电子论文范文10篇

时间:2023-03-29 17:17:54

电子论文

电子论文范文篇1

1.1煤矿井下供电系统运行不稳定

煤矿井下供电系统的运行受到多种因素的影响,对煤矿安全生产造成不良影响。主要表现为:变压器的容量不足以及对备用电源的设计不满足规范。变压器容量不足的原因是在进行电气设计时,没有为供电系统留有充足余量,系统经过长时间的运行,处于超负荷状态,供电系统的母线长期处于发热状态且用电超载,降低了电气设备和电缆的使用年限。此外,由于电气设备短路、雷击、大型设备启动等原因,会造成电网电压波动,降低了供电系统的可靠性、稳定性和安全性。

1.2地面中性点直接接地的变压器向井下供电

在实际安全考察中发现,大多数煤矿企业没有按照规定安装使用接入井下电源或非直接接地变压器中性点,而是采用单个煤矿专用或多家煤矿共用接地中性点变压器连接供电系统,通过三芯电缆线与三相火线的连接接入井下,使用保护接地与工作接地结合的中性线与单根相线接入办公区域和生活区,以供生活用电。

1.3没有采用双回路供电系统

我国的规定要求矿井生产使用双回路供电系统,年产量在6万吨以下的煤矿可以使用单回路供电,但必须满足备用电源的要求。但是,一些矿井仍采取单回路供电,虽然有些煤矿单位配置了柴油或汽油发电机,也仅仅为了应付检查或停电时紧急照明。而且双回路供电系统发电机容量限制情况下保证关键电气设备即使停电也可正常运行,为矿井工作人员的安全撤离提供了机会,防止透水事故和通风机停转导致粉尘、瓦斯聚集。此外,矿井周围存在静电和电火花,如果静电接地不良,会造成放电火花甚至爆炸。接触器和继电器可能因质量不佳,在开合时无法分断电流也会形成电火花;电缆长期在外力或超负荷状态下工作,也可能产生电火花,从而引发短路,导致瓦斯爆炸。

1.4地面引入的供电线路没有设置相关保护装置

煤矿井下的规定要求供电线路、通讯线路、入井轨道、电机车架线在入井处必须安装防雷装置;井下使用的电器必须具备漏电、过流和接地等保护功能。井下电气设备还要满足防爆要求。但是检查时却发现有些煤矿并没有按照规定将保护措施做到位,仅仅是将架空线接入井口,再由电缆线引入井下或者直接接入变压器,如果遇到雷电袭击,雷电会沿着导线侵入井下工作面,引起瓦斯爆炸或人员伤亡,设备遭受雷击也会被严重损坏,存在巨大安全隐患。而且,煤矿井下工作环境较为潮湿,影响设备绝缘,漏电保护器能够避免因漏电造成引发爆炸或明火,减少井下安全事故。

2煤矿井下供电系统的运行方式

2.1煤矿井下双回路供电系统的运行方式

双回路供电系统包括分列和并列两种运行方式。分列运行指的是两条线路同时运行,两段母线间的联络开关断开。分列运行适用于拥有较大负荷的变电和配电所,具有电缆线路的电流小、压降小、线路距离长、停电面积小的优点;缺点是由于两个回路具有不同负荷,对其总配电开关的保护整定也有所不同,如果一个回路停电,另一个回路的总配电开关也要重新进行整定,不利于两回路之间快速切换。并列运行指的是当一条回路运行时,另一回路带电备用,两段母线的联络开关相连接。并列运行适用于拥有较小负荷的变电和配电所,优点是两个回路拥有相同负荷,其总配电开关具有相同的保护整定,切换迅速;缺点是通过电缆线路的电流较大、压降大、运行线路间的距离短,如果短路会造成大面积停电。

2.2煤矿井下供电系统的运行方式技术要求

我国颁布的煤矿生产的安全条例明确规定必须将双回路供电运行技术应用到井下采矿区域的配电所、变电所中,为供电系统安全稳定运行提供可靠的保障。同时,井下变电所向部分通风机供电时,应采取分列运行方式,保障通风系统的安全可靠运行。此外,综合考虑井下作业的机电设备的规格和负荷,制定科学的供电方案,提高矿区生产的安全性和效率,保证井下作业的高效稳定、节能经济。

3煤矿井下供电系统的优化措施

一方面,井下供电系统的电源经地面变电所通过两台主变压器设备接入井下作业面实施供电。位于地面的主变压器采用一台运行、一台备用的运行方式,利用双电源向井下所有电气、动力、照明设备提供安全稳定供电。井下变电所的馈电盘柜为通风系统、给排水系统经过双回路电源实施供电。根据机电设备的容量和功率,按照1140V、660V进行电压的优化设置,按照127V对通信、照明和其他电气设备实施供电,按照36V对交流控制回路进行供电。另一方面,对井下供电系统要采取积极有效的漏电保护措施,建立匹配完善的保护体系。所有电气设备的保护接地装置和局部接地装置都应同井下主接地极连接成一个总接地网。严格要求井下电工按规范接线,确保电缆头密封,防止进入潮气引起漏电事故。对井下电缆悬挂到一定高度,防止出现“挤、压、砸、淋”等现象,减少漏电事故的发生。及时对馈电开关进行检漏保护试验和远方检漏试跳试验,确保漏电保护功能有效,及时切断漏电回路。

4小结

电子论文范文篇2

1.1对电的价格的掌控商品的价格一直是人们关注的事情,所以电力作为一种商品来说人们也自然会关注它的价格。价格的合理性决定了商品的销售量,从而直接决定了供电企业的利益问题。电力既然是人们都在使用的商品,那么它的普遍性也就相当高,因此电力决定了民生经济,国家也极其重视该问题。供电企业的竞争力也在增大,所以物美价廉是一个商品销量大的有力依靠。掌控电的价格就是供电企业的一个营销战略,可以根据电量的使用情况来规定价格。对于用电量大的地区如果其收益较大,那么相对价格应该提高,但对于一些用电情况少的地区,其收益较少的话,电价就应该相对降低。依据地区来收电费,是个不错而且相对合理的安排。

1.2宣传的作用就像我们每天在电视上看的广告一样,每个产品的宣传力度也是销量的一个重要因素。当今时代是一个信息时代,人们大多是从网络或者电视上了解新的事物。既然是产品,就不会例外,电力也应该有广告,宣传力度应该有所增加,可以在广告上下点力度,不论是电视上的亦或是纸质版的广告。商品卖得快,全靠广告带。因此宣传的作用是不可小觑的。加强电力产品的宣传力度是供电企业营销的又一重要手段。广告有助于人们接受这种产品,而且能引导人们正确认识、使用这种产品,从而起到传递信息、沟通产销的作用。俗话说,货好还得宣传巧。虽然广告的制作会花费相当一部分资金,但是供电企业不能局限于眼前的利益,应把眼光放长远,考虑到未来的利润。现在,广告的影响力极大,它影响着人们的价值观念还有生活方式。大力宣传可以引导人们消费,也能更好地介绍电的基本情况。广告不仅是一种宣传手段,如今更成为了一种文化,好的广告既能让人们了解产品,又能丰富人们的生活。因此,如果供电企业能够加强宣传,相信人们对于电力的认识会更加深刻。

1.3电的质量商品不仅需要靠价格拉拢顾客,用广告吸引眼球,更重要的是商品的质量。如果说价格和宣传是电力的躯干,那么质量就是电力的灵魂。好的商品最主要的就是拥有一个好的质量,如果电价格再怎么便宜,宣传再怎么大,没有好品质的支撑,它不会走的长远。因此,电的质量决定着供电市场利益的根本。电的质量不仅是销量的保障,它更多的是关联着人们的安全问题。根据《全国供用电规则》来看,用户的电压应该在+5%~7%,如果超过这个范围,就不合格了。另外,还要保持电的电压稳定,如果供电企业的电压不稳定的话,会使电子产品或者商品寿命大大降低,会使用电企业因电压不稳而没有办法做出好的产品,从而影响生产的效率和品质,自然供电企业的电力销量会减少,利润大幅度降低。电的质量不好的话,有可能会使一些用电器发生燃烧或者爆炸的情况,这是很危险的事情,一不小心甚至会影响人的生命安全。因此,只有放心的产品人们才会放心的购买,增强电的安全性是必不可少的工作。

2结语

电子论文范文篇3

应用电子技术专业的培养目标和面向的岗位群是:①电子设备的生产、检测与调试、服务岗位;②电子设备系统的工程安装、调试、维护岗位;③电子企业产品的检验、质量分析、售后服务、销售等岗位;④电子企业公司的电子产品的开发设计、技术支持、生产管理岗位等。二、人才培养模式改革

1.构建职业能力模块,完善专业课程体系

针对高职教育特点,我们构建了高职应用电子技术专业基于职业能力的课程体系模块,分为:理论模块、实践模块、考证模块、生产实践与毕业设计模块。其中理论模块包括专业基础课子模块和专业技术课子模块,专业基础课如电工技术、电子技术等,课程主要采取一体化教学模式;专业技术课如电子产品生产工艺、单片机应用技术、电子线路等,课程主要采取任务驱动下的项目式教学,项目主要来源于生产实际,从而将理论教学与实践教学有机结合起来,充分发掘学生的创造潜能,培养和提高他们的动手能力、实践能力、分析能力和团队协作等综合能力。实践模块包括专业实验和实训子模块(主要是校内实训)及技能竞赛培训子模块,以职业技能大赛为依托,加强实践教学中基本技能和专业技术的训练,保证训练的基本要求,同时增强针对性和适用性,培养学生解决实际问题的能力和创新能力。考证模块主要针对学生考取相应资格证书的教学。生产实践与毕业设计模块包括顶岗实习子模块和毕业设计子模块,旨在培养和提高学生的综合素质和能力。为了更好地适应社会对多样性人才的需求,我们确立了理论教学体系+实践教学体系+专业应用能力指标体系“三维互动”的教学模式理念。在重视基础理论够用的同时,拓宽学生的知识面,加强专业课内容的应用性部分,把应用性环节渗透到教学的全过程。大力推行Multisim、Protus、Matilab等仿真软件的应用,提高课堂教学效果。遵循职业成长规律,对主干课程合理规划,形成从“基础+认知”出发,打造“综合+顶岗”的课程布局。保证基础理论课够用,专业课管用,专业基础课适用,突出基础理论课程和实践应用课程的相互渗透和融合。

2.以“工学结合”思想为指导,积极探索项目教学和一体化教学模式

按照“工学结合”的总体思路,以实践能力培养为主线设计课程教学内容,以任务驱动、项目导入或案例分析等手段组织教学,以理论教学与实践教学一体化的教学模式完成教学过程。从而对课程内容、教学组织、教学模式与教学方法等进行一体化的综合改革。例如,在培养方案中,《电子产品制造工艺》《单片机应用技术》《电子线路CAD技术》《电子产品维修》等专业课都采取了项目教学法,并配置了专项实训;《电工电子技术》《电气控制与PLC》《电子测量与仪器》等课程采取一体化教学模式并配置专项实训。

3.以“就业教育”为导向,加强校企合作,推进定单培养的人才培养模式

在高技能人才培养上,以校企合作、工学结合为切入点,以校内外实训基地建设为保障,加强教学过程的实践性、开放性和职业性,重点抓好实验、实训、实习三个关键环节。建设完善的校内实习实训基地,一方面提高教师和学生的实践水平,另一方面还可考虑开放设备和场地,引进企业来料加工,为工学结合创造良好的条件。努力建立多个校企合作单位作为校外实习实训基地。聘请行业企业兼职教师到校任课,和企业共同开发实践性较强的专业课程,如:电子产品维修、质量管理等,并编写与企业生产实际相关的教材和实习实训指导书;选派教师到企业学习实际生产的新技术、新工艺,还可对企业提供相应的技术支持;学生的实习工作也可安排在这些合作的企业。另外,在专业群能力体系的构建上,有意加入其他能力培养的环节,如电子技术应用能力的培养、单片机开发设计能力(硬件、软件设计等)的培养、职业道德的培养、学生岗位适应能力培养、团结协作能力的培养等等。这不但会使课程体系更加完善,更使得学生拓展知识面,就业不再限于“点”,而是铺成了“面”,全面提高了学生的综合素质,拓宽就业领域。

4.毕业实习、毕业设计模式改革

改革的理念是“以实践强化理论”。根据“2+1”办学模式,确定了顶岗实习36周甚至更多,学生通过长时间的岗位训练,磨练意志、锻炼手艺,基本可以做到毕业后与用人单位的“无缝链接”。学生在实习过程中以企业生产加工活动为背景,对电子产品设计与加工等各个环节亲自完成,主要工作在现场由企业兼职教师指导完成。学生通过实践之后,对专业知识形成的新的认识、新的解决方法都将成为毕业设计的良好素材,一改过去由教师提供毕业设计题目、素材,学生被动做设计的格局。学生在了解了毕业设计的基本思路和方法后,便可根据实际生产过程中获得的新素材来自主地做好毕业设计,在形式和内容上做到不拘一格,对学生的综合能力是一个极大的锻炼。

5.考试、考核模式改革

大胆改革传统教育的考核评价体系,不光考核理论水平,更要关注学生实践创新能力的考核。在考核评价学生素质时,一改过去仅凭一张试卷成绩的做法,考核内容既有理论知识,又有实验和操作技能,考核方式除传统笔试外,还可采用口试、实验实训操作考试等多种形式。在实践考核中可采取更多方面、更多层次的评价,可以从理论分析、动手能力、工作态度、职业能力、创新能力等方面给予学生进行评价,还可对学生的组织能力、交流能力、和承受压力能力等方面进行综合性评估。同时采取教师评价、学生自我评价和小组成员互评相结合的灵活开放的考核评价方式。

6.职业技能培训模式改革

依托学院职业技能培训鉴定中心,积极开展职业技能鉴定工作,推行“毕业证+必修职业资格证书+任选职业资格证书”的“1+1+X”多证书制度。为学生开展以高级维修电工、电子产品安装与调试工为主的多个工种的校内职业技能鉴定工作,毕业生的“双证书”率达到100%。我们在职业技能培训模块改革中,不再孤立地针对考试进行培训,而是根据国家职业技能鉴定标准,将鉴定标准中的相应项目及评价体系引人到相应课程的实际教学中来,并根据技能鉴定要求及企业生产实践中的真实任务来设计实验实训的项目,从而加强对学生职业技能和职业素质的综合训练,并获取相应资格证书。

7.结合职业技能大赛对专业课程教学模式实施改革

职业技能大赛是培养创新人才、促进高职教育教学改革行之有效的途径。通过将大赛内容和课程教学进行有机融合,把一些与竞赛有关的课程纳入教学计划,同时分析大赛对知识能力所需,将其融入相关课程的日常教学中,比如:电工电子技术、单片机技术、电子线路CAD技术、电子产品制造技术等课程。实现“以学促赛、以赛促学、赛学结合”。该教学模式下不仅能锻炼学生的实践动手能力,还能把抽象、难学的理论知识与生动、现实的项目结合起来,有利于提高学生的学习兴趣和效率。在提高职业大赛成绩的同时,还有效提高全体学生的综合素质,提升学生的就业竞争力。

二、结语

电子论文范文篇4

一个专业如果培养目标不明确,培养方向不准确,将无法科学地制定本专业的培养模式和课程体系,也无法高效地进行专业课程改革和教学管理。确定专业培养目标首先要进行充分的市场调研,确定本专业的就业岗位和典型工作任务,根据典型工作任务对知识、能力和素质的要求,确定人才培养目标和培养模式。苏州工业职业技术学院应用电子技术专业在苏州市电子信息行业协会的指导下,通过走访企业、召开专业指导委员会等形式,对苏州市电子类人才的需求进行调研,确定了本专业的主要工作任务是电子产品组装调试维修、PCB板的焊接与维修、电子产品辅助设计、电子产品品质保证和电子产品销售采购技术支持,职业核心能力是电子产品组装调试维修能力、PCB板的焊接与维修能力、电子产品辅助设计能力、电子产品品质保证能力和电子产品营销技术支持能力。通过岗位任务的分析,制订了本专业的人才培养目标是:培养具备扎实的科学文化基础知识,具备良好的职业素质、团队精神和创新意识,掌握电子产品检测技术、电子电路设计技术、单片机应用技术,具有电子产品生产过程管理、电子产品销售与采购及设备维护能力的高素质技能型人才,使其可胜任电子生产企业中电子产品设计、生产、维修、管理、销售、采购、技术服务等岗位要求。形成“行会协同指导,校企共同育人”的工学结合人才培养模式。[1]

二、实施教师“三化”工程,打造高素质“双师”教学团队

发展高等职业教育的重中之重是教师队伍建设。要以师德建设为引领,将提升教师素质、优化双师结构、聘任企业专家作为师资队伍建设的重点。在不断提高专任教师教学能力的同时,提升教师的工程实践能力,拓展国际化视野,让骨干教师参加企业新技术新工艺培训,参与专业建设,承担课程改革建设,指导毕业设计、学生竞赛、技术培训,主持教科研课题。要定期安排骨干教师出国培训。“要给学生一碗水,教师自己要有一桶水”,这一桶水必须是活水,流动的水,是知识不断更新的水。本专业通过提升教师学历,教师到企业做访问工程师,与企业技术人员共同进行产品开发和科技攻关,共同申报科研课题,为企业开发产品、解决技术难题等,使教师的工程实践能力有了一个质的变化。

三、搞好课程改革,推进素质教育

通过市场调研和职业岗位能力需求分析,确定应用电子技术专业毕业生的主要就业岗位和次岗及迁移岗位。[2]按照项目化课程教学理念,以学生岗位能力和职业素质培养为目标,在教学内容、教学方法、评价方法等方面进行改革,与职业岗位能力要求相对接,加强校企合作,与企业共同编写具有职业特色的项目化教材。多课程重新整合,实施课证融合。将考证内容穿插在实践教学中,实施理实一体化,既节约了考证时间,又提高了学生学习的效率,进一步完善了“能力核心、项目构架”的课程体系。如将“模拟电路技术”、“数字电路技术”与“电子元器件检验”相结合;“电子测量技术”课程的教学与“音视频设备检验员”、“无线电调试中级工”相结合。为了全面评价学生,摒弃一卷制的考核方法,构建多元评价机制,采取项目实施过程考核和课程终结性考核相结合,自评、互评、师评相结合的评价方式。根据课程的培养目标,制定评价标准,使课程尤其是基本技能训练类课程考核内容与职业岗位的要求相吻合。

四、以提高学生专业应用能力为目的,建设实践教学环境

以提高学生专业应用能力为目的,结合职业岗位的实际工作过程,重新设计应用电子技术专业综合实训课程的教学内容,以实现学生校内学习课程内容与实际工作流程的一致性。[3]实验、实训室建设以高技能人才培养为目标,加强实践教学师资队伍建设,实施一体化的教学方法,进行模块化的技能培训,以提高学生的技能水平,增强其就业竞争力,最大限度地满足学生求知、求技、求职的需要,满足社会对高职教育多样化的需求。与此同时,与行业、企业合作,建校外实训基地,形成多形式的校外实践教学基地,切实推动实践教学改革。充分利用企业先进设备、技术专家和企业文化等资源,在生产现场进行“电子元器件的焊接工艺”、“电子产品品质管理”等专业课程的教学活动。利用现代科技手段,建立校企数字传输课堂,将企业生产过程实时传送到课堂,通过企业工程师直接开展专业教学,真正实现校企联合教学。全过程注重学生“5S”规范、认真负责、效率观念、静电防护等职业素养的培养。

五、将综合职业素质教育贯穿于专业教育全过程

电子论文范文篇5

1.1回顾电力电子技术的发展历程

电力电子技术的发展历程可具体划分为三个时期,即整流器时代、逆变器时代和变频器时代。首先,整流器时期的电力电子技术发展主要表现为大规模的工业用电,它的用电来源主要是交流发电机,消费形式以直流电为主,比如有色金属的电解、内燃机车的牵引以及轧钢中的直流电等。硅整流器通过将直流电转化为工业用电而被广泛应用于配电和输电领域,这在六七十年代的中国随处可见。其次,逆变器时代的电力电子技术发展遭遇了严重的能源危机,其波及范围之广使得整流器的发展不再适应电能企业的使用需求,以交流电为主的逆变器时代应运而生。逆变器时代以晶闸管、晶体管以及晶闸管器件作为时展的主流,在高压直流输出的过程中实现了对动态功率的有效补偿。然而这时的使用范围还仅仅局限于中低频领域,使用过程中的效率较为偏低。再者,八十年代的变频器时代实现了大规模和超大规模集成电路的发展与应用,这不仅电子应用领域的显著创新,同时也为后期现代电力电子技术的发展提供了必要的技术借鉴。变频器时代还对电力的精细加工技术进行了完善,全控型功率器件的出现实现了电力电子技术的高频化发展,使得现代电力电子技术转化成为一种可能。功率半导体市场逐渐被变频器件取代,这一革新不仅提升了变频调速的使用频率,在小型轻量化技术装备方面也有了显著进步。

1.2当前电力电子技术的应用领域

电力电子技术的发展核心控制体系在于电能器件的有效转换,作为一种现代技术,电力电子技术的主要功能不仅包括了逆变、整流、变频等基本方面,除此以外还涉及到斩波和智能开关等方面的内容。通过对电网工频电能的转化来达到不同的使用目的,以此适应现代化生产对电力电子技术的使用需求。具体应用方面,其应用领域主要包括了三大方面:其一,在变频器作用下对微电子技术及控制技术进行有效整合,将固有不变的交流电转变为可换可调的可变式交流电,以此达到无级调速的目的,这对电能资源的节约显然极为有利。其二,在开关电源和供电电源方面现代电力电子技术也有着自身的使用功能,类似变频电源、焊接电源、充电电源、照明电源等都为现代化电力系统的完善提供了切实可行的技术指导。其三,一些发电系统或是交流输电技术也体现出现代电力电子技术的应用意义,水力发电、风力发电、配电与用电系统的完善等都和电子系统的应用之间有着密切联系。

2现代电力电子技术的发展趋势探讨

2.1电力电子技术的发展趋势

电子电子技术归根结底是对电源技术的研究,电源技术不仅是电力电子技术研究的核心,一定程度上开光电源技术的发展也预示着现代电力电子技术今后的发展走向。从发展趋势来看,现代电力电子技术的发展趋势可概括为以下几方面特点:第一,现代电力电子技术的集成化与模块化特征。这一特征主要表现在现代电力电子技术的功率器件和电源单元两个方面,从微小器件组成来实现电子器件的智能化辨别与使用。这样的模块功率不仅有效控制了器件的体积,在设计与制造方面也形成了显著的模块化特征。电力电子技术的模块化发展其核心目的旨在降低器件的电应力,从安全性与可靠性角度提升电力系统的使用性能。第二,现代电力电子技术的高频化特征。从理论分析及实践验证的双重角度不难看出,无论是变压器的电感还是电容体积在供电频率方面都呈现出一定的反比例趋势,因此体积的减小必然会导致电子技术的高频化呈现。从这个角度来看,全控型电子器件的问世已然标志着现代电子与电力技术率先实现了自身的高频化转换。第三,现代电力电子技术的全控化与数字化特征。全控化电力电子技术的革新突破了原有电力电子器件在使用功能方面的限制,降低了关断换流电路可能造成的危险,从根本上保障了电力系统在使用过程中的安全性。数字化特征则主要表现在现代电力电子技术的高频斩波以及谐振变换等方面,从弱电领域拓展了电力电子技术的发展渠道,提前实现了控制技术的集成化。第四,现代电力电子技术的绿色化特征。这里的绿色化特征既包括了环境污染问题的控制,又涉及到必要的电网污染源问题,是当前电力电子技术在发展过程中亟需解决的重要问题。发电容量的控制从根本上减少了发电对环境造成的污染,与此相关的污染过滤器或是电能补偿系统等都是当前电力电子技术向绿色化迈进的有力证据。具体的电力电子技术应用方面,则主要表现为四大革新趋势:其一,太阳能发电技术的应用。太阳能发电技术为普通家庭提供了足够的电能使用空间,成为了可再生资源的有效传播途径之一。其二,燃料电池发电技术。燃料电池的发电装置主要是将其中的化学能转化为可使用的电能,节能省电,鲜少产生环境污染问题。其三,交流输电技术的应用。作为一种新型电力系统出现的交流输电技术实现了对电网资源重新分配与利用,保障了电力系统的稳定性。其四,现代电力电子技术中的储存与质量控制技术。储存技术的使用在于提升电力系统本身的电力储备功能,而质量控制技术则在于从供电质量角度提高电力产品的使用效率。

2.2现代电力电子技术的应用展望

关于现代电力电子技术的应用展望,可从如下几方面得以体现:第一,从节能性角度提升电机系统的使用性能,可从专用电机的设计或是控制设备的完善等方面来提升整体电力系统的使用效率;第二,中高压直流输电系统的运用也是今后电力电子技术发展的必然趋势,这一系统本身就具备了低污染和低能耗的特点;第三,当前社会发展进程中充电站网络的构建或是电动车辆的普及已经逐渐成为现代电力电子技术发展进程中积极完善与改革的内容,以电动汽车为代表的环保电力问题逐渐成为一个时代课题。至于当前城市建设过程中充电网络的配备问题基本尚处于起步阶段,无论是实际应用领域还是理论构建领域都还存在许多值得研究和讨论的问题,但无疑其发展空间是极为广阔的;第四,关于电力系统中电能储备装置的设置与超导线的使用也将成为电力电子技术亟需解决的问题之一,从根本上解决电能储备问题势必将对电力系统的持续发展产生积极而深远的影响。然而面对电能储备过程中存在的诸多问题,电力系统设计者需要从控制技术与存储技术的双重层面来体现储能装置的有效性,对于其中可能存在的不合理问题提出切实有效的解决或改进对策。

3结束语

电子论文范文篇6

1.1单片集成

单片集成是指在一片硅片内,使用统一的加工技能将所有需要集成的元器件进行集成。现今制造类工艺、隔离及散热技术的不成熟、不完善,致使单片集成技术一般只适用于集成一些较小功率的电力电子电路。当然不可否认的是,电力电子集成技术的发展在今后极有可能以单片集成为主。

1.2混合集成

混合集成的方法能够有效帮助解决电路之间由于工艺差异所造成的高电压隔离问题,混合集成的集成程度偏高。但是混合集成也存在着部分难度偏高的技术性弊端、问题,如分布参数、传热等,且成本无法降到最低。因此,与单片集成不同的是,混合集成一般应用于中等功率的电力电子电路,未来可能会向大功率电路方面发展。混合集成作为当前电力电子集成技术的重要方式,其现实意义偏强。

1.3系统集成

系统集成是指将已有的元器件及部件进行集合拼装,组成一个整体的系统。系统集成属于功能集成,难度性与集成度都相对偏低,在当今工程技术领域应用广泛。但是系统集成的集成度偏低,无法较好地使其体积及重量减小、降低,且构造复杂,集成优势无法明确体现。系统集成常用于大功率及结构复杂的电力系统。

2主要研究内容及现状

2.1MCM封装技术

MCM主要有三种类型:采用片状多层基板的称为MCM一L;采用多层陶瓷基板的称为MCM一C;采用薄膜技术的称为MCM一D。MCM的三种类型在应用中各有自身的优缺点。MCM封装能够有效帮助增强系统的EMC、减小投资风险等。

2.2倒装芯片技术

倒装芯片技术是一种封装技术,主要是指将晶片与基板直接接触进行粘接。与传统技术相比较,倒装芯片技术的引脚位置将不再受局限,能够随意放置在位于晶粒正下方的所有位置,而不像以往一般,只能排列在晶粒下方的四周位置。倒装芯片技术有利于大大缩短信号传输所用时间、弱化所受串扰,使电性能得到提高。倒装芯片技术能够使芯片尺寸封装CPS得到实现。

2.3嵌人式封装

嵌人式封装是指将功率芯片放置在陶瓷框架被刻蚀出的空洞内,接着再利用光刻、丝网漏印等技术使涂覆的金属膜图形化,最后将集成模块的大小主要部件粘附在功率芯片最表面。嵌人式封装可以通过缩小模块体积,将模块功率密度有效地提高。

2.4新型的互连方式

2.4.1原有的互联工艺方式

原有的互联工艺方式主要分为键合与压接两种。压接方式对零件的平整度要求较高,如若零件的平整度达不到要求,则会极易出现造成芯片损伤甚至碎裂的情况;而引线键合技术则存在着高频电磁应力及局部寄生电感偏大等问题,严重影响键合寿命。因此,现人们已提出新的互联技术方式。

2.4.2以焊接技术为基础的互连工艺

以焊接技术为基础的互连工艺采用层叠型三维封装结构。三维封装结构的工艺简单,成本偏低,能够有效解决层次间的垂直互连问题。焊接互连工艺分为焊料凸点互连技术和金属柱互连平行板结构。焊料凸点互连技术能够将引线之间的间距有效缩短。焊料凸点互连技术的接触面积偏大、封装密度偏高;金属柱互连平行板结构是指通过金属柱实现硅片之间的互连。

2.4.3以沉积金属膜为基础的互连工艺

以沉积金属膜为基础的互连工艺所采用的三维封装结构为埋置型,能够有效减少焊点及寄生参数。

3电力电子集成技术的发展趋势

随着现今的加工工艺及半导体材料的不断改善及发展,单片集成及混合集成依旧具有一定的前景。将电力电子集成模块的技术方面进行改善,能够有效提高电路性能,减小其损耗。未来的电力电子集成技术一定会朝着将功率元件、电路元件、控制器以及动作开关等有效集成,形成系列完整、智能的电力电子标准模块的方向发展。电力电子元件内部的集成度将会越来越高且成本逐步降低,且能满足其生产各方面的需求。现今,电力电子集成技术在电气设备的集成上已广泛得到应用,系统集成技术已有较为稳固的基础,能够有效帮助综合电力系统不断地稳健发展。

4结语

电子论文范文篇7

案例教学作为一种行之有效且目的明确的教学方法,以行动为导向越发受到人们的关注和青睐。作为一种归纳教学法,案例教学作为未来教学改革的趋势已不可动摇,尽管它不可能完全取代传统的演绎式的教学模式,却是一种培养应用型人才的良好途径。案例教学应用的成功与否很大程度上取决于典型案例的选取,要求典型案例既能体现对基本理论知识的理解和掌握,又要充分提高学生的实际动手能力。而在电力电子技术为课程的背景下,学生需要应用所讲的知识来解释典型案例所产生的结果,把案例进行模块化分解,摒弃对每个模块进行详细的研究和探讨,最后对各个模块的结果进行整合,才能形成对典型案例较为完整的研究体系[2]。

二、基于MATLAB/Simulink的课程设计

“电力电子技术”这门课是电气工程与自动化专业的基础学科之一,课程有几个特点:教学理论性强、波形变化分析复杂、课程教学枯燥,学生理解困难;系统模块化特点鲜明、模型参数化明显,实验项目相对独立;项目设计综合性强、技术应用广,实际开发的案例比较成熟[3]。教师在分析电子器件的特性和电子电路的工作原理时,需要观察波形图的变化来阐明工作过程。传统的教学方式中,由于电子电路变换器部分的电路拓扑形式多种多样,如果仅是手绘波形或者多媒体展示波形,教师讲解起来费时费精力,学生也不能清楚的掌握分析波形图变化的原因。所以在多媒体教学中引入仿真教学是必要的环节,通过仿真电路,学生可以把变换器的工作原理和物理波形结合在一起理解,使抽象的电路明了简洁,仿真还可以分析更加复杂的电路并且对电路进行改进和创新。在课程设计中利用MATLAB/Simulink软件可以有效地构建出与实际相符合的案例,教师在教学中通过仿真实例可以轻松解决波形抽象原理复杂的问题。Simulink非常适合于电力电子系统及电力拖动控制系统的仿真,并且具有其他一些软件所没有的特点,仿真系统完全是由用户利用系统提供的基本模块来构建的,系统的各个参数和仿真参数也可以由用户自行修改,并且用户可以对仿真结果进行多种分析和输出,教师可以直观展示各种参数变化对电路图波形的影响,学生改变器件参数值,可以自己对比分析不同参数设计下的仿真结果。这种交互性非常适合于高校相关课程的教学科研,学生通过这种交互性加强对理论知识的理解和掌握,也可以用来完成实验和作业[4]。以风力发电课程设计为例,教师首先要分析电路的组成和工作原理,指导学生利用仿真平台搭建数学模型,然后一步一步建立各部分电路仿真模型,该电路的仿真过程可以分为建立仿真模型、设置模型参数和观察仿真结果。学生需将案例进行模块化分解,就每个模块结合基础理论知识进行分析和研究,并进行实际动手调试,寻找各个模块之间的联系纽带,将所有模块有机结合起来,完成对典型案例的研究[2]。

三、风力发电课程设计案例

电力电子技术在解决能源与环境的问题上做出了相当大的贡献。风能作为一种绿色能源,风力发电的过程就是机械能转换为电能的过程,其中风力发电机及其控制系统负责将机械能转换为输送电网的电能,这一部分是整个系统的核心,所以说风力发电的核心技术是电力电子技术,其能量转换部件和控制电路都包含有电力电子器件。由于中小功率风电系统中电机侧一般为不控整流,并且永磁同步发电机一般都为低转速电机,在低风速下发出的电压有限,不能满足并网逆变的条件,需要对其进行升压,因此,中小功率风电系统中常见的拓扑结构为不控整流器+升压斩波器+网侧逆变器。风力机将风能转换为机械能,带动永磁同步发电机转动,发出的三相不定频交流电通过二极管不控整流器整流为电压不定的直流,然后经过升压斩波器的作用,将直流电压抬升至可以进行网侧逆变的数值,并且通过网侧变流器的控制,使直流侧电容保持恒压。网侧变流器将直流电逆变为与电网电压同频同相的三相交流电馈入电网[5]。课程设计案例中利用MATLAB工具,对永磁同步风力发电系统及并网控制系统进行仿真研究。所研究的仿真系统由永磁同步风力发电机、不可控整流器、升压斩波、DC-AC并网逆变器部分组成。学生可以把该风力发电仿真模型分成同步发电机仿真模块、斩波变流器仿真模块和逆变仿真模块,就每个模块运用理论知识进行仿真,最后将各模块结合起来达到整个案例体系的研究。永磁同步发电机额定参数:电压700V,功率2750kW,电流2270A,功率因数0.95,速度16rpm,频率16Hz,极对数2p=120,电阻R=5.97m-Ohm,电感Ld=Lq=1.0757mH。风力发电课程设计案例系统仿真框图如下图所示:1.同步发电机仿真永磁同步发电机仿真主要是依据实际系统参数,研究在一定速度驱动下带三相电阻负载的永磁同步发电机发电输出特性。仿真模型如图2所示,仿真结果如图3和4所示。仿真论证了实际电机参数下所达到的额定输出电压、电流值及输出的正弦特性、频率特性。2.斩波变流器仿真升压斩波变流器仿真主要是研究升压斩波部分的变压调节功能。仿真模型如图5所示。升压斩波电路的输入设定为一定电压信号输入,通过占空比控制,输出稳定的期望输出电压,仿真结果如图6所示。系统仿真表明:调节控制脉冲的占空比可以实现输出电压幅值的跟踪控制。3.逆变器仿真并网逆变器仿真主要是研究并网逆变部分输出调节特性,在给定输入直流电压,带三相负载的逆变器离网运行特性。仿真模型如图7所示,仿真波形如图8所示。仿真结果表明:逆变器输出电压为50Hz基波主频分量的脉冲调制波形,经部分滤波后为50Hz正弦波电压,在一定滤波和电阻负载下电流为正弦波。此课程设计案例根据现场实际运行的2.5MW直驱永磁同步风力发电机系统参数,对并网控制系统各个模块进行了仿真研究,得出一定速度驱动下带三相电阻负载的永磁同步发电机发电输出特性,仿真论证了电机参数下输出电压、电流的正弦特性、频率特性;升压斩波部分的仿真表明调节控制脉冲的占空比可以实现输出电压幅值的跟踪控制;并网逆变部分的离网仿真表明逆变器输出电压为50Hz基波主频分量的脉冲调制波形,经部分滤波后为50Hz正弦波电压,在一定滤波和电阻负载下电流为正弦波。此案例的仿真结果达到预期的效果,为学生实际应用能力的提升得到良好的体现。

四、结语

电子论文范文篇8

预计在未来10到20年,微电子器件抗辐射加固的重点发展技术是:抗辐射加固新技术和新方法研究;新材料和先进器件结构辐射效应;多器件相互作用模型和模拟研究;理解和研究复杂3-D结构、系统封装的抗辐射加固;开发能够降低测试要求的先进模拟技术;开发应用加固设计的各种技术。本文分析研究了微电子器件抗辐射加固设计技术和工艺制造技术的发展态势。

2辐射效应和损伤机理研究

微电子器件中的数字和模拟集成电路的辐射效应一般分为总剂量效应(TID)、单粒子效应(SEE)和剂量率(DoesRate)效应。总剂量效应源于由γ光子、质子和中子照射所引发的氧化层电荷陷阱或位移破坏,包括漏电流增加、MOSFET阈值漂移,以及双极晶体管的增益衰减。SEE是由辐射环境中的高能粒子(质子、中子、α粒子和其他重离子)轰击微电子电路的敏感区引发的。在p-n结两端产生电荷的单粒子效应,可引发软误差、电路闭锁或元件烧毁。SEE中的单粒子翻转(SEU)会导致电路节点的逻辑状态发生翻转。剂量率效应是由甚高速率的γ或X射线,在极短时间内作用于电路,并在整个电路内产生光电流引发的,可导致闭锁、烧毁和轨电压坍塌等破坏[1]。辐射效应和损伤机理研究是抗辐射加固技术的基础,航空航天应用的SiGe,InP,集成光电子等高速高性能新型器件的辐射效应和损伤机理是研究重点。研究新型器件的辐射效应和损伤机理的重要作用是:1)对新的微电子技术和光电子技术进行分析评价,推动其应用到航空航天等任务中;2)研究辐射环境应用技术的指导方法学;3)研究抗辐射保证问题,以增加系统可靠性,减少成本,简化供应渠道。研究的目的是保证带宽/速度不断提升的微电子和光(如光纤数据链接)电子电路在辐射环境中可靠地工作。图1所示为辐射效应和损伤机理的重点研究对象。研究领域可分为:1)新微电子器件辐射效应和损伤机理;2)先进微电子技术辐射评估;3)航空航天抗辐射保障;4)光电子器件的辐射效应和损伤机理;5)辐射测试、放射量测定及相关问题;6)飞行工程和异常数据分析;7)提供及时的前期工程支持;8)航空辐射效应评估;9)辐射数据维护和传送。

3抗辐射加固设计技术

3.1抗辐射加固系统设计方法

开展抗辐射加固设计需要一个完整的设计和验证体系,包括技术支持开发、建立空间环境模型及环境监视系统、具备系统设计概念和在轨实验的数据库等。图2所示为空间抗辐射加固设计的验证体系。本文讨论的设计技术范围主要是关于系统、结构、电路、器件级的设计技术。可以通过图2所示设计体系进行抗辐射加固设计:1)采用多级别冗余的方法减轻辐射破坏,这些级别分为元件级、板级、系统级和飞行器级。2)采用冗余或加倍结构元件(如三模块冗余)的逻辑电路设计方法,即投票电路根据最少两位的投票确定输出逻辑。3)采用电路设计和版图设计以减轻电离辐射破坏的方法。即采用隔离、补偿或校正、去耦等电路技术,以及掺杂阱和隔离槽芯片布局设计;4)加入误差检测和校正电路,或者自修复和自重构功能;5)器件间距和去耦。这些加固设计器件可以采用专用工艺,也可采用标准工艺制造。

3.2加固模拟/混合信号IP技术

最近的发展趋势表明,为了提高卫星的智能水平和降低成本,推动了模拟和混合信号IP需求不断增加[2]。抗辐射加固模拟IP的数量也不断增加。其混合信号IP也是相似的,在高、低压中均有应用,只是需在不同的代工厂加工。比利时IMEC,ICsense等公司在设计抗辐射加固方案中提供了大量的模拟IP内容。模拟IP包括抗辐射加固的PLL和A/D转换器模块,正逐步向软件控制型混合信号SoCASIC方向发展。该抗辐射加固库基于XFab公司180nm工艺,与台积电180nm设计加固IP库参数相当。TID加固水平可以达到1kGy,并且对单粒子闭锁和漏电流增加都可以进行有效加固。

3.3SiGe加固设计技术

SiGeHBT晶体管在空间应用并作模拟器件时,对总剂量辐射效应具有较为充分和固有的鲁棒性,具备大部分空间应用(如卫星)所要求的总剂量和位移效应的耐受能力[3]。目前,SiGeBiCMOS设计加固的热点主要集中在数字逻辑电路上。SEE/SEU会对SiGeHBT数字逻辑电路造成较大破坏。因此,这方面的抗加设计技术发展较快。对先进SiGeBiCMOS工艺的逻辑电路进行SEE/SEU加固时,在器件级,可采用特殊的C-B-ESiGeHBT器件、反模级联结构器件、适当的版图结构设计等来进行SEE/SEU加固。在电路级,可使用双交替、栅反馈和三模冗余等方法进行加固设计。三模冗余法除了在电路级上应用外,还可作为一种系统级加固方法使用。各种抗辐射设计获得的加固效果各不相同。例如,移相器使用器件级和电路级并用的加固设计方案,经过LET值为75MeV•cm2/mg的重粒子试验和标准位误差试验后,结果显示,该移相器整体抗SEU能力得到有效提高,对SEU具有明显的免疫力。

4抗辐射加固工艺技术

目前,加固专用工艺线仍然是战略级加固的强有力工具,将来会越来越多地与加固设计结合使用。因为抗辐射加固工艺技术具有非常高的专业化属性和高复杂性,因此只有少数几个厂家能够掌握该项技术。例如,单粒子加固的SOI工艺和SOS工艺,总剂量加固的小几何尺寸CMOS工艺,IBM的45nmSOI工艺,Honeywe1l的50nm工艺,以及BAE外延CMOS工艺等。主要的抗辐射加固产品供应商之一Atmel于2006年左右达到0.18μm技术节点,上一期的工艺节点为3μm。Atmel的RTCMOS,RTPCMOS,RHCMOS抗辐射加固专用工艺不需改变设计和版图,只用工艺加固即可制造出满足抗辐射要求的军用集成电路。0.18μm是Atmel当前主要的抗辐射加固工艺,目前正在开发0.15μm技术,下一步将发展90nm和65nm工艺。Atmel采用0.18μm专用工艺制造的IC有加固ASIC、加固通信IC、加固FPGA、加固存储器、加固处理器等,如图3所示。

5重点发展技术态势

5.1美国的抗辐射加固技术

5.1.1加固设计重点技术

美国商务部2009年国防工业评估报告《美国集成电路设计和制造能力》,详细地研究了美国抗辐射加固设计和制造能力[4]。拥有抗辐射加固制造能力的美国厂商同时拥有抗单粒子效应、辐射容错、抗辐射加固和中子加固的设计能力。其中,拥有抗单粒子效应能力的18家、辐射容错14家、辐射加固10家,中子加固9家。IDM公司是抗辐射加固设计的主力军,2006年就已达到从10μm到65nm的15个技术节点的产品设计能力。15家公司具备10μm~1μm的设计能力,22家公司具备1μm~250nm的设计能力,24家公司具备250nm~65nm设计能力,7家公司的技术节点在65nm以下,如图5所示。纯设计公司的抗辐射加固设计能力较弱。美国IDM在设计抗辐射产品时所用的材料包括体硅、SOI,SiGe等Si标准材料,和蓝宝石上硅、SiC,GaN,GaAs,InP,锑化物、非结晶硅等非标准材料两大类。标准材料中使用体硅的有23家,使用SOI的有13家,使用SiGe的有10家。使用非标准材料的公司数量在明显下降。非标材料中,GaN是热点,有7家公司(4个小规模公司和3个中等规模公司)在开发。SiC则最弱,只有两家中小公司在研发。没有大制造公司从事非标材料的开发。

5.1.2重点工艺和制造能力

美国有51家公司从事辐射容错、辐射加固、中子加固、单粒子瞬态加固IC产品研制。其中抗单粒子效应16家,辐射容错15家,抗辐射加固12家,中子加固8家。制造公司加固IC工艺节点从10μm到32nm。使用的材料有标准Si材料和非标准两大类。前一类有体硅、SOI和SiGe,非标准材料则包括蓝宝石上硅,SiC,GaN,GaAs,InP,锑化物和非晶硅(amorphous)。晶圆的尺寸有50,100,150,200,300mm这几类。抗辐射加固产品制造可分为专用集成电路(ASIC)、栅阵列、存储器和其他产品。ASIC制造能力最为强大,定制ASIC的厂商达到21家,标准ASIC达到13家,结构化ASIC有12家。栅阵列有:现场可编程阵列(FPGA)、掩膜现场可编程阵列(MPGA)、一次性现场可编程阵列(EPGA),共19家。RF/模拟/混合信号IC制造商达到18家,制造处理器/协处理器有11家。5.1.3RF和混合信号SiGeBiCMOS据美国航空航天局(NASA),SiGe技术发展的下一目标是深空极端环境应用的技术和产品,例如月球表面应用。这主要包括抗多种辐射和辐射免疫能力。例如,器件在+120℃~-180℃温度范围内正常工作的能力。具有更多的SiGe模拟/混合信号产品,微波/毫米波混合信号集成电路。系统能够取消各种屏蔽和专用电缆,以减小重量和体积。德国IHP公司为空间应用提供高性能的250nmSiGeBiCMOS工艺SGB25RH[5],其工作频率达到20GHz。包括专用抗辐射加固库辐射试验、ASIC开发和可用IP。采用SGB13RH加固的130nmSiGeBiCMOS工艺可达到250GHz/300GHz的ft/fmax。采用该技术,可实现SiGeBiCMOS抗辐射加固库。

5.2混合信号的抗辐射加固设计技术

如果半导体发展趋势不发生变化,则当IC特征尺寸向90nm及更小尺寸发展时,混合信号加固设计技术的重要性就会增加[6]。设计加固可以使用商用工艺,与特征尺寸落后于商用工艺的专用工艺相比,能够在更小的芯片面积上提高IC速度和优化IC性能。此外,设计加固能够帮助设计者扩大减小单粒子效应的可选技术范围。在20~30年长的时期内,加固设计方法学的未来并不十分清晰。最终数字元件将缩小到分子或原子的尺度。单个的质子、中子或粒子碰撞导致的后果可能不是退化,而是整个晶体管或子电路毁坏。除了引入新的屏蔽和/或封装技术,一些复杂数字电路还需要具备一些动态的自修复和自重构功能。此外,提高产量和防止工作失效的力量或许会推动商用制造商在解决这些问题方面起到引领的作用。当前,没有迹象表明模拟和RF电路会最终使用与数字电路相同的元件和工艺。因此,加固混合信号电路设计者需要在模拟和数字两个完全不同的方向开展工作,即需要同时使用两种基本不同的IC技术,并应用两种基本不同的加固设计方法。

6结束语

电子论文范文篇9

1.1无锡是我国微电子产业的南方基地,需要大量的微电子专业人才

无锡是中国微电子产业的摇篮,是我国第一块集成电路的诞生地,微电子产业有着优良的传统和深厚的产业基础。近年来,无锡政府出台了一系列优惠政策(比如530计划),大力吸引微电子高端人才,创办了一批有竞争力的集成电路设计公司。2013年无锡市政府又出台了《无锡市微电子产业规划(2013—2020)》,为无锡市微电子产业的进一步发展提供了强有力的支持和保障。经过30多年的发展,无锡微电子产业形成了产业结构比较完整,产业规模庞大,管理比较完善的良好局面。2013年无锡市微电子产业合计完成营业收入652.12亿元,规模列全国第二[7]。SK海力士和华润微电子分别以第二名和第四名入围2013年度中国半导体十大制造企业。江苏新潮科技集团、海太半导体(无锡)有限公司和英飞凌科技(无锡)有限公司分别以第一名、第七名和第九名入围2013年度中国半导体十大封装测试企业[8]。虽然无锡市微电子产业的发展取得了很大的成绩,但也存在一些问题,比如:微电子产业的优秀专业人才比较匮乏,已经成为制约微电子产业发展的瓶颈之一。而高校是优秀人才的聚集地,江南大学微电子专业可以发挥人才优势,为无锡的微电子产业培养大量的优秀人才。

1.2江南大学注重校企合作

无锡日报2013年9月21日发表题为“江南大学发挥高校优势,开展校企合作,服务地方经济———做无锡的创新引擎和发展智库”的文章,文章指出:“江南大学提出要以项目为平台,广泛开展校企合作,为地方科技创新和经济转型添砖加瓦,这是江南大学推进与区域、产业协同创新的方式和途径。”江南大学作为无锡唯一的一所211重点建设的高校,非常注重与企业的合作,积极参与国家、无锡地区的科技创新,推进科技成果产业化,为本地区的经济服务。比如:与无锡市政府合作建立的江南大学国家大学科技园,已成为高科技研究项目的重要孵化基地;江南大学的科研经费每年以30%的速度在增加,其中60%~70%的科研总经费来自于与企业的合作。总之,江南大学一直探索的校企合作模式取得了显著的成效。这也为我校微电子专业寻求校企合作提供了机遇和挑战。

1.3微电子专业自身建设的特点

微电子产业是近几十年来全球发展最迅猛的产业之一。目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业。集成电路自诞生以来一直遵循摩尔定律的发展规律,即集成度和产品性能每18个月增加一倍。各种半导体新材料和新器件层出不穷。微电子专业又是一个实践性很强的专业。因此,学生在学习过程中不仅要学好专业基础知识,还有必要进行专业的实验技能培训和不断接受新知识、新技术,才能跟得上微电子技术发展的潮流。这就要求学生不仅要进行专业的实验培训,还有必要阅读一些最新的参考文献,参加一些前沿科学的研究,甚至参与企业的技术研发。但是,微电子专业实验室建设的投入非常昂贵,一个小型的微电子工艺实验室的建设要几百万到几千万人民币,这还不包括每年实验室的维护费用。对于一般高校来说,这是很难承受的。其实,对于国内微电子专业实验室建设的比较好的高校,其实验室也主要面向研究生开放。所以,为了更好地提升本科生的教育教学质量,必须寻求校企合作。而微电子作为无锡最主要的优势产业,也给我校微电子专业提供了加强校企合作的机会。因此,无论是从学校周边地区微电子产业发展的状况,以及学校的政策,还是从本专业自身建设的特点来看,校企合作是提升微电子专业本科生教育质量的主要途径之一。因此,积极探索提高我校微电子专业本科生的培养质量的校企合作模式,具有非常重要的意义。

2校企合作联合培养的教学模式

校企合作的目的是共同发展,实现双赢。学校为企业提供智力和技术支持,为企业解决具体的技术难题。企业参与学校教学科研环节,提高教育教学质量,培养优秀的创新型人才。为了更好地实现校企合作,我们从三个方面进行了有益的探索。

2.1学研结合

我们可以采取多种方式的校企合作,实现微电子专业本科生培养过程中的理论学习和研究相结合。例如:实施以项目为导向的校企合作模式,鼓励老师承担企业和研究所的横向课题,让大三和大四的一些优秀学生参与项目的研发,这样既发挥了学校的智力优势,为企业解决了技术难题,也使得学生积累了宝贵的实践经验,提高了教学质量,实现了共赢。也可以让学生在学习过程中,参观一些重点企业、研究所的生产车间和设计实验室;并且,让学生在参与的过程中,积极地与企业、研究所的一线工作人员进行交流,让学生切实感受一下微电子工艺和设计的实践过程。学校也积极为大四的学生联系周边的微电子企业和研究所,鼓励学生去这些企业实习,让学生积极参与企业的研发和生产,既为企业提供了优秀的人才,又培养了学生的实践与创新能力。

2.2在职人员互聘

我校微电子专业80%以上的教师具有博士学位,而且,有许多教师具有海外留学的背景。目前的状况是老师有很扎实的基础知识,并且对微电子学科的前沿比较了解。但是,对企业的需求和微电子产业的市场需求不是很了解,导致研究与市场需求脱节。还有一些教师,在多年的研究过程中,获取了一些核心技术,但苦于没有资金的投入,没法把一些研究成果产业化。而我国的一些微电子企业研发能力相对不强,没有自己的核心技术,在市场上的竞争力不强。因此,有必要加强学校和企业的联系,通过校企合作,鼓励教师积极承担企业和研究所的课题,发挥自己的专业特长,为企业技术攻关。或者,鼓励教师到企业中挂职,真正深入的生产的第一线,与企业的研发人员合作,研发新产品,增强企业竞争力。同时也鼓励企业和研究所的工程师和专家来学校做兼职教授,讲授一些微电子专业的核心课程和实践课程,甚至也可以请这些有实际生产和研发经验的专家参与编写本科生的教材。由于这些工程师和专家均来自生产的第一线,他们有更丰富的生产和研发经验,对微电子产业的市场寻求更了解,对提升微电子专业本科生的实践和创新能力非常重要。

2.3共享实验室

微电子实验室的建设需要一笔很大的费用,但凭高校自身的力量是无法完成的,需要微电子企业的大力支持和帮助。当然,高校可以为企业培养大量的优秀人才和提供智力支持。企业可以有偿开放一些实验设备和设计软件让学生用于科学研究、实践操作甚至参与企业的研发;这样既有助于企业能提前了解这些学生的实践和创新能力,从而能留住一部分优秀人才;也有助于提升学生的实践能力和更好地了解企业文化,从而使学生也愿意留在企业工作。而高校的微电子实验室,也可以面向企业开放,从而共享实验室。总之,通过共享实验室,提高了实验室的利用效率,高校和企业实现了共赢。

3结论

电子论文范文篇10

1.1微电子机械系统的概念

微电子机械系统主要结构有微型传感器、制动器以及处理电路。其是一种微电子电路与微机械制动器结合的尺寸微型的装置,其在电路信息的指示下可以进行机械操作,并且还能够通过装置中的传感器来获取外部的数据信息,将其进行转化处理放大,进而通过制动器来实现各种机械操作。而微电子机械系统技术是以微电子机械系统的理论、材料、工艺为研究对象的技术。微电子系统并不只是单纯的将传统的机电产品微型化,其制作材料、工艺、原理、应用等各个方面都突破了传统的技术限制,达到了一个微电子、微机械技术结合的全新高度。微电子机械系统是一种全新的高新科学技术,其在航天、军事、生物、医疗等领域都有着重要的作用。

1.2微电子机械系统技术的特点

1.2.1尺寸微型化

传统机械加工技术的最小单位一般是cm,而微电子机械系统技术下的机械加工往往最小单位已经涉及到了微米甚至纳米。这以尺寸的巨大变化使得微电子机械系统技术下的原件具有微型化的特点,其携带方便,应用领域更加广阔。

1.2.2集成化

微电子机械系统技术下的原件实现了微型化为器件集成化提供了有力的基础。微型化的器件在集成上具有无可比拟的优势,其能够随意组合排列,组成更加复杂的系统。

1.2.3硅基材料

微电子机械系统技术下的器件都是使用硅为基加工原料。地面表面有接近30%的硅,经济优势十分明显。硅的使用成本低廉这就使得微电子机械系统技术的下的器件成本大大缩减。硅的密度、强度等于铁相近,密度与铝相近,热传导率与钨相近。

1.2.4综合学科英语

微电子机械系统技术几乎涉及到所有学科,电子、物理、化学、医学、农业等多个学科的顶尖科技成果都是微电子机械系统技术的基础。众多学科的最新成果组合成了全新的系统和器件,创造了一个全新的技术领域。

2微电子机械系统的技术类别

2.1体微机械加工技术

体微机械加工技术主要将单晶硅基片加工为微机械机构的工艺,其最大的优势就是可以制作出尺寸较大的器件,最大的弊端是难以制造出精细化的灵敏系统。并且使用体微加工工艺难以优化器件的平面化布局,制作出来的器件难以与微电子线路直接兼容。体微机械加工工艺一般在压力传感器和加速度传感器的制造中普遍应用。

2.2表面微机械加工技术

表面微机械加工技术就是通过集成电路中的平面化技术来实现微机械装置的制造。其主要优势表现在充分利用了已有的IC工艺,能够灵活掌握机械器件的尺寸,因此表面为微机械加工技术与IC之间是兼容的。表面微机械加工技术与集成电路的良好兼容性使得其在应用领域实现了快速普及。

2.3复合微机械加工技术

复合微机械加工技术就是体微机械技工技术与表面微机械加工技术的结合,其结合了两者的优点,但又同时避免了相应缺点。

3微电子机械技术的应用

3.1环境科学领域

微电子机械系统技术下的微型设备可以在环境监测和数据处理分析上发挥巨大的作用。由化学传感器、生物传感器以及数据处理系统所集合的测量与处理设备。该微型装置可以用来监测空气和液体的成分,其独特优势在于尺寸微小,便于携带。

3.2军事领域

纳米器件所构成的装置先要对半导体器件运行速度高,携带方便,信息输出和处理快捷,在军事领域其能够用来制作各种微型设备,例如“蚊子导弹”、“麻雀卫星”等。

3.3医疗领域

在临床化验分析、介入治疗领域其也能够实现巨大的价值。近几年获得发展的介入治疗技术与传统治疗技术相比临床治疗效果优越,能够有效缓解患者痛苦。但是当前介入治疗仪器价格高,体积巨大,准确性难以保证,尤其是在治疗重要器官时风险较大。微电子机械系统技术的微型与智能特性可以显著降低介入治疗的风险。

4结束语