电池回收途径十篇

时间:2024-04-08 17:11:44

电池回收途径

电池回收途径篇1

环境问题的产生主要是由于人类对自然环境和生态环境的不合理利用和破坏,这种损坏环境的行为又是同人类对环境缺乏正确认识联系在一起的。随着科学技术的飞速发展和人民生活水平的不断提高,电池的应用范围也越来越广泛,用量也猛增不停,但随之而来的问题是大量废旧电池被随意丢弃,造成环境的严重污染,成为巨大的隐形公害。所以废旧电池的回收处理已成为当今环境问题的燃眉之急。因此,在化学教学中,结合相关教学内容对学生进行环境教育,提高学生环境保护意识,使他们正确认识环境和环境问题,培养学生改造和优化环境的能力具有重要的现实意义。

二、研究性学习的实施方法和途径

1、准备阶段

①组织研究小组。从高二级6个班中各抽选6人,分成6组,各组推选一人为组长,负责执笔书写小结及报告。

②确定研究的内容及目的:a、调查常用电池的种类,使用范围,性能,以及电池中氧化剂和还原剂。b、调查废旧电池是如何处理的。c、认识回收废旧电池的意义和价值。

2、实施阶段

①在教师的指导下,确定调查的途径和方法。a、查阅书报、杂志、资料、文献、上网等,获取相关知识。b、访问家庭、工厂、机关、学校、电池销售商、垃圾回收站等。c、设计调查表,应包含目的时间、地点、调查对象、调查人、建议等。d、完成调查记录,应包括常用电池的种类,使用范围,其中的氧化剂和还原剂、危害,对本地生态的影响,回收价值及回收情况等调查项目。

3、完成调查报告:活动结束,共收集到调查表12份,在教师指导下,各组对调查表的资料数据进行汇总,分类,完成调查报告6份。

4、交流与评价

评价是研究性学习活动中的重要环节,学生通过亲身实践,亲身体验了科学研究的全过程,教师应对学生在整个活动中的表现进行评价,评价可以从以下几方面实施。

①各组研究性学习活动过程中的积极性和主动性。②各组获取相关知识的途径和方法。③访问调查对象是否具有普遍性和代表性。④调查数据是否真实等。

三、结论及建议

(一)电池的种类。常用电池可分为干电池,蓄电池,锂电池以及燃料电池等。

(二)实用电池的特点:1、能产生稳定而具有较高电压的电流;2、完全,耐用且便于携带;3、能实用于特殊用途;4、使于回收处理,不污染环境或对环境产生的影响较小。

(三)废电池的危害

目前,无论是在马路上还是在居民生活区内,几乎经常可以看到被人们随手丢弃的废旧电池。今后,随着各种用电池做能源的电器设备的增加,这种现象恐怕会更多。废旧电池是一种很厉害的污染物,是破坏生态环境的杀手。由于使用分散,回收难以管理,废弃电池再生成本较大,加上目前还缺少科学、经济的处理方法和相应的法律保障强制废旧电池的回收,废弃电池一般均作为生活垃圾处理。据了解,一粒钮扣电池所含的汞能污染60万升水,相当于一个人一生的用水量;一节1号电池腐烂后渗出的汞会污染一立方米土壤,并使其永远不能生长植物。废电池的危害是持久的,无论是在大气中,还是深埋在地下,危害主要集中在其中含有的汞、镉、镍、铅等重金属上,造成对地下水、土壤的再污染;这些重金属通过各种途径进入体内很难排除。随着生物积累浓度越来越高,于是造成对肾脏、肝脏、神经系统、造血机制的损害,严重时会使人罹患"骨痛病"、精神失常甚至癌症,这就是所谓的重金属公害病。具体情况如下:

铅能使人体神经系统和消化系统出现不正常运作。如神经衰弱、手足麻木、消化不良、腹部绞痛、肾炎等以及能引起血液中毒和其它病变。

汞及其化合物毒性都很大,特别是汞的有机化合物毒性更大。人若食用0.1克汞就会中毒致死。当汞进入人体后,即集聚于肝、肾、大脑、心脏儿先天性汞中毒,或畸形,或痴呆。汞的毒性是积累性的,往往要几年或十几年才能反应出来。和骨髓等部位,造成神经性中毒和深部组织病变,有机汞还能进入胎盘,使胎

镉:镉是一种毒性很大的重金属,其化合物也大都属毒性物质。震惊世界的日本"痛痛痛"就是因镉污染而致。镉对人体组织和器官的毒害是多方面的,且治疗极为困难。因此,由于镉化合物具有程度不同的毒性,用任何方法从废水中除镉,只能改变其存在方式和转移其存在的位置,并不能消除其毒性。因此,镉废水的处理应尽量与回收利用结合。

铬酸、重铬酸及其盐类对人的粘模及皮肤有刺激和灼烧作用、并导致伤、接触性皮炎。这些化合物以蒸气或粉尘方式进入人体内,分布于肝、肾中,出现肝炎和肾炎病理。还会引中鼻中隔穿孔、肠胃疾患、白血球下降、类似哮喘的肺部病变。

(四)废电池的处理

目前世界上生活垃圾处理主要是卫生填埋、堆肥和焚烧三种方式,混入生活垃圾的废旧电池的危害作用还表现在以下四个过程中:

1.填埋。在填埋过程中,废旧电池内的重金属会通过渗滤作用逐渐扩散开去,将周围的水体和土壤污染。如果人类饮用了被污染的水或吃了出产于这些被污染的土壤的蔬果,那么重金属就会慢慢渗入到人的身体,严重的会诱发起多种病变,危害极大。

2.焚烧。废旧电池在高温下会腐蚀设备,其中某些重金属在燃烧炉中挥发到飞灰中,造成大气污染。焚烧炉底重金属的堆积,也会给产生的灰渣造成污染。

3.堆肥:废旧电池的重金属含量较高,会造成堆肥的质量下降。

4.再利用:将废旧电池回收再利用,一般采用反射炉火冶金法,工艺虽然容易掌握,但是回收率只有80%,其余的铅以气体和粉尘的形态出现,造成二次污染,直接危害操作人员的健康。

电池回收途径篇2

[关键词]污水处理 工艺 处理技术 能耗 节能

中图分类号:X7 文献标识码:A 文章编号:1009-914X(2016)11-0219-01

一、污水处理工艺流程

污水进入厂区先通过截流井进入粗格栅到污水泵到细格栅到沉沙池到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水。

生化池、终沉池出的污泥部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运。

污水处理主要有物理处理法、生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法、mbr 等方法。

二、现代污水处理技术

按处理程度划分,可分为一级、二级和三级处理。

一级处理,主要去除污水中呈悬浮状态的固体污染物,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD可去除30%左右,达不到排放标准,一级处理属于二级处理的预处理。

二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD、COD物质),去除率可达90%以上,使有机污染物达到排放标准。

三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。

整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理)。初沉池的出水进入生物处理设备,有活性污泥法和生物膜法(其中活性污泥法的反应器有曝气池、氧化沟等。生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床)。生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,到此为二级处理。三级处理方法有生物脱氮除磷法、混凝沉淀法、砂滤法、活性炭过滤及离子交换法和电渗析法等。

二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后污泥被最后利用。

三、各个处理构筑物的能耗分析

1.污水提升泵房

进入污水处理厂的污水经过粗格删进入污水提升泵房,然后被污水泵提升至沉砂池的前池,水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。

2.沉砂池

沉砂池的功能是去除比重较大的无机颗粒,以便减轻无机颗粒对水泵、管道的磨损,减轻沉淀池负荷及改善污泥处理构筑物的处理条件。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池.。

沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统。

3.初次沉淀池

初次沉淀池是一级污水处理厂的主题处理构筑物或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面,处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。初沉池包括平流沉淀池、辐流沉淀池和竖流沉淀池。

初沉池的主要能耗设备是排泥装置,比如链带式刮泥机、刮泥撇渣机、吸泥泵等。

4.生物处理构筑物

污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。活性污泥法的曝气系统要消耗大量的电能,其基本上是连续运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。

5.二次沉淀池

二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。

6.污泥处理

污泥处理工艺中的浓缩池、污泥脱水、干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的。

四、针对各个处理构筑物的节能途径

1.污水提升泵房

污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵。让水泵工作在高效段是有效的手段,合理利用地形减少污水的提升高度来降低水泵轴功率也是有效的办法。

2.沉砂池

采用平流沉砂,避免采用需要动力设备的沉砂池。如平流沉砂池、采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。

3.初次沉淀池

初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。

4.生物处理构筑物

国外的学者通过能耗和费用分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上,选择高效机电设备及减少高峰用电。他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收。

曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法。第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。

生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。

5.二次沉淀池

二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。

6.污泥处理

污泥处理系统节能研究主要集中于污泥处理的能量回收,从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之前一直不受重视,目前有两种回收途径:一是污泥厌氧消化气利用。一是污泥焚烧热的利用。

城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步,由于污水处理能量平衡分析方法研究的欠缺,而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出,具有经验性和个别性,不一定能适用于其他污水厂甚至是工艺相似的污水厂。

电池回收途径篇3

关键词:火电厂 节水技术 基础措施 零排放

0 引言

水,是人类赖以生存的重要资源之一,保护和合理利用水资源已列为我国的基本国策。作为用水大户的火电厂,积极采取有效的措施,开展水的回收利用,大力提高水的综合利用率节约用水,对贯彻落实基本国策,保证国民经济发展具有十分重要意义,同时,也是发电企业实施可持续发展的重要措施。火力发电厂是用水大户之一。其主要用水点是汽机的冷凝器,用水量与机组容量供水方式、冷却倍率等因素有关。当采用直流供水系统时,加上各种辅助设备的冷却水、锅炉补充水生活消防水和除灰用水等,一个百万千瓦大厂,全厂用水量约4立方米/秒。当采用循环冷却供水系统时冷却塔(池)的蒸发、风吹及排污损失是主要的,加上不能回收的各顶用水,一个百万千瓦大厂耗水量约1立方米/秒。

然而,火电厂的节水工作是一项十分复杂的系统工程,涉及电厂化学、环保、热机、除灰、水工等多个专业。必须依据客观规律,全面综台考虑,才能持久保证发电设备安全性与经济性的统一,经济效益与节水效益和环境效益的统一。

1 节水基础管理措施

1.1 电厂成立以总工程师为组长 ,节能技术监督成员组成的水务管理领导小组。全面协调、监督、管理全厂的水务工作,定期召开水务管理工作会议。积极依靠技术进步,优化制水工艺,调整设备运行方式,合理利用废水,减少发电水耗。加强水资源利用与保护宣传,鼓励节约用水,制止浪费行为。

1.2 制定全厂水务管理制度,编制全厂水量平衡图、水用户流程图与分布图,记录用户的用水状况,根据实际情况下达用水指标,定期进行考核。

1.3 水表定期校正,尤其是保证淡水泵站出口水表计量的准确性与可靠性。加强生活用水管理,建立生活水设施巡查制度,消除一切跑冒滴漏现象。

1.4 开展水务管理讲座,增强全厂人员的节水意识。在提高化学水处理生产人员制水水平的同时,不断地强化生产人员的水务管理意识,加强班组的经济核算管理,以最小的耗水量制出更多合格的厂内各类用水。

2 排水回收途径的设计

2.1 锅炉连排水回收 锅炉连排水现有回收途径是在专用降温池中冷却降温后,回收至冷却水塔,也可以回收到除盐水系统的生水池。此种回收途径的缺点是把连排水当作工业水回收,回收产生的效益低,只相当于回收工业水的价值。连排水温度高,应先换热降温后再回收,建议将降温后的连排水引到凝汽器的补水泵入口或除盐水系统的阳床入口等处,供暖季节可以回收到暖气系统。

2.2 油区含油废水回收 根据设计,油区含油废水从油区用泵送至工业废水处理站进行油水分离处理后,再与其他废水混合进行凝聚澄清、中和、过滤处理。如果把油区含油废水从油区用泵直接送至煤场用于喷淋,不但免于油水分离处理,而且大大降低了电厂排放含油废水的风险和几率,环保效益大。

2.3 除盐设备排水回收 根据设计,除盐设备在线硅表、电导表排水直接排入地沟。如果把除盐水泵出口在线电导表排水引到除盐水泵入口管即可实现回收。阳床、阴床、混床等除盐设备的在线硅表、电导表排水可以回收到除碳水箱。

2.4 投运除盐设备冲洗排水回收 根据设计,投运阳床、阴床、混床等除盐设备时的冲洗排水直接排入地沟,但冲洗排水的电导率都不会大于反渗透出水的电导率,可以把其回收到除碳水箱。

2.5 盐水浓缩技术水回收 如果需要进一步节水或减少排放,需要对循环水的排污水或废水进一步处理,一般采用反渗透加(RO)、蒸发池、盐水浓缩器、结晶设备等组合组成的深度处理系统。在反渗透处理前—般需要进行过滤处理,新技术的发展产生了微滤、超滤和纳滤等精密过滤新材料、新设备据资料介绍。高效反渗透技术,对处理水杂质的允许范围较宽,可以省去精密过滤。

3 废水利用技术改进措施

3.1 生活废水的再利用 电厂普遍重视绿化工作,为节约较大的绿化用水量,可对电厂进行绿化用水改造工作,铺设专用绿化管网。将原设计绿化用生活水改造为利用处理后的生活污水,提高生活废水的再利用率。

3.2 工业废水的再利用 处理后的工业水,原来只用于煤场喷淋,回收利用率较低。经过技术改造,可扩大到渣泵房水池补水、输煤栈桥冲洗、输煤皮带喷淋及道路清洗等用途上。

3.3 生活水系统优化 电厂的生活水一般为独立制取、独立供应,与市政自来水管网无关。生活水压力在0.7~0.8MPa,考虑到电厂生活水管网系统小,用水量波动较大,生活水如果长期维持在此压力范围内,势必造成管网滴漏与水量的浪费现象发生,并可能增加管网的维护工作量(如水龙头损坏较快)。因此,可对生活水管网采用变频方式供水,水泵可自动根据管网系统的用水情况调整出力。同时,对变频装置的水压设定值进行调整,使生活水管网压力维持在 0.4~0.5MPa,减少管网的泄漏。

4 火电厂“零排放”处理

火力发电厂“零排放”是指不对外排放废水。所有废水全部被火力发电厂综合利用。美国对“零排放”的定义为:“零排放即电厂不向地面水域排放废水,所有离开电厂的水都是以湿气的形式,如蒸发到大气中,或是包含在灰及渣中。从 “零排放”的定义,结合各种水与废水处理方法的分析,火电厂实现“零排放”在技术上是可以办到的,但在经济上是否可行,必须对水价、工程造价和电价等因素,进行经济技术比较。火电厂“零排放”不应作为节水的目标,只是在环境容量不允许的条件下的环保措施,因为,“零排放”的节水效果,在经济上是不合理的。

5 结束语

目前许多90年代以前设计投产的火力发电厂,设计装机水耗均偏高,而且1984年9月国家经委、建设部所颁布的发电厂用水定额规定偏大。此外,又由于近年来用电市场疲软,火力发电厂机组负荷出力不足,无法对设备系统用水采取有效合理的调整,使得其发电水耗居高不下,在此情况下各火力发电厂应结合本单位实际情况,采取合理有效地措施,降低发电水耗,提高企业自身效益。

参考文献

电池回收途径篇4

大家一听到电池这个名字一定很熟悉吧?它就是环境界的大杀手。有些人说:“我觉得乱扔废旧电池没什么危害,你看,现在大家还都不是乱扔废旧电池吗?”有些人说:“我认为乱扔废旧电池有很大危害,不能乱扔。”

到底废旧电池可不可以乱扔呢?我回家查了电脑,上面显示着:废旧电池的危害主要集中在其中所含的少量的重金属上,如铅、汞、镉等。这些有毒物质通过各种途径进入人体内,长期积蓄难以排除,损害神经系统、造血功能和骨骼,甚至可以致癌。铅能使神经系统、消化系统、血液中毒和引起其它的病变。汞能使精神状态改变。镉、锰主要危害神经系统。电池对环境污染很严重,一节电池可以污染数十万立方米的水;一节一号电池烂在地里,能使1平方米的土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。

哇!废旧电池的危害真大呀!为了我们的环境保护,我倡议:大家以后不要乱扔废旧电池,自己做一个废旧电池回收站吧!

广西省柳州市柳南区实验小学四(2)班:曾译萱

电池回收途径篇5

【关键词】:雨水回用; 绿色建筑; 工程设计

中图分类号:E271 文献标识码: A

1 前言

水是人类的生命之源。它不仅仅是人类生存所必需的,并且大量用于农业,制造业,矿业,能源生产等,因此在水资源日益缺乏的今天,为了子孙后代,我们必须用可持续发展的眼光来保护水资源,雨水既天然又取之不尽,因此将雨水作为一种资源回收利用,并且采用必要的雨水回收利用对于节约水资源是相当有益的,同样使用雨水更可以带来经济效益。为此,地方也对这方面出台了相应的鼓励政策,国家也颁布了相应的规范,让有条件的建筑小区,进行雨水收集和回收利用。

2 雨水回用理论

现代意义上的雨水利用是从20世纪80年代到90年展起来的。它主要是随着城市化带来的水资源紧缺和环境与生态问题而引起人们的重视。

雨水的获得是不需要支付任何费用的,同时由于水质条件较好,因此被认为是最有利用价值的水资源。它涉及到城市雨水资源的科学管理、雨水径流的污染控制、雨水作中水等杂用水源的直接收集利用、用各种渗透设施将雨水回灌地下的间接利用、城市生活小区水系统的合理设计及其生态环境建设等方面,是一项涉及面很广的系统工程。其中雨水回用系统是指利用各种工程手段有目的和有针对性地对的雨水加以收集和利用,将降雨转化为地下水或者地表径流加以收集、调配和利用,改善雨水水文循环以满足各方面的使用需求,同时可以减少雨水管道系统的投资和运行费用。

3 建筑小区现阶段存在的技术问题(以三江立体城为例)

3.1 雨水水质在时间上存在较大的差异

天然降雨中污染指标浓度较低,水质基本良好。初期雨水污染主要为有机污染和悬浮固体污染,其他污染指标浓度相对较低。雨水悬浮物、COD、氨氮、总P随降雨历时的延长而逐渐降低,降雨后期COD趋于稳定,水质较好。

3.2雨水水质在空间上存在较大的差异

由于受外界影响较小,屋面雨水水质要比地面径流雨水好,且径流量较大。而地面雨水收集系统主要是对硬化地面上的雨水和从屋面引致地面上的雨水进行收集,一般都是将雨水口设置在硬化地面汇水面的低洼处,在设置距离及数量上要满足每个雨水口所能担负的最大集水能力。道路上一个个的雨水口就是将路面上雨水收集汇入雨水管道,然后再由雨水管道收集、输送,受污染程度较严重,水质较差。

3.3 雨水收集系统较难铺设

3.3.1满堂地下室的覆土

温州的大多数小区,地下室覆土都是0.8m~1.2m左右,以1.0m最为常见。浪费空间,对甲方来讲,就是浪费金钱,因此,绝大多数新建建筑小区往往采用满堂地下室+覆土1.0m的做法。

3.3.2管道交叉

在满堂地下室,覆土仅有1.0m的情况下,如果铺设污水管、雨水管、雨水回用管、燃气管、给水管、消防管、强电管、通讯、电视等众多管道。

3.3.3距离及标高

在满堂地下室,覆土仅有1.0m的情况下,往往雨水管要铺设100~200m的路程,才能把雨水送到回用泵房。坡度、标高,往往受限严重。

3.4 水处理工艺

雨水用途主要包括以下方面: 生活杂用( 如冲洗厕所、洗衣洗车、消防用水等) , 市政杂用( 如绿地灌溉、构造水景观等) , 地下水回灌等。不同的回用用途应满足相应的水质标准,不同的水质标准对应不同的处理工艺,不同的工艺对应着不同的工程造价。

4 针对上述问题所采取的措施

4.1 对初期雨水进行弃流

优先流法弃流池。初期雨水弃除最常用的方法是优先流法, 即将设计的集雨面的初期径流量优先排入相应容积的需水空间内, 然后再流入收集系统的下游, 如图所示。弃流池一般用砖砌、混凝土现浇或预制, 可设计为在线或旁通方式所截留的初期雨水在降雨结束后或者由水泵排入污水管道, 或者逐渐渗入周围的土壤。相应的雨水弃除设施如图 所示。该方法设计根据雨水径流的冲刷规律合理确定弃流水量。优点是简单有效, 可以准确地按设计要求控制初期雨水量, 效果好。

4.2 设置屋面雨水回用专用管道系统

按雨水管道的位置分为外收集系统和内收集系统,外收集系统由收集道路雨水;内收集系统收集屋面雨水,雨水回用采用内收集系统,对屋面雨水进行单独收集,提高进水水质,减轻水处理负担。

4.3 进行管道综合设计

关于管道排布顺序

采用有压管让无压管(压力流管让重力流管),污水管道先行,雨水管道由于是在6#、9#楼南北分设化粪池,打开一个雨水回用管通道,再两侧设置雨水管。等这些定好后,再补充给水、燃气,强电、弱电等管道。

雨水回用主管采用DN400的管道,最小坡度为1.5‰,这样预计能走出地下室。受地形限制,无奈的对道路侧屋面雨水进行弃流。

4.4采用灌溉标准来处理雨水

屋面雨水经管网收集后进入弃流井,初期雨水弃流,弃流后的雨水进入雨水收集池,收集池雨水经提升泵提升进入水处理间,经过过滤、混凝、杀菌剂杀菌,进入清水箱,清水箱处理后的雨水由变频恒压供水设备输送至道路冲洗和绿化用。

当池内储备雨水不够时(收集池内亦无足量雨水),可通过市政给水管向清水池内补充自来水供绿化用水。自来水补给接入清水池,采用间接补水防止污染。

电池回收途径篇6

【关键词】火力发电厂废水再生回用

中图分类号:TM6 文献标识码:A 文章编号:

火力发电厂的废水资源化的潜力很大。通过废水回用,可以代替火力发电厂30%以上的新鲜水,有很大的节水效益。同时,废水回用又可以减少火力发电厂的外排废水量,减轻对环境的污染,有很大的环保效益。

一、火力发电厂的废水的基本特征

1、火电厂工业废水的主要类型

(1)输煤系统消尘的清洗水:煤炭等物质在运输过程中有大量的尘灰飞扬,一般需要清水去去除这些尘灰,虽经这些清洗后排放的污水已经过沉淀池沉淀,然而污水中煤粉等悬浮物含量仍很高,该类冲洗水的排放一般比较有规律。

(2)除灰浓缩池溢流水:该类污水悬浮物含量很高,主要是漂珠和粉煤灰,水质的pH 值偏高,含有一些有害的微量元素,会经常连续性排放,水量相对稳定。

(3)化学水处理排水:包括化验污水、脱硫废水和除盐设备的再生污水等,这些化学性很强的污水在排放之前都会先放到中和池中和,然后才排放,虽然如此,经处理后排放的化学水还是偏酸性或碱性的,仍属于污染水源。

(4)锅炉的排污水:该类污水含盐量很高,pH 值偏酸性。主要是清洗暖风器、热力设备、空气预热器、锅炉酸洗等的污水。一般不经常性排水,只是偶尔的清洗设备时临时排放,但是水量大。

(5)含油污水:该类水是由于检修清洗油管设备或者油管路渗漏时排放造成。不连续但经常性排放。

(6)设备事故检修排水:一般在进行设备大规模检修的时候进行的排水,比如检修循环水管沟而导致的地面排水。一般是临时排水。

(7)冷却塔的循环排污水、溢流水:该类水含盐量很高,需经常性排放。

(8)脱硫废水:该类水主要是悬浮物、pH值、重金属超标。

(9)工业供热、制冷用汽冷凝水:水量连续而稳定,水量较大。

2、火电厂工业废水的特点:

(1)污水的种类多,但大部分污水的浊度较低,例如输煤系统消尘的清洗水、锅炉的排污水等。

(2)污水主流属于非稳定流。因为火电厂大多数的工业废水都是不连续排放的,而且水量变化不稳定。

(3)具有污染性。某些电厂排放的工业污水、废水中含有的有害微量元素超出规定的标准,会对环境造成污染。

(4)污水排放后主要的处理对象是PH 值、悬浮物以及石油等。

二、火力发电厂的废水再生回用

1、废水再生

根据废水的成分和污染物的含量, 火力发电厂一般采用以下几种废水处理工艺:

(1)隔滤法

隔滤法又分栅栏法、筛滤法和过滤法等。栅栏法和筛滤法都是以阻隔的方式拦截废水中比较粗大的悬浮固体, 而过滤法除拦截作用外, 还有吸附、絮凝和沉淀等作用, 使比孔隙更细的悬浮颗粒也能从废水中分离出来。

(2)活性污泥法

活性污泥法是好氧生物转换处理的一种典型方法, 此法特别适用于生活污水的处理。它是以含于废水中的有机污染物为培养基, 在有溶解氧的情况下, 连续地培养活性污泥, 再利用其吸附凝聚和氧化分解作用净化废水中的有机污染物。图1是普通活性污泥法处理流程。

图1普通活性污泥处理系统流程

初次沉淀池用以去除废水中的原生悬浮物;曝气池使废水中的有机污染物与活性污泥充分接触, 并吸附和氧化分解有机污染物; 曝气系统供给曝气池生物反应所必须的氧气, 并起混合搅拌作用; 二次沉淀池用以分离曝气池出水中的活性污泥; 污泥回流系统把二次沉淀池中的一部分沉淀污泥再回流到曝气池, 以保证曝气池有足够的微生物浓度; 剩余污泥排放系统是将曝气池内不断增殖的污泥通过排放系统排掉, 以保证曝气池的有效反应容积。

(3)中和处理法

中和处理法是根据酸碱中和理论, 有效调节pH 以使废水达到排放要求的一种简单方法。火电厂的化学清洗排水、水处理的再生排水等一般都需要进行中和处理。目前, 多数电厂都设计和使用中和池来处理制水再生过程所排放的废酸液和废碱液。当然, 由于火电厂酸碱废液排放量大, 所以采用中和工艺时也要因地制宜, 做到经济、有效。除用酸碱液直接处理外, 酸性废水亦可用投加碱性药剂、通过碱性滤料、利用碱性废渣和天然水体及土壤中碳酸盐、重碳酸盐碱度来进行中和处理。碱性废水可用废弃无机酸、酸性废气( 如CO2和烟道气) 和酸性废水处理。

此外, 有的火力发电厂还采用混凝、吸附、离子交换以及电渗析和反渗透等工艺方法处理污水。

(4)火电厂废水防治措施

我国发电厂对灰水pH 超过国家规定排放标准的治理措施有: 灰水闭路循环、炉烟处理( 利用炉烟中的CO2 或SO2 处理) 、加酸处理、用循环水中和稀释、采用湿式除尘器等。灰水悬浮物用隔板和沉淀的方法; 电厂含油废水多数先采用隔油处理, 而后再行浮选处理或油水分离装置处理及生物处理等; 生活废水则一般用活性污泥处理; 生产废水用中和、澄清、消毒、过滤等方法; 输煤系统的冲洗废水则用沉淀或净水装置处理后回收。

2、废水回用

随着水资源的日益贫乏, 废水回收利用技术越来越重要。为了解决火力发电厂的水源问题, 废水处理后回收利用是解决水资源短缺的有效途径。近年来新的废水回收利用工艺技术已相继在部分新建火电厂得到了实施和应用,大部分的废水都能得到合理的回收利用。

火力发电厂的循环水排污水以及工业供热、制冷用汽冷凝水水量连续而稳定,水量较大。按照以往的做法,工业供热、制冷用汽冷凝水都是直接作为废水排放,回用率不高,如果能回收重复利用,将会产生极大的效益。以下简单介绍一下该2种废水的回收处理方法。

(1)火电厂循环排污水的回收处理。

循环排污水的回收水经基本的絮凝澄清后可用于除灰渣、输媒冲洗、厂区绿化、道路冲洗等用户重复利用;另外随着现在超滤(UF)、反渗透(RO) 、电除盐(DEI)等膜处理技术的成熟应用,循环排污水经过滤和预脱盐可以做为电厂化学锅炉补给水水源。

其处理工艺为:循环排污水空隙调节纤维过滤器自清洗过滤器超滤装置保安过滤器反渗透装置电厂化学锅炉补给水后续处理。

(2)工业供热、制冷用汽冷凝废水的回收处理。

工业供热、制冷用汽冷凝废水的水质稳定,水量较大,回收处理工艺可根据水质情况做除油、除铁、除去离子等处理。

某南方城市分布式能源项目,为热冷电三联供工程。主要向附近工业区提供工业用蒸汽和周边宾馆学校用冷气。其工业用蒸汽和制冷用蒸汽约450t/h,按90%的回收率,回收的冷凝水量为450x90%=405 t/h。该工程的冷凝废水回收处理工艺如下:冷凝废水回收水池除油除铁过滤器活性炭过滤器混合离子交换器除盐水箱(主厂房)。该系统已运行近2年,各设备运行正常,出水水质稳定,完全满足锅炉给水的水质要求。

总之,火力发电厂废水处理及回收利用是节约用水和保护环境的重要途径。根据我国现状,还应加大对污水处理及其回收利用技术的研究和科技投入力度, 可以在提高循环水浓缩倍率、循环水排污水的利用、解决蒸汽冷凝废水的回收等废水回用方面有更大的突破。

参考文献:

[1] 刘润来.火力发电厂降低能耗的主要途径[J]. 电力设备. 2006(05)

电池回收途径篇7

关键词:污水能耗与功效 好氧过滤 生态处理 自净

一、前言

目前我国城市污水处理率低、环境污染压力大,但现行的处理技术多数面临高额资金投入的难题,当前迫切需要低能耗、生态型的污水处理技术。并且,随着人民生活水平的提高和城市化的日益加快,我国城市污水排放量持续增长。我国水污染的治理重点已经开始从工业点源为主的控制治理,逐步转变为以城市生活污水污染为主的控制治理。如何经济有效地解决生活污水的污染问题已成为一个亟待解决的难题,引起了人民群众和政府部门的极大关注。

然而污水处理的费用也是一个很大的问题,要想将污水和废水处理好,对环境的污染降到最低,我们就必须以最经济的方式处理污水,这就涉及到一个污水能耗与功效的问题。下面就污水处理厂的整个污水处理的流程进行分析,找到当前常用的污水处理流程中工艺的不足之处,并提出更好的解决方法,使以后的污水处理更加容易,更加全面,将污水对环境的污染降到最低的限度。

二、污水处理厂的工艺流程

目前,常用于我国城市污水处理的方式为集中污水处理系统和传统的三格式化粪池。其它的处理构筑物也都是大同小异的,主要的流程不外乎如此:

污水收集设施[包括污水管道、雨水管道、工厂排放水管道等]-->污水提升泵站-->格栅拦截-->沉砂池-->初沉池-->曝气池、厌氧池等核心处理工艺流程-->二次沉淀池-->排水管道或渠排入水体[①]

其中核心处理流程可分为一级处理和二级及以上的深度处理。深度处理流程主要有好氧处理流程、厌氧处理流程及两者相结合的处理方法。

目前,好氧处理方法有SBR工艺、UASB工艺、氧化沟、氧化塘等工艺,在曝气池里充入空气或氧气,让好氧细菌除去污水中的有机物杂质;厌氧处理流程主要有厌氧流化床、两相厌氧发酵、厌氧滤池等利用厌氧菌进行厌氧发酵的方法除去污水中的有机物的;另外常用的还有像A20及其变种的工艺流程都是好氧处理和厌氧处理相结合的处理流程,其处理效果往往比单一的处理方式好得多。

深度处理构筑物不外乎以下几种:曝气池、厌氧池、氧化塘、厌氧反应器及特殊的除磷脱氮设备,或者是它们的变种工艺,但是处理原理都是大同小异的。

三、各个处理构筑物的能耗分析

3.1、污水处理系统[②]

目前,污水处理系统又有集中污水处理系统和分散式处理系统。前者是指各种城市生活污水,经预处理符合管道排放标准的工业废水和城市融雪、降水等混合废水经过城市下水管道收集,然后集中被输往城市污水处理厂,城市污水处理厂再根据进水的水质,综合规划,采用适宜的措施集中处理;在达到国家排放标准后,排入自然水系的一种污水处理方式。一般用于经济比较发达的大中型城市。该系统初始投资大,需要敷设相应的城市污水管网,运行管理成本很高,因而对于经济欠发达地区的中小城镇有极大的应用局限性。

分散式污水处理系统,是指在小区或一个工厂设置化粪池或小型的污水处理设施,对生活污水进行预处理,对能够利用的中水进行冲厕所、洗车、浇洒路面花坛等。虽然分散式处理流程可能导致处理费用提升,但是这种处理方式是有它的优越性的,特别是现在过于集中的污水处理费用越来越高,处理流量也越来越大的情况下,分散式处理方式更显示了它的优越性。

3.2、污水提升泵站的能耗分析

随着人们对环境污染越来越严重这一状况的认识和对加强环境保护意识的加强,现在大多数城市都纷纷建设了污水处理厂,处理流程也由简单的一级处理升级为二级或更深度的处理。但是对于大中型城市来说,普启遍还是采用集中处理的方式。一个污水处理厂处理的污水面积都很大,这就需要用提升泵站将远处的污水提升到污水处理厂进行集中处理,这些污水提升泵站不仅要保障所有污水都要提升到污水处理厂,还要适应污水量变化的要求,一般其流量都是很大的,输送的路程也很远,再者污水管道一般都埋设较深,泵站需要有很高扬程,电耗十分可观。

电费是污水提升泵站的主根能耗,输送路程越远,电价越高,像武汉的龙王嘴污水处理厂就设有五个污水提升泵站,将附近很大面积的污水汇集起来,其流量还是不大,目前正在扩建的工程处理流量也才15万吨。

3.3、格栅、沉砂池和初沉池的能耗分析

格栅是利用栅条拦截污水中粗大的杂质,污水经过格栅时,由于栅条的阻挡会引起水头损失,这就需要有水泵提升污水以增大污水的势能;再者,栅渣的机械粉碎处理也是耗能过程。这两者是格栅处理流程的主要能耗根源。

沉砂池和初沉池用以除去污水中粗大的砂粒以及细小的悬浮物,除了污水在池子中的水损外,刮砂刮泥设施以及其后续处理会有很大的能耗,但是这些能耗都不大。

3.4、曝气池的能耗分析

曝气池是好氧处理工艺的能耗大户,大部分的能耗都集中于此。能降低曝气池的能耗就相当于解决了好氧处理工艺流程的能耗问题。

常规的曝气池都是用机械的方式向污水中鼓入空气或是从池底充入空气,并且用搅拌等方式让空气和污水充分混合,从而使空气均匀地分布于污水中,提高好氧使理的效果。

污水在曝气池里的停留时间一般会在两个小时以上,其容积是相当大的,不管是采用叶轮旋转曝气还是通气帽在池底鼓入空气的方式曝气,电机的功率很大,且要昼夜运行,其能耗之大是可想而知的了。

3.5、厌氧池及厌氧处理设备的能耗分析

除了好氧处理技术之处,厌氧处理工艺也很容易为人们所接受,厌氧处理工艺的能耗相对较低,并且可以产生沼气,回收利用也很方便,只是厌氧处理过程中,污水停留时间很长,并且要保证好的处理效果,必须要有较好的隔绝空气的措施。尽管如此,厌氧处理的趋势还是很看好的。

3.6、二沉池及其它处理设施的能耗分析

二沉池是处理后的污水进行泥水分离的地方,现在普遍使用的二沉池都设有刮渣挡板,出水排泥等装置,二沉池的面积也比较大。分离出来的污泥还要用污泥泵输送到污泥泵房,污泥的压缩处理等也是耗能很大的。

现在常用的污泥机械压缩处理,浓缩后的污泥外运填进等方法,耗能巨大,并容易引起二次污染。像污泥中的高浓度污染物很容易随雨水再次进入水循环系统,造成二次污染,有关二次污染的处理也是很伤脑筋的事情。

四、污水处理各个环节的节能途径

4.1、再生回用以减少深度处理

城市污水处理出水的再生利用在我国,花费大量投资建设了城市污水处理厂,但经过处理后的再生水并没有得到充分利用,在城市污水处理决策中应充分考虑污水的再生利用。发展再生水在农业灌溉、绿地浇灌、城市杂用、生态恢复和工业冷却等方面的利用。

城市污水再生利用,应根据用户需求和用途,合理确定用水的水量和水质。污水再生利用,可选用混凝、过滤、消毒或自然净化等深度处理技术。因此,缺水城市和水环境污染严重的地区,在规划建设远距离调水之前应积极实施城市污水再生利用工程,同时做好非投资性或低投资性的节水减污工作。

城市污水再生利用规划建设要依照客观需要和实际可能的原则,按照远期规划确定最终规模,以现状水量及用水需求为主要依据确定实施规模。城市污水再生利用技术选择与工程实施要考虑国情、实际条件和用户需求,城市污水再生利用规模、处理程度、处理流程、输水方式、再生水质、使用用途的选择上,既要满足要求,又要经济合理。目前城市污水再生利用应着重于农业灌溉、市政杂用、景观水体、生活杂用、工业冷却、生态环境和补充地表水。

但是,城市污水再生过程和再生水的使用应确保公众和操作人员的健康安全,以及周边的环境安全,尤其要有效地控制病原菌的污染和传播。再生水使用应满足国家和地方有关污水再生利用的水质标准和规定,处理工艺的选择,尤其是工艺的可靠性和安全性的保障,应经过严格的专家论证、评估和主管部门的批准。

4.2、环境自净和生态处理以降低能耗

城市污水处理厂出水也可看作是水文循环的组成部分,将合乎质量要求的出水排放到河流水体中,使河流水体能维持或变成供下游使用的原水源,不仅经济可行,而且可减少风险并发挥河流自净能力。

正是因为自然环境自身有很强的处理污水的能力,我们可以用生态的方法处理污水,这样不仅可以获得很好的处理效果还能省去很多处理费用,是两全其美的办法。

目前的生态处理方法中很多处理方法都存在占地多,处理流量小的问题。所以生态处理方法要因地制宜,用在空地较多、生物生长好的地方,像人工湿地、土壤层微生物滤池、植物浮床等都是很好的生态处理方法,能耗低,很值得推广。

4.3、各个处理构筑物的节能途径

在污水处理流程中,各个污水处理构筑物的节能途径很多,下面就污水处理流程中各个构筑物的节能方法。

污水提升泵站节能途径。将现有的集中式污水处理改成分散式处理,并充分利用一级处理后的中水,可以减小城市污水处理厂的压力,更可以大大减少深度处理所需的费用。同时污水提升泵站的水量也会适当减少,甚至可以取消,全部采用分散处理模式。污水处理厂只负责处理工厂附近、污水量大的用户排放的污水。

格栅的节能途径。尽量将污水处理设备安装在地势较低的地方,可以减小提升泵的功率。污水经过格栅的时候可以凭借其较快的流速通过栅条,必要时再用提升泵将污水提升至沉淀池。

曝气设施的节能途径[③]。不管是好氧处理还是厌氧处理设施,其能耗都是非常大的。因为我们必须要用电力设备将空气充入到污水中,但是我们可以采用多层好氧过滤的方式减小这一能耗开支。好氧过滤的各个滤层的厚度的材料都是不相同的,实现的过滤效果也大相径庭。

好氧过滤具体的方法是:污水经过格栅拦截之后,即可以直接进入第一层好氧过滤层,第一层好氧过滤层的孔隙是很大的,一般用粗大的砂石铺垫,主要去除污水中大的悬浮物并通过水流在砂石中紊动的流动将空气中的氧气混入污水中。然后污水进入第二层好氧过滤层,这一层的砂石粒径相对较小,污水在这一层的停留时间相对较长,主要是好氧微生物对有机物的氧化过程,在这一好氧滤层里,很容易生成生物膜,类似于生物膜的处理。如果污水的有机物的含量不是很高的话,处理水已经基本达到了排放的标准了,也可以将处理后的水收集起来作中水使用。如果污水的有机物含量很高的话,可以让污水继续进行下一层的好氧过滤,滤层的孔隙也将更小,处理时间更长,效果也更好。在这一层中,由于污水的停留时间较长,对污水中的N和P也有较好的去除效果。

进行好氧过滤处理的排放水已经可以达到排放的要求,没有必要设置二次沉淀池进行泥水分离。这种处理流程适用于建设在河湖的旁边,有利用处理水的就近排放,而且可以不用清水管道或管渠即可。

五、结论

上面提到的比较节能的污水处理方法主要是生态的处理方法,其中好氧生物滤池尽管很节能,但是也有它自身的限制因素所在:

1 占地较大。因为这种处理方式全靠生物进行氧化分解有机物的方式处理污水,污水停留时间很长,所以处理流量是十分有限的,但是正如前面提到的,在大部分污水都用分散式处理方式的情况下,处理流量都不会很大,所以这种处理方式是有它的优势所在的。

2 不能进行反冲洗,容易堵塞。由于污水通过滤层的时候,会生成很厚的生物膜,老化的生物膜脱落后很容易堵塞住滤层的孔隙,过滤效果会因此而大为降低。所以我们只能用孔隙较大的滤料层,并且尽量避免用垂直分层的布置方式。

3 初期造价高,但是处理费用低。初期造价主要集中在滤层铺砌和滤层上面草皮的种植上,但是一经运行,其运行费用是很低的。

该处理方案有以下几个方面的特点:

1 如果在滤层上面种植植被的话,可以将过滤和湿地相结合建设,处理效果会更好。

2 这种处理方案只适用于分散式处理方案中,处理流量很小,具体的设施可以同家庭的小花坛、花园合建,并不会影响建设的美观性。处理后的水可以直接渗透到附近的水池里,用于花坛的浇灌,路面浇洒等,甚至可以回用于冲洗厕所。

3好氧过滤可以结合化粪池共同使用,有化粪池进行初步处理,粗大的杂质已经去除,滤层的堵塞的几率会大大减小。

参考文献:

[1]《排水工程》第四版,张自杰主编,顾夏声主审,中国建筑工业出版社出版。

[2]《污水处理能耗与能效》[美]W.F.OWEN,章北平、车武译,金儒霖校,能源出版社出版。

[①] :这里没有分析污泥处理流程和能耗。

电池回收途径篇8

我国水资源紧缺,尤其是大部分以城市为中心的地区,全国700多个地级市以上的城市中,有近400座城市缺水或严重缺水。由于城市的扩大和工业的迅速发展,水的需求量每年平均以5%以上的速度增长。直接排放雨水不仅造成了水资源的流失,而且加大了市政管网的压力,近年来频繁出现的城市内涝就是一个典型的例子。雨水利用将根据地形地貌,利用城市现有设施,通过工程措施和非工程措施,将汛雨拦蓄,使雨水成为可供利用的水资源。雨水利用有节约水资源、减缓洪涝灾害、补充地下水、控制径流污染和改善城市生态环境等多重意义。雨水回收利用将是解决城市水资源危机的有效途径之一。而城市初期雨水污染在降雨初期污染浓度大,伴随着降雨的增多,污水的浓度逐渐降低,降雨的突然性和非延续性的特点。因此,降雨量和雨水水质的监测是雨水回收利用基础和前提,为回水回收利用方案提供有力数据;也是智能化,集约型雨水回收利用系统的数据源。

目前雨水回收利用研究主要集中在设计方法和雨水处理工艺(例如物理过滤法和生态处理法)上。然而对于处理系统本身的研究较少,特别是目前雨水处理系统的自动控制优化领域,往往出现设备难以长期有效运行的状况,极大的影响了雨水利用工程的实际效果。本文针对这一问题,设计出一种智能化雨水回收利用系统,通过优化传统雨水回收利用系统运行控制策略、实现系统运行状况的远程在线监控,提高其后期运行维护效率。

2 系统结构

系统主要由系统控制单元、数据采集单元、数据传输单元、数据信息平台等部分构成,如图1所示。

(1)系统控制单元

主要由控制部件、中继单元、控制回路等组成。它主要完成系统中水泵、阀门、过滤等部件的控制,保证整个系统的正常安全运行。

(2)数据采集单元

该单元主要用于采集系统工作状态的各参数,并更具各参数信息完成系统逻辑控制。参数包含有水池液位、药桶液位、主要水泵工作电流、温湿度、清水池PH值、供水流量等。

(3)数据传输单元

该单元通过无线传输方式,将数据采集单元采集到的数据传输至系统服务器端。目前数据传输采用中国移动网络。

(4)数据信息平台

该平台主要由数据服务器和云数据显示平台构成;通过数据传输单元传送过来的数据被储存在数据服务器中,数据在服务器中完成数据处理及信息交换,最终通过云数据显示平台将系统参数直观便捷的显示出来。

3 控制策略

系统控制单元的控制逻辑分为手动控制和自动控制两种。其中手动控制需要根据现场的需求情况,手动的启停各水泵;而自动控制是将数据采集单元采集的各传感器数据进行综合判定,并根据设置对水泵等控制部件进行自动控制,从而完成整个系统的自动运行。基本的控制策略如下:

通过清水池/蓄水池液位控制补水系统的启停;

通过清水池/蓄水池液位控制净化泵的启停;

通过净化泵的启停控制消毒系统的启停;

通过清水池液位及供水压力控制灌溉泵启停;

通过蓄水池液位控制絮凝系统的启停;

通过清水池液位控制自来水电磁阀的动作;

通过控制面板选择手动/自动模式,手动模式下各水泵的手动启停控;

通过控制面板显示屏就地显示部分系统运行参数。

电池回收途径篇9

关键词天然气,能耗,经济性

AbstractExpoundstheapplications,technicalfeaturesandcurrentsituationofgas-firedboiler,gascogenerationandgas-drivenheatpumps,andcomparestheiradvantagesanddisadvantagesandapplicabilitywithprimaryenergyconsumptionrateandeconomicsasevaluationindices.

Keywordsnaturalgas,heating,energyconsumption,economics

我国天然气开发和建筑的快速进展,使得东部城市大量抗议使用天然气的条件逐渐成熟,天然气在大城市,尤其是在供暖空调领域的广泛利用的春天已经到来。

1天然气在供暖领域的应用形式

天然气在供暖领域应用的主要形式如图1所示。

图1各种燃气供暖形式

1.1燃气锅炉

对于燃气锅炉,天然气燃烧产生的热量直接用于供暖,是最简单的一种供热方式。从规模一来看,这种供暖方式包括用于一家一户的家用燃气炉,一幢楼或一个小区的小型燃气锅炉以及用于大片面积供热的区域性燃气锅炉。

1.1.1家用燃气炉,这是目前应用较为广泛的一种天然气供暖方式,通常设置于厨房或阳台,配有先进的电子点火控制、安全保护和温度调节等系统,操作简单,调节灵活,还能同时满足生活热水需求。但是,由于是分散燃烧,会影响社区的空气品质,同时也存在燃气泄漏、燃烧故障甚至发生爆炸等安全性问题。

1.1.2小型燃气锅炉实际上是一种规模较小的燃气集中供热系统,在用户附近设置统一的燃气锅炉,向各用户房间提供供暖热水。这种供暖系统一般用于一幢商业建筑或办公楼。由于将用户热源集中为一个,便于管理,提高了安全性,对用户空气的污染问题也相应减轻。但需要增设锅炉房和管网。

1.1.3区域燃气锅炉的规模更大,它需要通过热网向大面积的用户供热。由于热源更为集中,供热系统运行工况更加稳定,锅炉运行效率更高,同时大型锅炉更有条件采用先进的低氮燃烧技术,环境污染更小,在一些已有的"煤改气"区域供热系统中可根据具体情况慎重应用。但是,由于热网投资大,热水管网输送能耗和热损失高,这种燃气供暖方式不宜于在新建区域供热系统中推广。

1.2燃气热电联产

对于纯热力发电系统,燃料一般只有少部分的能源转化为电能,发电效率只有30%左右,而大部分燃料的能量形成余热排到大气。热电联产系统则在发电的同时,利用了这部分余热用以供热,从而使得热电联产的能源利用效率可以达到80%以上。由于实现了能量的梯级利用,因而是比燃气锅炉先进的供暖形式。评价热电联产系统能源利用效率的指标主要有热电比和发电效率等。热电比是指热电联产系统或装置的供热量和发电量之比。

1.2.1锅炉加供热汽轮机是我国最常见的热电联产形式。燃料在锅炉中燃烧后将热量传给蒸汽,由高温高压蒸汽带动汽轮发电机组发电,做功后的低品位的汽轮机抽汽(图2a)A或背压排汽(图2b)用于供热。这种系统适用于以煤为燃料,技术已非常成熟,主要设备也早已国产化。但由于占地大,负荷调节能力差,发电效率低,燃气热电联产系统一般只在煤改气的热电联产中得以应用,而在新建热电联产系统中很少采用。

图2锅炉+供热汽轮机形式的热电联系统

1.2.2燃气轮机热电联产系统如图3所示,分为单循环和联合循环两种形式。单循环的工作原理是:空气经压气机与燃气在燃烧室燃烧后温度达1000℃以上、压力在1.0~1.6MPa的范围内进入燃气轮机推动叶轮,将燃料的热能转变为机械能,并拖动发电机发电。从燃气轮机排出的烟气温度一般为450~600℃,通过余热锅炉将热量回收用于供热。大型的燃气轮机效率可达30%以上,热和电输出的总效率一般能够保持在80%以上。当机组负荷低于50%时,热效率下降显著。燃气轮机组启停调节灵活(平时启动时间约为10~15min,快速启动为6min左右),因而对于变动幅度较大的负荷较适应。目前工业燃气轮机的生产基本上来自西方国家。

图3燃气轮机热电联产系统简图

上述单循环中余热锅炉可以产生参数很高的蒸汽,如果增设供热汽轮机,使余热锅炉产生的高参数蒸汽在供热汽轮机中继续做功发电,其抽汽或背压排汽用于供热,可以形成燃气-蒸汽联合循环系统(如图3b)。这种系统工程的发电效率进一步得到提高,甚至可达到50%以上。

1.2.3另一种燃气热电联产形式以往复式内燃机为动力装置。当规模较小时,它的发电效率明显比燃气轮机高,一般在30%以上,因而在一些小型的燃气热电联产系统中往往采用这种内燃机形式。但是,由于内燃机的油和气缸冷却放同的热量品位较低(温度不超过90℃),而且该热量份额很大,几乎与烟气回收的热量相当,因而这种供暖形式在供热温度要求高的情况下受到了限制。

楼宇式热电(冷)联产是特别适用于商业建筑的小型高效天然气供热系统。所采用的动力装置均小型化,如小型燃气轮机、微燃机及小型内燃机等。与大型集中供热(冷)方式的热电(冷)联产相比,楼宇式热电(冷)联产系统省去了外网的投资和相应的热损失。但小型动力装置单位发电容量投资偏高。从热、电、冷3种负荷的动态平衡出发,如何优化系统配置和运行是决定该系统经济性的关键。

1.2.4燃料电池是把氢和氧反应生成水放出的化学能直接转换为电能的装置。它有3个基本构件,即燃料(由CH4生成H2)处理装置,燃料电池基本构件和换流装置(直流转换成交流)。其基本原理相当于电解反应的逆向反应。燃料(H2或CO等)及氧化剂(O2)在电池的阴极和阳极上借助氧化剂作用,电离成离子;因离子能通过在二极中间的电介质在电极间迁移,在阴电极、阳电极间形成电压,当电极同外部负载构成回路时就可向外供电。图4给出质子交换膜燃料电池的工作原理:天然气中的氢被分离成质子和电子,质子穿过膜,而电子绕过膜而形成电流;在膜的另一侧,质子和电子与氧结合,生成水,并产生另一副产品--热量,用于供热。燃料电池的种类不少,根据使用的电解质不同,有磷酸燃料电池(PAFC)、熔融碳酸盐型燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)等。

图4质子交换膜燃料电池(PEMFC)的工作原理

燃料电池具有无污染、高效率、适用广、无噪声和能连续运转等优点。它的发电效率可达40%以上,热电联产的效率也达到80%以上。目前,多数燃料电池正处于开发研制中,已经推向市场的产品仍较昂贵(1500美元/kW以上)。但随着该项技术商业化进程的推进,必将在未来燃气供暖行业起到越来越重要的作用。目前从事燃料电池研究和开发的主要有美国、加拿大、日本、德国等国的公司。我国也有大连化物所等多家单位从事燃料电池的研究。

1.3燃气热泵

燃气热泵是由燃气驱动,利用环境热量供热的装置,如图5所示。燃气热泵供热量是燃气热量与环境热量之和,因此它的效率高于燃气锅炉。携带热量的环境介质可以是周围空气、江河湖海的水,地热以及其他余热介质等。根据工作原理的不同,可以分为燃气压缩式热泵和燃气吸收式热泵两种。

图5燃气热泵原理简图

1.3.1燃气压缩式热泵的原理如图6所示,燃气首先在动力装置中燃烧并做功,将热能变成机械能和烟气余热。动力装置可以是燃气轮机、内燃机等。上述机械能推动压缩式热泵吸收环境热量而产生用于供暖的热量,同时动力装置的烟气余热经过余热锅炉变成供暖用热。这各供暖系统具有很高的供热效率,可达160%以上。

图6燃气压缩式热泵的构成

吸收式热泵是通过工质(如水)的蒸发和冷凝,以及溶液吸收和再生等传热传质过程来工作的。常见的工质主要有溴化锂溶液和氨-水等。对于溴化锂燃气热泵,单效型热泵供热效率可达150%~170%,双效型则可超过200%。

由于技术条件的局限,在我国北方地区的严寒期因除霜困难和效率低等问题,燃气热泵与电动热泵一样,直接从环境空气吸热的空气源热泵受到限制。但是,利用地热、江河湖海水和其他余热的燃气热泵则在北方地区更有推广价值。

2能耗分析

用一次能耗率b作为供暖系统能耗的评价指标,它表示单位供热量的一次能耗量(即燃料耗量)。对于燃气锅炉,一次能耗率bb是供热效率ηnot(考虑管道损失)的倒数,即燃气热电联产,系统有热和电两种不同能的输出,应将电能所耗一次能源扣除,设常规发电设备的发电效率为ηE(可取为全国平均水平的发电效率32.5%),则其一次能耗为。如果热电联产总的能源利用效率为ηnot,发电效率为ηe,则供热系统的一次能耗率bc为;对于燃气吸收式热泵,如果其热效率为COP,则一次能耗为;对于燃气压缩式热泵,如果动力装置效率为ηe,燃气转换成机械能和余热锅炉回收热量的效率为ηnot,压缩式热泵热效率为COP,则燃气压缩式热泵的一次能耗率bp,为。当效率取表1值时,各燃气供热形式的能耗率如图7所示。

表1各效率取值

家用及小型燃气炉区域燃气锅炉燃气热电联产燃气压缩热泵燃气吸收热泵

锅炉加汽轮机单循环联合循环燃料电池

ηno0.900.800.800.800.800.800.80-

ηe--0.250.300.400.450.30-

COP------3.501.50

图7各天然气供暖形式的一次能耗率

可以看出,燃气热电联产的能耗率明显小于其他供暖形式,燃气热泵居中,而燃气锅炉的能耗最大。燃料电池、联合循环热电联供暖能耗率为负值,说明这些供暖系统仅发电所用能耗已经低于一般的发电系统(全国平均发电能耗)了,因而用于供暖的余热就更不会耗能了。燃气压缩式热泵由于机械能转换为热能的较大不可逆损失,以及燃气吸收式热泵由于发生器传热的较大不可逆损失,使得燃气热泵的一次能耗大于热电联产。而燃气锅炉燃烧后烟气与水(或蒸汽)的传热不可逆损失更大,因而导致其能耗又高于燃气热泵。所以,仅从能耗合理利用的角度,应优先推广热电联产供暖方式,而尽量避免使用燃气锅炉。

当然,由于燃气锅炉,尤其是家用燃气炉的可调性好,可以根据需要随时启停和调节供热量,进而减少燃气耗量,进而在热电联产应用最多的集中供热系统中,在旧的按面积收费管理体制下,由于用户末端缺乏调节手段也会带来能源的浪费。但是,随着今后按热量收费的新供热体制的推广,这一弊端会逐步得到克服。

3经济性比较

供暖形式的经济性问题比上述能耗总是更为复杂,它取决于供暖系统自身的经济特性和外界条件两个方面。就系统自身特性而言,主要包括系统投资、各能源转换环节的效率、设备使用年限、系统维护费以及人工工资等等,但主要是前三项。一般情况下,系统效率越高,投资也就越大,两者对经济性的影响正好相反。在外界条件方面,主要影响因素包括能源价格,如天然气价格、电价等,以及系统承担的供暖负荷特性,如最大供暖负荷小时数。如果作方案比料,可以不考虑热价,以单位供热容量折运行成本z,元/kW,作为经济性的评价指标,即系统投资折旧与运行费之和。为使分析总是更加清晰,运行费中主要考虑燃料费用。

对于燃气锅炉和燃气热泵,单位供热容量的年运行成本z为:

z=rv+Cfbh,其中v为单位供热容量的系统投资,元/kW;r为折旧率,它为系统使用年限的倒数;b为系统一次能耗率;h为最大年供热小时数;Cf为天然气价格,元/m3。

对于燃气热电联产系统,应将发电收从成本中扣除,于是:,其中系统投资v包括单位供热容量的热电联产系统的投资和热力管网投资;Ce为发电的电价,元/(Kw·h)。

以下对天然气供热系统进行简单的经济分析,其中燃气锅炉以家用燃气炉为例,燃气热泵以压缩式热泵为例,燃气热电联产则以单循环为例。燃气炉投资取为300元/kW,燃气热泵投资取为1400元/kW。燃气热电联产投资为3500元/kW,其中热电联产热源投资为2700元/kW(相当于单位kW发电容量投资为4500元),热网投资为800元/kW。为简化起见,折旧年限均为20年。各供暖形式的效率仍取表1的值。于是,可以获得当天然气价格、电价以及供热运行小时数等外界条件变化时,经济性最佳的天然气供暖方式(见图8、图9)。

图8燃气供暖形式的经济性分布

图8的经济性分布是在电价为0.4元/(kW·h)的条件下获得的。可以看出,虽然燃气锅炉的能耗高,燃料费昂贵,但由于投资小,使得相当供暖时间短时,是最经济的。在供暖时间较长时,热泵和热电联产就会体现出运行成本低的优势。由于受廉价的燃煤发电竞争,燃气热电联产的发电电价不可能取得过高,在这种情况下,虽然热电联产的能耗低于热泵,但当天然气价格较高时,燃气热泵的经济性要好于燃气热电联产。

图9燃气供暖方式随电价的经济性分析

图9给出天然气供暖随电价和天然气价格变化的经济性分布,其中年供暖小时数取为2000h。可以看出,在电价和天然气价格很低的条件下,以燃气锅炉供暖合适。天然气价格较高而电价较低时,燃气热泵最经济。当天然气价格较低而电价较高时,热电联产经济性好。

一般北方地区供暖时间较长,加之天然气价格昂贵,只有通过提高能源利用效率的途径来降低供暖成本,即采用燃气热泵和热电联产。燃气热泵受气候条件的影响,水源或地热燃气热泵的使用也会受到不同程度的环境限制。因此,在现有的技术条件下,燃气热泵尚不具备大量推广使用的条件。热电联产的能耗最低,但是在电价高和使用时间长的条件下才具有经济优势。

在燃气价格高于1.40元/m3时,只有电价超过0.45元/(kW·h)热电联产才是最经济的。而一般的燃煤电厂的发电成本不会超过0.30元/(kW·h)。因此,燃气热电联产系统发电上网时,在电力市场中无法与燃煤电厂竞争,怎么办?一种有效的途径是利用燃气热电联产负荷调节的灵活性,作为电网的调峰电厂运行,进而以较高的调峰电价上网[1]。另一条途径是发展楼宇式天然气热电联产系统。这样可减小热力管网投资,同时发电自用,代替电网价格较高的电能。例如,北京商业用电价格为0.60元/(kW·h),天然气价格为1.80元/m3,由图8可知,在这一价格下,燃气热电联产是经济的。另外,还可以利用热电联产的供热量驱动吸收式制冷机,用于夏季空调,形成电热冷三联供,将会增加年供热时间,提高热电联产系统的经济性。

4结论

4.1从合理利用能源的角度应优先推广天然气热电联产的供暖方式,但还需进行技术经济的综合比较。

4.2对于供暖时间较短的用户,可以采用燃气锅炉方式供热。对于投资较大的热电联产系统,尖峰负荷由于发生时间

短,也可用燃气锅炉承担。

4.3在我国现有条件下,燃气热电联产应用的理想途径是以电力调峰方式上网运行,并可以发展楼宇式小型热电(冷)联产系统。

4.4燃气热泵可以在气候、水源、地热或其他余热等条件允许的地方加以应用。

电池回收途径篇10

关键词:小区中水回用;雨水回用;处理工艺;设计

中图分类号:S276文献标识码:A

一、小区生活用水的分类

(1)充分与人体接触的用水。有饮用水、厨房用水和漱洗及洗浴用水,用水量约占生活用水量的50%。

(2)与人体直接接触的室内用水。有洗衣用水、室内扫除清洁用水,用水量约占生活用水量的20%。

(3)不与人体接触的杂用水类。有厕所冲洗水、洒水(公共绿地及道路喷洒水、小区中人造喷泉水)及室内外浇花用水等,约占生活用水量的30%。

二、小区中水回用系统的设计原则

2.1一般来说,不同小区对出水的要求差异较大,应根据我国《地面环境质量标准》(GB3838 - 88)和《污水综合排放标准》(GB8978- 96)的有关规定和当地环保部门的要求确定处理程度,以确保出水水质。

2.2污水处理设施的设计和建设必须结合小区的整体规划和建筑特点,即外观设计上要与小区建筑环境相协调,以求美观。

2.3在污水处理工艺上力求简单实用,以方便管理。

2.4在高程布置上应尽量采用立体布局,充分利用地下空间。平面布置上要紧凑,以节省用地。

2.5污水处理厂位置应尽可能位于小区下风向,与其它建筑物有一定的距离,以减少对环境的影响。

2.6设备化,定型化,模块化,施工安装方便,运行简易,设备性能稳定,适合分期建设。

2.7处理程度高,污泥产量少,并尽可能采用节能处理技术。

2.8处理构筑物对水力负荷和有机物负荷的适应范围较大,使系统有较好的经受冲击负荷的能力。

2.9小区内的人口是逐渐增加的,因此小区污水处理厂应留有发展余地。

根据小区废水处理的原则,应选择处理效果稳定、产泥少、节能的处理方法。小区系统中的各类建筑物一般均建有化粪池,所以化粪池应与污水处理方法相结合。常用的工艺流程有:

(1)污水格栅调节池提升泵接触氧化池沉淀池出水。

(2)污水格栅调节池提升泵曝气池沉淀池污泥回流出水。

(3)污水格栅调节池提升泵SBR 池或CASS池出水。

(4)污水格栅调节池提升泵混凝沉淀(加药)过滤出水(物化方法)。

(5)污水格栅调节池提升泵接触氧化池混凝过滤(加药)出水。

三、小区中水处理工艺

生活污水处理工程一般都是以好氧生物处理方法作为核心工艺,好氧生物处理方

法分为生物膜法和活性污泥法两大类。传统的方法有接触氧化法、CASS、SBR 及氧化沟等活性污泥法工艺。随着中水技术的应用与发展,又开发多种回用新技术,如膜分离(MF、UF、NF、OF)技术、膜生物反应器、曝气生物滤池、土壤生物系统、土壤毛吸处理利用系统(人工土地系统)。这些新技术在国外都已经得到了成功的应用,这为我国中水工程应用技术的推广奠定了基础和依据。

中水回用系统在国内已经有过工程实践的工艺流程主要有:

(1)原水格栅调节池混凝沉淀过滤活性炭消毒中水;

(2)原水格栅调节池过滤生物消毒中水;

(3)原水格栅调节池混凝气浮过滤消毒中水;

(4)原水格栅调节池过滤臭氧消毒出水;

(5)原水格栅调节池絮凝沉淀过滤精密过滤膜分离消毒中水;

(6)原水格栅生物接触氧化沉淀过滤消毒中水;

(7)原水格栅调节池曝气生物滤池消毒中水。

3.1物理处理法

膜滤法,适用于水质变化大的情况。膜滤法是通过在外部压力的作用下,水源水以一定的流速沿着滤膜表面流动,溶液中溶剂和低分子量物质、无机离子等这些粒子外径小于膜孔的则通过滤膜,并作为滤液而排出;而溶液中高分子物质、胶体微粒及微生物等外径大于膜孔的粒子则被拦截在滤膜的表面,溶液被浓缩并以浓缩形式排出。从而实现有效的分离。采用这种流程的特点是:装置紧凑,容易操作,以及受负荷变动的影响小。

3.2 物理化学法

物理化学法系是运用物理和化学的综合作用使废水得到净化的方法。它是由物理方法和化学方法组成的废水处理系统,或是包括物理过程和化学过程的单项处理方法,如浮选、吹脱、结晶、吸附、萃取、电解、电渗析、离子交换、反渗透等。这种方法的特点是:占地面积少;出水水质好,且比较稳定;对废水水量、水温和浓度变化适应性强;可去除有害的重金属离子;除磷、脱氮、脱色效果好;管理操作易于自动检测和自动控制等。但是,处理系统的设备费和日常运转费较高。

3.3 生物处理法

生物处理法就是利用生物(即细菌、霉以及原生动物)的代谢作用处理各种废水、污水和粪尿的方法。生物处理法可大致分为利用好氧微生物的好氧处理法与利用厌氧微生物的厌氧处理法两大类。我国现行处理工艺一般多采用活性污泥法、生物滤池、生物接触氧化法、生物转盘、生物流化床等生物处理方法。这种流程具有适应水力负荷变动能力强、产生污泥量少、维护管理容易等优点。

四、雨水回用设计

雨水回用设计也是一种节约水的有利途径,回用时可作为中水的部分水源。

雨水水质。雨水水质见下表。

4.1处理流程的选择

雨水利用是开源节流的重要途径。技术经济分析显示,雨水渗透方案设计简单、便于实施、效益显著,雨水渗透利用是对传统雨水直接排放设计思想的变革。本文采用土壤渗滤为主的处理系统,应用土壤学、微生物学等基本原理,建立人工土壤生态系统,不但改善了天然土壤生态系统中的有机环境条件和生活条件,强化人工土壤生态系统的功能,而且提高了处理能力和效果。特别是把雨水收集、净化、回用三者结合起来,构成了一个处理与绿化相结合的生态系统,是一种低投资、节能、运行管理简单、适应性广的雨水处理技术。

4.2雨水的处理工艺

本设计采用的雨水处理工艺如下:

雨水暗渠土壤滤池和雨水贮存池雨水回用屋面雨水经过雨水收集器净化后流入暗渠,绿地雨水可直接进入暗渠,道路雨水因污染严重弃流,其余的则进入暗渠,雨水经过暗渠后靠重力作用进入土壤滤池和雨水贮存池回用。本设计选用6m × 5m × 5m 的土壤滤池和雨水贮存池合建式,经土壤滤池处理后的雨水进入下面的雨水贮存池,消毒后可回用。

土壤渗滤技术实质上是一种生物过滤。其核心是通过土壤―植被―微生物生态系统净化功能来完成物理化学以及生物学的净化过程。本设计中采用的天然土和人工配制土的渗滤对于水中主要污染物有明显去除净化作用,并表现出具有耐冲击负荷能力和良好的再生功能。说明土壤中的微生物群通过适应与驯化,对于水中的主要污染物有分解能力。