制动范文10篇

时间:2023-03-19 04:45:31

制动范文篇1

关键词:矿用提升机;盘形制动器;制动力;静张力;安全

制动提升机是煤矿主要的运输设备之一,也是事故高发危险环节之一。矿用提升机主要承担着运输人员和物料的任务。由于近几年生产技术的快速发展,提升机正常运行一般都会有变频、直流电机等动力拖动投入运行,运用PLC编程使得提升机在上提物料(人员)和下放物料(人员)时可以安全平稳地运行,实现自动平稳加速、减速功能。一般正常运行时,机械制动(盘闸制动器)全部处于打开状态,当提升机处于运行状态时,机械或电气部分出现故障不能正常控制提升速度时,需要机械制动投入运行保证提升机安全制动。提升机的安全制动需要制动力来保证,提升机制动器的工作可靠性是保证提升机安全运行的重要环节。

1机械制动的工作原理

盘形制动器是靠碟形弹簧产生制动力且靠油压松闸的,处于制动状态时,利用碟簧组的弹簧力使闸瓦与闸盘接触制动。当油压力降低为零时(制动过程),碟簧预紧产生的弹簧力通过碟簧中置推动轴及磨损补偿螺柱作用于闸瓦上,施加的正向弹簧力使闸瓦与制动盘贴合产生制动正压力,从而制约制动盘的旋转趋势。油缸的压力容腔充油升压(松闸过程),当油液压力逐步升高至工作压力时,与闸瓦相连的活塞受油压作用,克服碟簧的预紧力并压缩碟簧而向后移动,活塞通过中空大螺柱、碟簧中置推动轴、闸瓦磨损补偿螺柱而带动闸瓦后移,闸瓦与制动盘之间形成间隙,从而解除作用于制动盘上的制动正压力[1]。

2影响安全制动的因素和解决方法

2.1提升时最大载重量影响因素和解决方法。a)根据提升机的最大静张力和制动力矩确定最大提升量,保证最大提升量的静张力不超过提升机设计的最大静张力,且保证所有制动闸的制动力矩之和与实际提升最大静荷重旋转力矩之比不小于3。b)如果是双滚筒提升机提升,除了要满足上述要求外,还必须保证提升机主副滚筒的最大静张力差不超过提升机设计的最大静张力差,并且保证其3倍最大静拉力差所产生的力矩小于所有的制动力矩之和;在力矩不满足要求的情况下,保证最大静张力不超设计值,通过调节主副滚筒的最大静拉力(配重)降低静张力差,使其满足制动力矩要求[2]。2.2制动力矩影响因素和解决方法。a)制动力矩的计算方法为:Mzh=∑FzR=nn=1移FiR,(1)式(1)中,Mzh为各点实测制动力矩之和,N•m;Fz为各点制动力,N;R为实验时Fz的作用半径,m;∑Fi为实测各组闸的制动力之和,N;n为分组实验数。b)闸盘制动力的计算方法为:P=F/S,(2)F=P×S,(3)式(2)~(3)中,P为制动闸瓦与闸盘接触时制动器内油液压力,Pa;F为制动力,N;S为制动器内油缸面积,m2。2.3制动力不足影响因素和解决方法。a)闸瓦间隙是影响制动力的关键因素。由于碟形弹簧具有低行程、高补偿力的特性,因此闸瓦间隙的大小直接影响碟形弹簧形变的大小。若闸瓦间隙过大,在实施制动时碟形弹簧的回弹较大,导致弹力下降,使得闸皮与闸盘接触时的正压力不足;制动空行程时间延长,灵敏度降低。解决方法为:利用长度为300mm的塞尺对每一副闸瓦间隙进行测试,保证其盘形制动器在正常工作中油压最高时闸瓦间隙不大于2mm;同时要测量出所使用提升机制动盘的端面跳动且保证不超过1.0mm。根据闸盘的偏摆量来调节闸瓦间隙,闸瓦间隙要大于偏摆的最大值并小于闸瓦间隙要求的最大值,这样可以保证在使用的过程中不会因为闸盘的偏摆而使得闸皮磨损厚度不一致,进而导致制动时接触面积不足,使得制动力矩下降[3]。b)对提升机所有闸盘的制动力进行测试,如果所有闸盘的制动力均低于要求值,说明碟形弹簧的弹力不足。解决方法为:先观测液压站主油泵的供给油压,如果当前工作油压值到液压站最大允许油压值还有上升空间,可以通过提升液压站主油泵的供给油压来增加碟形弹簧的形变,同时闸瓦间隙会增大,将闸瓦间隙恢复至合理范围,在抱闸时增大碟形弹簧的弹力,提高制动力。由于闸盘的正压力等于碟形弹簧的弹力减去残余油压对活塞的作用力和制动器的阻尼力,因此在提高供给油压值的同时还需要测试油压(制动)手柄回归最低零位时的残压,并使残压值符合表1要求。c)在实际制动力矩测试工作中,发现制动闸皮与闸盘的接触面积也是影响制动力矩的因素之一。当制动闸皮与闸盘的接触面积小于制动闸皮面积的60%时,会出现制动力矩不足的现象。解决方法为:利用闸瓦的压力且用热敏传真纸测取闸瓦与制动盘的接触面积。一般新更换的闸皮是凸面的,接触面积不够,这样就需要停止提升机运输,利用空车旋转控制制动手柄,使得闸皮和制动盘轻微接触,将闸皮磨平,增大接触面积。在摩擦的过程中要时刻注意闸盘的表面温度,当表面温度较高时,停止摩擦使其自然降温,切记不得用水快速降温,防止温差过大导致闸盘变形,影响正常使用。d)制动盘表面或制动闸皮有油渍时会降低摩擦系数,造成制动力矩减小甚至完全丧失。解决方法为:在使用过程中要经常观察或停车时用手指轻抹闸盘观察是否有油渍。如果出现油渍,就需要检修确认油渍的来源。如果工作过程中油渍误飞溅上去,处理时就简单了,将闸盘上的油渍擦拭干净就可以了。如果制动闸油缸或油管漏油、渗油到闸盘上,处理起来就比较麻烦了,不仅仅要找到漏油点堵漏或更换密封圈,还要将闸皮内的油渍清理干净或更换闸皮。e)在按上述要求调整后制动力矩仍然不符合要求的情况下,就需要更换一些关键部件。(a)打开制动闸头,取出碟形弹簧,观察碟形弹簧有无折断或裂纹,导致正压力下降。还有一种情况就是由于长时间使用,弹簧疲劳出现弹性降低,导致正压力下降。这种情况的解决方法为更换全部碟形弹簧。更换时需考虑碟形弹簧的型号和大小,更重要的是根据提升机的实际情况选择刚性弹力合适的碟形弹簧。更换带有压力传感器的碟簧座,可以实时监测碟形弹簧的弹力。(b)当闸皮的摩擦量过大或薄厚不均匀时,需要更换新的闸皮。更换新闸皮时需要考虑闸皮的型号和大小,并选择摩擦系数符合要求的闸皮。(c)变更设计,更换更高压力的液压站、高强度碟形弹簧,使贴闸油压升高;或者在条件允许的情况下增加制动闸瓦数量[4]。

3结语

矿用提升机运行的安全、可靠直接关系到矿井的正常运行和煤矿广大职工的安全,尤其是在当前“安全第一”的环境下,更应该保证提升机的安全、可靠和平稳运行。通过分析制动力,可以为提升机操作者提供直接有效的方案,使其能够快速选出合适的安全运行方案,希望能为广大提升机操作者提供帮助,保证提升机的安全高效运行,为国家建设、人民生活需要提供更好的能源保障。

参考文献:

[1]王宏德.盘式制动闸制动力矩下降原因分析与对策[J].中州煤炭,2006(3):57.

[2]国家安全生产监督管理总局.煤矿安全规程[S].北京:煤炭工业出版社,2011.

[3]矿用产品安全标志办公室,国家安全生产上海矿用设备检测检验中心,河南煤矿安全监察局.AQ1015—2005煤矿在用缠绕式提升机系统安全检测检验规范[S].北京:煤炭工业出版社,2005.

制动范文篇2

关键词:线控制动;I-EHB;集成式;再生制动

科技进步推动汽车技术飞速发展,汽车质量与性能大幅提高,我国汽车保有量也越来越大。车速的加快造成交通事故的增多,对人身安全造成了巨大的威胁。由此,汽车安全稳定高效制动正变得越来越重要。汽车正向着智能化、电动化、网联化、轻量化方向发展,以纯电动汽车和无人驾驶为代表的车型成为当前汽车行业发展的主流。技术的升级提升了汽车性能,性能提升要求更安全稳定高效制动。但是传统制动技术体积大、响应慢,无法适应新型车辆的需求,不利于汽车轻量化[1]。线控制动技术不仅解决了传统制动带来的一系列问题,更为汽车制动的快速发展带来了新的契机与方向。

1线控制动技术简介

1.1线控制动技术种类。线控制动技术从航空技术领域引入,正被越来越多的供应商和主机厂所重视。线控制动取消了传统制动的真空单元,以电控模块来实现制动力,同时有着不小的体积优势。汽车线控制动系统目前主要分为电子液压制动(EHB)和电子机械制动(EMB)两种[2]。EMB系统采用电子控制,通过伺服电机直接作用于轮缸产生制动力。由于取消了主缸、液压管路等复杂的零部件结构,制动更迅速,制动力的传递效率得到提升[3]。EHB是将传统液压制动技术的动力源替换为电子控制系统,他取消了传统制动系统中的真空供给部件和真空助力部件,用电子系统来提供动力源[4-5],同时保留了成熟的液压部分,可以在电子助力失效时提供备用制动,确保车辆安全。传统车用12V电源即可驱动EHB系统,无需设计新的供能系统[3,6]。1.2线控制动技术发展现状。自20世纪末开始,世界各主要制造商都对线控技术展开研究并取得了一定的阶段性成果。进入21世纪后,线控制动的发展更加迅速,有些已经装备在量产车上。如大陆公司(Continental)的电子液压制动系统MKC1,已小批量应用在量产车上[7];博世公司成功开发出iBooster系统,并集成多种主动安全配置,提升车辆安全性[1,8]。而在国内,以清华大学、吉林大学为首的高校大多数仅仅是对线控制动理论及控制方法的提出,实车试验及系统可靠性研究方面还较少[9]。其中吉林大学提出一种电子机械制动,利用电机和减速机构方案制动[10]。清华大学的王治中等提出了一种分布式电液复合制动系统,同济大学的熊璐等人提出了双动力源电液制动系统等,但目前均未实现量产[11]。

2汽车线控制动工作原理

2.1EMB系统。EMB系统完全不同于传统的真空助力液压制动系统,EMB作为纯机械系统,使用控制模块和伺服电机进行制动。EMB系统主要由踏板模块、控制模块、驱动执行模块等组成,系统有4套独立的制动系统,分别位于四个轮毂的轮缸处,并且配有独立的控制器,以便实现四轮制动力的独立调节。EMB系统的主控制器通过接收踏板位移传感器的位移信号,以及整车其他ECU发出的车速信号、方向盘转角信号等相关信号,分析后控制四个独立的控制器向对应的电机发出制动信号,电机通过减速机构将电机扭矩转化为所需的制动力,进行制动。车辆转向时,每个车轮制动系统分配的制动力不一样,从而达到平稳转向的目的。EMB系统由于没有了液压制动管路的存在,避免的制动液泄露的风险,有利于环保。同时由于是独立的制动系统,布局上更加灵活[12]。但是由于制动电机的增多以及功率的加大,12V电源无法满足制动需求,42V电源成为限制EMB发展的重要因素。同时由于没有备用的制动系统,安全性还有待提升[13]。2.2EHB系统。EHB系统不同于EMB系统,只用了一个伺服电机和一套控制器为系统提供动力,取消了部分传动制动部件,但保留了成熟的液压部分。EHB系统目前主要有两种:一种由液压泵和高压蓄能器提供动力源(P-EHB);另一种由电机和减速机构为动力源(I-EHB),同时集成电控模块。P-EHB系统获取制动信号后,向电动液压泵发出相应的电信号,将足够的制动液泵入高压蓄能器,利用高速开关阀实现车辆的制动。I-EHB系统主缸液压力由电机通过减速机构提供,电机接收来自控制器的制动信号,经过减速机构直接推动主缸活塞对制动主缸进行建压。相较于P-EHB,I-EHB结构更加紧凑、响应快速,更易于集成诸如EPB、ESP等多种主动安全功能[14-15],解耦单元使得整套系统灵活制定制动方案,不仅节约了成本,更可缩短车辆的开发周期。

3I-EHB系统关键技术

I-EHB系统是一种集成式电子液压制动系统,不同于P-EHB系统的动力源,而是以电机+减速机构来代替,内部集成电控模块,整个系统结构更加紧凑。图1为Bosch公司的iBooster系统。3.1I-EHB系统主要组成结构。3.1.1意图获取模块。意图获取模块主要有制动踏板、踏板位移传感器、踏板感觉模拟器等,制动踏板经过踏板位移传感器将驾驶员所踩的制动踏板位移信号发送给I-EHB的ECU。踏板感觉模拟器用来模拟真实状态的脚感与路感。踏板和主缸之间完全解耦,脚感较轻,更便于能量回收。3.1.2分析控制模块。分析控制模块是整个线控制动的核心,主要为I-EHB的ECU。ECU通过踏板获取驾驶员的制动意图后,根据相应的算法计算出最佳制动力,控制制动系统的执行。ECU由嵌入式芯片、信号采集及处理电路、通讯电路、电机驱动电路、冗余电路及I/O口等组成。3.1.3液压执行模块。分析控制模块为线控制动的执行部分,包括伺服电机、减速机构、制动主缸等。伺服电机作为驱动电机,与减速机构连接,可直接使用传统车载12V电源,减速机构可增强整个系统的扭矩,获得更大制动力。伺服电机接收来自ECU的制动信号,通过减速机构推动制动主缸建压。3.2I-EHB系统工作过程。I-EHB系统通过意图获取模块、分析控制模块、液压执行模块等几个模块协调完成整个制动过程,I-EHB系统协调控制示意图如图2所示。在车辆正常工况下,I-EHB的ECU接收踏板位移传感器从踏板采集的制动力位移信号,以及其他外部ECU发出的方向盘转角、轮速、横摆角速度等信号,来获取驾驶员的驾驶意图,利用算法计算得出车轮所需的最佳制动力。在制动踏板与主缸完全解耦条件下,踏板感觉模拟器可以根据驾驶员的制动动作输出线性的脚感同时反馈车辆制动状态。制动力转化为电信号输出给伺服电机,电机和减速机构连接,通过减速机构将电信号大小转变为齿条行程大小,推动制动主缸活塞,最终完成建压。制动主缸液压力信号将实时反馈给I-EHB的ECU,用于精确控制主缸压力以及对制动主缸保压。当车辆处于紧急状态下需要急停或者制动系统电子助力失效时,如图3所示,I-EHB提供备用机械制动系统。驾驶员快速紧急制动,迅速克服系统内部的解耦腔,此时制动踏板推杆将直接作用于制动主缸,主缸液压力大小直接由制动踏板提供,一定程度上保证紧急情况下的制动安全。3.3I-EHB系统控制方法。在传统制动系统中,主缸液压力完全来自制动踏板推进的深度,因此,制动时无法精确控制主缸液压力。对于驾驶新手来说,驾驶经验不足不仅影响车辆制动感觉,更影响车辆在紧急状况下整车制动的安全性。I-EHB系统由于采用了电控单元,同时制动踏板与主缸活塞之间完全解耦,使得主缸液压力控制更加迅速与精确。对于I-EHB系统主缸液压力的控制,实际上就是对伺服电机的控制,利用ECU根据相应的控制算法计算驾驶员需要的最佳制动力,将最佳制动力转化为电机的电流信号或者命令力矩,从而完成主缸的建压。如图4所示,对以电动机+减速机构为动力源的I-EHB系统的控制算法,大多以闭环反馈控制为主。在闭环控制中,比例积分微分控制(PID控制)是一种最常用的控制方法,同时可通过参数整定变化多种控制结构,获得不同的控制效果。运用在I-EHB系统中的主要控制思路是通过液压力传感器将主缸液压力实时反馈给ECU,将ECU计算出的期望主缸液压力和输出的实际主缸液压力进行对比,然后将二者之间的偏差值利用ECU中设好的PID算法对其整定,输出一个最合适的量给电机,对主缸液压力进行补偿。

4结论

制动范文篇3

Abstract:Thecharacteristicoftheenergybrakeandfeedbackbrakeisbrieflyintroduced,and

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

制动范文篇4

Abstract:Thecharacteristicoftheenergybrakeandfeedbackbrakeisbrieflyintroduced,and

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

制动范文篇5

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

制动范文篇6

Abstract:Thecharacteristicoftheenergybrakeandfeedbackbrakeisbrieflyintroduced,and

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

制动范文篇7

论文摘要:在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏。

一、引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

二、能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

三、回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动。回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

四、新型制动方式(电容反馈制动)

1、主回路原理

整流部分采用普通的不可控整流桥进行整流,滤波回路采用通用的电解电容,延时回路采用接触器或可控硅都行。充电、反馈回路由功率模块IGBT、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

2、系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3、主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

制动范文篇8

1汽车制动系统发展状况

几年来西方发达国家又兴起了对车辆线控系统(X-BY-WIRE)的研究,线控(BRAKE-BY-WIRE)应运而生,由此展开了对电控机械制动系统(ELECTROMECHANICALBRAKINGSYSTEM)的研究,简单来说电控机械制动系统就是把原来由液压或者压缩空气驱动的部分改为由电动机来驱动,借以提高响应速度、增加制动效能等,同时也大大简化了结构、降低了装配和维护的难度。由于人们对制动性能要求的不断提高,传统的液压或者空气制动系统在加入了大量的电子控制系统如ABS、TCS、ESP等后,结构和管路布置越发复杂,液压(空气)回路泄露的隐患也加大,同时装配和维修的难度也随之提高[1]。因此结构相对简单、功能集成可靠的电子机械制动系统越来越受到青睐,可以预见EMB将最终取代传统的液压(空气)制动器,成为未来车辆的发展方向。

2EMB系统的模型分析

2.1EMB系统工作原理

电子机械制动系统工作原理为:当汽车行驶时需要采取紧急刹车,驾驶者脚踏的力量信号传到制动踏板,该力量信号经过EMB控制系统的三环调速系统调控后输出电枢电压直接作用于无刷直流力矩电机上,输出的电机轴转动转速信号传递给传动机构进行减速增矩,转化成丝杠位移,再经过制动机构作用转化成制动力,整个过程的时间极短,在0.1s作用[2]。

2.2EMB执行系统

一个设计完整的EMB执行系统包括无刷直流电机模块(包括电机驱动模块)、传动模块和制动模块。要完成EMB的动力学仿真,首先要完成以上三个模块的数学模型设计。EMB执行系统结构框图如图1所示。图1中:Fd为制动器的目标夹紧力;AVI号为电机转速控制信号;DIR为电机正反转控制信号;Ua、Ub、Uc分别为电机定子每相绕组端电压;Uh+、Uh-分别为霍尔传感器供电高低电压;n为电机轴转速;ns为丝杠转速;s为丝杠副中螺母的平动位移;F为制动器的夹紧力;Mb为制动器的制动力矩;Jc为传动机构的转动惯量;TL为传动机构的摩擦阻力矩;Sa、Sb、Sc分别为三个霍尔传感器的信号;Ia、Ib、Ic、分别为电机定子每相绕组电流[3]。

2.3EMB控制系统

电机的控制采用三环(电流环、转速环和压力环)反馈控制,输入为目标夹紧力,输出为电机电枢电压。EMB电机的控制系统结构框图如图2所示。电机的三环调速系统设计就是对控制器设计,该三环调速系统包括夹紧力控制器、转速控制器和电流控制器[4]。其设计方法是:从内环开始,每次向外扩展一环,首先设计电流控制器,再将电流环当作转速调节系统中的一个部分设计转速控制器,最后把转速控制环当作夹紧力调节环中的一个部分设计夹紧力控制器。上述的夹紧力控制器、转速控制器、电流控制器均是PI控制器。电流控制器的输入是目标电流与实际电流的差值,输出为电机的控制电压;转速控制器的输入是目标转速与实际转速的差值,输出为电机电流的目标值;夹紧力控制器的输入是目标制动夹紧力与反馈制动夹紧力的差值,输出为电机转速的目标值。电机电流、电机转速和夹紧力为需测量的量。在本控制系统中,通过无刷直流电机驱动器上安装的电流传感器测量电机实时电流;通过光电编码器测量电机实时转速;通过压力传感器测量制动夹紧力[5]。

3EMB系统的仿真模型

(1)无刷直流电流控制模块,如图3所示。

(2)电流-转速双闭环控制模块,如图4所示。

(3)无刷直流电机三环控制模块,如图5所示。

4仿真结果

4.1电流环仿真

当电动机处于空载时,电流值比较小,所以应当在电机堵转的情况下对电流环进行调节[6]。电流环的试验结果如图6所示。可见,实际电流在初始阶段有较大的超调,但是在后期可以很好地跟踪目标电流。

4.2转速环试验

转速环在试验时,应处于空载状态。转速环的试验结果如图7所示。可见,在启动过程中电流能维持较大的值,从而使电动机迅速达到目标转速。由于电动机在旋转过程中不断换相会引起电流的抖动,所以电动机转速也一直在目标值附近小幅抖动。

4.3压力环试验

压力环的试验结果如图8所示。可见,两种工况下消除制动间隙的时间均小于0.1s,且制动压力的超调小于5%,同时我们可以发现所设计的EMB执行器能输出足够大的制动压力,而且响应迅速。

制动范文篇9

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

2回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

3新型制动方式(电容反馈制动)

3.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

3.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

3.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

参考文献

制动范文篇10

关键词:汽车制动卡钳;铸造工艺;研究

汽车制动卡钳是有致密性要求的铸件[1],在实际应用中不能出现缩孔缩松等缺陷问题,要在联系实际的基础上综合分析各方面影响因素,优化铸造工艺的同时高效铸造汽车制动卡钳,将抗拉强度、屈服强度、延伸率等控制在规定范围内,促使制动卡钳功能作用最大化发挥,提高汽车运行安全性、可靠性以及经济性。

一、汽车制动卡钳的铸造工艺

以某汽车制动制动卡钳为例,材质为QT450-10,抗拉强度、屈服强度分别大于450Mpa、290Mpa,延伸率不小于10%[2]。在原始浇注工艺中,汽车制动卡钳对称式分布,补缩冒口在铸件的两端,在铸件一侧中心位置的浇口杯,单个毛坯铸件的质量为3.12千克。汽车制动卡钳浇注的最初温度为1420摄氏度,浇注时间只有8秒,属于湿型铸造,砂芯是用覆膜砂制作而成的,可以利用三维软件UG,直观呈现汽车制动卡钳浇注系统结构图,在设置铸件材质、砂型、浇注初始温度、浇注时间等基础上计算、分析模拟结果,在应用现代技术基础上全面、系统剖析汽车制动卡钳铸造中充型、凝固等环节。在凝固过程分析中,会发现铸件凝固到180秒的时候,底部有孤立的液相区出现,随着冷却继续进行,温度持续降低,铁液出现液态收缩现象,冒口无法及时、有效补缩铸件底部,无法满足凝固要求,在实际应用中缩孔缩松等缺陷问题发生的几率特别高,随着应力集中现象的出现,铸件机械性能大幅度降低,不利于汽车制动系统稳定运行。此外,铸件两端也容易出现缩孔缩松问题,要在综合分析的基础上结合汽车制动卡钳铸造的要求、工艺流程、关键点等,将外冷铁直接放入砂芯底部,加快冷却速度的同时和冒口相互作用,确保铸件顺序凝固顺利实现,将缩孔缩松缺陷问题发生问题最小化,通过优化、改进铸造工艺,提高汽车制动卡钳性能以及质量。

二、汽车制动卡钳的铸造工艺改进

汽车制动卡钳铸造工艺改进可以从浇注系统、合金成分两大层面入手,在分析改进结果的基础上进一步优化铸造工艺,确保汽车运行中制动卡钳功能作用最大化发挥。(一)改进浇注系统。就该汽车制动卡钳来说,在原始铸造工艺作用下,冒口尺寸以及冒口颈横截面积都太小,铁水流动性以及补缩效果不高,铸件两端以及底部极易出现缩孔缩松情况,需要在具体分析缺陷问题的基础上立足铸造实际情况,科学改进对应的浇注系统。汽车制动卡钳的冒口是改进中不可忽视的一大关键点,可以将独立设在铸件两端的冒口改为共用的冒口,将其设置铸件合理位置,解决冒口颈横截面积太小的问题,将直浇道窝设在直浇道底部,有效控制铁水下流中产生的动能,也在一定程度上缩短铁水高速紊流区,确保在铸造过程中铸件能够被铁水顺利充满,在源头上将缩孔缩松缺陷问题的发生系数最小化。此外,在浇注系统改进过程中,要注重充型温度,充型完成时的温度范围为1271到1420摄氏度[3],有效控制温度的同时提高充型的平稳性,为铸件顺利凝固提供重要保障。针对铸件底部出现的缩孔缩松问题,可以在改进浇注系统过程中对砂芯进行合理化处理,规范化放置外冷铁,在解决铸件缩孔缩松这一缺陷问题的基础上最大化提高汽车制动卡钳的机械性能。(二)调整合金成分。合金成分调整也是汽车制动卡钳铸造工艺改进的有效方法。在原始铸造工艺作用下,该汽车制动卡钳的合金成分配比有待完善,在理论探究、实践探索过程中针对制动卡钳性能、强度等,在反复试制的基础上合理调整合金成分,炉后锰含量为0.35%,铜含量不能小于0.2%,也不能超过0.25%,在相互作用过程中最大化发挥锰的作用,有效固溶强化铸件中的铁素体,动态控制锰含量的同时形成合金渗碳体,以珠光体的形式呈现出来,合理提高铸件基体中的珠光体比重,在铸件塑性降低的过程中最大化提高铸件的屈服以及抗拉强度,延伸率也能有效控制在规定的氛围内。与此同时,在锰的不断作用下,高效控制铸件基体中的珠光体温度,防止其超过规定的范围,控制好珠光体片距、过冷度二者间的线性关系,提高汽车制动卡钳的强度。铜对珠光体也能起到积极作用,可以在调整铜含量基础上最大化发挥其功能作用,完善球墨铸铁基体组织,在优化配置的基础上确保合金成分更加科学、合理,可以在把握浇注工艺的基础上进一步规范化调整合金成分,有效满足汽车制动卡钳应用中机械性能要求,提高制动卡钳应用的整体效果。(三)铸造工艺改进效果。利用显微镜以及多种现代信息技术,全面、深入、系统了解浇注系统优化完善以及合金成分科学调整之后汽车制动卡钳运行效果。从试制结果看,在铸造工艺改进之后,该汽车制动卡钳两端以及底部出现的缩孔缩松问题得到有效解决,铸件基体中的珠光体含量有所增加,在15%左右[4]。与此同时,汽车制动卡钳的抗拉强度、屈服强度、延伸率明显提高,机械性能、力学性能都有明显的改善,可以从根本上降低汽车制动卡钳应用中故障问题发生系数,在恶劣的环境下安全以及稳定运行,充分发挥多方面优势作用,提高汽车制动系统的整体性能以及汽车运行的综合效益。

三、结语

总而言之,铸造是保证汽车制动卡钳质量的重要途径,要在剖析制动卡钳故障问题基础上探索铸造的新思路、新方法,在改进铸造工艺的过程中保证汽车制动卡钳质量,能够在恶劣的工作环境中高效运转,将故障发生系数以及应用成本最小化,提高制动卡钳应用效益以及汽车制动效果。

参考文献:

[1]易刚.电驱动汽车制动系统特殊要求及应对措施[J].汽车工程师,2018(09):55-57.

[2]阮婷,樊庆地,刘海云.前制动卡钳自动装配工艺设计及应用[J].武汉交通职业学院学报,2019,21(03):94-97.

[3]黄朋朋,芦刚,严青松,晏玉平,俞建波.基于ProCAST的汽车制动鼓消失模铸造工艺优化[J].特种铸造及有色合金,2019,39(08):889-892.