工作台(苏州安泰空气技术有限公司);Coming Costar细胞瓶及培养板(美国康宁),其他细胞培养常用仪器均为国产。

1.4方法

1.4.1磁性纳米四氧化三铁核心的制备 参照文献利用共沉淀方法制备F3O4:按摩尔比为1:2准确称取FeO和F3O4,总质量为3 g,移入圆底烧瓶中,溶解于无氧水中并通人氮气,然后向其中滴加1 mol/L氨水,体系中不断有黑色沉淀物生成。反应结束后体系pH值为13,用无氧水洗涤沉淀物3次,直至pH值为7~8,制得的F3O4冷冻干燥,备用。

将镁条在干冰中点燃,即获得石墨烯粗品。将获得的石墨烯粗品使用稀盐酸溶解后,充分除去未反应的镁,随后使用去离子水清洗直至呈中性,超声分散30 min。静置3 d后,取上清液保存,即得石墨烯溶液。

将50 ml环己烷、10 ml Triton X-100以及8 ml正己醇混合均匀,加入600μl水以及400μl上述石墨烯水溶液及四氧化三铁,搅拌300 min形成油包水的微乳液。随后在搅拌下加入500μl正硅酸乙酯(TEOS),反应24 h。在8 000 rpm离心5 min分离,弃去上清液,下层产物分别用乙醇和水洗3次,60℃真空干燥,即获的Fe3O4/石墨烯/SiO2纳米颗粒。置透射电子显微镜下观察颗粒直径及分散状况。

1.4.2细胞实验 按常规方法复苏冻存的人鼻咽癌细胞CNE-2。收集对数生长期细胞,调整细胞浓度为1×105个/ml,铺于96孔培养板中,每孔加入200μl细胞培养液,共5组,每组设10个复孔,空白孔用Hanks液或PBS液补充。在5%CO2,37℃下培养24 h,至细胞单层达孔底80%,小心去除培养液,向每组孔中分别加磁性纳米微球溶液10μl,培养液190μl。对照组只加入200μlDMEM培养液,在5%CO2,37℃继续培养,培养期间定期用倒置显微镜观察细胞形态变化。72 h后弃去培养液,再每孔加入20μl MTT溶液(5mg/ml,即0.5%MTY),继续培养4 h。终止培养,吸去孔内MTT液。每孔加入150μl二甲基亚砜DMSO,轻轻振荡几次,使结晶物充分溶解。在酶联免疫检测仪570 nm处测量各孔的吸光度值。实验设复孔,重复1次。

人滑膜细胞培养及实验方法与人鼻咽癌细胞CNE-2相同。

2结果

2.1形态学观察

培养24 h后,在倒置显微镜下观察两种细胞:CNE2细胞中,对照组及磁性纳米微球组细胞生长良好,细胞间排列紧密,无漂浮细胞。见图1。培养48 h后。在倒置显微镜下观察,对照组及磁性纳米微球组细胞均生长正常,细胞间排列紧密,无漂浮细胞。见图2。人滑膜细胞中情况与CNE2细胞相似。见图3。

2.2 MTT法检测

检测结果见表1,表2。

从MTT检测结果来看,设置的磁性纳米颗粒组,与空白对照组数据相近,数值无明显差异。进行统计学分析,说明在培养系统中加入Fe3O4/石墨烯纳米颗粒,对两种细胞的生长没有明显的影响,说明Fe3O4/石墨烯纳米颗粒与两种细胞均具有较好的生物相容性。

3讨论

随着新型药剂学的逐步成熟,药物制剂在理论、工艺及研究等方面进入了一个全新的阶段,缓控释制剂和靶向制剂已经成为研究的热点。Fe3O4磁性纳米微粒以其小尺寸效应、良好的靶向性、生物降解性和功能基团等优点,成为一类非常重要的无机磁材料,由于其突出的磁响应性和超顺磁性在诸多领域显示出了强大的应用价值。用Fe3O4荷载药物可以弥补传统给药系统的缺陷(药物无法到达特定病变位置、无法在某个局部形成较高浓度而不产生毒副作用),也可为药物缓释的发展提供支持。目前用于合成磁性纳米微粒的方法较多,如中和沉淀法、化学共沉淀法、溶胶一凝胶法、微乳液法和水热法等。

纳米医学论文篇10

【关键词】 ,黄帝内经

[摘要] 《黄帝内经》中论述了两千多年前听音辨人的理论和技术,即通过辨别人声的二十五种变化,施以不同的饮食调理与经络调理,从而达到治未病的目的。21世纪初,在基于纳米水平的细胞声学研究中,已初步证明细胞是可以发出声音的。细胞病变时,最先产生声音的变化,故有可能通过细胞声音的变化,尽早发现疾病。此发现与《黄帝内经》中听音辨人的理论,在生命研究的不同水平上不谋而合。纳米技术有可能进入中医基础理论研究之中,从而实现中医研究的现代化。

[关键词] 黄帝内经; 二十五音; 纳米技术; 细胞声学

Possibility of applying nanotechnology to research on the basic theory of traditional Chinese medicine

ABSTRACT The ancient theory and technology which are related to preventive treatment of disease by dietetic regulation and coordinating meridian according to 25 tones have been developed in the early 21st century. It is proved in sonocytology by nanotechnology that cells are able to produce noise, and the noise will change at first when the cells have any disorders. This theory is in accordance with the one in Huangdi Neijing. The nanotechnology can be introduced into the basic research of traditional Chinese medicine and may contribute to the modernization of traditional Chinese medicine.

KEY WORDS Huangdi Neijing; twentyfive tones; nanotechnology; sonocytology

1 失传两千多年的《黄帝内经》五脏相音理论

《素问・五脏生成篇第十篇》云:“夫脉之大、小、滑、涩、浮、沉,可以指别;五脏之象,可以类推;五脏相音,可以意识……”。《素问・阴阳应象大论第五篇》云:“善诊者,察色按脉,先别阴阳;审清浊,而知部分;视喘息,听音声,而知所苦……”。《灵枢・顺气一日分为四时第四十四》云:“病变于音者,取之经。”《灵枢・五音五味第六十五》详细论述了通过区分人之声音,依据不同的声音施以不同的饮食及经络调理,以期达到治未病的目的。此文两千多年来鲜有研究者,以至明代张介宾在注释时云:“此或以古文深讳,向无明注,读者不明,录者不慎,而左右上下大少五音之间,极易差错,愈传愈谬,是以义多难解晓。不敢强解,姑存其文,以俟后之君子再正。”[1]

2 当代物理声学的研究

辨别声音是传统中医重要的诊断和治疗方法之一。但是,以耳来分辨声音,对医者的个体要求极高,这可能是《黄帝内经》五脏相音诊疗技术失传的重要原因之一。当今,物理声学对个体声音分辨的技术已十分成熟,因此有条件对《黄帝内经》五脏相音技术重新进行科学的研究。

自2002年起,笔者等[2~7]对五脏相音理论进行了整理发掘,利用现代物理声学、电磁学和计算机等技术来分辨二十五音,同时开展了大量的理论及临床应用技术研究,在临床应用中达到了预期的效果。纳米技术是一项现代高科技,利用这一技术研究传统中医基础理论,尤其是《黄帝内经》中的基础理论问题,可能会令许多人疑惑,但目前已成为一个不争的事实。

3 基于纳米技术的细胞声学

2001年,国际著名的纳米技术研究先驱Gimzewski教授得知,离体的心脏活细胞置于营养液中保存时仍会继续跳动。由此他想:如果细胞持续跳动,就会产生振动,这种振动可能是细胞分子运动产生的推力,这种推力在空气中产生压力波,传导至内耳的鼓膜,就成为人所能听见的声音。这种振动虽然很微小,但用特殊的仪器完全可以将其测出。

Gimzewski教授发明的纳米计算机,被吉尼斯纪录确定为世界上最小的计算机。利用他的原子力显微镜(atomic force microscope),可以精确测知单细胞细胞壁上的任何振动,并把它们转换为声音。检测发现:细胞壁以1 000次/s的频率上下波动,波幅平均只有3 nm左右,最高可达7 nm,最小也只有1 nm。1 nm=1/1 000 000 mm,3 nm相当于15个碳原子叠加在一起。正常状态下,酵母菌细胞的声音始终保持在一个稳定的范围内,相当于音乐的C~D调之间,就像一位中音C的歌手。当用酒精喷洒这些酵母细胞时,它们发出尖叫,振动频率大大升高;当它们垂死时则发出低沉的隆隆声。Gimzewski教授认为这可能是随机的原子运动发出的声音[8]。这些细胞的振动频率在800~1 600 Hz之间,而人的耳朵可以感受20~20 000 Hz的频率,正好可以落入人耳的听觉范围,只不过振幅太小,人无法感觉。Gimzewski教授认为,只需将音量加大,人类就能够听到这些声音。

研究还发现,具有遗传变异的酵母细胞与正常细胞相比,其发出的声音也有轻微的差异。哺乳动物的细胞与酵母细胞的发音也略有不同。因此,科学家们设想,能否根据细胞声音的变化来诊断细胞的病变。Gimzewski教授坦率地承认,他不能肯定这些细胞是否真正地发出声音,它们也可能是吸收了来自其他地方的振动,包括显微镜本身的振动。但是,如果细胞确实发生了振动,这将是一种神奇的、优雅的、新的诊断工具。Gimzewski教授把这一研究领域称为细胞声学(sonocytology)。

4 细胞声学的评价及展望

2004年3月,Gimzewski教授的研究首先发表在Smithsonian杂志上。专家评论认为,这一新信号的发现,将使人类有可能在症状未出现之前,在细胞水平就能“听”出疾病的发生[9]。现代医学是建立在显微镜发明之后才诞生的病理学基础上的一门学科,当时著名的病理学家微耳和(Virchow)宣称,一切疾病都是细胞的疾病。现代医学的最后诊断,还必须依靠病理学。细胞声学的重大意义可能就在于:在细胞还未发生病理学形态改变前,就能提示病变的可能。由此,重温《黄帝内经》中有关声音与疾病的关系,就更令人感到惊奇。

美国Science杂志未发表Gimzewski教授的研究结果之前,德国慕尼黑Ludwig Maximilian大学的Hermann Gaub教授曾说:“Gimzewski教授相信细胞的振动可能有其它来源,必须排除来自细胞外的潜在声源,但‘如果振动源来自细胞内部,这一发现将是革命性的、引人入胜的、难以置信的’”。Gimzewski教授的学生Pelling和Gimzewski教授正在做一系列的测试,以排除在细胞营养液中或由于原子力显微镜探头顶端产生振动源的可能性。美国加利福尼亚大学神经科学和生物物理学家Ratnesh Lal教授在对离体的心脏活细胞进行研究后认为:Gimzewski教授的纳米技术专业是他建立细胞声学的关键。他说:“最终目的是要用这项技术进行诊断和预防疾病,在这个世界上,能够做到这一点的,除Gimzewski教授以外,别无他人。”几个月后,美国Science杂志发表了Gimzewski教授等人的研究论文。

5 别具一格的音乐会

Gimzewski教授的学生Pelling和媒体艺术家Anne Niemetz根据细胞声学的研究结果,在洛杉矶市艺术博物馆举办了一场别开生面、举世无双的音乐会,音乐会的名称为:细胞的黑暗面[10]。进入音乐厅,就如同进入了细胞内部,既有视觉,又有音乐,还可以听见利用原子力显微镜记录下的,经过放大的细胞在各种情况下发出的声音。该音乐会由五个部分组成,以表现整个科学发现的过程:(1)观察;(2)构想来龙去脉的可能方式;(3)通过努力将细胞固有的特性顺应纳入自己特有的整合系统之中,较好地反映细胞情感反应的范围;(4)使它们符合各种环境;(5)细胞所唱的歌必须是原汁原味的,其声响效果未经任何修饰。

6 细胞发声的理论基础

目前最大的困惑可能是:一个单细胞如何具备发声功能,而更令人难以理解的是这种发声功能如何具备临床意义。如果我们能进一步了解细胞的结构,就能充分解答这一问题。

早在1961年,Buckminster Fuller首先提出细胞框架结构理论,认为细胞的结构并无一定尺寸的限制,细胞外层表面可形成完整的张力,具有充分的活力。1969年,Kenneth Snelson在此基础上提出细胞框架有如针形城堡(the needle tower)的理论,即细胞框架由蛋白链组成,它们有的薄、有的厚、有的中空,它们如线、如棒,相互连接在一起,形成一种稳定而柔韧可变的结构[11]。正是由于细胞框架具有完整张力且灵活多变,因此它们行动便捷,可以根据外界环境的变化,如温度、营养物质的浓度、化学物质的改变等种种因素,而改变自己的运动方向,得以生存和繁衍后代。也正是由于这种构造,使细胞表面具有振动的可能,因振动而产生声音,这就是我们在原子力显微镜下所看到的现象。

7 纳米技术进入中医基础理论研究的可能性

Gimzewski教授开创的细胞声学,为我们打开了微观世界中细胞运动的一个场景,并开创了一个新的高科技研究领域:声音与疾病的关系。由此联想到《黄帝内经》中论述的宏观意义上的脏腑的声音、辨色听音察体诊断疾病、以声音区分阴阳二十五人并进行饮食和经络调理以达到治未病的理论,将其与微观的细胞声学理论进行比较,我们发现了两者之间惊人的相似之处。

微观与宏观之间,即从细胞、组织、器官,再到人体,这中间还有许多环节,我们目前还不知道他们之间存在的确切关系,尚有待我们进一步的研究和证实。譬如经络,至今我们仍无法直观确定,只能运用间接手段加以证实。

运用纳米技术研究中医基础理论,将使传统中医基础理论的研究跃入现代科学研究领域的前沿。但愿我们有一天能揭开传统中医的神秘面纱。

[参考文献]

1 张介宾. 类经[M]. 北京: 人民卫生出版社, 1965. 110.

2 高也陶. 阴阳二十五人的经络调理[M]. 北京: 中医古籍出版社, 2003. 1200.

3 高也陶, 潘慧巍. 磁石美颜祛病养生系统[J]. 中华实用医药杂志, 2003, 3(20): 18771878.

4 高也陶, 潘慧巍, 吴丽莉. 阴阳二十五人的经络调理[J]. 中华医学研究杂志, 2004, 4(1): 18.

5 高也陶, 时善全, 吴丽莉, 等. 循经传感磁疗贴的磁场强度变化研究[J]. 中华医学研究杂志, 2004, 4(6): 500502.

6 高也陶, 石春凤. 《黄帝内经》中阴阳二十五人对应的二十五音[J]. 中华医学研究杂志, 2004, 4(7): 577580.

7 高也陶, 施 鹏, Sheldon XL. 《黄帝内经》阴阳二十五人分型的数学建模[J]. 医学与哲学, 2004, 25(12): 4144.

8 Pelling AE, Sehati S, Gralla EB, et al. Local nanomechanical motion of the cell wall of saccharomyces cerevisiae[J]. Science, 2004, 305(5687): 11471150.

9 Wheeler M. Signal discovery?[J/OL]. Smithsonian, March 2004. smithsonianmag.si.edu/smithsonian/issues04/mar04/phenomena.html.