无线传输技术论文十篇

时间:2023-03-25 18:26:59

无线传输技术论文

无线传输技术论文篇1

由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。

WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。

CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。

1.WCDMA与CDMA2000的物理层技术比较

WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。

(1)这两个标准的物理层技术相似点可以归纳为以下几点:

①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。

②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。

③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。

④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。

(2)两个标准的物理层技术差异可以归纳为以下几点:

①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。

②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。

③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。

④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。

2.WCDMA与CDMA2000网络接口的比较

3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。

WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。

3.WCDMA和CDMA2000网络演进的比较

(1)WCDMA的网络演进技术

现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。

(2)CDMA2000网络演进技术

主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。

窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。

①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。

②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。

③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。

二、WCDMA和CDMA2000在我国的前景

对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。

在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。

WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。

由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。

参考文献:

[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.

[2]杨大成.CDMA2000-1X移动通信系统.北京:机械工业出版社,2003.

[3]罗凌,焦元媛,陆冰.第三代移动通信技术与业务.北京:人民邮电出版社,2005.

无线传输技术论文篇2

关键词:有线传输;技术特点;发展方向

中图分类号:X703文献标识码: A

前言

21 世纪是信息化的社会,人类的各种经济活动和日常生活都有赖于信息网络得以更好的运行和开展,信息传输技术的发展决定着信息化产业的结构升级和更新效率,随着信息产业技术发展,对信息传输的速率和质量提出了更高的要求。有线传输的传输介质主要有双绞线、同轴电缆、光缆、光纤等,根据不同的经济体制选择合适的传输介质以更好地服务于各种社会活动之中。传统信息通信的信息媒介主要是语音,其传输数据信息量小,如电话网络等,其传输信号模式相对简单,传输信息量小并且信号受到外界干扰影响比较大,影响信号传输的质量。现代信息有线传输除了语音之外还包括文本文字、数据包、符号数字、图形图像等多种信号模式,借助此传输媒体支持的有数据电视、电脑、多媒体信息、显示屏幕、幻灯片、电影科技、机器仪器等等,传统的传输方式显然不能满足现展的要求。21 世纪信息传输技术按照传输方式的不同可以分为:有线传输方式和无线传输方式。虽然现进随着 WIFI 和无线网络技术的更新发展,无线传输方式占据了半壁江山,并且发展势头强劲。但是就传输效率和传输质量而言,有线传输方式有着自己的独特优势,并广泛地服务与工业生产和居民日常生活之中。

1、对有线传输与无线传输的分析与对比

有线传输主要是用一些介质进行传输。有线传输在传输的过程中,无论是利用何种介质,但是所传输电磁波的地点是需要之前固定好的。也就是说,有线传输是在指定的地点和空间进行工作的。但是,用于制作有线传输介质的材料一般都是使用铜丝这种相对性价比很低的材料。铜丝等介质材料很不结实并且价格也比较高,很容易出现损坏和丢失的情况。有线传输对于天气的要求不是很高,阴雨天也不会影响有线传输的速度。因此,有线传输技术一般都是被用于要求比较高,比较重要的地点。道路交通信号灯、监控器等为了能够保证设备运作的顺利性时,一般都是采用的有线传输技术,能够在第一时间发现设备出现的故障,能够及时进行维修和更换。无线传输主要是数字微波传输和模拟微波传输这两种。无线传输的主要传输方式有六种,分别为:视频基带传输、网络传输、微波传输、宽频共缆传输、无线SmartAir传输光纤传输、双绞线传输。无线传输是一种不需要介质进行传输的方式。无线传输的地点和空间在某种情况下来讲,应该是比较自由的。天气情况对无线传输技术的影响要比有线传输大得多。但是,无线传输更具有自由性并且十分方便。因此,很多场合可能更希望使用无限传输技术。

相比之较,可能无线传输技术在当下时代更受欢迎。但是通过总体分析之后,有线传输技术还是具有比较可观的优势的,有线传输具有比较高的稳定性,只要其它设备正常运行、传输介质没有被损坏,两者相连几乎都能够正常运行并且传输的速度也是比较稳定的。有线传输的安全性也要比无限传输高很多,对于很多重要的环境是不能够使用无线传输的。有线传输的抗干扰性要比无线传输强很多。总之,有线传输技术的使用率还是不断升高的。

2、对有线传输技术特点的思考与分析

由于有线传输技术到目前为止,还是具有很重要的作用的。为了确保有线传输技术能够更好地服务于我们的生活和工作,因此要对有线传输技术的特点进行分析,为有线传输技术未来的发展奠定基础。有线传输就是使用一些介质将信号进行传输由此得到信息的方法。有线传输技术十分依赖传输时采用的介质种类。不同种类的介质能够影响有线传输的速度等不同的方面。因此,想要对有线传输技术进行进一步探讨,就要分析不同介质给予的不同种类的有线传输技术的特点。第一种是光纤传输,它所选用的介质主要是光导纤维。光纤传输的主要特点在于具备比较良好的安全性,能够保障使用者的权益。光纤传输的信号比较好,对于时间、地点、条件没有太多的要求。并且光纤传输的形态比较小,容易存放,所占空间也比较小。最重要的一点是光纤传输的成本比较低,主要是由于光纤传输所采用的材料比较便宜并且数量也比较少。第二种是平衡电缆传输。

频带比较小的是低频对称电缆传输,很适合电话机使用,相对比较轻便。比较笨重一点的就是高频对称电缆传输,虽然高频对称电缆传输能够带来更多的信道,但是相对设计成本也比较高,不利于大量生产和使用。第三种是架空明线传输,架空明线传输的方式产生的时间已经比较悠久了。它就是我们比较常见的道路两边那种杆子上排列的不同线,以此进行传输。主要特点是比较单一,每条线只能够对应一个信道。根据导线不同的粗细,能够用来带动不同的设备。第四种是同轴电缆传输,它主要的特点是频带比较宽,能够传输的信号量也是比较大的。同轴电缆传输的介质也是比较特别的,它是将铜网用铜线缠绕而成,具有比较高的保密性。无论是何种的有线传输技术,其自身也具备了一定的优势。光纤传输和同轴电缆传输经过更深入的发展之后,一定会给使用者带来巨大的权益。

3、确定有线传输技术发展的方向

传输技术在长久以来为了满足人们对交流的需求一直在不断地发展,但是就是由于人们的需求不断地增加,学者深入探讨之后,发现传输技术是受很多因素影响的。所以在传输技术发展的同时是需要考虑全球不同的文化、观念、等一系列因素。对于现在我们所讨论的有线传输技术在近年来开始出现被无线传输技术替代的趋势。有线传输技术的很多优势在暂时的情况下,无线传输技术还是不具备的。往往使用者都是看中了无线传输技术的灵活性、方便性,但是在很多情况下却忽略了无线传输技术的缺点。为了加深全球人类的联系,有线传输技术的发展迫在眉睫。发展后的有线传输技术要具备现在技术的优势,也就保密性好、稳定性强以及受外界干扰的情况少等。

对于目前的实际情况以及使用者的需求来讲,可以将有线传输技术发展的重心转移到光纤传输技术上。光纤技术目前所存在的最大缺点就是投入量少。很多使用者都对光纤传输具有需求,但是开发者却没有放开设计。现在有很多地方采用的是无线传输技术,但是很可能因为无线传输技术的不安全性影响了信息的传输,因此要对现有比较重要的场所的真实情况进行调查,给予有线传输技术更好的市场。有线传输技术未来的发展前景还是比较好的,经过各界专家的研究,能够在一定程度上改善自身缺陷。

结束语

随着通信技术的不断发展,有线传输技术得到了迅速发展,以其传输信息稳定,快捷方便,受外界条件影响小的优点而继续保持高速发展的状态。相信只要有线传输技术根据自身的特点和发展优势,明确自己的发展方向,不断更新技术,最终一定会得到持久稳定的发展,给人民生活带来更大的便利。

参考文献:

[1] 李锦才. 论传输技术在通信工程中的应用及发展方向 [J].广东科技.2008(24)

[2] 王云其.HDSL 的技术特点及其在发电厂生活区的应用[J].电力系统通信.2012(10)

无线传输技术论文篇3

关键词:无线电能传输;非接触;磁耦合;共振

作者简介:王敏星(1964-),男,河南济源人,河南省济源市质量技术监督局,工程师;李大伟(1987-),男,河南济源人,河南省电力公司济源供电公司。(河南 济源 459000)

中图分类号:TM724 文献标识码:A 文章编号:1007-0079(2014)06-0263-03

无线电能传输技术(WPT,Wireless Power transfer)能够实现无导线连接情况下的电能传递,在医学应用、矿井采掘、移动设备充电等特殊场合具有较大的应用前景。随着移动通信设备、物联网、电动汽车等技术的快速发展,近年来发展非常迅速,并且取得了较大的进展。伴随着研究和市场化的不断深入,作为一种前景广阔的电能传输方式,在电磁兼容、人体健康和传输效率等方面都产生新的研究问题,需要进一步明晰研究方向并针对存在的问题深入研究。

一、无线电能传输技术的方式

虽然采用超声波和其他机械波能够无线传输能量,但目前无线电能传输的主流方式仍是利用电磁场传输能量。从频率的角度来说,采用的频率包括从若干GHz跨越到若干kHz的广大范围。在较高频率段,利用微波传输能量(甚高频以上的频率范围,频率>300MHz)通常采用直接照射接收端的方式,通过控制发射天线的朝向使能量以电磁波的形式准确发射到接收天线。该方法传输方向性较强、传输距离较远,但易被障碍物遮挡,还需要较复杂的天线对准装置。而且高频电磁波的生物安全性较差,高功率的电磁波对人体有较大伤害,因此在民用领域应用的机会较少。磁耦合谐振式无线电能传输方式(MCRWPT,Magnetic Coupled Resonant Wireless Power Transfer)采用磁场频率在10MHz以下,通过电谐振体之间的耦合磁场来传输电能。这种方法可以在一定的距离(几厘米到几米)范围内传送能量,功率值可以达到几百瓦。而感应耦合无线电能传输方式(MIWPT,Magnetic Inductive wireless Power Transfer)借助磁材料提高磁场的耦合程度,可以传送较大的功率,效率较高。但由于磁材料的限制,工作频率不宜过高,通常在1MHz以下。在距离增大时,磁材料之间的气隙增加,耦合程度急剧降低,因此传输距离相对较近(常常在几毫米到几十厘米)。在民用和工业应用中,磁耦合谐振式无线电能传输(MCRWPT)和感应耦合式(MIWPT)的传输距离基本满足常用设备的充电距离要求,从理论上能够获得更大的功率和更高的效率,因此具有较大前景,是目前研究的热点。本文从几个方面介绍此两项技术的研究与发展。

二、研究内容和研究方向

1.基本理论和技术研究

率及效率的模型研究:目前对无线电能传输方式的研究模型主要有耦合模分析法[1,2]电磁场分析方法、[3,4]等效电路法[5]等。

耦合模方法可见文献[1]所采用的基本方程表达式:

(1)

其中:为代表谐振体中的能量;为激励角频率;为自损耗系数;为谐振体m和n之间的耦合系数;为代表外加驱动的驱动项。

其基本思想是,给出系统的源、损耗及特征量,通过求解器损耗与特征量的关系,即求得系统效率及传输功率的解。电磁场方法根据电磁场理论求解电磁场方程,以此求得传输效率等结果。而等效电路方法主要针对磁耦合的特点,利用电路理论求解电路方程,以此获得系统的结果。

几种建模方法各有优劣:耦合模方法可以从能量角度进行分析,但是不够直观;电磁场分析方法理论上可以计算非常详尽的电磁场分布[3],理论上可以计算出耦合磁场能量传输细节。但过于复杂性,不便于系统设计和参数优化。通常借助电磁场仿真软件以求得分部场的直观数值解。等效电路法应用直观,是目前采用较多的方法,但是由于对电磁场进行了低频简化,对高频条件下电磁特性描述较粗略,不利于有关电磁场方面的研究。理论未来的研究方向将建立更加准确和合理的分析模型,甚至提出更加新颖的传输模式,从理论高度提高系统的指标,并以此指导设计和制造无线电能传输装置。

第二,线圈结构及设计。根据电路互感模型的一般结构,如图2所示。

通常可以得到以下矩阵形式的方程:

(2)

谐振条件下传输效率:

线圈2在线圈1中产生的反映阻抗为,可见反映阻抗中负载侧电阻值位于分母中,对于源侧的影响变为负向变化。即负载侧电阻值越高,传输效率越小。实际电路中,通常源内阻和负载线圈侧的电阻RB2往往较大。因此,双线圈结构传输效率往往较低。但根据上述分析,通过改变系统线圈结构和数量,可以改变不同线圈中的反映阻抗,进而改变耦合系统的效率、传输功率和传输效率。因此出现了三线圈[5]、四线圈[1]和多线圈[6]等情况。

第三,参数匹配方法及参数设计。在确定整体结构形式的基础上,还需要计算和均衡线圈的各项参数。线圈按照谐振的形式主要有自谐振线圈和电容-线圈谐振线圈。按照线圈的缠绕方式可分为密绕线圈、平面线圈、螺旋线圈等。电路参数主要有电感值、电容值和电阻值等。对于高频线圈还存在着寄生电容等高频参数。在分析和设计中,对上述参数进行优化,通过增加耦合程度、减少内阻和提高品质因数以提高系统性能。目前的研究主要集中在线圈结构和参数设计等方面,[7]针对线圈的新构形和新材料的研究也是一个重要的研究方向。

2.无线电能传输的激励源

激励源是无线电能传输的核心元件。相对于普通的高频信号源和开关电源,激励源不但工作在高频条件下,而且还要承担功率变换的功能。作为能量传输路径中第一个环节,对无线电能传输系统的总体指标的影响非常显著。而且由于电路中谐振作用,功率元件往往要承受谐振电压或者谐振电流的冲击,其数值会远超过系统输入电压或者输入电流。因此,无线电能传输的激励源设计更加困难。目前多采用的是D类开关型和E类谐振型放大电路。按照功率元件的数量和结构,有单管、非对称半桥、全桥等。该方向的发展方向是实现高频大功率条件下的高效率、低损耗和微型化,设计出更加适合无线电能传输的专用高频激励源。

3.电路结构研究

由于无线电能传输技术的应用范围愈加广阔,需要适应和满足更加苛刻和多样化的工作条件与限制。例如为了实现电动汽车在电网运行中能量缓冲的作用,无线充电装置不仅需要单向充电,而且还需要将能量从电动汽车反向传输给电网。医用领域中对系统的体积和可靠性指标的要求非常苛刻,因此无线电能传输装置既要尽量压缩体积、提高可靠性,而且还要实现能量和信号的同时传输。越来越多新的应用呼唤更加多功能和更强适应性的无线电能传输装置。因此需要提出更多新型的多功能电路结构,以增强电路的紧凑性、可靠性、通信能力、[8]能量控制水平等。[9]

4.标准、规章及医学影响

目前,已经出现了三个主要的无线电能传输标准(联盟),其中Qi联盟成立于2008年12月,目前已推出针对便携电子产品的低于5W以下设备的标准,未来还将会提出更大功率的标准进而形成体系。[10]

对人体影响的疑虑贯穿于整个无线电能技术的发展,这方面的研究始终是重点之一,包括医学相关性、辐射限制和磁场控制等多个方面。目前多采用计算机仿真和人体模拟的方式研究对人体的影响。未来将会进一步深入研究无线电能传输装置的生物性影响;同时,通过技术手段减少磁场泄露和影响,以满足相关的限制性标准。

5.医学应用研究

由于无线电能传输避免了导线的束缚,人体内部植入设备的应用将会变得非常便利,因此无线电能传输在医学方面的应用始终受到最大的关注。[11]但人体内植入设备中,体积要求十分苛刻而且传输路径需要经过人体组织。因此提高微小尺寸线圈的品质因数,提高传输效率[12]和研究高频电磁场对人体组织的影响是目前的主要研究方向。现在,无线电能传输技术在经皮植入装置、心脏起搏器、消化道机器人等方面已经取得了长足的进步。通过无线电能传输技术的应用,未来人体植入医疗设备将会有较大的发展,会大大改变人类的诊断和治疗方式。

6.电动汽车充电装置

由于具有无接触、无连接和无漏电的特性,无线电能充电装置在电动汽车充电领域具有较大的应用前景,已经成为无线电能传输的一个热门研究方向,而且正在逐步实用化。主要分为固定式和移动式两大方向。固定式在充电过程中车体保持不动,其传输距离和传输功率已经能够满足电动汽车底盘高度、电动汽车充电功率的要求。移动式电动汽车无线充电方式可以随时向行进中的电动汽车补充能量,因此可以减少相同运行里程条件下电动汽车所需的电池容量。目前,电动汽车充电技术的主要研究方向是进一步提高传输效率、距离和功率,并且针对偏移情况、双向传输、控制方式等问题展开研究。电动汽车的无线充电技术将会推动电动汽车的实用进程,无线充电技术的需求也将越来越大,市场前景更加广阔。

三、结论

无线电能传输技术经过几年的快速发展,其发展趋势愈加迅猛。未来的研究将更加深入和细致,并且进一步向应用方向推进,实用化脚步愈发加快。随着研究内容更加深入及人们对该技术的逐渐接受和认可,未来其市场和应用前景更加广阔。

参考文献:

[1]Kurs A,Karalis A,Moffatt R,et al.Wireless power transfer via strongly coupled magnetic resonances [J].Science,2007,317(5834):83-86.

[2]Kiani M,Ghovanloo M.The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2012,59(9):2065-2074.

[3]Zeljko Pantic and Srdjan putationally-Efficient,Generalized Expressions for the Proximity -Effect in Multi-Layer,Multi-Turn Tubular Coils for Wireless Power Transfer Systems[J].IEEE Transaction s on Magnetic,2013,49(11):504-5416.

[4]Jaechun L,Sangwook N.Fundamental Aspects of near-Field Coupling Small Antennas for Wireless Power Transfer[J].IEEE Transactions on Antennas and Propagation,2010,58(11):3442-3449.

[5]Dukju Ahn and Songcheol Hong,A Study on Magnetic Field Repeater in Wireless Power Transfer[J].IEEE Transactions on Industrial Electronics,2013,60(1):360-371.

[6]Lee C,Zhong W,Hui S.Effects of Magnetic Coupling of Non-Adjacent Resonators on Wireless Power Domino- Resonator Systems[J].IEEE Transactions on Power Electronics,2012,27(4):1905-1916.

[7]Bernd Breitkreutz and Heino Henke,Calculation of Self-Resonant Spiral Coils for Wireless Power Transfer Systems With a Transmission Line Approach[J].IEEE Transactions on Magnetics,2013,49(9):5035-5042.

[8]Bawa G,Ghovanloo M.Active High Power Conversion Efficiency Rectifier with Built-in Dual-Mode Back Telemetry in Standard Cmos Technology[J].IEEE Transactions on Biomedical Circuits and Systems,2008,2(3):184-192.

[9]Wang G,Liu W,Sivaprakasam M,et al.Design and Analysis of an Adaptive Transcutaneous Power Telemetry for Biomedical Implants[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52(10):2109-2117.

[10]S.Y.Hui,Planar Wireless Charging Technology for Portable Electronic Products and Qi[J].Proceedings of the IEEE,2013,101(6):1290-1301.

无线传输技术论文篇4

[论文摘要]蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输。

一、前言

越来越多数字电子产品借着新科技提升本身的性能和实力。以目前发展的趋势来看,未来消费性电子产品将有两个重要的发展指标,一是使用蓝牙技术这类开放技术,以无线,局域网络,可携带式设备成为网络体的延伸。另一项则是内存规格的统一,加密以及轻量化应用。

无论您喜不喜欢,“蓝牙计划”这个名词几乎已到了无孔不入的境界,不论是商业财经台还是一般大众电视台,都不只一次以上报导这个计划的进展与新闻,话虽如此,但却很少人了解此计划的原意与来龙去脉,只知道有这样一个计划正如火如荼地进行,且声势浩大、似乎充满无限希望。可预见的,未来与蓝牙计划相关的新闻只会更多,因为计划正一步步实现中。

蓝牙(bluetooth) 简单讲就是一种电信、计算机的无线传输技术。单从字面上很难了解蓝牙是个怎么样的技术,他不像“gsm”一样可以望文生义。简单的说蓝牙是一种无线网络与消费性电子产品之通讯技术,透过无线传输和基频模块构成,其快速响应和跳频系统的特性使无线传输更佳稳定。可以应用在各种电子产品如:笔记型计算机、行动电话、数字相机和其它相类似电子产品等。

二、蓝牙的缘起

蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输,包括pda、笔记型计算机、车用装置等等。蓝牙计划的发起,主要是1998年5月,由ericsson(爱立信,瑞典)、intel(英特尔,美国)、nokia(诺基亚,芬兰)、ibm(国际商务机器,美国)、toshiba(东芝,日本)等五家公司,共同组织一个“特别参与组织(sig,special interest grou)”称为bluetooth sig,以此组织来制定一套短距离的无线传送、接收的技术规格。

三、浅谈蓝牙技术

蓝牙计划虽是1998年开始,但是蓝牙的技术根基却来自1997年制订完成的无线局域网络通讯协议:ieee-802.11。

蓝牙基本上也是运用射频(rf)方式进行无线通讯,至于使用的频带范围,则是使用2.45ghz,这个无线电频带是全世界共同开放、不受法令限制的频带,举凡工业、科学、医疗(ism,industrial/scientific/medical)、甚至微波炉等都是使用2.45ghz的频带。

由于这个频带被广泛使用了,那么使用此频带进行通讯,绝对是很容易收到干扰的,因此蓝牙规格被设计成可跳频通讯,能够在一秒钟内进行1,600次的跳频动作,此这样的动作避免其它通讯的干扰。由于每秒1,600次的快速跳频,这也使得蓝牙无线收发的数据封包不能太长,否则不能满足如此频繁的跳频次数,所以蓝牙短封包、快速跳频的特性,也使其无线传输能抗干扰、更稳定通信。

蓝牙规格已经正式公布v1.0版,规格方面算是踏出成熟的第一步,接下来就是商品化、投入实际制造的阶段。而要让蓝牙迅速普及,就是在既有的用途装置上,追加设计蓝牙功能即可,以节省开发时间与成本,为此蓝牙射频模块就成为非常重要的一项零组件。

蓝牙射频模块一方面要够便宜,才可能快速普及,另一方面也要够小巧,才能适用于所有的需求装置上,目前专家推估射频模块的成本必须低于5美元才能普及,而各家公司也正加紧将射频模块设计地更精小、更便宜中。

四、蓝牙技术的应用

蓝牙由于具有1-2mbps、10-100公尺的无线通讯能力,因此蓝牙技术可以舒缓若干问题,例如可以直接利用蓝牙的高速数据传输率来传输语音,等于是把蓝牙通讯当成无线电话的功能。

另外对于小公司、小环境等,也可以省去布设实质线路的成本,以及后续线路维护的困扰。还有蓝牙可以指定隔绝与通行的通信功能,也等于可以建立无线的lan环境、小族群通讯环境。

五、蓝牙技术的展望

(一)蓝牙收发话器对健康的好处。由于手机有高功率的电磁波,据报导证实电磁波会对人体造成伤害,所以有了蓝牙,你将可以把一个小小的蓝牙附件装在你的大哥大, 然后把收发话器戴在你的耳朵(由于蓝牙应用的是低功率,所以不会对人体有任何伤害)。准备好了以后,你就把你的大哥大放在口袋里讲电话,不必把电话紧贴的脸,甚至按下收发话器上的按钮就可以直接接听来电。

(二)比一般传统式红外线传输更快,且不用对准两个传输端口成一直线。蓝牙科技在传输方面的好处就是,它能够允许两个装置,在不排成一直线的状态下,还能够以无线的方式传送数据。不像红外线传输最大的缺点是, 你必须对准两个传输端口成一直线才有办法传送数据。蓝牙传输甚至无视于墙壁、口袋、或公文包的存在而可以顺利进行。蓝牙的数据传输速度比红外线传输还要快,每秒钟高达1mb。

(三)手表可自动对时间,无线下载mp3。只要将来手表有内建蓝牙且有mp3拨放功能,这样一来将可自动设定为标准时间,且可很方便的随时从计算机传输歌曲。

(四)其它还有很多很多,只要现在是要接线的,都有可能会被蓝牙所应用。蓝牙技术一旦普及,相信对通讯方式、产品设计、生活方式等都会有巨幅的冲击,甚至很难想象冲击的程度。不过就现阶段而言,蓝牙可能带来的便利却是可以想象的,各位可以想象家里安装一个蓝牙收发基地台,家中的计算机、电话、传真机都不用实际接线,就可以互通或连外。在公司内外务人员赶时间,只要在蓝牙收发范围内都可以传送数据,例如咖啡厅、车站等都可以。此外仓库的盘点盘查,只要带个pda,仓库内设有蓝牙基地台,马上可以跟全省各地的仓库进行盘点加总,当然,蓝牙基地台后面有接往internet,或是以公司专线,或vpn方式连接。另外数字相机拍完的相片,只要接近笔记型计算机就可以回传,省去记忆卡的插拔,既有计算机外设装置也都可以无线化,无线打印机、无线键盘、鼠标、摇杆。还有家中、公司都设有蓝牙基地台,则一支具有蓝牙功能的手机,在家就可以跟居家无线电话一样使用,而且是付居家电话费,在公司则变成自己的办公分机,公司替您付电话费,而在外出时就跟一般行动手机一样使用,这样真正落实一人一机终生用的理想,这种方式也被人称为三合一电话,即是居家、办公、行动电话三者合一。

六、结束语

蓝牙技术一定会飞速发展,但仍然有一些应用的细节问题需要解决,如相邻设备之间为防止信息误传和被截取,必须要用户提前设置对应频段等,严重影响蓝牙技术产品面市的速度。但相信随着一个不断完善的发展过程,蓝牙技术会为我们的未来家居和办公带来不仅仅是方便一点的革命。

参考文献:

[1]nathan j.muller bluetooth demystified(影印本).人民邮电出版社。

[2]金纯,许光辰,孙睿. 蓝牙技术. 电子工业出版社。

无线传输技术论文篇5

关键词:绿色通信,LTE,Femtocell,WiGig

 

随着人们对无线业务的需求越来越高,无线通信技术的发展也变得更加日新月异。未来无线通信正朝着低碳、健康、高效的绿色通信方向演进。在这种背景下,我们介绍了目前三类较为重要的绿色无线新技术,即LTE、Femtocell和WiGig,并从技术层面逐一分析了其相关的特点。

LTE技术

LTE (Long Term Evolution)是3GPP长期演进技术,代表着未来移动通信技术的发展方向,通常被看作未来的准4G技术。在3GPP技术规范中,LTE系统的主要性能目标包括[1-2]:在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率,改善小区边缘用户的性能,小区容量的提高以及系统延迟的降低,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,小区从驻留状态到激活状态的迁移时间小于100ms,可满足100Km半径的小区覆盖,并为350Km/h高速移动用户提供大于100kbps的接入服务。在频谱利用率上,支持成对或非成对频谱,可自适应配置1.25 MHz到20MHz的多种带宽。硕士论文,Femtocell。

从传输技术上看,LTE系统在空中接口方面采用了正交频分多址(OFDMA)技术,这一技术可将宽带信号转换成多路在平坦信道中传输的窄带信号,有效适应未来的多媒体业务。为了降低实际系统的复杂程度,LTE在下行链路采用多载波的OFDMA技术,而在上行链路则采用单载波的频分多址(SC-FDMA)接入技术[3]。

此外,多输入多输出(MIMO)技术和自适应技术也被LTE系统广泛采用,以提高数据率和系统性能。LTE系统在下行链路通常采用多址MIMO技术,以扩大小区覆盖,增大小区容量。与此同时,LTE系统还支持波束赋形技术,使得信号可进行空间复用,进一步提高传输效率。

在网络架构上,LTE系统采用了扁平化的网络架构,摒弃了3G网络中的无线控制器RNC节点,这样不仅简化了整个网络的结构,而且降低了传输的延迟,使得用户可在尽可能短的时间内入核心网,极大地提高了传输速率。硕士论文,Femtocell。

目前LTE正朝着增强型的方向不断演进,出现了LTE-Advanced技术,在网络架构,传输效率方面提出了更高的要求。

Femtocell技术

为了实现室内的无缝覆盖,业界推出了Femtocell的技术概念。Femtocell也称为毫微微蜂窝基站或家庭基站,具有即插即用、功耗低、有限覆盖、灵活方便等优点,并且可与宏蜂窝基站兼容,改善边缘用户信号质量,是未来有效解决室内热点覆盖的有效技术之一。Femtocell在实际应用中所面临的主要问题主要有以下几方面[4-6]:

首先是Femtocell与宏蜂窝之间的干扰问题。由于Femtocell与宏蜂窝在覆盖的区域上存在一定程度上的重叠,使得相互间同频干扰受到广泛的关注。硕士论文,Femtocell。就技术而言,可通过规划宏蜂窝基站的位置,对Femtocell的功率进行控制,以及将同频信号的传输时隙相互错开等策略有效解决Femtocell的干扰问题。

其次当用户在Femtocell与宏蜂窝基站间进行切换时,如何保证无缝切换,最大限度的降低切换延迟也是一个亟待解决的问题。Femtocell设备因制式的差异以及分布的不确定性,使得其在宏蜂窝基站邻小区列表中难以配置,进而造成用户在Femtocell和宏蜂窝基站间越区切换较困难,具体表现为切换时延和目标基站搜索时间的增大、业务质量QoS指标的下降等。硕士论文,Femtocell。

WiGig技术

为了推动在全球范围内采用和使用60GHz无线技术,近来国际上成立了吉比特联盟(WiGig, Wireless Gigabit)。WiGig联盟主要任务是负责制定并统一的60GHz无线规范,开发和提供Multi-Gigabit传输速率的无线产品。很多国际知名的ICT制造商纷纷加入WiGig联盟,如思科、三星等公司。WiGig的三个重要技术目标包括:

①融合(Convergence):快捷的文件传输,降低无线延迟,高质量流媒体业务。

②普适(Universal):引领众多厂商共同创造满足无线设备应用的60Ghz传输规范。

③速度(Speed):下一代的娱乐,计算以及通信设备传输速率高于当前的WLAN 技术10倍以上。

WiGig技术要求支持高达7Gbps的数据传输速率,该目标速率高于802.11n的最高传输速率十倍之多,并且WiGig技术向后兼容IEEE802.11标准,在一定程度上可视作为802.11系列标准(如Wi-Fi)介质访问控制层的补充和延伸[7]。WiGig技术为了实现低功耗高品质的绿色通信要求,对物理层的技术参数更加苛刻,以确保实现吉比特的传输速率。在WiGig的网络层,增加了协议适应层技术以支持各类多媒体业务的系统接口,如投影仪、HDTV等设备。硕士论文,Femtocell。与此同时,为了扩大服务的领域,WiGig技术可采用波束赋形技术,并可在中短距离上提供较高品质的业务。WiGig通过与Wi-Fi的互补以及多吉比特传输速率的实现,将娱乐、计算和通信设备无缝的连结在一起,成为未来无线局域网的重要发展方向。硕士论文,Femtocell。

结束语

在未来的无线通信新技术中,LTE、Femtocell以及WiGig代表了最新的发展方向。从设计理念、技术规范以及市场需求都体现了绿色通信的内涵。随着通信技术的不断推陈出新,上述系统将会在人们的生活中扮演着更加重要的角色。

参考文献

[1]3GPP TR25.814, Physical layer aspects forevolved UTRA, 2006.

[2]沈嘉.3GPP长期演进(LTE)技术原理与系统设计, 人民邮电出版社, 2008.

[3]沈嘉.OFDM系统的小区间干扰抑制技术研究, 电信科学, 2006(7): 10-13.

[4]V. Chandrasekhar, J. Andrews and A. Gatherer.Femtocell Networks: A Survey, IEEE Communications Magazine, 2008, 46(9): 59-67.

[5]徐霞艳.3GPP 3G家庭基站标准化进展. 电信科学, 2009(4): 1-5.

[6]Douglas N.Knisely, Takahito Yoshizawa,Frank Fevichia. Standardization of Femtocells in 3GPP. IEEE CommunicationsMagazine, 2009(9): 68-75.

[7]WiGig Specifications, v1.0. http://wirelessgigabitalliance.org/specifications/

无线传输技术论文篇6

1.1SDH传输技术

SDH是取代PDH的新数字传输网体制,主要针对光纤传输,是在SONET的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。SDH是在电路层上对信号进行复用和上下。当带着信号的光纤通ODF(光纤分配架)进入ADM时,信号必须通过O/E转换和设备上的支路卡才能下成2Mb/s的基本电信号,并经过通信电缆和DDF(数字配线架)接到用户接口或基站BTS(基站收发信机)。

1.2ATM网络传输技术

ATM是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,ATM工作速度有很大的伸缩性,在光缆上可以超过2.5Gbps。

在网络传输中,为了使多个用户共享高速线路,通常采用时分复用方式。时分复用方式又可分为同步传输模式和异步传输模式。在数字通信中通常采用同步传输模式,这种传输模式把时间划分为一个个相等的片段,成为时隙,一定量的时隙组成一个帧,一个信道在一个帧里占用一个时隙,一个用户占用一个或多个信道。而在异步传输模式中,各终端之间不存在共同的时间参考,各个时隙没有固定的占用者。在ATM中时隙有固定的长度而且比较短,一个时隙传输一个信元,每一个信元相当一个分组。各信道根据业务量的大小和排列规则来占用时隙,信息量大的信道占用的时隙多。

1.3MSTP传输技术

MSTP依托于SDH平台,可基于SDH多种线路速率实现,包括l55Mb/s、622Mb/S、2.5Gb/s和10Gb/s等。一方面,MSTP保留了SDH固有的交叉能力和传统的PDH业务接口与低速SDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网二层交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。

1.4RTKGPS网络传输技术

随着GPS无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离RTK作业的需要。而网络RTK技术则是利用网络来取代UHF电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。

通用分组无线业务GPRS,是在GSM系统上发展出来的一种新的分组数据承载业务,GSM是一种使用拨号方式连接的电路交换数据传送方式。GPRS利用现有通信网的设备,通过在GSM网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。

1.5WDM传输技术

WDM(或DWDM)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。WDM(或DWDM)系统在信号的上下上既可以使用ADM、DXC,也可以使用全光的OADM和0XC,WDM(或DWDM)是基于光层上的复用,它和SDH在电层上的复用有着很大的区别。同时,通过OADM进行光信号的直接上下,无需经过O/E转换,而拥有EDFA的WDM(或DWDM)可以进行较长距离的光传输而不需要光中继。

2接入网技术

随着通信技术的快速发展,人们对铁路通信技术提出了更高的要求,铁路部门必须采用先进的、现代化的有线和无线通信的传输和接入方式,实现铁路通信网的升级,发挥铁路通信网在国民经济中的社会效益和经济效益。

接入网技术是铁路通信中一项关键技术,由于原有用户铜缆接入的普遍性和现在光纤技术的发展,接入网建设就必须考虑通信网络的现状与发展,这就决定了接入网技术的多样化。接入网从接入方式上可分为有线接入和无线接入。

2.1有线接入技术

(1)高速率数字用户环路技术。

通过2-3对双绞线双向对称传送基群数字速率信号,传送距离为3km-5km,上行速率与下行速率相等。通过回波抵消技术实现在一对双绞线上全双工传输,通过特定的编码和调制方式提高传输质量,用多线对并行传输,以降低每对双绞线上的传输速率,增加无中继传输距离。

(2)非对称数字用户环路技术。

它的上行速率和下行速率不相等,下行速率可高达(9-10)Mbit/s,上行速率只有数十或数百kbit/s,此技术适用于视频点播VOD系统;其高速下行信道可向家庭用户提供多路的数字图像信号及低速语音信号,而上行信道用于传送用户控制信号。ADSL的优势在于它几乎不需要对现有的对1双绞线作任何改动就可获得高传输速率。

(3)混合光纤同轴电缆接入技术。

它是基于有线电视系统CATV发展起来的。在有线电视中心与地区中心、地区中心与光节点之间采用光纤连接,光节点与用户设备之间采用同轴电缆连接。其主要是使用副载波调制,将CATV原有的单向传输系统改造成双向传输系统。HFC可以充分利用现有的CATV网络,进行少量投资,就可形成一个支持多种业务的宽带综合业务网。

(4)光纤用户环路技术。

以光纤为主要传输媒介,根据光纤向用户延伸的距离,可以分为FTTC(光纤到路边),FTTB(光纤到大楼),FTTH(光纤到家)等。FTTB是用户接入信息高速公路的最终理想目标,但根据现有通信发展的实际,FTTC、FTTB与铜缆相结合的用户接入,虽然是有过渡性质的折衷方案,但价格相对经济,并且在时机成熟时易扩展到FTTH,所以是现实并且可行的。

2.2无线接入技术

无线接入网是在接入网中部分或全部引人无线传输媒介,为用户提供固定终端业务和移动终端业务。无线接入可分为固定接入和移动接入两大类。其基本结构由控制器、基站和用户终端设备构成。应用技术主要包括微波1点多址技术、蜂窝技术和微蜂窝技术等。无线接人由于其灵活方便易于建设,目前已得到极大的重视。

集群通信系统是一种功能强大的专用移动通信系统,是通信与微处理机技术、程控交换技术、计算机网络技术紧密结合的产物。它集交换、控制、通信于一体,通过无线拨号的方式把一组信道自动最优地动态分配给系统内部用户,最大限度地利用系统资源和频率资源,降低系统内呼损,提高服务质量。由于它具有群呼、组呼、强插、强拆等功能,特别适合于调度指挥以及应急、抢险等场合,并较好地解决了通信频率合理分配的问题,因而倍受专业运营管理部门的青睐,被确定为现行铁路移动通信方式的首选类型。

3结语

铁路通信网是保证行车安全、提高运输效率的有力工具,我国铁路引入现代通信技术还不久,对铁路通信工程建设还需要一段时间对其了解、分析和试验,对其中所要注意的问题,特别是技术问题要认真对待,只有这样才能为铁路通信现代化作出贡献。

参考文献

[1]梁培超.浅析铁路通信工程应用接入网技术[J].科技资讯,2008.

[2]毛文铎.浅析铁路通信工程应用接入网技术[J].信息科学,2008.

[3]廖旭波.论传输技术在通信工程中的应用及发展方向[J].科技资讯,2009.

无线传输技术论文篇7

【关键词】5G时代背景;有线电视传输;探索

5G技术在传输安全、传输速率等方面体现出来的技术优势使得无人驾驶、人工智能、智能家居、虚拟现实等网络技术的研发和科技成果的展现成为可能。传统广播电视网在5G时代背景下,如何充分挖掘和利用5G的技术优势,实现当代媒体的技术转型和创新模式,是迄今为止该领域探索的重点课题。有线电视传输作为传统广播电视网的核心内容,凭借着5G的传输优势来实现领域内的核心技术发展,是使其顺利融入数字电视网的关键要素。在5G技术的时代背景下,有线电视传输系统要精准把握5G时代的历史机遇,探索更加优质的有线电视传输路径,充分迎合客户对于有线电视网的生活需求。

一、5G技术概述

5G网络(5Gnetwork)属于第五代移动通信网络,峰值理论传输速度可以达到每秒数10Gb,是4G网络传输速度的成百倍。比如,现代一部1G超高画质电影的下载速度是3秒钟。5G技术性能的标准是实现高数据速率,减少延迟,降低成本,节省资源消耗,提升系统容量,建立规模性的设备连接。从2019年4月份开始,华为同国网南京供电公司、中国电信江苏公司联合组织,成功完成了业界首次真实电网环境的电力切片技术测试结果,与此同时,这也是国际上首例基于最新3GPP标准5GSA网络的电力切片测试。本次测试的成功彰显出5G跨入垂直行业的实践历程进入到了一个崭新的阶段,迎来了5G技术发展的春天。

二、有线电视传输态势下的5G技术优势

与4G取代3G带动了微信、微博等网站客户端技术的崛起相比,近些年以来随着5G技术的逐渐成熟,5G取代4G所体现的技术优势更加明显,丰富着现代人的生活。5G作为第五代移动通信技术,是在4G技术的基础上所衍生和发展起来的新型技术模式,性能方面优越于4G移动通信技术,不仅可以把网络连接的时间缩短到毫秒级,而且可以给用户带来最少0.1~1Gbps的速率、每平方千米100万的连接数密度,充分满足了现代客户的需求。这些方面的技术优势推动了5G时代有线电视网络技术的发展。

(一)高速率

同目前的4G的传输速率比较,5G时代背景下5G传输率在4G基础之上得到了数倍的提升,这样就会使用户对于有线电视的体验度提升,给用户带来全新的观看体验,享受到了优质的有线电视服务模式,挖掘出有线电视网络服务的技术潜能,突破了有线电视的技术和服务模式。

(二)低时延

有线电视的低时延对于满足用户的体验定位具有卓越的效果,充分有效的用户体验定位与有线电视信号传输的速率和延时均存在着一定的联系,若时延存在过高的情形,用户的电视观感体验效果就会大打折扣,直接制约有线电视的使用效果。在5G技术背景下毫秒级的时延可以为用户带来升级性的观看体验,为用户提供了更加精准、到位、实时的节目动态和内容,极大地提升了有线电视节目的直观性和流畅性。

(三)高连接数密度

网络连接可以充分彰显出网络下载功能的效益,在5G时代背景下所进行的有线电视传输,5G的高连接数密度技术,不仅可以使同一网络布局同时和电视终端进行连接,同时也可以和别的智能终端相连接,彻底突破了用户连接数量的限制,体现了有线电视终端技术的优势。

三、5G技术对于有线电视传输的影响

5G技术作为一种新崛起的技术模式,有待开发和完善,在有线电视传输的应用中通过技术的研发来充分迎合用户的现代观感需求。

(一)实现交互式传输

未来的电视传输技术将由单一的传输模式向双向性的传输模式进行转变,广大用户除了可以观看电视节目,还可以凭借着有线电视实现与别的主体信息建立互动交流模式,5G技术的高速率和高连接数密度属性为有线电视在实现这些技术维度的过程变为可能。

(二)优化传输质量

传输质量会影响有线电视传输的效果,从而直接影响到电视用户的观看体验和效果。尽管迄今为止的传输技术已经充分达到最佳效果,通过技术的改进,消除了传统信号在传输过程中干扰的现状。但是传输速率、传输路径等方面的技术能力不足,传统有线电视传输质量偏低是该领域不能回避的问题。5G技术自身所具备的高连接密度和高传输速率的优势使有线电视传输的模式更加自由、无束、高速、流畅,使有线电视信号传输功能趋于稳定。

(三)提升传输速率

与现代兴起的其他媒体网络相比,有线电视传输媒体信息储存力度不够,限制了用户的观感体验。5G技术所具备的高效传输技术可以提升有线电视信息传播的速度,使用户在观看电视节目的时候,第一时间获取电视传输信号,使误差和时延降到最低,从而深度满足电视体验用户对节目速率的要求。

四、在5G时代背景下有线电视网络工作要点探析

经过上述的有线电视传输视角入手,对5G背景下技术的未来发展展开的讨论就可知道,5G技术对于有线电视的传输是具备绝对优势的,该技术优势可以充分提供给用户够用、耐用、价格低廉、安全、个性化等方面的需求,进而推动传统有线电视技术的发展历程。从目前的5G技术的开发力度和应用情形出发,与现实需求依然存在着巨大的落差,需要从有线电视网络技术领域入手展开研究和探索。5G时代背景下有线电视网络技术的发展应该从如下几个方面来展开讨论:

(一)进行资源优化整合

随着数字化技术的发展,新型网络媒体的崛起,新旧媒体的融合之路被进一步打开,加上国家所提倡的“三网融合”数字化网络战略措施的颁布,使得各大网络优质资源所进行的整合成为未来技术发展的主要趋势。在5G时代背景之下,有线电视网要拓宽研发渠道,同5G技术资源展开合作,引入更多的优质资源加入到有线电视传输技术的发展历程中,在技术创新的基础上不断扩展自身的发展道路。在优质资源的整合历程中要摆脱传统观念的束缚,把可以推动有线电视网络发展的优质技术和资源都纳入到该体系的研发过程中,推动电视传输技术走向高质量的发展轨迹。在发展过程中要致力于多个视角,比如把自身具备的传播力资源同科技时代的网络文化创意深度结合,在进行网络文化创意传播的过程中,为自身打出品牌效益,满足有线电视传输技术的发展路径。

(二)打造优质内容

尽管在5G时代背景下传统的广播电视媒体行业受到了新媒体的冲击,影响了有线电视市场的整体发展格局,但是与此同时也为有线电视传输领域的发展带来了技术创新的生命力。在当代5G技术背景下,有线电视网络技术创新非常重要,增加更多优质的内容可以丰富电视内容,带来良好的观感体验,吸引更多的受众群体。迄今为止,尽管5G技术对有线电视传输模式、传输速率等方面进行了调控,但是依然有很多问题无法解决。因此,需要掌握用户对于内容的需求,充分利用有线电视内容制作方面的高质量需求,优化有线电视网络环境,促进有线电视网络传输技术的发展。

(三)立足于用户体验的发展核心

在5G时代背景下,无论是5G技术的开发和应用,还是有线电视台传输质量的提升,都是为了拓宽有线电视的市场,吸引更多的受众,为用户提供更多、更全面的使用模式,使其对有线电视网络的关注度提高,重新审视有线电视网络的现代价值。因此,5G时代背景下该技术在有线电视传输内容的构建过程中应该考虑到用户的体验需求,深度迎合用户的个性化和普遍性需求,通过5G技术资源优势的整合利用,满足用户的个性需求和多元化的生活需求,只有如此才可以保证5G技术的开发市场充满活力,确保5G时代背景下有线电视传输功能走向卓有成效的发展道路,使传统电视媒体走向现代化的发展道路。

结语

随着网络数字技术的不断渗透,5G时代背景下5G技术开始广泛普及和深度推广,在各行各业中发挥着重要的作用。在人类不断进入5G时代的今天,在当下多样化的媒体发展形势之下,有线电视传输工作既具备一定的发展优势,又面临着市场的挑战。只有凭借着5G技术来打造一流的有线电视传输内容和模式,才可以通过拓宽5G的技术潜力,满足自身的发展的需求,实现有线电视传输技术的顺利运行目标。当今5G时代背景下5G技术的研发和利用尚处于初级阶段,有好多潜在的问题和状况亟待解决和讨论,只有充分迎合5G科技发展的潮流,不断丰富和完善5G技术资源开发历程,才能为未来5G的发展前景开辟新的道路。

参考文献:

[1]耿培军.试论有线电视传输干扰及其排除方法[J].中国新通信,2017(10)50.

[2]周方春.5G时代对有线电视传输的影响[J].中国有线电视,2018(08):908-910.

[3]肖立.浅谈5G时代新媒体的发展[J].广播电视信息,2016(10):30-33.

[4]李远东.5G实现移动通信与电视广播的无缝融合[J].卫星电视与宽带多媒体,2014(04):21-25.

无线传输技术论文篇8

关键词:电磁谐振耦合;无线输电传输;耦合理论

近年来,电子产品的不断发展,一方面带给人们以便利,不过越来越多的电源连接线开始困扰人们的生活。针对那些对距离具有特殊要求的问题,可以通过电磁谐振耦合无线电能传输技术来予以解决。电磁谐振耦合技术最早是美国的学者所提出的,其也是无线输电技术的新研究方向,更是引起了世界各国研究人员的热衷,并通过几年的发展也得到了技术上的突破,在电动汽车、医疗设备以及消费电子等均有所应用。不过该技术目前也还是起步阶段,仍有众多的问题有待科技人员的解决。为此,文章结合该技术的应用实践,首先分析了电磁谐振耦合基本原理及特征,研究了该技术的建模及传输特点,在此基础上探讨了磁耦合谐振WPT技术发展方向,以期促进为相关应用工作提供一定的建议。

1电磁谐振耦合基本原理及特征

目前,电磁谐振耦合无线电能传输技术是作为应用时间较短的无线电能传输技术,主要借助于近电磁场中近区场和谐振线圈的强耦合实现了电能的中程距离的高效传输。电磁谐振耦合无线电能传输技术是现今最流行的WPT技术之一,其最主要的特点就是中等传输距离以及高校非辐射能量传输。现阶段的WPT技术最主要的实现方式就是电磁感应耦合、磁耦合谐振、电磁波辐射这3种方式。磁耦合谐振体系最典型的构造原理就是高频电源以及闭环控制,发射、接收天线以及负载驱动电路和闭环控制所构成。发射天线是单匝接收线圈及谐振线圈所构成高频电源并向发射天线输出对应的高频率正弦交变电流,单匝发射线圈是在相关的高频正弦交变电流作用之下,在其临近的空间所产生的交变磁场,谐振线圈感应到相关的交变磁场而出现谐振。两个谐振线圈之间的构造参数是相同的,并在磁耦合谐振的相关作用之下一个谐振线圈也会出现谐振,并经过其感应耦合的作用把电能传输至接收线圈上,接受线圈在接收到相关的电能时通过负载驱动电路展开整流滤波处理,再给其直接负载供电,进而有效的呈现电能无线传输。在发射接收天线之间的距离或者是体系的负载出现变化时,相对应的闭环控制部分的调节体系工作频率能够有效的促使其安全稳定的工作,促使无线输电体系处在最大传输功率以及传输效率。

2建模及传输特点研究

2.1耦合模理论法

所谓耦合模理论法就是运用耦合模型法,合模方程直接性对相关发射天线之间能量耦合展开一定程度的分析。依据谐振线圈场幅值α定义,求解对应的耦合模方程能够得到发射天线及对应接收天线的能量转化传递函数,进而有效的分析WPT体系传输特征。2.3发射接收天线结构

磁耦合谐振WPT体系最重要的构成就是发射接收天线,谐振线圈可以根据其结构分为平面螺旋型以及圆柱螺旋型、圆环同轴型线圈,发射接收天线可以依据单匝线圈以及谐振线圈形状分为对称发射接收天线以及非对称发射接收天线。平面螺旋型线圈最主要的就是外向边沿螺旋线圈以及平面螺旋线圈和平面薄膜螺旋线圈、平面薄膜矩形线圈。圆柱形薄膜线圈以及短偶极子螺旋线圈。外向边沿螺旋线圈和平面螺旋线圈以及圆柱形螺旋线圈相比较而言,平面螺旋线圈耦合参数及品质系数是较高的,其最适宜于无线电能的传输。平面薄膜矩形线圈及圆柱形薄膜线圈主要是应用医疗电子设备。短偶极子螺旋线圈是经由两个圆柱形螺旋线圈及一个单位平衡结构合理的串联而呈现的,发射端以及接收端的短偶极子螺旋线圈可以依据正交方法进行排列,若是其中心的角度是π/4时,其耦合参数是最大的,对应的传输距离也是最远的。圆环同轴结构线圈是经由一个一端的开口而另外一端和内部的对应导体成为环形的电感器,因此,该线圈的电场基本上会被制约在内部同轴电缆之内,并且其磁场是由流过外导体的对应电流所产生的,此线圈耦合参数为k=δ/2π,该式中6代表内部相关导体弧度角,并且此天线的结构还具有一个双拼带的传输通道,能够同步传输相关能量及数据。

3发展趋势

磁耦合谐振WPT技术是一种高新科技技术下的无线输电技术,其对应的传输效率很高,且更容易呈现,所以其在电动汽车以及医疗电子设备、消费电子等相关领域应用较为广泛,以下将具体分析。

3.1电动汽车领域

磁耦合谐振WPT传输距离非常适中,且传输效率极高,这就很适宜于电动汽车的无线充电。国外相关学者所设计并验证磁耦合谐振体系相对应的等效电路模型,最终的实验结果显示该体系的传输距离为30厘米,对应的传输功率为220W,其传输效率为95%。

3.2医疗电子领域

基于高效大功率的条件,磁耦合谐振WPT体系的对应接收天线能够做的非常小,所以这也很适宜于医疗电子无线充电运用。有国外的电子研究院设计了可以用于生物移植的高效磁耦合谐振WPT设备,这要比以往传统的WPT体系更具传输效率,其结构非常紧凑,耦合性能也非常强,很容易进行调谐,并且生物相容性也很好,因此可以大量的生产。

3.3消费电子领域

磁耦合谐振WPT的高效非辐射能量传输,只会给体系之内的相关装置传输其所需的电能,因此其抗干扰能力也很强,这样就促使此项技术在消费电子领域有着极大的运用前景。国外的公司针对其谐振线圈以及金属性物体进行互相耦合导致其固有的谐振频率出现变化以及对应的传输效率有所降低,详细的分析了桌子对磁耦合谐振WPT体系的各方面影响,再经过一定的实验数据对其相关性能进行了验证。

无线传输技术论文篇9

关键词:Bluetooth Wi-Fi WLan WiMax WMan

1 三者初识

1.1 Bluetooth

Bluetooth(又名:蓝牙),是一种支持设备短距离通信的无线电技术。能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。

1.2 Wi-Fi

Wi-Fi(WirelessFidelity,无线相容性认证)是一种可以将个人电脑、手持设备(如PDA、手机)等终端以无线方式互相连接的技术。Wi-Fi目的是改善基于IEEE 802.11标准的无线网路产品之间的互通性。最初主要用于企业和家庭网络来实现LAN的功能。

1.2 WiMax

WiMax(Worldwide Interoperability for Microwave Access),即全球微波互联接入。WiMax是一项新兴的宽带无线接入技术,能提供面向互联网的高速连接。WiMax的技术起点较高,采用了代表未来通信技术发展方向的OFDM/OFDMA、AAS、MIMO等先进技术,随着技术标准的发展,WiMax逐步实现宽带业务的移动化。

2 三者比较

为了对Bluetooth 、Wi-Fi和WiMax技术进行对比分析,这里从三者的技术特点、传输范围、传输速度、网络安全性以及移动性方面进行分析。

2.1 技术特点

蓝牙是一个开放性的、短距离无线通信技术标准。它可以用来在较短距离内取代目前多种线缆连接方案,通过统一的短距离无线链路,在各种数字设备之间实现灵活、安全、低成本、小功耗的话音和数据通信。蓝牙作为一种短距离无线通信技术已经在各个领域得到广泛应用,它提供低成本、低功耗、近距离的无线通信,构成固定与移动设备通信环境中的个人网络,使得近距离内各种信息设备能够实现无缝资源共享。

Wi-Fi 原先是无线保真的缩写,Wi-Fi 的英文全称为wireless fidelity,在无线局域网的范畴是指“无线相容性认证”,实质上是一种商业认证,同时也是一种无线联网的技术。以前通过网线连接电脑,而现在则是通过无线电波来连网;常见的就是一个设备:无线路由器,在这个无线路由器的电波覆盖的有效范围内都可以采用Wi-Fi连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为“热点”。

WiMax是一项新兴技术,能够在比Wi-Fi更广阔的地域范围内提供“最后一公里”宽带连接性,由此支持企业客户享受T1类服务以及居民用户拥有相当于线缆/DSL的访问能力。WiMax构建于高级无线技术,抵消效果的干扰提供更多数据以大范围。WiMax标准是正交频分多访问(OFDMA)和多个输入/多个输出(MIMO)智能天线技术两种技术的结合。

2.2 传输范围分析

蓝牙技术是一种无线数据与语音通信的开放性全球规范,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接。蓝牙工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段,ISM频带是对所有无线电系统都开放的频带。Bluetooth的有效传输距离为10米(约32英尺)。

WiFi的频段在世界范围内是无需任何电信运营执照的因此WLAN无线设备提供了一个世界范围内可以使用。Wi-Fi与蓝牙一样,同属于在办公室和家庭中使用的短距离无线技术。Wi-Fi的覆盖范围则可达300英尺左右(约合90米),办公室自不用说,就是在小一点的整栋大楼中也可使用。

WiMAX的设计可以在需要执照的无线频段,或是公网IEEE802.16协议栈参考模型用的无线频段进行网络运作。只要系统企业拥有该无线频段的执照,而让WiMAX在授权频段运作时,WiMAX便可以用更多频宽、更多时段与更强的功率进行发送。WiMax,数据传输距离最远可达50km。

2.3 传输速度分析

无线通信网络的传输速度与网络环境和信号强度有很大的关系。

蓝牙技术数据传输速率为1Mbps。

Wi-Fi的传输速率与无线网络、无线网卡、所采用的无线网络标准有关,理论上的最高传输速率:IEEE 802.11b是11M;IEEE802.11a是54M;IEEE802.11g也是54Mbps(Netgear SUPER g技术可以将速度提升到108Mbps)。

WiMax的技术优势大多数人都看好是传输速度的优势。WiMax最高速度每秒70mbyte,然而最新的Wi-FiMIMO理论上也有每秒108 mbyte的最高速度,而实际环境下有效稳定速度约为45mbps。

2.4 安全性分析

从安全性的角度来说

蓝牙技术提供短距离的对等通信,它在应用层和链路层上都采取了保密措施以保证通信的安全性,所有蓝牙设备都采用相同的认证和加密方式。在链路层,使用4个参数来加强通信的安全性,即蓝牙设备地址、认证私钥、加密私钥和随机码RAND。蓝牙设备地址是一个48位的IEEE地址,它唯一地识别蓝牙设备,对所有蓝牙设备都是公开的;认证私钥在设备初始化期间生成,其长度为128比特。

Wi-Fi中更多使用的是WEP和WPA加密方法来实现对网络访问的验证和数据的加密。Wi-Fi网络访问控制保证只有授权用户能访问敏感数据,加密保证只有正确的接收方才能理解数据。为了使其网络中的数据传输可以具有同有线网一样的安全性,Wi-Fi采用的是无线加密协议,虽然采用了64位和128位加密密匙的RC4加密算法,但由于对包含密匙数据本身的信息流进行截取并不复杂,其网络还是会轻易地被攻击。

WiMax使用的是与Wi-Fi的WPA2标准相似的认证与加密方法。其中的微小区别在于WiMax的安全机制使用3DES或AES加密,然后再加上EAP,这种方法叫PKM―EAP.

2.5 移动性分析

从移动业务能力上看:

蓝牙作为一种新兴的短距离无线通信技术已经在各个领域得到广泛应用,它提供低成本、低功耗、近距离的无线通信,构成固定与移动设备通信环境中的个人网络,使得近距离内各种信息设备能够实现无缝资源共享。

Wi-Fi技术也是支持移动的,但是不支持两个Wi-Fi“热点”之间的终端的切换。当在两个Wi-Fi“热点”之间移动时是一个重新接入的过程。

WiMax标准之一802.16 e提供的主要是具有一定移动特性的宽带数据业务,面向的用户主要是笔记本终端和802.16 e终端持有者。802.16 e接入IP核心网,也可以提供VoIP业务。但是从覆盖范围上看,802.16 e为了获得较高的数据接入带宽(30 Mbit/s),必然要牺牲覆盖和移动性,因此802.16 e在相当长的时间内将主要解决热点覆盖,网络可以提供部分的移动性,主要应用会集中在游牧或低速移动状态下的数据接人。

3 结论

蓝牙可以用来传输文件,包括图片、音频、动画、视频、软件等。蓝牙技术可以在微网络之间切换,但每次切换都必须断开与当前PAN的连接。Wi-Fi存取点是由数十米的小片面积所组成,将会主导私用的无照无线市场,如公司或家用的无线网络。WiMax在整合与标准化无线微波ISP市场的过程中,将会有自己的发展空间,聚焦于授权频段的无线ISP市场。由于WiMax连线的涵盖面积较大,以数十公里计,所以WiMax在全球涵盖上会占有优势。

参考文献

[1]胡新华、杨继隆、姜伟、殷进军.蓝牙技术综述蓝牙技术综述[J].现代电子技术,2002(5)

无线传输技术论文篇10

关键词: 无线电力传输技术 电磁感应 射频 原理与应用前景

1.引言

自17世纪人类发现如何发电后就用金属电线来四处传输电力。时至今日,供电网、高压线已遍布全球的角角落落。在工作和生活中,越来越多的电器给我们带来极大便捷的同时,不知不觉各种“理不清”的电源线、数据线带来的困扰也与日俱增。不过,这些年的科技发展表明,在无线数据传输技术日益普及之时,科学家对无线电力传输(Wireless Power Transmission,WPT)的研究也有了很大突破,从某种意义上来讲,无线电力传输也不再是幻想――在未来的生活中摆脱那些纷乱的电源线已成为可能。

2.无线电力传输的发展历史

19世纪末被誉为“迎来电力时代的天才”的名尼古拉・特斯拉(Nikola Tesla,1856―1943)在电气与无线电技术方面作出了突出贡献。他1881年发现了旋转磁场原理,并用于制造感应电动机;1888年发明多相交流传输及配电系统;1889―1890年制成赫兹振荡器;1891年发明高频变压器(特斯拉线圈),现仍广泛用于无线电、电视机及其他电子设备。他曾致力于研究无线传输信号及能量的可能性,并在1899年演示了不用导线采用高频电流的电动机,但由于效率低和对安全方面的担忧,无线电力传输的技术无突破性进展[1]。1901―1905年在纽约附近的长岛建造Wardenclyffe塔,是一座复杂的电磁振荡器,设想它将能够把电力输送到世界上任何一个角落,特斯拉利用此塔实现地球与电离层共振。

2001年5月,法国国家科学研究中心的皮格努莱特,利用微波无线传输电能点亮40m外一个200W的灯泡。其后,2003年在岛上建造的10kW试验型微波输电装置,已开始以2.45GHz频率向接近1km的格朗巴桑村进行点对点无线供电。

2005年,香港城市大学电子工程学系教授许树源成功研制出“无线电池充电平台”,但其使用时仍然要将产品与充电器接触。

2006年10月,日本展出了无线电力传输系统。此系统输出端电力为7V、400mA,收发线圈间距为4mm时,输电效率最大为50%,用于手机快速充电。

2007年6月,美国麻省理工学院的物理学助理教授马林・索尔贾希克研究团队实现了在短距离内的无线电力传输。他们给一个直径60厘米的线圈通电,6英尺(约1.83米)之外连接在另一个线圈上的60瓦的灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”。

2008年9月,北美电力研讨会的论文显示,他们已经在美国内华达州的雷电实验室成功地将800W电力用无线的方式传输到5m远的距离。

2009年10月,日本奈良市针对充电式混合动力巴士进行了无线充电实验。供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。

3.无线电力传输的基本原理

3.1电磁感应――短程传输

电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系与转化。电磁感应是电磁学中的基本原理,变压器就是利用电磁感应的基本原理进行工作的。利用电磁感应进行短程电力传输的基本原理如图1所示,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。若线圈L1中通已交变电流,该电流将在周围介质中形成一个交变磁场,线圈L2中产生的感应电势可供电给移动设备或者给电池充电。

3.2电磁耦合共振――中程传输

中程无线电力传输方式是以电磁波“射频”或者非辐射性谐振“磁耦合”等形式将电能进行传输。它基于电磁共振耦合原理,利用非辐射磁场实现电力高效传输。在电子学的理论中,当交变电流通过导体,导体的周围会形成交变的电磁场,称为电磁波。在电磁波的频率低于100khz时,电磁波就会被地表吸收,不能形成有效的传输,当电磁波频率高于100khz时,电磁波便可以在空气中传播,并且经大气层外缘的电离层反射,形成较远距离传输能力,人们把具有较远距离传输能力的高频电磁波称为射频(即:RF)。将电信息源(模拟或者数字)用高频电流进行调制(调幅或者调频),形成射频信号后,经过天线发射到空中;较远的距离将射频信号接收后需要进行反调制,再还原成电信息源,这一过程称为无线传输。中程传输是利用电磁波损失小的天线技术,并借助二极管、非接触IC卡、无线电子标签,等等,实现效率较高的无线电力传输。

具体来说,整个装置包含两个线圈,每一个线圈都是一个自振系统。其中一个是发射装置,与能量相连,它并不向外发射电磁波,而是利用振荡器产生高频振荡电流,通过发射线圈向外发射电磁波,在周围形成一个非辐射磁场,即将电能转化为磁场。当接收装置的固有频率与收到的电磁波频率相同时,接收电路中产生的振荡电流最强,完成磁场到电能的转换,从而实现电能的高效传输。图2是一个典型的利用电磁共振来实现无线电力传输的系统方案。电磁波的频率越高其向空间辐射的能量就越大,传输效率就越高。

3.3微波/激光――远程传输

理论上讲,无线电波的波长越短,其定向性越好,弥散就越小。所以,可以利用微波或激光形式来实现电能的远程传输,这对于新能源的开发利用、解决未来能源短缺问题也有着重要意义。1968年,美国工程师彼得格拉提出了空间太阳能发电(Space Solar Power,SSP)的概念。其构想是在地球外层空间建立太能能发电基地,通过微波将电能送回地球。

4.无线电力技术的应用前景

无线电力传输作为一种先进的技术一般应用于特殊的场合,具有广泛的应用前景。

4.1给一些难以架设线路或危险的地区供应电能

高山、森林、沙漠、海岛等地的台站经常遇到架设电力线路困难的问题,而工作在这些地方的边防哨所、无线电导航台、卫星监控站、天文观测点等需要生活和工作用电,无线输电可补充电力不足。此外,无线输电技术还可以给游牧等分散区村落无变压器供电和给用于开采放射性矿物、伐木的机器人供电。

4.2解决地面太阳能电站、水电站、风力电站、原子能电站的电能输送问题

我国的新疆、、青海等地降雨量少、日照充足且存在大片荒芜土地,南方部分地区水力、风力资源丰富,这些地区有利于建造地面太阳能发电站或水电站、风力电站。可是,这些地区人烟稀少、地形复杂,在崇山峻岭之中难以架设线路,这时无线输电技术就有了用武之地。采用无线输电技术,还可以把核电站建在沙漠、荒岛等地。这样一方面便于埋葬核废料,另一方面当电站运行发生故障时也可以避免对周围动植物的大量伤害和耕地的污染。

4.3传送卫星太阳能电站的电能

所谓卫星太阳能电站,就是用运载火箭或航天飞机将太阳能电池板或太阳能聚光镜等材料发送到赤道上空35800km的地球静止同步轨道上。在太空的太阳光线没有地球大气层的影响,辐射能量十分稳定,是“取之不尽”的洁净能源。并且一年中有99%的时间是白天,其利用效率比地面上要高出6―15倍[3]。在那里利用太阳能电池板把阳光直接转变为电能,或者用太阳能聚光镜把阳光汇聚起来作为热源,像地面热电厂一样发电。这样产生的电能供给微波源或激光器,然后采用无线输电技术将大功率电磁射束发送至地面,接收到的微波能量经整流器后变成直流电,由变、配电设施供给用户。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

4.4无接点充电插座

随着无线电力技术的发展,一些小型用电设备已经实现了无线供电。如:电动牙刷、“免电池”无线鼠标、无线供电“膜片”/“垫”等。无线供电“膜片”/“垫”是一种家用电器无线供电方式,用一片图书大小的柔软塑料膜片就可对家电进行无线供电,可为圣诞树上的LED、装饰灯、鱼缸水中的灯泡、小型电机、手机、MP3、随身听、温度传感器、助听器、汽车零部件、甚至是植入式医疗器件等供电。

4.5给以微波发动机推进的交通运输工具供电

现在大部分交通运输工具燃烧石油产品,其发动机叫做柴油发动机、汽油发动机等。与此类比,以微波作为能源推进的发动机叫做微波发动机。微波是工作频率在0.3―300GHz的电磁波,不能直接用它来驱动电动机,因为要设计出在如此高的频率下工作的发动机非常困难。如果思路加以改变,把微波能量转变为直流电流的整流器,那么微波就可以直接作为交通工具的能源了。煤、石油、天然气的存储量有限,而日消耗量巨大,总有耗尽之日,到那时卫星太阳能电站可望成为能源供给的主干,通过无线输电技术就可以直接把微波能量输给交通运输工具。

4.6在月球和地球之间架起能量之桥

世界人口的不断增长和地球资源的日益耗尽,太阳系中其他星球的开发利用是人类一直以来的夙愿。月球是地球的天然卫星,其上资源丰富,地域辽阔,是首先要开发的星体。未来人类对月球的利用主要是移民和资源获取。月球的土壤里富含SiO2,是制造太阳能电池的原料。如果先在月球上建立起工厂,然后把太阳能电站直接建在月球上,比起建在地球静止同步轨道上要容易些,借助于微波束或激光束把电能发送到地球。

5.结语

随着无线电力传输技术的不断发展与成熟,不但使人们未来的生活有望摆脱手机、相机、笔记本电脑等移动设备电源线的束缚,享受在机场、车站、酒店多种场所提供的无线电力,而且可用于一些特殊场合,如人体植入仪器如心脏起搏器等的输电问题、新能源(电动)汽车、低轨道军用卫星、太阳能卫星发电站等。在世界经济迅速发展的今天,节能和新的、可再生能源的开发是摆在能源工作者面前的首要问题。太阳能是取之不尽、用之不竭的干净能源。除核能、地热能和潮汐能之外,地球上的所有能源都来自太阳,建造卫星太阳能电站是解决人类能源危机的重要途径。要将相对地球静止的同步轨道上的电能输送的地面,无线输电技术将发挥至关重要的作用。从长远来看,该技术具有潜在的广泛应用前景。但是,每一种无线传输方式,都有一系列问题需要解决,如电能传输效率问题,电力公司如何收费和计费,能量传输所产生的电磁波是否对人体健康带来危害,等等。不管怎样,一旦这项技术能够普及,就会给人们的生活带来巨大的便利。

参考文献:

[1]白明侠,黄昭.无线电力传输的历史发展及应用[J].湘南学院学报,2010,31,(5):51-53.