探析港口流动机械液压系统节能技术

时间:2022-09-26 11:22:29

探析港口流动机械液压系统节能技术

摘要:维持港口流动液压泵流速与预先负载流量稳定,是港口流动机械液压系统节能技术应用的根本目的。在保证港口流动机械液压系统正常运行的基础上,通过港口流动机械液压系统节能技术的有效应用,可保证整体机械液压系统运行效率的有效提升。结合新技术的应用,在港口流动机械液压系统动力驱动体系优化的基础上,对港口流动机械液压系统的节能技术应用进行分析,以便为港口流动机械液压系统的稳定运行提供保障。

关键词:港口;流动机械;液压系统;节能技术

0引言

在科学技术发展过程中,液压节能技术得到了一定的优化更新。主要是在以往单一液压节能技术的基础上,以液压系统负载特性为切入点,结合相关高科技节能技术,从液压系统节能、节能液压元件开发两个方面进行优化控制,使整体液压系统节能效率得到了有效提升。因此,在智能型液压泵、新型变排量液压泵、新型变转速液压泵等发展的基础上,对港口流动机械液压系统节能技术进行相应分析非常重要。

1液压系统的节能技术

在液压系统运行过程中,节能技术的合理应用可极大程度地降低系统内部压力损耗,保证机械液压系统能源利用效率得到有效提升。现阶段,在液压系统中常用的节能技术主要包括合理动力油源配置、合理的控制模式、合理的管道结构选择等方面。现行的机械液压系统节能技术主要是在降低液压系统压力损失的前提下,对机械液压系统结构及能源配置进行合理控制。而由于整体机械液压系统节能技术应用较为单一固化,导致其并没有在节能方面发挥良好的效用。在液压传动过程中,压力决定了负载运用,而液压系统运行速度决定了流量应用情况。其中,液压传动主要是利用高压介质实现能量传动的效果,在整体液压传动过程中由于液压系统内部大多通过原动设备拖动液压泵进行能量传动,整体传动效率不高。因此,为了提高整体液压系统工作效率,应以小能量输入大能量输出为切入点,实现系统高效运行。

2动力驱动系统组成

港口流动机械液压系统主要以集装箱跨运车为主。主要应用于集装箱码头、中转站堆场的集装箱专用机械装卸工作,便于整体集装箱水平运输、堆积卡、堆码等工序的合理运行。在其动力驱动系统中,主要以全液压驱动模式为主,即负载敏感变量泵、起升系统、制动系统、负载敏感变量泵、柴油机、蓄能器、转向系统为整体动力驱动系统的主要构件。

3液压系统节能方案

3.1CAN

总线技术的应用在CAN总线技术应用的基础上,可将港口流动液压系统内部的变量泵马达排量、电子元件操作组合、液压阀组、柴油机等相关设备进行集中监控,降低布线过于复杂对港口液压系统维护工作的负担。结合CAN液压系统运行特点,可在极小占用空间的基础上,促使整体港口机械液压系统的数据通信功能更加高效、稳定、便捷。在港口流动机械液压集装箱跨运车CAN总线系统,主要在油门控制器、阀组控制器、转速控制器、终端控制器的基础上,增设了排量控制器、调节机构及压力流量传感器等构件。在实际运行中港口流动机械集装箱跨运车液压系统将变量泵、柴油机的功率进行了有机整合,结合负荷敏感变量泵、负荷敏感多路阀组、能量回收技术的应用,在CAN总线控制系统的控制下,对整体液压系统能源负载进行优化配置。在港口流动液压系统中,CAN总线系统的合理配置,可以利用控制终端维持变量泵、多路阀组、柴油机等构件的稳定运行,也可以通过柴油机等动力装置输出功率的合理调控,保证整体流动液压系统内部液压压力、液压流量符合能量驱动需求。同时,通过能量回收技术的合理应用,将整体柴油设备负载制动能量进行有效回收应用,便于整体能量回收效率的提升。

3.2功率匹配调整

港口流动机械液压泵是港口流动机械液压系统首次能量转化装置,对于整体港口流动机械液压系统功率的合理调控非常重要。在港口流动机械液压系统功率调整过程中,可将港口流动机械液压泵作为主要管理内容。首先结合港口流动机械液压泵结构特点进行动力源的配置;然后结合港口流动机械液压泵使用压力、液体黏度、转速、结构形式等因素,进行整体港口流动容积效率及机械效率的优化管理。对整体港口流动机械液压泵效率提升而言,可选择压力小于2.50MPa的液压流动泵类型,如齿轮泵等;若选择压力在2.50MPa以上,且小于6.30MPa时可选择叶片液压泵;而当液体流动压力大于6.30MPa时,可以柱塞泵为主要构件形式。同时对于港口流动液压泵转速的合理控制,对于整体港口流动机械液压泵输出功率的稳定非常重要,结合整体港口流动机械液压泵的主要构成,可将其整体转速控制在1001~1799r/min限度内。最后在整体港口流动机械液压油源选择时,基于油源黏度与其泄露量成反比的特点,可优先选择黏度较高的油源。但因黏度较高的油源应用会导致整体港口流动液压系统内阻力上升,而机械效率及港口流动机械液压泵的自吸能力下降。因此,可综合考虑上述相关因素,对港口流动液压泵所应用的油源黏度进行合理选择。

3.3独立的制动循环系统

为便于港口流动机械液压节能技术的有效应用,可将液压制动系统与混合液压系统进行独立管理,在采用独立的液压油散热设备及能源储存设备,便于液压制动循环系统的合理配置。依据整体港口流动循环液压系统工作状态,对内部液压泵运行数据与负荷数据进行协调调制,使整体港口流动机械液压系统稳定运行。在独立制动循环系统应用过程中,结合容积调节系统及电子元件监控系统的合理配置,保证整体制动循环系统稳定运行。一方面在容积调速制动系统配置过程中,结合港口流动机械液压系统泵、液压马达排量情况进行合理控制。在实际调配过程中,将港口流动机械液压变量泵、补油泵、安全阀、溢流阀等相应构件进行有效控制,摒弃原有的方向阀、节流阀等装置,使整体港口流动液压泵输出压力与港口流动液压缸进行直接传输,可降低港口流动液压泵传输阀口接口导致的能源损失,便于整体港口流动效率的提升。另一方面在独立制动循环系统中可通过电子传感器的应用,进行独立制动循环监控体系的构建。通过对整体独立制动循环系统压力的有效检测,可利用AID转化设备,进行数字信号的有效传输,在相应的监控系统终端进行相关信号的处理分析工作,进行实时控制数据连接,保证液压泵及其相关构件的实时监控。

3.4正面吊制动系统

正面吊制动系统在液压系统节能方面的应用,主要是在利用直接驱动形式液压驱动技术的基础上,对港口流动液压系统内部驱动电力设备进行双向液压泵的设置,便于港口流动机械液压系统的有效驱动。然后结合伺服电机转速的有效控制,对整体港口流动液压系统的输出流量进行控制,为港口流动液压系统运行速度及作用压力的合理调配提供动力,保证港口流动机械液压系统节能技术的有效实现。正面吊制动系统在以往港口流动机械液压驱动技术的前提下,融入了伺服直接驱动形式电动缸驱动模式,实现了港口流动机械液压系统能量损失的有效调控。同时,通过伺服电机转速的合理调控,节省了港口流动机械液压系统内部构件组成空间,在保证整体港口流动机械液压系统稳定输出功率的同时,也为安装维护、过载保护等工序的有效运行提供依据。

4结语

在社会科技的发展过程中,现阶段的港口流动机械液压系统已实现了节能优化匹配及功率有效调控管理,便于整体港口流动液压系统运行效率的提升。在以往管道结构优化、能源配置调控等单一液压节能技术的基础上,结合CAN总线系统及制动循环系统的合理设置,可使整体港口流动机械液压系统实现故障诊断自修复、多功能集成管理的智能模式,进而为港口流动机械液压节能技术的进一步优化推广提供有力保障。

参考文献:

[1]李玮,田秀德,李涛.状态监测系统在港口流动机械中的应用[J].中国设备工程,2016(6):77-78.

作者:陈拓 单位:珠海普田工程咨询有限公司