地形图测量范文10篇

时间:2023-03-23 18:32:05

地形图测量

地形图测量范文篇1

1城市建设中地形图测量和地籍测量概述

地形测量主要是对地球表面的地物、地貌,通过水平投影位置及高程等进行测量,同时按照一定的比例进行适当的缩小,然后使用符号及注记绘制成图的一项工作。大面积地图的测绘基本上是使用航空摄影测量方式,面积较小或专用的一项工程建设地形通常使用聚脂薄膜或白纸裱糊的测图板进行测绘。地籍图主要应用在土地管理上,通过地籍测量能够为土地管理提供所需的地理信息及使用信息。在地籍图上的地形和地物要素属于权属界线、地类界线的主要依据,对此,地籍图上的地形、地物均需要进行详细的展示,尤其是和权属界线、地类界线有关的内容。

2城市建设中地形图测量和地籍测量相同点

地形图测量和地籍测量过程中都涉及到地图测绘技术,因此,他们有一定的共性。2.1遵循测量学的基础理论。对地形图和地籍进行测量过程中,均是以一定的测量学基础理论及操作技术方法进行的。使用不同测量仪器,对地形中各项指标进行测量,根据测量结果明确界面或相应地物特征等所在平面位置。2.2遵循测图基本原则。对地形实施地形图测量工作或者对一定区域实施地籍测量,在这一过程中,要采用“先整体后局部,先高精度再低精度”的测量方式。2.3选用图幅方法和编号相同。具体地形图测量或具体的地籍测量工作实施过程中,其中图幅分幅采用网络坐标矩形或正方形分幅法进行。其中的图幅编号主要是使用一定坐标对其进行编码,需要注意的是,在编码过程中需要将纵坐标放在前面,将横坐标放在后边,中间使用短线连接。

3地形图测量和地籍测量在城市建设中的不同应用

3.1测图目的。地形图测量能够通过客观方式反映地表上的地物、地貌景观,一般在城市规划、城市建筑设计和工程施工等领域使用,应用范围十分广泛。地籍测量主要是将权属管理作为测量目的,经常被应用在地籍管理和土地登记中,因此地籍测量的范围相对狭窄。3.2测图要素选择。地形图测量可以对不同地面上所有地物、地貌要素等进行表示,例如地面上的河流、山脉、道路、居民点、地面高低起伏等,测量较为详细。地籍测量主要包括地籍界点、界址线、权属关系、地籍号、地类号、土地用途、土地面积等与土地管理有关的内容,有很强的专业性和侧重点。在地籍图上,所表示的内容比较少,不要求对地貌进行反应。虽然地籍图上存在着一些地理要素及社会要素,但是这些内容是通过环境要素的形式表现出来的,主要作用是在城市建设过程中进行定位和衬托。图1为某区域地形图,图中点所表示的是当地的丘陵。3.3图上表示内容。地形图测量过程重视对地表上的地物、地貌景观等做出客观反映,具体又专业的内容留出专门位置供用户填写。地籍图测量主要考虑的是权属、土地用途等内容,而其图上所显示的是地表上人们看不到的或者无法直接测量的内容。因此,地籍图测量所反应的内容较为充分。相关技术人员在进行地形图测量过程中,主要结合我国测绘局所指定的《1∶500、1∶1000、1∶2000比例尺(地形测量规范)》,同时根据规定的图示符号进行测量。对地籍图进行地形测绘过程中,需要将代表地基信息的主要内容用平面图进行展示,具体测绘工作结合1993年我国相关部门制定的《城镇地籍调查规程》中规定的内容。此外,地籍图的测量有专门的地籍图图式。3.4测量方式。地形图测量可以使用视距测量、平面仪测图方式对相应区域中的地物、地貌等进行测量。地籍测量使用测距仪、经纬仪或全站仪或它们之间相互配合进行测量,使用测速仪对界址点和地物特点等进行测量。3.5测图程序。地形图测绘不存在限制或约束。但是,地籍图测绘根据相应测绘程序,一定要先对土地权属进行调查,也就是说,进行地籍图测绘是将权属调查作为先导性工作,同时将权属调查作为基础性内容。没进行权属调查,就不能实施地籍图测量。3.6工作量。进行地形测绘过程中,其核心内容是宗地的位置、形状和大小以及利用现状,其能够反映宗地权属范围以及界址点坐标等内容。此外,地籍图较高的精度要求促使对成图作业方法提出了更高的要求,因此地籍测量和地形测绘进行比较,地形图的测绘工作量更大。

4地形图测量和地籍测量应注意的问题

结合校核后,宗地勘丈数据进行地籍图的编绘,可以使成图周期缩短,充分满足土地管理需要,最终降低成本费用。道路、房屋和水面界限、各类墙栅等是城市的界标物,轻度点位坐标相对良好,具体地籍测量工作实施过程中,会将这些坐标当做需要的数据。为了能够比较清晰地展示地基要素,同时清楚地表示出相应位置特点,地籍图一定要以众多地物要素作为依托。为了保证成图精度较好,利用现势性好和精度高的相同大比例尺,也可以选择从图上找出或者套绘出一定的地物信息,对这些信息进行校对后,还可以选择相同影像图当做地图使用。对此,在相应的建制镇、村庄地籍测量等方面,使用地形图对中大比例尺地形图进行编绘,这一技术具有较为广泛的应用前景。

5结语

总之,进行地形图测绘和地籍测量过程中,相应技术人员要结合工作实际需要,对两者进行灵活选择,促使地形图测量和地籍测量技术的优势在城市建设中得到充分发挥,为城市建设提供精准的测量信息。

作者:王亚甫 单位:贵州黔美测绘工程院

参考文献:

[1]张保钢,杨伯钢.CH/T9025-2014《城市建设工程竣工测量成果更新地形图数据技术规程》标准解读[J].测绘标准化,2015(2):46-48.

[2]张保钢,杨伯钢.《CH/T6001-2014城市建设工程竣工测量成果规范》的编制特点[J].北京测绘,2015(4):56-58.

[3]朱志愿,赵伟.浅谈GPS-RTK技术在城市建设中的推广与应用[J].现代物业(上旬刊),2012(2):23-24.

地形图测量范文篇2

关键词:无人机倾斜摄影;摄影测量;实景三维模型;EPS软件;

大比例尺地形图传统的1:500地形图生产都是通过利用GPS-RTK外业实测完成的,这种作业方式具有效率低、风险高、工期长、费时费力、成本高等特点。随着无人机技术的迅速发展和软件算法的不断优化,利用无人机挂载单镜头相机获取影像,然后利用摄影测量软件进行空中三角测量解算,导入像控点进行平差调整,将虚拟空三坐标成果转为目标坐标系下的成果[1-3]。利用地形图采集软件,在虚拟环境下,通过恢复空三成果获得立体像对,然后进行地形图采集,这种作业方式较传统的全外业方式,具有风险低、工期较短、省时节资的特点,可以满足1:1000地形图精度的要求,但是很难满足1:500地形图精度要求,且无人机相机均是采用非量测相机,影像畸变大,像幅小,效率也不高[4-6]。采集方式是基于立体像对采集,这种作业方式对作业员的技术水平要求高,也有一定的局限性。随着无人机荷载能力的提升和倾斜摄影技术的出现,无人机倾斜摄影建模成为测绘产品生产的主流作业方式,倾斜摄影自动化生产的模型,具有真实、高精度的特点[7-9]。本文首先介绍了无人机倾斜摄影的原理和建模技术,然后以实际项目为例,对无人机的航线规划、像控点布设以及采集、影像获取进行了说明,对作业中主要用到的软件进行了简单介绍,重点讲解了模型生产和地形图采集,并通过外业实测检测点,利用同精度检测的方法对生产的地形图精度进行了检测,结果表明,精度可以满足1:500的地形图精度要求。这种作业方式,精度高、效率高、外业调绘工作少,风险低,是很实用的一种作业方式。

1无人机倾斜摄影技术介绍

1.1无人机倾斜摄影原理

无人机倾斜摄影测量是指在无人机飞行平台上挂载多镜头相机,完成对地面多角度的数据采集任务。常见的有武汉大势智慧挂载的摇摆两镜头、陕西飞盟的扫摆九镜头以及赛尔、睿铂等的固定五镜头,其中以五镜头最为常见。五镜头相机,包括一个下视相机,四个侧视相机,下视相机主要从垂直角度采集地面影像,无法采集建构筑物侧面信息,而四个侧视镜头,分别从前、后、左、右四个角度对建构筑侧面信息进行采集,弥补了不同角度采集影像的不足。

1.2无人机倾斜摄影建模技术

无人机倾斜摄影建模是指利用建模软件,对获取的影像数据进行自动化或半自动化处理,得到“一张皮”的实景三维模型。实景三维模型具有精度高、纹理真实、立体效果强、所见即所得的特点。常见的国外建模软件有Bentley的ContextCapture,美国skyline公司的photomesh,俄罗斯的PhotoScan,国产的主要有上海瞰景科技的Smart3D2019,中测智绘的Mirauge3D等,本次实验使用的是上海瞰景科技的Smart3D2019。

2基于倾斜摄影的大比例尺测图流程

基于倾斜摄影的大比例尺测图主要包括航线规划、像控点喷绘与采集、数据获取、空中三角测量、实景三维模型生产、地形图采集、调绘与编辑、整理与提交,具体流程见图1.

3实际项目验证

3.1数据获取

3.1.1任务区概括。任务区地形属于山地,测区面积约1.5平方公里,测区范围内,高差约150米,一到二层房屋面积约占测区的2/3,其余以地形为主,地形较裸露。3.1.2航线规划。结合已有的无人机性能和测区地形,将任务区分为2个架次,旁向、航向重叠度均设置为80%,地面采样分辨率设置为0.05米,并在规划时将航线外扩2个航高,以确保测区边缘模型完整,完成航线的布设并提交任务至无人机。3.1.3像控点测量。根据范围线和地形,按照300米间距均匀布设像控点23个,并完成像控点的喷绘与坐标采集。为了对后续生产的地形图精度进行检测,在采集像控点的时候,在测区随机均匀的采集了35个平高点作为检测点,检测点主要是房角点、道路交叉口等在地形图上可以明显反应出来的点位。3.1.4影像数据获取在完成像控点的喷绘与采集后,对测区按照已有的航线进行影像拍照,完成2架次影像数据的采集。影像获取完成后,查看影像质量,删除试拍影像,共获取有效影像15895张,整理POS数据,使POS和影像一一对应。

3.2软件介绍

3.2.1Smart3D2019软件Smart3D2019软件是上海瞰景科技的一款自动化建模软件,其具有空三成功率高、精度高、建模速度快、模型质量好等特点,并且在像控点转刺环节,可以通过已刺点进行未刺点点位的实时计算,从而确保了转刺点位更加准确。3.2.2清华三维EPS软件EPS软件数目前用户较多的一款软件,其主要模块有三维测图、管线入库、立体测图、房地一体等,本实验使用了其中的三维测图模块,并在该软件中,将检测点导入并进行了精度的检测。

3.3三维模型生产

对2架次影像进行预处理和重命名,确保所有照片无重名。对POS数据进行整理,新建工程,加载影像和导入POS数据。提交空三任务,完成空中三角测量任务的解算,将23个像控点导入并进行像控点点位转刺。提交平差任务,利用像控点对空三进行平差调整,查看平差报告,像控点平面中误差为0.005米,高程中误差为0.003米。提交重建任务,选择平面规则格网划分方式,结合电脑内存大小,设置瓦片大小为150米,选择OSGB格式模型,提交任务到任务等待区,完成实景三维模型的生产。

3.4大比例尺地形图制作

将OSGB格式的三维实景模型恢复到EPS软件中,利用EPS软件中的三维采集功能,对模型进行数字线划图采集。采集房屋主要利用五点房命令,在采集完,并对房屋的属性进行完善;采集高程直接基于模型上打点,对裸露地形,给出范围线,设置高程点密度,进行高程点自动提取;采集平面位置可基于正射影像采集;采集等高线通过淹没的方式进行。对有房檐的房屋,直接在EPS软件中进行屋檐改正,较虚拟立体像对采集地形图,大量减少了外业调绘工作。对于模型拉花导致无法精准采集的点位,可通过空三成果,进行立体像对采集,对于模型上无法辨别的地物以及独立地物属性,需通过外业补测与调绘,并对外业成果进行编辑,得到最终的地形图成果,成果见图2。图2基于模型采集的地形图4精度验证采用同精度检测的方式,利用35个平高检测点对采集的地形图成果进行精度检测,检测结果见表1,表中单位均为米,“X实测”是指外业实地采集的坐标,“X图”是指地形图上对应的坐标。通过检测,得到35个检测点的平面点位中误差为0.235米,高程点位中误差为0.267米,且35个点位中平面位置残差最大为0.397米,高程残差最大为0.454米,均未超过2倍中误差0.6米和0.8米,说明采用此方法生产的地形图完全可以满足1:500地形图精度要求。

结束语

本文在垂直摄影难以满足大比例尺地形图精度要求这个问题上,提出基于倾斜摄影建模采集地形图,并以实际项目为例,对本文提出的作业方式进行验证,得出本文作业方式完全可以满足1:500大比例尺地形图精度需求的结论。对于同行从业人员来说,可借鉴本文的作业方式来生产大比例尺地形图,不但可以提高效率,而且可以减少外业工作量,具有一定的实用性和借鉴意义。

参考文献

[1]丁波.消费级无人机倾斜摄影空中三角测量及三维模型精度分析[D].北京:北京建筑大学,2020.

[2]魏军,曹琴.基于倾斜摄影采集立面图方法的研究[J].数字技术与应用,2020,38(1):46+48.

[3]缪玉周.消费级无人机倾斜摄影测量技术在构建城市真三维模型中的应用研究[D].南昌:东华理工大学,2018.

[4]魏祖帅.倾斜摄影空中三角测量若干关键技术研究[D].焦作:河南理工大学,2015.

[5]王丙涛,王继.基于倾斜摄影技术的三维建模生产与质量分析[J].城市勘测,2015(05):80-82.

[6]刘洋.无人机倾斜摄影测量影像处理与三维建模的研究[D].南昌:东华理工大学,2016.

[7]包丹丹.倾斜摄影测量的空三精度和三维模型精度的评估方法研究[D].天津:天津师范大学,2017.

[8]宋媛媛.基于Smart3D三维模型的大比例尺地形图测绘精度分析[J].测绘与空间地理信息,2020,43(2):219-221.

地形图测量范文篇3

关键词:城市地形;地形图测绘;航空摄影测量;应用对策

在当前我国航空技术水平不断提升的环境下,航空摄影测量技术凭借自身特性,得到了军事、开采等领域的高度注重和应用。特别是近几年来,把航空摄影当作基本的无人机航空摄影逐渐出现,不但在实际中获取了一定的效果,同时无人机航空摄影也由于自身具备快速性、安全性等特性,在城市地形图测绘中广泛应用。通过把航空摄影测量技术应用到城市地形图测绘工作中,除了可以促进航空摄影领域高效发展,也带动了社会经济的全面发展。

1航空摄影测量的基本概述

在进行航空摄影测量时,其测量工作原理主要展现在四个方面,首先,合理选择无人机类型。在应用无人机进行航空摄影之前,需要结合实际情况选择对应类型的无人机设备,在选择完无人机设备以后,应该做好相关数据采集工作,并对无人机设备进行调试。其次,对无人机航空摄影航线加以科学规划,在规划过程中,应该保证路线的简单性,确保不会给摄影测量带来任何影响,这种设计方式不但能够保证无人机工作的稳定性,同时还能降低工作强度[1]。在无人机飞行航线设定过程中,需要对现场情况进行核查,做好无人机设备调试工作。再次,在实施低空摄影的过程中,结合像控点分布情况采集相关摄影数据,并加强数据处理。最后,应用DEM及DOM等技术实现对摄影图像的处理,核查获取的结果,利用结果实现DLG制作,以此获取相关数据信息。

2城市地形图测绘中航空摄影测量的应用特点

2.1快速性。把航空摄影测量技术应用到城市地形图测绘工作时,通常需要采用低空摄影方式,其具备的优势主要展现在三个方面。首先,不会受到天气状况等影响。其次,对起飞以及降落场地要求相对不高。最后,空域申请相对较为便利。在无人机起飞以及降落时,通常会选择一段相对比较平整宽敞的场地,之后才能实现起飞或者降落。针对大部分飞行器来说,在起飞之前需要在做好准备工作以后才能飞行,而无人机起飞准备时间比较短,只要0.25小时的时间就能实现起飞准备,有效的减少时间成本投放,给运输提供了诸多方便。并且,无人机内部配置了车载系统,能够结合任务要求实现航测信息的采集。2.2时效性。和卫星测绘以及人机测绘技术进行比较,无人机航空摄影测量技术具备的优势在于在较短时间内可以实现城市地形图测量,给用户提供精准的测量结果。同时在价格方面和其他测量技术相比较,性价比比较高[2]。和人工测绘方式比较,无人机运行效果比较高,每天能够实现几十平方千米的测绘工作,因此,无人机航空摄影测量在未来小范畴城市地形图测绘中具备良好的应用优势。2.3安全性。和其他载人飞机存在本质差异,无人机航空摄影测量技术不管是在起飞方面,还是在降落方面都无需借助专业场地。因此,在应用无人机航空摄影测量技术过程中,测量工作更具灵活性和安全性,并且可以在各个领域中进行城市地形图测绘,对提升测量效果起到了重要意义。此外,因为测量地形较为繁琐,应用航空摄影测量技术具备较强的安全性,能够有效保证测量人员人身安全。2.4经济性。对于载人数据采集飞机来说,需要具有固定场所,而航空摄影测量技术无需固定场所,并且投放成本比较少。由于应用的飞机平台以及控制系统成本比较少,因此应用无人机航空摄影测量技术在实现数据处理过程中,总体成本比较少,具备较强的经济性[3]。无人机应用工作人员在接受专业培训过程中,培训周期及技巧掌握相对不高,由于无人机制造材料在清洁及维护等方面有着较强优势,因此,无人机外部维修成本较少。

3城市地形图测绘中航空摄影测量的应用对策

3.1像控测量与空中三角测量。在航空摄影测量技术中采用的空中三角测量技术,其工作原理在于,利用无人机中相关测量设备,对所测量领域的地形情况进行测绘。在此过程中,需要注意在无人航空摄影时,其内部系统将会对测量目标加以统计和操作,不用人为增添相关内容来改变摄影测量工作流程。当然,在应用三角测量技术时,应该明确所需要摄影领域的地形情况,安排专业人员利用三角测量方式选择连接点,在完成上述工作之后,结合设定的三角测量连接点和像控点进行调试,在此情况下实现空中三角测量。3.2DOM工艺。DOM具备的功能在于对航空摄影数据化信息及各个环节模型摄影信息加以样本采集,同时对可能带来影响的各种问题进行处理,进而让航空摄影设备能够精准的获取相关信息。其基本操作也就是利用无人机设备进行低空摄影来获取相关数据,在此情况下实现对应操作。而操作可以划分成两种方式,一个是相对定向操作,另一个是绝对定向操作。之后根据获取的相关数据加以处理及影像镶嵌,核查通过之后将其转变成DOM成果。把DOM技术应用到航空摄影测量地形图绘制工作中,具备的主要功能在于对测量结果的把控,借助该项技术实现其摄影数据及信息的融合,并根据测量结果和空中三角测量所明确的地形情况核算出测量领域基本特性,结合该目标领域特性实现数据处理和反馈[4]。除此之外,在进行部分摄影控制点测量过程中,其基本控制点选择应该综合思考其位置是否具备明显性,防止由于对摄影控制点以外控制点测量失误,导致整个地形图测绘工作面临失败,影响最终测量结果。3.3DLG生产及外业操作。DLG也就是数字线划地图,是借助现有的地形图要素实现空间要素关系及基本属性内容的采集和保存。在应用DLG生产操作技术的过程中,一般会借助相对比较完善的地标信息进行描绘,同时对相关数据保存和展现相关结果,根据空间分析实际情况,对基本数据加以提取和显示,实现空间分析。从总体角度来说,DLG技术具备较强的实用性和智能性,对航空摄影测量发挥着引导作用,能够快速形成专题图形,自身数据量比较少,可以更好的满足信息系统应用要求,便于后续数据分析和决策制定。在经过无人机航空摄影测量目标的过程中,部分地形领域因为受到部分因素的影响,使得该目标领域内部某个位置摄影测量数据不全面,在这种情况下不能借助无人机航空摄影测量技术实现地形图测绘。所以,应该安排专业人员采用外业补测方式来进行。在应用外业补测方式时,需要明确航空摄影测量工作流程是否具备合理性,在此情况下实现外业补测,最后结合测量结果加以深入分析。除此之外,对地图中的部分基本信息加以调测,在此过程中,需要利用外业操作的方式来实现。例如,针对形成图形规模、色彩、纹理等,通过后期调绘,能够获取理想的地形图测绘效果,特别是在阴影特性调绘过程中,需要综合思考光照情况,这样将会产生两部分影像,分别是光直照部分及散射部分。总体而言,外业操作作为最终影响城市地形图测绘质量的主要因素。3.4航空摄像测量中的相片控制。利用无人机航空摄影测量技术,能够充分掌握测量领域地形情况,并在控制相片中,可以把无人机航拍和全球定位系统进行连接,航空获取的数据和地面实际情况相迎合。在无人机航空摄影测量技术作用下,获取的相关数据可以和地面测量数据传递,从而更好的掌握测量所在领域的地形图,并记录获取的相关数据,确保数据信息的完善性和精准性。在应用无人机实现航空摄影测量过程中,能够对相片控制点实现科学分布和设计,同时和全球定位系统测量技术充分融合,便于对城市地形情况的了解。通常情况下,在对控制点加以分布的过程中,需要明确点和位置之间的关系,从而防止后续测量受到一定影响。3.5航空摄影的立体采编测量。在应用无人机航空摄影测量技术实现城市地形测绘工作之后,应该对图形内部采集的相关数据加以采编。并且在无人机设备的作用下,即便能够有效确保城市地形图测绘结果的精准性,但是在此过程中,还要给予后期节点数据高度注重,核查其是否精准合理。应用无人机实现相关说数据采集工作以后,需要利用手绘方式进行标记,针对一些存在较大偏差的环境进行记录,之后在后期进行全面处理,从而保证整个地形图测绘结果精准性的提高。

4结束语

总而言之,航空摄影测量技术在当前我国各个领域中均有涉及和应用,这给城市建设以及土地规划等工作开展中数据获取提供了一定的帮助。本文通过对当前我国无人机航空摄影测量技术基本情况进行阐述,并在此情况下,根据城市地形图测绘中航空摄影测量的应用特点,对我国无人机航空摄影测量技术应用情况进行探究,意识到当前无人机航空摄影测量技术在我国城市地形图测绘中应用逐渐广泛,并且也得到了各个领域的广泛关注,让其在各个领域中数据获取及测量工作更具便利,让其逐渐向着科学化及现代化的趋势迈进,在满足当前人们自身需求的同时,引导我国城市建设快速发展。从整体角度来说,航空摄影测量在城市地形图测绘中应用目的有目共睹,随着其相关理论及技能的不断完善,其必将会面临良好的发展前景。

参考文献:

[1]舒玉平.航空摄影测量法生产数字线划图的精度分析[J].工程建设与设计,2018(24):40-41.

[2]张尔严,高珊珊.基于无人机倾斜摄影测量的城市大比例尺地形图更新与修测[J].测绘标准化,2018,34(04):59-62.

[3]张颖秋.无人机航空摄影测量在地形图测绘中的应用[J].中国非金属矿工业导刊,2015(05):59-62.

地形图测量范文篇4

城市地形图是城市规划、市政工程设计以及城市管理的重要的基础技术资料。随着城市建设步伐的不断加快,需要测绘部门及时地向社会提供负载信息准确、丰富、现实性好、精度可靠的地形图资料,以满足其生产、生活需要[1]。但由于历史的原因和经济发展的不平衡,各地地形图的测绘具有不同的情形和特点。

2.城市地形图测绘的发展历程

(1)模拟测绘阶段模拟测绘阶段主要采用经纬仪、水准仪、平板仪、钢尺等光学和机械仪器,手工记录、外业测图、内业清绘,产品主要作为规划设计、城市建设等领域的工作底图。这种方式工作强度大,质量不稳定。如平板测图时量距方式通常采用皮尺或经纬仪视距加上平板及仪器的变形等因素造成采点精度不高。要保证测图精度满足规范的要求,就需要作业人员具有较高的外业测绘能力[2]。

(2)内外业一体化测绘阶段随着测绘仪器的智能化,特别是免棱镜全站仪的普及,外业数据采集采用全站仪作业,内业采用测绘专业软件进行数据处理,由计算机辅助制图软件绘制地形图或各种专题图,可以方便地变更、修改和复制。

(3)信息化测绘阶段信息化测绘是以地理信息产品的应用和服务需求为重点,伴随着“数字城市”的建设发展成长起来的。这一阶段服务的对象从城市规划、国土资源管理等传统领域发展到面向国民经济和社会发展的各个方向,成为社会可持续发展的有效辅助决策支持工具[2]。

3.城市地形图测图的特点

在城市测绘的发展过程中,由于测绘科技的进步,淘汰了落后的作业方式,推广应用了许多先进的测绘方法,但是不能将原来的作业方式全盘否定。我们应按照辩证唯物主义的观点去粗取精,继承发展原来工作模式中的精华,提升地图测绘的工作效率。就全国具体情况来看,城市地形图测绘的发展很不平衡,经济发达的地区和建设部门多采用航测方法和全站仪数字法测绘城市地形图,而有些城市仍然采用常规或传统的方法来进行地形图的测绘。即使同一城市新、旧城区差别也很大,一般情况下,旧城区的街道狭窄且不规范,巷深弯多,居民院落多平房且交错衔接,附属建筑物繁杂,商业闹市区车水马龙,人车流量大。这些都给传统测图方法带来较大的困难。

如果仍沿用旧有方法则测图进度缓慢,而且精度难以保证。必须采用新的、精度可靠的测图方法取代旧有的传统测图方法[1]。数字化测图因携带仪器设备较少,外业采集点数很多,经常出现连线错误等问题,这种方式远没有小平板测图直观。小平板测图虽然采集的点位精度不高,但通过外业作图其成品仍能满足相关规范的要求,这说明作图方法与技巧就是常规测量时的精华。我们应继承与完善这种方法,在数字化测图时,应将采集的点绘成工作图,然后外业全面对照作图,保持外业图的直观性。随着我国土地政策的不断完善和土地利用率的提高,城市地籍图的重要性日益显现。而目前我国的地籍图大多是在地形图的基础上编制的。基于地籍图的组成要素和特点,它对地形图的内容和精度要求较高,故城市地形图的测绘不能仅局限在传统的模式和方法上,必须加以改进以满足发展的需要[1]。

4.测绘资料的收集利用

在城市地形图进行测量前我们会发现有许多数据信息可供使用,如测区或测区附近的地籍图、竣工图、红线图等。很多资料由于生产时间、生产方式、用途等各不相同,在图形数据套合时往往有许多地方不重合,必须深入分析判断哪些可以用,哪些不能用。城市基本图一般采用航测方式成图,由于外业调绘时作业人员对一些房檐等未妥善处理产生测量误差;地籍图的核心是权属界线,通常图内界址点、界址线测量得很准确,而其他地物、地貌点精度不高;竣工图中房屋测量的精度较高,但通常所测范围较小,有时附属配套设施如道路、花坛等在竣工测量时还没有完全做好;红线图中的验线资料经现场检核往往可以作为在建建筑的外部轮廓线加以利用。在分析已有资料的精度情况后,把有利用价值的数据资料整理、编辑、制作成工程的外业工作底图,这样可以减少不必要的劳动,提高工作效率[2]。

5.经纬仪导线测图和数字测图

(1)经纬仪导线测图经纬仪导线测图中的控制网点大多布设在高大的建筑物的屋顶,这对于设计、测量和控制点的长期保护都十分有利,但是,加密图根控制大多沿主要街巷布设成闭合或附合导线网,采用光电测距仪观测边长及水平角,可以充分发挥测距仪布网灵活、精度高、测边速度快的优势。作业流程为:控制测量→碎部测量→展点绘图→外业检校→清绘成图

(2)数字化测图由于全站仪等仪器的逐步应用,使外业的所有测站点、地物点全部采用经纬仪导线方法完成。地物点的平面位置野外测量方法有极坐标法、导线法、对称点法,而实际工作中采用极坐标法测设地物点比较方便。一般是将全站仪安置于测站点上,对置于地物点上的棱镜进行水平角和距离的测定。计算、存储,采用测绘专业软件进行数据处理,由计算机辅助制图软件绘制地形图或各种专题图[1]。目前大多采用GPS定位系统布设控制点。可以布设成灵活的GPS导线(网)进行测绘,还可用辐射极坐标法的灵活方式进行布点,这样可以减少加密层次,同时可以减少测量误差的累积。也可利用GPS一次成图,经济高效。

6.城市地形图的质量管理

地形图测量范文篇5

数字地形线划图的生产方法

外业测绘地形图在目前地形图的生产工艺中,通常都是采用航空摄影的方法来进行测绘,是通过航空摄影资料为基础,然后再采用GPS技术测制像控点进行平面坐标和高程的控制,再根据成图高度的比例要求全面完善,最后采用相应的测量方法和测量手段进行控制。在绘制描线的过程中通常都是利用摄影相片和影像为基础,来进行实地绘面面积的描述,这项工作在整个地形线画图就显得格外重压,要求工作人员能够亲身去测量、描述和检查,并且结合图式要求和相关的规范进行精心绘制,并在关键部位进行文字说明。最后经过外业测绘成果对资料进行整理,并加以装订,在通过检查部门进行检验之后在交由内业进行测绘地形图。内业测绘内业测绘地形图是基于外业测绘成果的基础上进行的,但是在测绘之前首先要检查外业测绘是否经过相关部门检查。其在工作中主要的工作流程有以下几点:首先,在工作中要利用航摄影像来建立相关的模型,再通过外业来测绘相应成果,并且对其成果进行空三加密,最后在对加密成果和外业测绘成果进行影像数据模型的选定和更改。其次:在工作中要通过解析测绘图仪来对定向建立模型的测绘成果进行描绘和处理,结合描述的地形特征来进行地物的测绘和描述,在这个工作环节中需要注意的是外行进行的地物是定性模式,而内业测绘工作中对地物的描绘则是定位。最后:对已经形成图件的文稿进行生产和加工,并且采用相应的技术方法进行处理和编辑,在各方面都满足预计要求的时候在进行全方位的处理,最后形成数字地形图。矢量数字地图是地形图上基础要素的矢量数据集,它可以说在工作中保存和集结了各要素的空间关系和相关属性之间的信息关系。在工作中通过结合相关的地理要素和关系进行归纳和总结,我们可以发现其每层由若干要素组成,同时其每个要素都是有点线面三部分构成,并且使其几何特征的综合表现形式。

地形图数字化的关键技术要点

严格检查摄影信息和资料来源在工作中要严格的对航空摄影影响的信息质量和准确性,同时还要对相关的资料员进行对照和验证,不能够仅凭一方面资料就做出相应的判断,否则在工作中容易出现各种误差与不足的错误,其最为常见的问题与隐患有以下两方面:a.在绘制图像的过程中,没有对航摄影像提供的有关信息进行深入的研究,而是单纯的凭借影像就进行判断和绘制,造成了在工作中常常将干沟错误的当做常年河,将沼泽当做湖泊,甚至有的时候会错误的将河沟当做道路进行处理,这就难免造成工程测量的误差和影响。b.没有注意影像的拍摄时间,以致于影像上的居民地、道路和河流发生了相关的变化,而在图像上却未曾及时的更新和处理。掌握好地形各方面要素的统一:a.在对矢量数据更新采集时,要注重对地形图中各方面荷载要求进行测量,同时对地理物质和地貌进行全面采集,并且要针对其中存在的各方面隐患和存在的问题进行控制,确保这些问题在应用的时候能够满足图像数字化的处理要求。b.主次要素选取掌握要得当,避免在制图之中会将一些重要的特征及因素进行错误的判别,同时要对其中容易变动的各方面要素及时更新。对各方面要素的协调布置在工作中要注意处理好居民地、道路和水系之间的协调关系,使得彼此之间不能够相互遮掩,同时对各方面幅值和数据要认真进行核对,同时对名称和代码要严格执行,不能出现误导或者导入不严谨的问题。要注意处理好居民地、道路、水系要素之间关系的协调性,要素之间不能相互压盖遮挡。

地形图测量范文篇6

在水利水电工程中,工程控制网的主要作用,是为测量区域提供相对统一的空间参考框架,从而确保各项测量工作的准确性,水利水电工程建设不同阶段对于测量精度、进度和成本等的要求也不尽相同。在实际操作中,工程控制测量可以分为以下两种:

1.1高程控制测量

从目前来看,我国水准点的高程系统采用的是正常高系统,主要是按照1985国家高程基准起始。但是在水利水电工程的实际建设中,受历史因素的影响,许多地区仍然沿用本区域的高程系统。同时,为了确保与当地水文基础资料相互匹配,高程控制系统的选择应该考虑当地的使用习惯。如广东省内多采用珠江基面高程系统,其起算点以珠江口附近测站多年平均值和后来多次复测、平差和调整后的高程计算;而粤东韩江流域多采用韩江基面高程系统,其起算点以旧时汕头海关水尺零点推算。

1.2平面控制测量

通常情况下,水利水电工程的建设位置多依河川溪流而行,因此,测区具有狭长、独立的特点。对此,测量人员应该结合工程的具体情况,从工程项目的大小、所处位置等方面进行综合考虑,对平面控制系统进行合理选择。在对水利水电工程建设地区进行测量时,如果测区内投影长度的变形值在5cm/km以上,或者测区偏离现行国家坐标系统中央子午线45km以外或与中央子午线经度差>40′,考虑投影变形,可以采用以下平面控制系统:①以一个国家大地点的坐标以及该点至另一个大地点的方位角作为起始数据的独立坐标系统,即所谓“一点一方向”;②高斯正形投影任意带平面直角坐标系统,换言之,就是国家大地点的坐标通过换代计算的方式,换算成测区平均中央子午线处的坐标。

2地形图测绘

在水利水电工程中,地形图的作用,是为工程的规划选址、建筑物布置等提供必要的参考依据。因此,在对地形图进行测绘的过程中,一方面,应该严格遵守现行国家行业测量规范的相关标准,另一方面,需要充分考虑水利水电地形图自身的特点。

2.1地物测绘

在水利水电工程中,地物测绘是非常关键的,其内容也相对繁杂,主要包括:测量控制点、道路、管线、居民点、输配电线路、独立地物、地质勘探点、气象设施等。在实际测量中,应该结合工程的规划设计,围绕工程的特性进行细致测量,将测绘区域分为两个部分,即工程区域内和工程区域外。以中小型河流的治理为例,工程的主要内容包括堤防加固、河道疏浚、护岸护坡等,对此,在进行地物测量过程中,需要重点关注堤防周边的房屋建筑、电力及通讯设施、现有堤防与河道的护岸护坡及构建材质等,在地形图上,对建筑物的性质、规模、高程等进行细致标注。对工程区域内的房屋应该详细测量,而在工程区域外,即使是大比例地形图,也可以适当放宽测量,合理取舍。同时,村庄房屋应该详细测量,内部房屋则可以根据实际情况进行取舍,为工程的规划设计提供必要的参考信息。

2.2地貌测绘

通常来讲,水利水电工程多处于山林地区,与城市建筑工程的测量相比更加困难、复杂。在实际测量中,应该使用等高线,配合专用的地貌符号以及高程注记点,对地貌进行表示。为了满足水利水电工程对于地貌的高要求,不仅需要保留高程点,还需要进行等高线的勾绘,同时,为了显示地貌碎部特征,还应该添加相应的绘间曲线。在部分地形图中,还需要适当保留部分高程注记点和比高,对于面积在地形图上>1cm2,并且具有相应经济价值的地貌和植被等,需要用地类界绘制出具体范围。

2.3水下测量

对于水利水电工程而言,水下地形测量是工程测量的重点,也是水利工程测量与其他测量最大的区别。在测量时,需要确保全面性和准确性,对于一些重要的涵闸和沟渠,还应该在地形图上注记底部高程。

3断面测绘

在水利水电工程规划设计阶段的测量中,涉及到的土石方工程相对较多,包括填高、削坡、挖深等,这些工程量的测量都会涉及到纵断面测量工作,其测量精度直接影响着水利水电工程的实际工程量。纵断面与横断面的测量精度与总工程量的计算有着密切联系。对此,在对水利水电工程纵断面和横断面进行测量与绘图的过程中,需要从多个方面着手,提高测量的精度,确保工程量的概算值更加接近真实值。

3.1断面点的精准测量

目前,在针对纵横断面点进行测量时,采用的测量方法包括GPSRTK测量法以及全站仪法。这两种方法各自都存在相应的优点和缺陷,在实际应用中,应该结合工程的具体情况,对其进行合理选择,尽可能消除纵断面点和横断面点中存在的测量错误,确保测量精度能够完全满足断面测量的要求。在测量过程中,应该保证采集到的纵横断面点在该横断面左右一定范围内,按照水利水电工程相应的规范要求,这个距离≤2m。

3.2横断面位置选择

在水利水电工程的规划设计阶段,横断面位置的选择和布设,是影响工程量的关键因素之一。一般情况下,规划设计阶段横断面的间距应该控制在50~200m之间,选择合适的间距能缩小实际施工与设计工程量的差别。因此,在对横断面进行布设时,一方面,需要充分满足断面间距的要求,另一方面,应该尽可能将横断面布设在河道急转弯、支流入口、断面形态显著变化等部位。同时,为了保证横断面位置布设的合理性,在地形图测绘完成后,应该根据区域内地形特点,在地形图上进行选择,然后到实地进行勘查,部分地形复杂则需要对断面间距进行适当加密。

3.3纵断面测量

根据测绘服务对象的差异,纵断面的测量与横断面有着很大的不同,其断面的选取也存在一定的差别,例如,在河道疏浚工程中,通常会选择河道中心线;在河流堤防加固工程中,一般会选择堤顶线;在拟建渠道工程中,多选择规划中心线等。纵断面测量的主要目的,是对横断面间距进行量取,对中心线高程变化情况进行明确,对沿线地物投影在中心线上的位置进行判断等,而纵断面的合理性直接影响着工程量的计算,因此,做好纵断面的测量工作,是非常重要的。

4结语

地形图测量范文篇7

关键词:公路测量应用原理

所有工程建设项目都必须以社会与经济效益为依据,按照自然条件和预期目的,进行规划设计,测量工作是工程建设中的一项最基础的工作,在道路、桥梁、隧道工程建设中起着重要的作用,为选取一条最经济、最合理的路线,首先要进行路线勘测,绘制带状地形图,进行纵、横断面测量,进行纸上定线和路线设计,并将设计好的路线平面位置、纵坡及路基边坡在地面上标定出来,以指导施工,当路线跨越河流时,拟设置桥梁跨越之前,应测绘河流及两岸地形图,测定桥轴线的长度及桥位处的河床断面,桥位处的河流比降,为桥梁方案选择及结构设计提供必要的依据,当路线纵坡受地形限制,采用避让山岭绕线平面线形不能满足规范要求,而选用隧道方案时,测定隧道进出口大比例尺地形图,为隧道洞口布置选择提供必要的数据。

1公路工程测量不同阶段的工作

1.1初步设计阶段的测量工作初步设计根据批准的设计任务书和初测资料编制,主要拟定修建原则,选定设计方案计算主要工程数量,提出施工方案意见,编制设计概算,提供方案说明及图表资料,初测阶段为初设提供平面、高程控制、地形图、特殊地段的控制桩及纵、横断面资料。初步设计比选方案一般在1:10000地形图上做多个比选方案,纸上布线后,对各方案进行1:2000地形图测量,在1:2000地形图上进行纸上定线,布置桥涵、通道、隧道等,实地调查计算工程数量,编制概算文件,特殊复杂困难地段,为加深勘探调查及分析比例,实地放桩,进行平、纵、横测量。①平面高程控制测量②地形图测量③必要的平纵横测量。

1.2施工图设计阶段的测量工作施工图设计根据批准的初步设计文件,在1:2000图上进行方案比选,确定路线方案,进行施工图详测。①中线放样②纵断面测量③横断面测量④主要工点地形图测量⑤主要控制地物高等控制测量。

2控制测量的目的、坐标系统的选择、建立方法、独立高等控制网的建设方法

2.1控制测量的目的控制测量一般是指在工程建设地区的地面布设一系列的控制网点。并精确地确定这些点的位置,以便为后期地形测图和各种工程建设测量放样打好基础。控制测量是一切后续测量工作的基础,没有控制测量,往后的测图和放样等工作是不可想象的。控制网把测区各部分的测量工件联系起来,即起骨架作用,又起限制误差传递和累积作用,控制网在勘测设计阶段的作用是:①各设计阶段需要适当比例尺地形图作依据,而地形图测绘又必须依靠控制网点来确定地形图中各部分地貌地物之间的相对位置和保证地形图的精度。②各设计阶段必须以控制网为基础将路线、桥梁、隧道等设计的位置精确地放样在地面上,搜集相应的路基、构造物用于设计阶段的各种资料。

2.2坐标系统的选择坐标系统的选择是我们经常碰到,也是一些作业人员难以理解的问题。

2.2.1大地水准面、参考椭球、坐标系国家大地测量和工程控制测量工作都是在地面上进行的,而地球的自然表面又是一个有山、谷、江、湖、海洋等起伏的复杂曲面。它是一个不规则的、不能用简单的数学公式来表达的曲面,因此,不能在这个曲面上来解算测量学中所产生的几何问题,为便于计算控制网点的位置和测绘地形,应选择一个形状和大小都很接近于地球而其数学运算又很方便的体形,来代替地球的形体,以便把观测结果归化到此体形的表面上进行计算。

由力学知识可知,地球上任何一个质点都同时受到两个力的作用:一个是地球质心对该质点的引力F,另一个是地球自转所产生的离心力P,这两个力的合力,就是作用于该质点的重力G,重力G的方向就是众所周知的铅垂线的方向,即G=P+F。

曲面上每一点均与铅垂线方向垂直的曲面叫做水准面,水准面有无穷多个,我们可以选择一个与平静的海水面相重合的水准面(平均水准面)来代替地球的表面,通常把这个与平均海水面相重合的水准面叫大地水准面。大地水准面是按近于地球的自然表面,但它仍是一个不规则的曲面,因而有必要选择一个形状和大小都与大地体接近,面且能用简单数学式表示的体形来代替大地体。

参考椭球面是一国家(或者一区域)大地测量计算的参考面,该椭球面上各点与大地水准面上各相应点之间的高差的平方和为最小,参考椭球中心与地球质心重合,旋转轴与地球自转轴重合,赤道面重合,两者体积相等,总质量与地球总质量相等,自转角速度相等。

2.2.2高斯平面直角坐标系公路线路尤其是高速公路一般跨越多个地区,绵延数百里,为了坐标系统的统计以及与国家其它工程衔接,目前普遍采用国家坐标系换带计算方法。即高斯正形投影平面直接坐标系。①高斯正形投影的实质设想将一个截面为椭圆的横柱(简称圆柱)面套在地球椭球面上,使横圆柱面与椭球面的一个子午椭圆相切,横圆柱的轴与地球椭球的轴互相垂直,这样将靠近子午椭圆的那部分地球表面的图形投影到圆柱面上,再将圆柱面展开就得到平面上的图形。这种投影,实际上就是将地球椭球面上与柱面相切的子午线两旁的一条带状区域按正形规律投影到平面上,投影后,只有相切的这条子午线上的长度比等于1,而离开这条子线愈远,长度变形愈大,相切的子午线称为中央子午线,这一带区两旁边缘上的子午线叫分界子午线,地球上的D点投影到平面上成为d点,d点的坐标可用x和y表示。②坐标分带为了不使这种变形过大,每一个带的宽度不能太大,一般每带分界子午线间的经度分为6°(或3°)为便于设计施工放样,使坐标反算长度与实地长度差不超过规范要求而不影响施工质量时,采用平移子午线的方式进行坐标换带计算,这一点在公路工程测量中是经常遇到的,通常称坐标系统的选择。

2.3控制网建立方法平面:采用先四等控制,后一级导线公路为线状物,四等控制普遍采用GPS测量,它的特点是:①定位精度高②观测时间短③测站间无需通视④可提供三维坐标⑤操作简便⑥全天候作业。

GPS采用测距后方交会的原理,接收机接收卫星测距信号,只需同时获得3颗以上GPS卫星信号,就可利用后方交会的原理解算的绝对坐标,当有两台接收机同时观测相同3颗以上卫星信号时,其基线解算可达10-6精度,然后通过点或边连接,联测到已知高等控点上,经平差计算得到各未知点的坐标。四等点一般以5km左右一对为宜,5km一对是为便于一级导线加密时附合到已知边上,为便于设计及施工放样,一般采用常规仪器(全站仪或测距仪配经纬仪)进行。高程:采用水准仪进行四等高程施测,也可采用严格按规范施行的三角高程代替四等水准方法,附合到三等以上高程控制点。

2.4独立高等控制公路工程中首级控制网常采用GPS进行四等控制,为方便施工再利用常规方法进行一级导线的加密,首级控制网往往采用与国家点联测分带换算得到实地任意坐标系统,以控制整体系统的连接及与已有线路进行衔接继而在线路主要控制物如特大桥、长隧道等(为便于施工需进行控制网的布设,这类控制网内部精度要求较线路首级控制高,这时多采用独立网的形式,这种独立网不同于其它独立工程如大坝、枢纽、厂房等一般独立控制网,作为线路整体的一部分,需要与路线进行坐标衔接,坐标系统一致,以便施工过程中保持线路的连续性,控制平差采用独立网自由平差求定长基线后再进行约束平差,然后再对两端一级导线重平差方法。

3地形图的航空摄影测量方法

根据公路工程的特点,长线路普遍采用航空摄影的方法,用安装在飞机或其它飞行工具上的摄影机,对观测地区按一定要求进行摄影,根据摄影瞬间得到的航空像片,读取各种信息资料和编制地形图的技术,叫做航空摄影测量。

尽管航空像片上详尽而准确地摄录了地面上的实际情况,它却不能直接作为地形图使用其主要原因就是航空像片是中心投影,而地形图是垂直投影(或称正射投影)。

航摄比例尺:航摄比例尺分母不能大于成图比例尺的4倍。

航摄外业:①像控点的布设像控点是在实地选定合符成?要求的明显地物棱角(在航片上清晰可变)的点测定其平面、高程三维坐标,以便在内业成图时确定相对位置,对航片进行纠正。②像片调绘,航片上不明确或遗漏的如地面、地下及架空管线、路堤、陡坎、农田、植被等均应调绘。

4数字地面模型

数字地面模型是利用由不同的地形数据采集设备采集的大量地形点的三维坐标按照一定的数学模型分析和联网,使这些空间点按照此数字模型采用规律来描述地形起伏的数字模型。DTM是描述地面诸特性空间分布的有序数值阵列,若仅是将高程或海拔分布作为地面特性的描述称为数字高程模型,数字地面模型可以是每三个三维坐标值为一组元的散点结构,也可以是多项式或傅立叶级数确定的曲面方程。

4.1数字地面模型在公路勘察设计中的应用数字地形模型是一个数字模拟的过程,用于模拟地形的大量的采样点的三维坐标是按照一定的精度要求进行采集的,这时,地形表面被一组数字数据来进行表达。如果需要该数字模型表面上其它位置处的属性信息,可以利用一种内插方法来处理该组采集的地面数据,利用内插的方法,就可以根据DTM得到任何位置处的地面属性值。

根据目前数字地面模型的精度,可用于公路初步设计。

4.2数字地面模型的原理DEM是地形表面的一个数学或数字模型,根据不同数据采集的不同方式,DEM可能使用一个或多个数学函数来对地表进行表示。这样的数学函数通常被认为是内插函数,对地形表面进行表达的各种处理可称为表面重建或表面建模。地形表面重建实际上就是DEM表面重建或DEM表面生成。当DEM表面建模后,模型上任一点的高程信息就可以从DEM表面上获得。

4.3建立DEM表面模型的各种方法数字表面建模的各种方法

4.3.1基于点的表面建模如果只使用多项式的零次项来建立DEM表面,则对每一数据点都可建立一水平面,假设使用单个数据点建立的平面表示此点周围的一小块区域,则整个DEM表面可由一系列相邻的不连续表面构成。由于其所建立表面的不连续性,因此并不是一种真正实用的方法。

4.3.2基于三角形的表面建模分析多项式的前三项(两个一次项和一个零次项),可以发现它们能生成一平面,最少需要三个点生成一平面三角形,从而此三角形决定了一个倾斜的表面,由于三角形在形状和大小方面有很大的灵活性,所以这种建模方法也能容易地融合断裂线、地形特征线或其他任何数据,它已成为表面建模的主要方法之一。

4.3.3基于格网的建模如果通用多项式中的前三项与a3xy项一起使用,则至少需要4个点以确定一个表面,这种表面称为双线性表面。正方形格网为最佳的选择,在基于格网建模的情况下,最终表面将包含一系列衔接的双线性表面。应当指出,高项多项式也可用于建立DEM,但它的一个主要问题是如果对范围较大的区域使用高次多项函数则可导致DEM表面出现无法预料的抖动,为减少这种情况的发生,在实际应用中通常只使用二次或三次项。

4.3.4混合表面的建模对格网网络来说,可将其分解为三角形网络,以形成一线性的连续表面;反之,对不规三角网进行内插处理,也可形成格网网络。

地形图测量范文篇8

1公路工程测量不同阶段的工作

1.1初步设计阶段的测量工作初步设计根据批准的设计任务书和初测资料编制,主要拟定修建原则,选定设计方案计算主要工程数量,提出施工方案意见,编制设计概算,提供方案说明及图表资料,初测阶段为初设提供平面、高程控制、地形图、特殊地段的控制桩及纵、横断面资料。初步设计比选方案一般在1:10000地形图上做多个比选方案,纸上布线后,对各方案进行1:2000地形图测量,在1:2000地形图上进行纸上定线,布置桥涵、通道、隧道等,实地调查计算工程数量,编制概算文件,特殊复杂困难地段,为加深勘探调查及分析比例,实地放桩,进行平、纵、横测量。

①平面高程控制测量

②地形图测量

③必要的平纵横测量。

1.2施工图设计阶段的测量工作施工图设计根据批准的初步设计文件,在1:2000图上进行方案比选,确定路线方案,进行施工图详测。

①中线放样

②纵断面测量

③横断面测量

④主要工点地形图测量

⑤主要控制地物高等控制测量。

2控制测量的目的、坐标系统的选择、建立方法、独立高等控制网的建设方法

2.1控制测量的目的控制测量一般是指在工程建设地区的地面布设一系列的控制网点。并精确地确定这些点的位置,以便为后期地形测图和各种工程建设测量放样打好基础。控制测量是一切后续测量工作的基础,没有控制测量,往后的测图和放样等工作是不可想象的。控制网把测区各部分的测量工件联系起来,即起骨架作用,又起限制误差传递和累积作用,控制网在勘测设计阶段的作用是:

①各设计阶段需要适当比例尺地形图作依据,而地形图测绘又必须依靠控制网点来确定地形图中各部分地貌地物之间的相对位置和保证地形图的精度。

②各设计阶段必须以控制网为基础将路线、桥梁、隧道等设计的位置精确地放样在地面上,搜集相应的路基、构造物用于设计阶段的各种资料。

2.2坐标系统的选择坐标系统的选择是我们经常碰到,也是一些作业人员难以理解的问题。

2.2.1大地水准面、参考椭球、坐标系国家大地测量和工程控制测量工作都是在地面上进行的,而地球的自然表面又是一个有山、谷、江、湖、海洋等起伏的复杂曲面。它是一个不规则的、不能用简单的数学公式来表达的曲面,因此,不能在这个曲面上来解算测量学中所产生的几何问题,为便于计算控制网点的位置和测绘地形,应选择一个形状和大小都很接近于地球而其数学运算又很方便的体形,来代替地球的形体,以便把观测结果归化到此体形的表面上进行计算。

由力学知识可知,地球上任何一个质点都同时受到两个力的作用:一个是地球质心对该质点的引力F,另一个是地球自转所产生的离心力P,这两个力的合力,就是作用于该质点的重力G,重力G的方向就是众所周知的铅垂线的方向,即G=P+F。

曲面上每一点均与铅垂线方向垂直的曲面叫做水准面,水准面有无穷多个,我们可以选择一个与平静的海水面相重合的水准面(平均水准面)来代替地球的表面,通常把这个与平均海水面相重合的水准面叫大地水准面。大地水准面是按近于地球的自然表面,但它仍是一个不规则的曲面,因而有必要选择一个形状和大小都与大地体接近,面且能用简单数学式表示的体形来代替大地体。

参考椭球面是一国家(或者一区域)大地测量计算的参考面,该椭球面上各点与大地水准面上各相应点之间的高差的平方和为最小,参考椭球中心与地球质心重合,旋转轴与地球自转轴重合,赤道面重合,两者体积相等,总质量与地球总质量相等,自转角速度相等。

2.2.2高斯平面直角坐标系公路线路尤其是高速公路一般跨越多个地区,绵延数百里,为了坐标系统的统计以及与国家其它工程衔接,目前普遍采用国家坐标系换带计算方法。即高斯正形投影平面直接坐标系。

①高斯正形投影的实质设想将一个截面为椭圆的横柱(简称圆柱)面套在地球椭球面上,使横圆柱面与椭球面的一个子午椭圆相切,横圆柱的轴与地球椭球的轴互相垂直,这样将靠近子午椭圆的那部分地球表面的图形投影到圆柱面上,再将圆柱面展开就得到平面上的图形。这种投影,实际上就是将地球椭球面上与柱面相切的子午线两旁的一条带状区域按正形规律投影到平面上,投影后,只有相切的这条子午线上的长度比等于1,而离开这条子线愈远,长度变形愈大,相切的子午线称为中央子午线,这一带区两旁边缘上的子午线叫分界子午线,地球上的D点投影到平面上成为d点,d点的坐标可用x和y表示。

②坐标分带为了不使这种变形过大,每一个带的宽度不能太大,一般每带分界子午线间的经度分为6°(或3°)为便于设计施工放样,使坐标反算长度与实地长度差不超过规范要求而不影响施工质量时,采用平移子午线的方式进行坐标换带计算,这一点在公路工程测量中是经常遇到的,通常称坐标系统的选择。

2.3控制网建立方法平面:采用先四等控制,后一级导线公路为线状物,四等控制普遍采用GPS测量,它的特点是:

①定位精度高

②观测时间短

③测站间无需通视

④可提供三维坐标

⑤操作简便

⑥全天候作业。

GPS采用测距后方交会的原理,接收机接收卫星测距信号,只需同时获得3颗以上GPS卫星信号,就可利用后方交会的原理解算的绝对坐标,当有两台接收机同时观测相同3颗以上卫星信号时,其基线解算可达10-6精度,然后通过点或边连接,联测到已知高等控点上,经平差计算得到各未知点的坐标。四等点一般以5km左右一对为宜,5km一对是为便于一级导线加密时附合到已知边上,为便于设计及施工放样,一般采用常规仪器(全站仪或测距仪配经纬仪)进行。高程:采用水准仪进行四等高程施测,也可采用严格按规范施行的三角高程代替四等水准方法,附合到三等以上高程控制点。

2.4独立高等控制公路工程中首级控制网常采用GPS进行四等控制,为方便施工再利用常规方法进行一级导线的加密,首级控制网往往采用与国家点联测分带换算得到实地任意坐标系统,以控制整体系统的连接及与已有线路进行衔接继而在线路主要控制物如特大桥、长隧道等(为便于施工需进行控制网的布设,这类控制网内部精度要求较线路首级控制高,这时多采用独立网的形式,这种独立网不同于其它独立工程如大坝、枢纽、厂房等一般独立控制网,作为线路整体的一部分,需要与路线进行坐标衔接,坐标系统一致,以便施工过程中保持线路的连续性,控制平差采用独立网自由平差求定长基线后再进行约束平差,然后再对两端一级导线重平差方法。

3地形图的航空摄影测量方法

根据公路工程的特点,长线路普遍采用航空摄影的方法,用安装在飞机或其它飞行工具上的摄影机,对观测地区按一定要求进行摄影,根据摄影瞬间得到的航空像片,读取各种信息资料和编制地形图的技术,叫做航空摄影测量。

尽管航空像片上详尽而准确地摄录了地面上的实际情况,它却不能直接作为地形图使用其主要原因就是航空像片是中心投影,而地形图是垂直投影(或称正射投影)。

航摄比例尺:航摄比例尺分母不能大于成图比例尺的4倍。

航摄外业:

①像控点的布设像控点是在实地选定合符成?要求的明显地物棱角(在航片上清晰可变)的点测定其平面、高程三维坐标,以便在内业成图时确定相对位置,对航片进行纠正。

②像片调绘,航片上不明确或遗漏的如地面、地下及架空管线、路堤、陡坎、农田、植被等均应调绘。

4数字地面模型

数字地面模型是利用由不同的地形数据采集设备采集的大量地形点的三维坐标按照一定的数学模型分析和联网,使这些空间点按照此数字模型采用规律来描述地形起伏的数字模型。

DTM是描述地面诸特性空间分布的有序数值阵列,若仅是将高程或海拔分布作为地面特性的描述称为数字高程模型,数字地面模型可以是每三个三维坐标值为一组元的散点结构,也可以是多项式或傅立叶级数确定的曲面方程。

4.1数字地面模型在公路勘察设计中的应用数字地形模型是一个数字模拟的过程,用于模拟地形的大量的采样点的三维坐标是按照一定的精度要求进行采集的,这时,地形表面被一组数字数据来进行表达。如果需要该数字模型表面上其它位置处的属性信息,可以利用一种内插方法来处理该组采集的地面数据,利用内插的方法,就可以根据DTM得到任何位置处的地面属性值。

根据目前数字地面模型的精度,可用于公路初步设计。

4.2数字地面模型的原理DEM是地形表面的一个数学或数字模型,根据不同数据采集的不同方式,DEM可能使用一个或多个数学函数来对地表进行表示。这样的数学函数通常被认为是内插函数,对地形表面进行表达的各种处理可称为表面重建或表面建模。地形表面重建实际上就是DEM表面重建或DEM表面生成。当DEM表面建模后,模型上任一点的高程信息就可以从DEM表面上获得。

4.3建立DEM表面模型的各种方法数字表面建模的各种方法

4.3.1基于点的表面建模如果只使用多项式的零次项来建立DEM表面,则对每一数据点都可建立一水平面,假设使用单个数据点建立的平面表示此点周围的一小块区域,则整个DEM表面可由一系列相邻的不连续表面构成。由于其所建立表面的不连续性,因此并不是一种真正实用的方法。

4.3.2基于三角形的表面建模分析多项式的前三项(两个一次项和一个零次项),可以发现它们能生成一平面,最少需要三个点生成一平面三角形,从而此三角形决定了一个倾斜的表面,由于三角形在形状和大小方面有很大的灵活性,所以这种建模方法也能容易地融合断裂线、地形特征线或其他任何数据,它已成为表面建模的主要方法之一。

4.3.3基于格网的建模如果通用多项式中的前三项与a3xy项一起使用,则至少需要4个点以确定一个表面,这种表面称为双线性表面。正方形格网为最佳的选择,在基于格网建模的情况下,最终表面将包含一系列衔接的双线性表面。应当指出,高项多项式也可用于建立DEM,但它的一个主要问题是如果对范围较大的区域使用高次多项函数则可导致DEM表面出现无法预料的抖动,为减少这种情况的发生,在实际应用中通常只使用二次或三次项。

4.3.4混合表面的建模对格网网络来说,可将其分解为三角形网络,以形成一线性的连续表面;反之,对不规三角网进行内插处理,也可形成格网网络。

地形图测量范文篇9

关键词:数字测量技术;建筑工程测量;应用

建筑工程测量工作始终贯穿于建筑工程规划、建设和运营管理阶段。工程规划阶段主要任务是建立测图控制网和进行地形图测绘,所获取的测量成果是编写施工组织设计和施工方案的重要组成部分;工程建设阶段主要任务是建立施工控制网、施工放样、设备安装测量和竣工测量;工程运营管理阶段主要任务建立变形监测网和变形监测。随着我国现代化工程测量技术的日益进步以及建筑结构的不断改革和创新,为了确保地形图、控制点等测绘工程的质量精度能够满足建筑工程顺利进行,数字测量技术在建筑工程中应用范围越来越广泛。数字化测量技术是在计算机、互联网以及测量仪器的飞速发展基础上产生的新兴测量技术,其中数字化测量技术主要为“3S”(GPS、GIS、RS)技术、RTK技术、数字化绘图技术、三维可视化技术。在传统的建筑工程测量技术中,随着数字化测量技术的深入应用,我国的建筑工程测量技术得到了发展和完善。数字测量技术与传统的测量技术相比,特点十分明显,主要表面在四个方面:①数字测量技术的自动化程度很高,不仅能够自动读数,还能自动进行数据处理,大幅度减少测量人员的工作量。②数字测量技术的测量精度很高,数字测量技术运用“3S”(GPS、GIS、RS)技术,能够进行高精度测量。③数字测量技术的测量数据丰富。传统测量技术往往只是对所需数据进行了测量,其他一些相关数据则被忽略。但是数字测量技术在测量目标数据时,还可以对一些相关数据进行测量,比如坐标、海拔等其他信息。④测量数据容易编辑。利用数字测量技术得出的测量数据信息,通常使用计算机显示,可以通过相关处理软件对测量数据进行编辑。

1数字测量概述

数字化测量技术是集众多现代化技术于一体的现代化测量技术,可以实现数据的数字化、自动化管理。可以将数据在计算机中进行加工分析,并在计算机中显示出相应的图像,方便相关人员进行研究分析。传统地形图测绘主要采用模拟法,如平板仪测图、经纬仪测图等地面测图方法,劳动强度大、精度低且显示不直观。随着电子水准仪、全站仪、GPS(RTK)仪器等测绘仪器的应用和发展,数字地面测图(常用全站仪测图、GPS(RTK)测图)逐步取代了传统地形图测绘。数字地面测图的野外观测数据可传输到计算机,检查、修改数据错误,生成图形数据,然后根据工作草图,采用人机交互方式编辑图形数据,利用绘图软件生成图形文件,经过裁切编辑、图幅修饰可制作成工作人员所需的分幅地形图。纸质地形图、地籍图通过扫描矢量化变为数字化数据,经过矢量化之后的图形再进行编辑、修改、注记形成矢量化数字地图,便于作业人员储存、使用和管理。应用GPS、地理信息系统、遥感等数字测量技术,对有关地理空间数据进行输入、存储、检索、更新、显示、制图、综合分析,以多种形式输出数据或图形产品,建立数据库。在控制测量方面,卫星定位测量(GPS技术)通过卫星定位和导航技术,并结合现代通讯方法,向测量人员提供精确的二维坐标和速度,同时还能提供相关的时间等参数信息。卫星定位测量(GPS技术)静态观测的原理为若干台仪器同时观测若干颗定位卫星的测距信号和导航电文,通过后差分的方式计算出观测仪器的坐标,具有测站之间无需通视、全天候、实时快速、定位精度高的特点,减少了常规测量中手工记录计算检查的工作量,降低了外业劳动时间和强度,因此卫星定位测量(GPS技术)逐渐取代了传统的三角测量、导线测量、三边测量。

2数字测量技术在建筑工程测量中的应用

2.1原图数字化测绘技术的应用。以往测绘工作人员需要收集大量的资料进行测量与分析,最终将地物地貌绘制于图纸中,工作流程复杂繁琐,精度也难以达到要求,有可能因经费困难或受到时间因素的限制,此时常采用原图数字化测绘技术。原图数字化测图法是对已有地图数字化,现阶段仍是获取地理信息系统空间数据的主要方式之一。原图数字化测图主要有扫描矢量化和手扶跟踪数字化两种方式,由于手扶跟踪数字化作业方法效率和成图精度比较低、对作业人员的作业水平要求较高,逐步被扫描矢量化方式所取代。扫描矢量化合理利用现有的纸质地形图,并将计算机、数字化扫描仪及绘图仪等设备与数字化软件相结合,对图像数据进行扫描,然后对其进行矢量跟踪,通过数字软件对数据进行处理,将数据转换成数字化地形图,并获取建筑工程所在的空间位置。但扫描矢量化法还存在一些技术问题,如:①扫描矢量化后的数字化地形图精度较原地形图低;②需人工干预完成矢量化工作,自动化程度不高;③对地形图中文字注记和数字的识别较弱;④图形中的属性数据较难提取;⑤所获取的相关数据信息并非当前最新的数据信息,存在一定的滞后性,需对相关数据进行补测或者修测,尽量完善测量数据信息,使其能够符合建筑工程需求。2.2地面数字测图技术的应用。当所测绘地区的经费比较充足或工程项目所在地区没有符合要求的大比例尺地图时,可直接采用地面数字测图的方法进行该地区大比例尺地图的测绘。该法也称为内外业一体化数字测图法,是目前我国各测绘单位应用最多的数字测图方法。与传统的手工绘制方法相比,数字测图技术具有显示更直观、精度更高的特点。利用计算机组合绘图软件,可以对被测元素和数据进行智能化处理,处理后的数据可以转换成内容丰富的电子地图,需要时可利用计算机的图形输出设备(显示器、绘图仪)显示或绘出符合不同比例尺大小的地形图或各种专题地图,并且可以借助计算机进行分析,能够快速有效地掌握所测地区地上地下信息。不仅可以避免测绘人力、物力和财力的浪费,提升经济效益;而且可以提高地形图的使用率、满足了不同专业工程人员的需求。2.3数字测量技术在位移变形中的应用。变形监测是利用专用的仪器和方法对监测对象或物体(简称“变形体”)进行周期或连续测量,以确定其空间位置随时间的变化特征,对变形体变形形态进行分析、物理解释和变形体变形的发展态势进行预测。对建筑工程而言,变形体一般包括建筑物及其附属设施、以及其他与建设有关的人工或自然对象,如高层建筑、隧道、桥梁、大坝、边坡、基坑等。在工程建设、运营管理阶段通过对建筑物、边坡、基坑等变形体进行变形监测,了解掌握变形体以及与建设工程有关的地质构造变形,经过回归分析、因素作用分析、相关分析、时序分析和统计检验等确定变形过程和趋势。然后根据处理后的数据进行作图分析、统计分析、对比分析和建立数学模型(统计模型、确定性模型和混合模型),确定变形显性、规律和成因等,对变形体变形的发展趋势进行预测,避免发生建筑安全事故或人员伤亡事故。变形监测可分为动态与静态变形测量,利用实时动态GPS测量、近景摄影测量、地面三维激光扫描的连续性观测进行动态变形监测,利用专用传感器应力应变测量、GPS测量、常规大地测量的周期性观测进行静态变形监测。根据监测方案与监测目的的不同要求,监测时所采用的测量仪器与设备、测量方式及测量技术也不尽相同。周期性测量是在监测方案所确定的时间间隔对变形体进行监测,如出现异常情况可加密测量,将原始观测数据经数据处理后按时间顺序绘制成变形过程线,可以反映变形体的累计变形量和两相邻观测周期的相对变形量,而连续性测量是在监测方案所确定的时间内对变形体进行连续不间断的监测,将原始观测数据经数据处理后绘制成一条连续型的曲线。如在沉降测量中,在变形体上设置具有代表性的变形观测点,既可采用连续性的测量方式,也可采用周期性的测量方式,但具体采用何种测量方式是由监测方案和监测目的所决定的。对变形观测数据进行处理,确定变形的影响因素,分析变形的周期性、相关性,对其发展趋势进行预测,并向有关单位提交变形监测、分析和预报的技术报告,以便及时采取应对措施,将存在的安全隐患尽可能排除,防止建筑工程安全事故的发生。变形监测报告和总结作为竣工资料的重要组成部分,由建设单位进行归档保存,为以后的建设施工积累经验及提供科学依据。所以在建筑工程的设计、施工以及运营管理阶段需重视变形监测这项工作。2.4在建筑变形监测中的应用。安全越来越成为建筑行业关注的焦点,而传统的变形监测技术经常无法瞬间获取建筑安全信息的弱点,已经很难满足建筑安全的需要。随着我国社会经济的发展和变形监测工作在建筑工程的设计、施工及运营管理阶段的重要作用,数字测量技术所具有的优势和特点也越来越被建设单位广泛应用。除了传统的位置、高程数据提取分析,数字测量技术还能通过计算机对观测对象的外形、轮廓等任何部位的影像和数据进行提取,对建筑变形的参数以及深基坑施工结构与周围的边坡等监测数据进行分析,能够对建筑沉降、水平位移和倾斜程度等进行全方位评测,确保建筑工程的安全运营。例如:在武汉长江二桥采用智能型全站仪TCA2003自动寻找、精确照准目标并自动读数测定高塔柱的摆动。

3结论

总而言之,数字测量技术在建筑工程测量中的应用和发展,不仅提升了建设单位的测量水准和工作效率,而且减少了建设单位的施工成本,为以后的建设施工积累了丰富的经验。相关人员还应加强测量专业知识的学习和测量仪器的操作及应用,提升自身的整体素质,让其在以后的推广和应用中,发挥其更大的作用和价值。

参考文献:

[1]杨紫薇.数字测量技术在建筑工程测量中的应用[J].中国新技术新产品,2017(02).

[2]王联.论建筑工程测量中的数字测量技术[J].中国新技术新产品,2017(11).

[3]邸中秋.数字技术在工程测量中的应用[J].民营科技,2017(06).

[4]谭丽娜.浅析数字测量技术在建筑测量中的应用[J].科技向导,2015(06).

地形图测量范文篇10

关键词:水利测量;实时定位RTK;原理;优点

随着生产力的提升和社会的进步,先进的测量设备与方法不断被应用至水利工程领域,水利测量中GPS技术以无需通视、高精度、低成本、高效率的特点得到广泛应用。GPS定位技术可以达到厘米级精度,几秒钟内RTK技术即可确定定位数据,因此其在水利测量中的使用范围将日趋广泛。

1水利工程测量技术发展前景

1.1GPS技术发展现状。GPS系统具备全天候、连续、实时、全球性定位和导航功能,可以获取高精度3维时间、速度、坐标满足各类用户要求[1]。GPS较为常用的方式有相对测地和单点导航定位两大类,其中前者为工程中最为常见的方式。其中,静态作业模式主要用于国家大地、大坝和地壳变形的观测;因具有厘米级分辨率和较高的作业效率,快速静态作业模式通常用于水利测量;工程放样、数据采集等领域一般选用RTK技术,该技术因具有厘米级精度、快速实时等特点逐渐成为GPS相对测地定位的主流。GPS测地型接受设备有双频与单频两类,双频机可以对电离层折射利用L2观测值适当修正,适用于超过20km的中、长基线测量,利用快速静态作业模块升级RTK技术;单频机性价比较高,通常用于不超过20km的短基线水利工程领域。无线电、电子手薄、GPS接受设备为构成RTK系统的主要模块,在实现厘级精度、实时可靠性、操作简便性、轻量化等特点的同时,整套设备能够满足水利施工放样、信息采集等需求。考虑到对空通示受档以及卫星数量较少的特殊情况,GPS系统无法确保解算的正常,从而对定位可靠性与精度产生影响。研究发现,受多环境条件的限制,单频GPS具有较大的局限性,对此双星座系统实现了GPS接受设备的新水平,该系统能够提供全范围、高精度、各时段完美的接受设备[3-4]。1.2GPS技术应用前景。我国水利事业的快速发展对勘测设计的要求越来越高,随着勘测软件、硬件设备的不断进步,已基本实现CAD作业[5]。“业内一体化”的水利勘测设计,要求形成后期管理、施工、设计、勘测的一体化数据链,由此降低中间数据处理环节,这也是决定水利设计行业发展的重要因素。虽然电子水准仪、全站仪等已应用于水利工程勘测设计,然而后自然环境与通视条件限制常规的方法普遍存在工作量大、效率低、设计周期长等问题。技术改进和设备引进为勘测技术进步的关键,因此GPS技术的引入为现状条件下的必然选择。沿线控制测量可以利用快速静态作业模式实现,从而为路线测量、地形图绘制等提供信息依据;此外,还可形成施工控制网为闸门、堤坝、渠道等水利项目施工提供指导,这也是水利测量中GPS的初级应用阶段。实质上,RTK实时动态定位技术的应用为GPS系统的发展潜力,具有更加广泛的应用前景[6]。

2水利测量中RTK技术的应用

2.1RTK基本原理。RTK实时动态定位技术现已广泛应用于实际操作中,可以实时测量水利工程数据,该技术包括以下内容:①RTK技术拥有多个数据链以获取不同类型的数据;②基准站接收机具有数据分析与接受的功能,对相关数据的获取发挥着关键作用;③复杂地形难以获取的数据可以选用流动接收站,在原有基准站上安防GSP接收机,由此实现数据信息的实时观测和传送。2.2RTK技术优点。结合相关资料和工程实践,归纳总结了RTK技术优点。①工作效率高:RTK技术相对于传统的测量方法能够大大提升工作效率,对于8km范围以内的普通地形和地势,该技术可以实现精准的测量,且测量过程无需投入过多的财力、物力和人力,在减轻劳动量的同时还可提高工作效率,降低测量成本和费用。②降低作业条件要求:对外界环境、地形和地势传统的测量方法要求较高,必须完全符合相关要求方可测量;相对于传统的测量方式RTK技术存在明显的差异,该技术适用范围广且对作业环境要求低,外界环境对RTK技术的影响较低。③数据安全可靠、定位精度高:基于GPS技术创新发展形成的RTK技术兼具GPS的诸多优点,其适用范围广、定位精度高且操作流程简便;对于地势条件较为复杂的地区RTK技术能够减少以外事故发生概率,保证人员安全和数据的精准度。④数据处理能力强、操作简便。RTK技术较传统的测量方式具有更加简便的操作流程,其技术要求低且数据处理能力强,对基准站坐标在测量站准确记录后即可实行正式测量,对数据信息经一系列数据后绘制出高精度地形图。此外,智能化和自动化程度高为RTK处理技术的明显优势,接受的信息可以很容易实现自动处理。2.3RTK技术的应用。2.3.1河道地形图测量。水利测量工作中RTK技术的应用主要体现于河道地形图的测量,一般利用RTK技术优势完成复杂的河道地形图测量工作。水下作业为大多数河道地形图的测量环境,而人眼无法直接观测水下形式,为保证地形资料的测量精度必须合理利用RTK技术。其中,全站仪、6分仪、3杆分度仪为传统的测量方式,这种测量方法所花费的时间较长,测量精度低、适用范围小且化肥的人力资源多,测量结果无法实时反映地形变化的真实状况[7]。随着科技的进步和水利事业的发展,河道地形图测量中RTK技术逐渐得到广泛的应用,其测量流程包括:先连接笔记本电脑和需要使用的仪器,测量点的观测和定位通过电脑控制时限;然后在笔记本电脑里输入测量的有关数据,经软件处理绘制出河道地形图。由此获取的地形图能够客观、真实的反映河道情况,具有工作量少、测量精度高、所需时间段等特点。2.3.2加密控制点测量。测量工作的难点和重点是保证加密控制点测量的精度,而偏远山区的水利工程测量控制点很难设置。传统的测量方法主要利用三角控制网和距仪导线测量,该方法花费的财力、物力和人力较大且精准度较低,外界环境对测量精度影像较大[8]。对于以上问题RTK技术可以有效解决,该方法具有较高的精确度且测量方便快捷,通过将3个以上测控点设置于15km范围内即可完成相应的测量。2.3.3数字化地形图测量。RTK测量技术能够快速定位及实时掌握坐标结果,测量地形时具有较好适用性。在数据采集功能下可以结合地形情况快速完成测量,并以图形的方式显示采集完成后的地形点,经转换处理输出数字化地形图。2.3.4水域断面测量。将探深仪与RTK技术相结合测量水域断面,应先对河道断面位置按照现有地形图初步设计,经实地勘测获取各基点高程、平面坐标等参数;其中,基点3维坐标利用计算机进行准确记录,而断面航线采用业内处理的方法合理设计;然后实时校核数据的准确性及精度以保证数据采集的有效性,并利用计算机处理三维坐标数据,特殊情况下还可实行补测工作。准确校核所有测量数据后,方可对各航段断面图形利用专业处理软件绘制。2.4作业时常见问题及解决对策。对RTK技术应用时常见的几种问题提出有效的解决对策:①卫星状况问题。采用卫星获取测量数据为RTK测量技术的重要依据,若卫星无法覆盖测区范围,则不能保证测量数据的可靠性与精度,尤其是城市高楼林立、高山峡谷等很可能遮挡信号处,测量数据很容易出现偏差。对此,需要配合星历预告完成测量作业。②作业半径比标称距离小、数据链传输受限制和干扰问题。数据链为传送RTK测量数据的主要途径,若遇到较高建筑物或高山无法顺利完成数据链的传输,此时应尽可能提高基准站海拔使其位于测量区最高点。③测量稳定性与精度问题。对于自然环境RTK测量的要求较低,但卫星运行状况很容易对测量作业产生影响,使得测量精度降低,为提高测量精度可以增加校核次数或多次反复测量。

3结语

水利测量中RTK技术的应用保证了测量结果的准确度和可靠性,为水利勘测设计和保证后期的顺利施工提供数据支撑,对推动水利事业发展和自动化、智能化测量系统的搭建奠定了基础。实际测量过程中为确保测量精度,应正确使用仪器、提高计算精度和工作人员责任心。所以,研究分析RTK技术优点、原理以及作业中常见问题的解决方法,可为水利勘测设计和质量、进度、安全目标的实现提供重要保障。

参考文献:

[1]王俊艳.GPS技术在水利工程测量中的应用研究[J].科技与生活,2011(17):179-179,198.

[2]范会平.GPS-RTK技术在水利工程测量中的应用[J].价值工程,2014(24):101-101,102.

[3]黄良,饶烨.RTK测量技术在基础控制测量的应用与体会[J].中国勘察设计,2010(09):36-40.

[4]宋德军.RTK技术在水利工程测量的作用分析[J].河南水利与南水北调,2014(20):25-26.

[5]闫志刚,张兆龙,赵晓虎.GPSRTK作业模式原理及其实用技术[J].四川测绘,2001,24(02):66-69.

[6]王晓光.抚顺县农村水利工程现状、存在问题及建议[J].水土保持应用技术,2013(02):32-34.