真空玻璃范文10篇

时间:2023-03-15 07:24:13

真空玻璃

真空玻璃范文篇1

玻璃幕墙与其它幕墙相比具有很多优点,同时在发展初期产生了保温隔热性能差和光污染等问题。随着科学技术的发展,尤其是玻璃深加工行业的快速崛起,这些问题正在被逐步解决,其中,北京新立基真空玻璃技术有限公司致力发展的真空玻璃系列产品为玻璃幕墙提供了一种优质材料,为建筑设计师提供了一种新选择。

一.真空玻璃运用在幕墙上的性能优势

真空玻璃最基本的品种是标准真空玻璃,即一块普通浮法玻璃加上一块低辐射镀膜玻璃(Low-E玻璃)。目前国内市场上有三种Low-E玻璃可用于标准真空玻璃的生产。表1是用三种Low-E玻璃生产的标准真空玻璃的K值。

表1

序号类别Low-E膜发射率K值(Wm-2k-1)

14L+0.15V+40.201.12

24L+0.15V+40.171.03

34L+0.15V+40.100.82

注0.15V:0.15mm真空层

4L:4mmLow-E玻璃

4:4mm白玻表面发射率0.84

从表1可以看到,真空玻璃的保温性能与市场上现有玻璃相比具有明显优势。目前市场上普通中空玻璃的K值在3.0Wm-2k-1左右,一般Low-E中空玻璃的K值在2.0Wm-2k-1左右,好的充惰性气体的Low-E中空玻璃K值可以做到1.4~1.6Wm-2k-1。

除传热系数比中空玻璃低之外,真空玻璃还兼有下列优点:

1.由于热阻高,防结露结霜性能更好。

2.由于间隔是真空,因而具有下列优点:

隔声性能好,特别是低频段隔声性能优于同样厚度玻璃构成的中空玻璃

不存在中空玻璃存在的内结雾结露问题

不存在中空玻璃水平放置时气体热导变化问题

不存在中空玻璃运到高原低气压地区的胀裂问题

3.由于两片玻璃形成刚性连结,抗风压强度高于同等厚度玻璃构成的中空玻璃。比如,4mm玻璃构成的真空玻璃,抗风压强度高于8mm厚玻璃,是4mm玻璃构成的中空玻璃的一倍半以上。

4.由于是全玻璃材料密封,内部又加有吸气剂,所用的Low-E膜是“硬膜”,不是易氧化变质变色的离线“软膜”,只要制造工艺和设备先进,真空玻璃使用寿命远比用有机材料密封的中空玻璃长得多。

5.厚度比中空玻璃薄一倍以上,不仅可节省窗框材料,而且可以当成一片玻璃配合其它玻璃深加工技术组合成“夹层真空”、“真空+中空”、“自洁真空”等具有各种性能的“组合真空玻璃”。这种与其它深加工技术的兼容性,不仅可促进其它技术的发展,同时也正好可弥补真空玻璃的不足之处。例如目前还不能制造钢化真空玻璃,但可利用组合技术来解决安全性问题。

真空玻璃的上述优点使其具有综合性能优势。

二.真空玻璃安全问题

1.真空玻璃安全问题解决方案

由于真空玻璃的生产需要在高温炉内把玻璃加热到450℃以上,因此钢化玻璃和夹层玻璃不能直接用于真空玻璃的生产。那么,由两片普通平板玻璃原片制成的真空玻璃就不符合建筑安全玻璃的要求,其应用就受到了很大限制。

如何能使真空玻璃成为建筑安全玻璃呢?上述“组合真空玻璃”的方法正好可以解决此问题。例一,把真空玻璃看成一片原片,使用钢化玻璃或夹层玻璃在真空玻璃的两个面上分别合一层中空玻璃,形成中空+真空+中空的结构,见图1。例二,把真空玻璃看成一片原片,在真空玻璃的两个面上分别合一层夹层玻璃,其结构上等同于用两片夹层玻璃制成的真空玻璃,见图2。

图1

图2

北京天恒大厦和清华大学超低能耗示范楼两项工程用的就是图1结构的“组合真空玻璃”,图2结构的夹层真空玻璃准备用在北京某办公楼项目中。对比两种结构,我们认为,图1结构外层钢化玻璃保护着里层的真空玻璃,通常该组合玻璃具有安全防护性能和所需的抗风压性能。但是,由于其内部仍含有能破碎伤人的普通玻璃,能否算安全玻璃仍需在制定标准时认定。图2结构的夹层真空玻璃则是一种符合目前标准的安全玻璃。

通常的夹层玻璃制造工艺有灌浆法和胶片法。灌浆法也称为湿法,是将胶液灌注于两片玻璃之间,待胶液固化以后形成夹层玻璃。灌浆法由于受胶水质量和设备的限制,夹层玻璃的质量难以得到保障。胶片法也称之为干法,通常有两种工艺。一种是使用PVB膜,通过予压工序,最终在130℃左右,12kg/cm2压力作用下成型的方法。由于真空玻璃是通过微小支撑物支撑起两片玻璃,两片玻璃中间具有真空层的结构,该结构使玻璃承受了一个大气压力(约1kg/cm2)的作用,如果使用PVB膜成型工艺,等于在玻璃上施加了12kg/cm2的压力,真空玻璃在如此高的压力下将会被压碎,所以,用PVB高压成型法合成真空夹层玻璃是困难的。另一种是使用EVA膜(也称EN膜)采用真空一步法成型工艺制成。所谓真空一步法成型工艺是将合好EVA膜的玻璃直接放在特制的硅胶袋中,通过对硅胶袋抽真空,使外界空气对硅胶袋施加1个大气压力,硅胶袋把压力作用到玻璃上,再把硅胶袋放入加热炉中,使温度升高到100~115℃而成型的一种方法。该种方法,由于作用在玻璃上的力还是1个大气压力,与真空玻璃被加工前是相同的,因此不会被破坏。

目前新立基公司已成功试制出EVA真空夹层玻璃并通过了性能检测。

表2的试验,确定了EVA真空夹层玻璃的安全性能。

表2

试验样品4+0.38EVA+4+0.15真空层+4+0.38EVA+4(原片玻璃为普通浮法玻璃)

试验标准GB9962—1999《夹层玻璃》

试验单位国家安全玻璃及石英玻璃质量监督检验中心

试验结果合格符合Ⅱ-2类夹层玻璃要求

由于幕墙有明框和隐框之分。隐框幕墙对于玻璃的安全性要求更高。我们根据已申请的专利对图1和图2中组合真空玻璃的结构进行了改进,新结构如图3所示。

图3

图4

图1和图2结构存在一种隐患,即一旦受到强烈外力冲击导致真空玻璃破裂,在失去每平方米10吨的大气压合力后,仅靠周边的玻璃焊料难以避免真空玻璃沿边缘开裂而使部分玻璃脱落造成危险。

图3和图4结构与中空玻璃结构类似,避免了真空玻璃焊料因直接承受外力而导致边缘开裂的危险,使玻璃整体安全性能更高。

2.安全真空玻璃的性能特点

安全真空玻璃除了满足安全性要求以外,还有以下性能特点。

(1)热性能

图1和图3结构的安全真空玻璃在热性能方面除真空玻璃的热阻外,还要增加两层中空玻璃的热阻。表3为此结构玻璃的理论计算K值。

表3

标准真空玻璃原K值标准真空玻璃两面各加一层6mm中空的K值标准真空玻璃两面各加一层6mm中空其中一块玻璃为发射率0.17的Low-E玻璃的K值

1.120.850.80

1.030.800.75

0.810.670.63

注:K值单位Wm-2k-1

由表3可以看到该结构的真空玻璃K值在标准真空玻璃的基础上进一步降低了。

图2和图4结构的安全真空玻璃由于只增加了玻璃和胶层,对热阻贡献不大,因此K值只是略有降低。

(2)隔声性能

“组合真空玻璃”增加了玻璃和胶层,由于质量定律和胶层的弹性减震作用,计权隔声量在标准真空玻璃的基础上提高了5~12分贝。例如:为北京某音乐教学楼制作的“夹层真空+中空”组合真空玻璃,结构为6+0.38EVA+4L+0.15V+4+12A+6,总厚度32.5mm,经清华大学建筑物理实验室实测计权隔声量为42dB,离玻璃幕墙国家标准隔声性能最高级只差3dB。

(3)耐水性能和抗紫外线性能

由于EVA膜比PVB膜具有更优越的耐水和吸收紫外线的性能,因此EVA夹层玻璃比PVB夹层玻璃更适合于在室外使用,也更有利于保护组合于其中的标准真空玻璃。

(4)组合新的功能

图1至图4各种结构都可以在外层玻璃上使用各种功能玻璃进行性能的叠加。

例如,使用自洁净玻璃使玻璃幕墙具有自洁净功能,使用防火玻璃使玻璃幕墙具有防火功能。

在图2和图4结构中,可以在真空玻璃的一面或两面使用两层EVA膜,两层膜中间夹一层PC板或PET板,用来增强玻璃的抗冲击性能和防盗性能。另外还可以在两层EVA膜中间夹一层液晶调光膜,制成调光真空夹层玻璃。

三.真空玻璃在幕墙上的应用前景

真空玻璃在幕墙上的应用还处在起步阶段,目前还有许多问题有待我们去解决。但是,我们不能忽视真空玻璃在玻璃幕墙领域的巨大潜力。

对于玻璃材料而言,当前真空玻璃的保温隔热性能已经处于领先的地位。从长远来看,这种领先优势还将不断扩大。

随着科技的进步,在不远的将来,我们能够使用发射率更低的Low-E玻璃,还能够把真空玻璃支撑物的热导做得更小。经过计算,如果我们使用发射率为0.05的Low-E玻璃,并把现有支撑物的热导在现有基础上缩小一半,标准真空玻璃的K值可小于0.5Wm-2k-1;如果使用两块发射率0.05的Low-E玻璃,加上一块白玻做成双真空层玻璃,其K值可小于0.3Wm-2k-1,而厚度可小于10mm。

真空玻璃范文篇2

建筑节能在整个节能工作中占有极其重要的地位。我们知道建筑能耗在社会整个能源消耗中占到30%以上,建筑节能工作的好坏直接影响到整个节能工作。特别是现有的许多大型公共建筑,数量特别巨大,能耗特别严重。目前,中国每年竣工的各类建筑的建筑面积约为20亿平方米,其中公共建筑约为4亿平方米。

年初,建设部、国家发展改革委员会、财政部、监察部、审计署联合《关于加强大型公共建筑工程建设管理的若干意见》,要求新建大型公共建筑必须严格执行《公共建筑节能设计标准》和有关的建筑节能强制性标准,建设单位要按照相应的建筑节能标准委托工程项目的规划设计,项目建成后应经建筑能效专项测评,凡达不到工程建设节能强制性标准的,有关部门不得办理竣工验收备案手续。

当今,绝大多数公共建筑有一个共性,就是采暖能耗、空调能耗特别高。在公共建筑全年能耗中,大约60%消耗于采暖和空调,而其中的20~50%由护结构传热所消耗。在围护结构方面,由于此类建筑大多数都要求具有良好的自然采光,因而,玻璃门窗设计得尺寸很大,窗墙比很高,或干脆设计成玻璃幕墙结构。

玻璃与其优良的透光性能和特殊的质感在建筑上的运用是其它材料无法替代的。长久以来,由于玻璃材料本身的特性造成了玻璃自身的保温隔热性能差,不能满足现代建筑所要求的节能和舒适的要求。特别是那些大面积采用玻璃幕墙的大型公共建筑,过去,由于使用了不节能的普通钢化玻璃或普通中空玻璃制作幕墙,该部分建筑的能耗特别高,而且冬冷夏热很不舒适。

随着玻璃深加工技术的发展,各种各样的节能玻璃象雨后春笋一样蓬勃发展。真空玻璃的出现超越了以往所有的节能玻璃品种,标志着真空玻璃节能时代即将到来。

二、真空玻璃的基本结构真空玻璃是一种保温、隔声性能非常突出的高新技术产品

真空玻璃是由两块平板玻璃,中间由微小支撑物将其隔开,玻璃四周用玻璃钎焊料封边,通过抽气口抽真空,然后封接抽气口保持真空层的一种结构。为了长久保持真空度,延长真空玻璃寿命,新立基公司生产的真空玻璃在真空腔内还放置了吸气剂。微小支撑物是外径0.5mm,厚度0.15mm的金属环,由于体积微小,对人的视觉和玻璃的光学性能几乎没有影响。

真空玻璃的保温原理和结构与保温瓶极为相似,建筑上使用真空玻璃就好象把建筑罩在一个巨大的保温瓶中,保温节能效果可想而知。

三、真空玻璃的保温性能Low-E中空玻璃是目前市场上运用较为普遍、节能效果也很好的玻璃品种。

中空玻璃利用了空气导热系数低的特点。从传热学上讲空气虽然导热系数较小,但毕竟是要进行热传导,其它气体包括惰性气体也一样。中空玻璃由于存在着较大的空气传导热量,使得使用Low-E玻璃降低辐射热的最终保温隔热效果大为降低。只有真空状态才能消除热传导,使玻璃的综合传热性能优势充分发挥出来。

常规真空玻璃产品系列中的真空玻璃保温。最好的Low-E中空玻璃和充氩气的Low-E中空玻璃的保温。通过对比真空玻璃和中空玻璃不难得出下述结论:

1、真空玻璃热导随着所用原片的有效发射率的降低而迅速降低,中空玻璃热导降低的并不明显。

2、如果Low-E玻璃发射率做得很低,比如0.05以下,辐射热导到了几乎可以忽略的地步,此时再降低Low-E玻璃发射率对中空玻璃来讲意义已经不大,但真空玻璃传热系数可以做到0.5W/m2.k,而充空气的中空玻璃传热系数只能做到1.60W/m2.k,充氩气的中空玻璃传热系数只能做到1.23W/m2.k.

3、就传热系数K值而言,真空玻璃K值只有充空气中空玻璃的三分之一,充氩气中空玻璃的二分之一,在不考虑太阳光辐射的情况下,比如,夜晚,真空玻璃比充空气的中空玻璃节能近70%,比充氩气的中空玻璃节能50%.

4、在辐射热导可以忽略的情况下,真空玻璃热导的主要来源是支撑物热导0.5W/m2.k,随着科学技术的进步,有望进一步降低该数值,比如在玻璃强度提高的情况下,减小支撑物直径或增大支撑物的间距都有望大幅度减小热导;充空气(或氩气)的中空玻璃热导的主要来源是气体对流传热和气体导热,为2.1(或1.5)W/m2.k,该数值不可能再有下降。从发展的观点来看,在保温性能上真空玻璃将超越中空玻璃(或充氩气的中空玻璃)更多。

5、由于真空玻璃的厚度通常只有中空玻璃厚度的一半,因此,真空玻璃的表观导热系数更显著地小于中空玻璃的表观导热系数。真空玻璃可以使用三块玻璃制成双真空层的真空玻璃,热阻增加一倍,热导降低一倍,而厚度在单真空层真空玻璃厚度的基础上只增加4mm,比中空玻璃还是薄。

可以说在保温性能上,现阶段真空玻璃已经大大超越了中空玻璃,将来会超越得更多。

四、真空玻璃的光学性能和隔热常规真空玻璃由两片玻璃组成,真空间隔层对太阳光谱是通透的,间隔层支撑物很小。

新立基公司所用支撑物为环形金属片,外径只有0.5mm,高度约0.15mm,即使按圆柱形考虑,每平方米约1600个支撑物对辐射的遮挡面积只有:1600×π×0.252=0.000314(m2),约占玻璃总面积的万分之三,故支撑物对辐射的遮挡作用可以忽略。

我们知道,建筑上的传热除了要考虑温差因素引起的传热外,还要考虑太阳辐射因素。太阳辐射透过玻璃的能量与玻璃光学特性有直接关系。最重要的就是要考虑得热系数SHGC(太阳能总透射比)。

严寒地区冬季寒冷,夏季凉爽,应多考虑冬季阳光的射入,以减少取暖热耗,选用得热系数大的真空玻璃对节能更为有利;夏热冬暖地区,夏季阳光强烈,气候炎热,冬季温暖,应多考虑遮阳,减少阳光的射入以节约制冷能耗,选用得热系数小的真空玻璃更为合理。

五、真空玻璃工程实例

1.天恒大厦工程天恒大厦2005年6月落成,位于北京东直门立交桥东南角,地上22层,地下4层,建筑高度89米,总建筑面积57000平方米,是一座具有5A智能系统的高级写字楼。天恒大厦北侧有一面横隐框竖明框玻璃幕墙,西北角是一面横明框竖隐框,向内与垂直面倾斜15°的三角形玻璃幕墙。幕墙设计和施工单位是江苏省建伟幕墙装饰工程有限公司,两面幕墙所用玻璃全部是新立基公司提供的真空玻璃。玻璃最大尺寸为1985×1161mm(矩形),其西北角幕墙由于是三角形立面,所用玻璃很大部分是异形(梯形和三角形)。两面玻璃幕墙总面积约7000平方米,共用去真空玻璃3365块,合4848平方米。另外,大厦各种窗户所用玻璃也全部是新立基公司提供的真空玻璃。窗面积约2500平方米,用真空玻璃共用去1636块,合1540平方米。

天恒大厦玻璃的传热系数(K值)和空气计权隔声量经国家建筑工程质量监督中心检测,A结构真空玻璃K值=1.0w/m2.k,B结构真空玻璃K值=1.2w/m2.k.B结构真空玻璃空气计权隔声量Rw=36dB.天恒大厦幕墙玻璃采用FB双面复合中空的做法,除了能够使K值在NL真空玻璃的基础上进一步提高外,主要考虑了幕墙抗风压和人身安全方面的要求。与室内外空气接触的玻璃采用两块6mm钢化玻璃,有效地承受了正负风荷载,室内钢化玻璃还有效防止了人的身体对玻璃的冲击可能引起的伤害并保护了玻璃的真空部分。

2.清华大学超低能耗示范楼工程清华大学超低能耗示范楼落成于2005年3月,是北京市科委重点科研和“奥运科技专项”项目。该项目还是国家“十五”科技攻关项目“绿色建筑关键技术研究”的技术集成

平台,用于展示和实验各种低能耗、生态化、人性化的建筑形式及先进的技术产品。

超低能耗示范楼座落于清华大学校园东区,总建筑面积2930m2,地下一层,地上四层。新立基公司的真空玻璃产品用于南立面幕墙玻璃和西面、北面的门窗玻璃。该工程幕墙部分共使用真空玻璃72块,合计74m2,最大玻璃尺寸为1982×1200mm;门窗部分共使用真空玻璃92块,合计50m2,最大玻璃尺寸为1356×964mm.幕墙设计施工单位是深圳市方大装饰工程有限公司,门窗制造和安装单位是日本YKKAP公司。玻璃结构见图3幕墙玻璃K值=1.0w/m2.k,门窗玻璃由于在中空层玻璃上用一块低辐射镀膜玻璃代替了普通钢化玻璃,使得K值=0.9w/m2.k.幕墙玻璃考虑到面积较大和承受正负风荷载的影响,内外两面均为钢化玻璃。门窗面积较小,除室内考虑人身可能的冲击使用5mm钢化玻璃外,朝向室外的玻璃未使用钢化玻璃。

由于该幕墙为隐框幕墙,玻璃面积大,玻璃的自重和风压等荷载较大。

六、节能效果试验和分析

1、真空玻璃节能试验2003年冬季,在建筑科学院的协助下,进行了真空玻璃冬季节能效果试验。结果表明真空玻璃与中空玻璃相比有非常明显的节能效果。

该试验所用真空玻璃为新立基公司的产品,当时常规真空玻璃的K值为1.4w/m2.k,复合真空玻璃的K值为1.2w/m2.k试验是在北京市马家堡选用的两个同样户型、面积、朝向,同一层相邻的两户新建单元房501、502室中进行。该户型的南向房间建筑面积15.12m2,北向房间为10.8m2.外墙为240mm,砖墙加60mm厚聚苯夹心石膏板保温。实验过程是502户的南北钢窗保持原样,仅把501户南北钢窗拆下,换成塑钢窗。这就形成501塑钢窗与502单玻钢窗(南向),双玻窗(北向)的对比试验。试验期间塑钢窗按需更换,分别为中空玻璃(N4+A9+N4),常规真空玻璃(N3+V+L4)、复合真空玻璃(N3+V+L4+A9+N3)。试验的测量元件采用热流计和铜—康铜热电偶测温元件。测量元件布置在窗玻璃、窗框、阳台门肚板和房间的各内外墙上,通过BXSCC-1型便携式数据采集和处理系统,每小时检测一次。试验从2002年12月11日开始采集,至2003年元月9日为止,共取得22昼夜实测数据。试验期间,南向阳台门窗户全部打开,使试验窗直接面临室外气候。房间房门关闭,室内供暖没有控制。

试验遇到北京多年未遇寒冷天气,连续几天下雪阴天,曾测量到日平均气温-7.9℃。日最低气温达-9.3℃的严寒天气。针对上述气候状况,采用南向有阳光,北向无阳光和阴天三种工况来统计试验结果。试验大部分时间室外的平均气温低于节能规范,即北京地区采暖期间室外日平均气温为-1.6℃。

2、天恒大厦节能效果分析以天恒大厦为例,假设该大厦分别采用白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃、标准真空玻璃组合双中空六种情况,进行耗能比较。并对真空玻璃节能经济效益作估算。

以国内某玻璃企业生产的白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃和新立基公司为天恒大厦生产的真空玻璃参数为根据进行计算。

结论

(1)从全年节能来分析,复合真空玻璃比其它玻璃节能,最低的达28%,最高可达72%.

(2)北京属于寒冷地区,冬季复合真空充分发挥了节能优势。但夏天节能却不如热反射中空玻璃,其原因是真空玻璃的遮蔽系数较高,但降低其遮蔽系数又会影响室内采光和冬季太阳辐射进热。遮蔽系数应取合适值。从全年节能来看复合真空比热反射中空节能36%.

(3)与其它各种玻璃比较,采用复合真空,可节能、省电、节省电费开支,最低62万元/年,最高424万元/年,经济效益十分明显。同时由于节能,可节省发电燃煤,减少环境污染,保护地球,造福人类。

(4)由于节省能源费用,对于单片玻璃,使用真空玻璃当年即可收回投资,即使对于Low-E中空2年内也可基本收回多付出的投资成本。

七、结束语

天恒和清华工程分别落成于2005年9月和2005年3月,为两个工程提供的真空玻璃的生产时间是在2004年下半年。事实上,新立基公司真空玻璃的生产技术在这两年里又有了新的发展,产品质量也有了很大的提高。

第一,Low-E玻璃作为生产真空玻璃的原片,质量有了很大提高。南方玻璃集团和皇明太阳能有限公司的离线硬膜Low-E玻璃的辐射率都做到了0.11以下,这为大幅度降低真空玻璃的传热系数,提高真空玻璃的保温性能作出了重要贡献。以上两个工程NL真空玻璃部分的传热系数为1.3w/m2.k左右,而目前NL真空玻璃的传热系数已经可以做到0.85w/m2.k,LL真空玻璃的传热系数已经可以做到0.70w/m2.k.第二,研制成功了具有国内专利的夹层真空玻璃,使得真空玻璃又多了一个安全玻璃品种。

第三,真空腔内置入了吸气剂,使得真空玻璃寿命得到延长。

真空玻璃范文篇3

建筑节能在整个节能工作中占有极其重要的地位。我们知道建筑能耗在社会整个能源消耗中占到30%以上,建筑节能工作的好坏直接影响到整个节能工作。特别是现有的许多大型公共建筑,数量特别巨大,能耗特别严重。目前,中国每年竣工的各类建筑的建筑面积约为20亿平方米,其中公共建筑约为4亿平方米。

年初,建设部、国家发展改革委员会、财政部、监察部、审计署联合《关于加强大型公共建筑工程建设管理的若干意见》,要求新建大型公共建筑必须严格执行《公共建筑节能设计标准》和有关的建筑节能强制性标准,建设单位要按照相应的建筑节能标准委托工程项目的规划设计,项目建成后应经建筑能效专项测评,凡达不到工程建设节能强制性标准的,有关部门不得办理竣工验收备案手续。

当今,绝大多数公共建筑有一个共性,就是采暖能耗、空调能耗特别高。在公共建筑全年能耗中,大约60%消耗于采暖和空调,而其中的20~50%由护结构传热所消耗。在围护结构方面,由于此类建筑大多数都要求具有良好的自然采光,因而,玻璃门窗设计得尺寸很大,窗墙比很高,或干脆设计成玻璃幕墙结构。

玻璃与其优良的透光性能和特殊的质感在建筑上的运用是其它材料无法替代的。长久以来,由于玻璃材料本身的特性造成了玻璃自身的保温隔热性能差,不能满足现代建筑所要求的节能和舒适的要求。特别是那些大面积采用玻璃幕墙的大型公共建筑,过去,由于使用了不节能的普通钢化玻璃或普通中空玻璃制作幕墙,该部分建筑的能耗特别高,而且冬冷夏热很不舒适。

随着玻璃深加工技术的发展,各种各样的节能玻璃象雨后春笋一样蓬勃发展。真空玻璃的出现超越了以往所有的节能玻璃品种,标志着真空玻璃节能时代即将到来。

二、真空玻璃的基本结构真空玻璃是一种保温、隔声性能非常突出的高新技术产品

真空玻璃是由两块平板玻璃,中间由微小支撑物将其隔开,玻璃四周用玻璃钎焊料封边,通过抽气口抽真空,然后封接抽气口保持真空层的一种结构。为了长久保持真空度,延长真空玻璃寿命,新立基公司生产的真空玻璃在真空腔内还放置了吸气剂。微小支撑物是外径0.5mm,厚度0.15mm的金属环,由于体积微小,对人的视觉和玻璃的光学性能几乎没有影响。

真空玻璃的保温原理和结构与保温瓶极为相似,建筑上使用真空玻璃就好象把建筑罩在一个巨大的保温瓶中,保温节能效果可想而知。

三、真空玻璃的保温性能Low-E中空玻璃是目前市场上运用较为普遍、节能效果也很好的玻璃品种。

中空玻璃利用了空气导热系数低的特点。从传热学上讲空气虽然导热系数较小,但毕竟是要进行热传导,其它气体包括惰性气体也一样。中空玻璃由于存在着较大的空气传导热量,使得使用Low-E玻璃降低辐射热的最终保温隔热效果大为降低。只有真空状态才能消除热传导,使玻璃的综合传热性能优势充分发挥出来。

常规真空玻璃产品系列中的真空玻璃保温。最好的Low-E中空玻璃和充氩气的Low-E中空玻璃的保温。通过对比真空玻璃和中空玻璃不难得出下述结论:

1、真空玻璃热导随着所用原片的有效发射率的降低而迅速降低,中空玻璃热导降低的并不明显。

2、如果Low-E玻璃发射率做得很低,比如0.05以下,辐射热导到了几乎可以忽略的地步,此时再降低Low-E玻璃发射率对中空玻璃来讲意义已经不大,但真空玻璃传热系数可以做到0.5W/m2.k,而充空气的中空玻璃传热系数只能做到1.60W/m2.k,充氩气的中空玻璃传热系数只能做到1.23W/m2.k.

3、就传热系数K值而言,真空玻璃K值只有充空气中空玻璃的三分之一,充氩气中空玻璃的二分之一,在不考虑太阳光辐射的情况下,比如,夜晚,真空玻璃比充空气的中空玻璃节能近70%,比充氩气的中空玻璃节能50%.

4、在辐射热导可以忽略的情况下,真空玻璃热导的主要来源是支撑物热导0.5W/m2.k,随着科学技术的进步,有望进一步降低该数值,比如在玻璃强度提高的情况下,减小支撑物直径或增大支撑物的间距都有望大幅度减小热导;充空气(或氩气)的中空玻璃热导的主要来源是气体对流传热和气体导热,为2.1(或1.5)W/m2.k,该数值不可能再有下降。从发展的观点来看,在保温性能上真空玻璃将超越中空玻璃(或充氩气的中空玻璃)更多。

5、由于真空玻璃的厚度通常只有中空玻璃厚度的一半,因此,真空玻璃的表观导热系数更显著地小于中空玻璃的表观导热系数。真空玻璃可以使用三块玻璃制成双真空层的真空玻璃,热阻增加一倍,热导降低一倍,而厚度在单真空层真空玻璃厚度的基础上只增加4mm,比中空玻璃还是薄。

可以说在保温性能上,现阶段真空玻璃已经大大超越了中空玻璃,将来会超越得更多。

四、真空玻璃的光学性能和隔热常规真空玻璃由两片玻璃组成,真空间隔层对太阳光谱是通透的,间隔层支撑物很小。

新立基公司所用支撑物为环形金属片,外径只有0.5mm,高度约0.15mm,即使按圆柱形考虑,每平方米约1600个支撑物对辐射的遮挡面积只有:1600×π×0.252=0.000314(m2),约占玻璃总面积的万分之三,故支撑物对辐射的遮挡作用可以忽略。

我们知道,建筑上的传热除了要考虑温差因素引起的传热外,还要考虑太阳辐射因素。太阳辐射透过玻璃的能量与玻璃光学特性有直接关系。最重要的就是要考虑得热系数SHGC(太阳能总透射比)。

严寒地区冬季寒冷,夏季凉爽,应多考虑冬季阳光的射入,以减少取暖热耗,选用得热系数大的真空玻璃对节能更为有利;夏热冬暖地区,夏季阳光强烈,气候炎热,冬季温暖,应多考虑遮阳,减少阳光的射入以节约制冷能耗,选用得热系数小的真空玻璃更为合理。

五、真空玻璃工程实例

1.天恒大厦工程天恒大厦2005年6月落成,位于北京东直门立交桥东南角,地上22层,地下4层,建筑高度89米,总建筑面积57000平方米,是一座具有5A智能系统的高级写字楼。天恒大厦北侧有一面横隐框竖明框玻璃幕墙,西北角是一面横明框竖隐框,向内与垂直面倾斜15°的三角形玻璃幕墙。幕墙设计和施工单位是江苏省建伟幕墙装饰工程有限公司,两面幕墙所用玻璃全部是新立基公司提供的真空玻璃。玻璃最大尺寸为1985×1161mm(矩形),其西北角幕墙由于是三角形立面,所用玻璃很大部分是异形(梯形和三角形)。两面玻璃幕墙总面积约7000平方米,共用去真空玻璃3365块,合4848平方米。另外,大厦各种窗户所用玻璃也全部是新立基公司提供的真空玻璃。窗面积约2500平方米,用真空玻璃共用去1636块,合1540平方米。

天恒大厦玻璃的传热系数(K值)和空气计权隔声量经国家建筑工程质量监督中心检测,A结构真空玻璃K值=1.0w/m2.k,B结构真空玻璃K值=1.2w/m2.k.B结构真空玻璃空气计权隔声量Rw=36dB.天恒大厦幕墙玻璃采用FB双面复合中空的做法,除了能够使K值在NL真空玻璃的基础上进一步提高外,主要考虑了幕墙抗风压和人身安全方面的要求。与室内外空气接触的玻璃采用两块6mm钢化玻璃,有效地承受了正负风荷载,室内钢化玻璃还有效防止了人的身体对玻璃的冲击可能引起的伤害并保护了玻璃的真空部分。

2.清华大学超低能耗示范楼工程清华大学超低能耗示范楼落成于2005年3月,是北京市科委重点科研和“奥运科技专项”项目。该项目还是国家“十五”科技攻关项目“绿色建筑关键技术研究”的技术集成平台,用于展示和实验各种低能耗、生态化、人性化的建筑形式及先进的技术产品。

超低能耗示范楼座落于清华大学校园东区,总建筑面积2930m2,地下一层,地上四层。新立基公司的真空玻璃产品用于南立面幕墙玻璃和西面、北面的门窗玻璃。该工程幕墙部分共使用真空玻璃72块,合计74m2,最大玻璃尺寸为1982×1200mm;门窗部分共使用真空玻璃92块,合计50m2,最大玻璃尺寸为1356×964mm.幕墙设计施工单位是深圳市方大装饰工程有限公司,门窗制造和安装单位是日本YKKAP公司。玻璃结构见图3幕墙玻璃K值=1.0w/m2.k,门窗玻璃由于在中空层玻璃上用一块低辐射镀膜玻璃代替了普通钢化玻璃,使得K值=0.9w/m2.k.幕墙玻璃考虑到面积较大和承受正负风荷载的影响,内外两面均为钢化玻璃。门窗面积较小,除室内考虑人身可能的冲击使用5mm钢化玻璃外,朝向室外的玻璃未使用钢化玻璃。

由于该幕墙为隐框幕墙,玻璃面积大,玻璃的自重和风压等荷载较大。

六、节能效果试验和分析

1、真空玻璃节能试验2003年冬季,在建筑科学院的协助下,进行了真空玻璃冬季节能效果试验。结果表明真空玻璃与中空玻璃相比有非常明显的节能效果。

该试验所用真空玻璃为新立基公司的产品,当时常规真空玻璃的K值为1.4w/m2.k,复合真空玻璃的K值为1.2w/m2.k试验是在北京市马家堡选用的两个同样户型、面积、朝向,同一层相邻的两户新建单元房501、502室中进行。该户型的南向房间建筑面积15.12m2,北向房间为10.8m2.外墙为240mm,砖墙加60mm厚聚苯夹心石膏板保温。实验过程是502户的南北钢窗保持原样,仅把501户南北钢窗拆下,换成塑钢窗。这就形成501塑钢窗与502单玻钢窗(南向),双玻窗(北向)的对比试验。试验期间塑钢窗按需更换,分别为中空玻璃(N4+A9+N4),常规真空玻璃(N3+V+L4)、复合真空玻璃(N3+V+L4+A9+N3)。试验的测量元件采用热流计和铜—康铜热电偶测温元件。测量元件布置在窗玻璃、窗框、阳台门肚板和房间的各内外墙上,通过BXSCC-1型便携式数据采集和处理系统,每小时检测一次。试验从2002年12月11日开始采集,至2003年元月9日为止,共取得22昼夜实测数据。试验期间,南向阳台门窗户全部打开,使试验窗直接面临室外气候。房间房门关闭,室内供暖没有控制。

试验遇到北京多年未遇寒冷天气,连续几天下雪阴天,曾测量到日平均气温-7.9℃。日最低气温达-9.3℃的严寒天气。针对上述气候状况,采用南向有阳光,北向无阳光和阴天三种工况来统计试验结果。试验大部分时间室外的平均气温低于节能规范,即北京地区采暖期间室外日平均气温为-1.6℃。

2、天恒大厦节能效果分析以天恒大厦为例,假设该大厦分别采用白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃、标准真空玻璃组合双中空六种情况,进行耗能比较。并对真空玻璃节能经济效益作估算。

以国内某玻璃企业生产的白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃和新立基公司为天恒大厦生产的真空玻璃参数为根据进行计算。

结论

(1)从全年节能来分析,复合真空玻璃比其它玻璃节能,最低的达28%,最高可达72%.

(2)北京属于寒冷地区,冬季复合真空充分发挥了节能优势。但夏天节能却不如热反射中空玻璃,其原因是真空玻璃的遮蔽系数较高,但降低其遮蔽系数又会影响室内采光和冬季太阳辐射进热。遮蔽系数应取合适值。从全年节能来看复合真空比热反射中空节能36%.

(3)与其它各种玻璃比较,采用复合真空,可节能、省电、节省电费开支,最低62万元/年,最高424万元/年,经济效益十分明显。同时由于节能,可节省发电燃煤,减少环境污染,保护地球,造福人类。

(4)由于节省能源费用,对于单片玻璃,使用真空玻璃当年即可收回投资,即使对于Low-E中空2年内也可基本收回多付出的投资成本。

七、结束语

天恒和清华工程分别落成于2005年9月和2005年3月,为两个工程提供的真空玻璃的生产时间是在2004年下半年。事实上,新立基公司真空玻璃的生产技术在这两年里又有了新的发展,产品质量也有了很大的提高。

第一,Low-E玻璃作为生产真空玻璃的原片,质量有了很大提高。南方玻璃集团和皇明太阳能有限公司的离线硬膜Low-E玻璃的辐射率都做到了0.11以下,这为大幅度降低真空玻璃的传热系数,提高真空玻璃的保温性能作出了重要贡献。以上两个工程NL真空玻璃部分的传热系数为1.3w/m2.k左右,而目前NL真空玻璃的传热系数已经可以做到0.85w/m2.k,LL真空玻璃的传热系数已经可以做到0.70w/m2.k.第二,研制成功了具有国内专利的夹层真空玻璃,使得真空玻璃又多了一个安全玻璃品种。

第三,真空腔内置入了吸气剂,使得真空玻璃寿命得到延长。

真空玻璃范文篇4

建筑节能在整个节能工作中占有极其重要的地位。我们知道建筑能耗在社会整个能源消耗中占到30%以上,建筑节能工作的好坏直接影响到整个节能工作。特别是现有的许多大型公共建筑,数量特别巨大,能耗特别严重。目前,中国每年竣工的各类建筑的建筑面积约为20亿平方米,其中公共建筑约为4亿平方米。

年初,建设部、国家发展改革委员会、财政部、监察部、审计署联合《关于加强大型公共建筑工程建设管理的若干意见》,要求新建大型公共建筑必须严格执行《公共建筑节能设计标准》和有关的建筑节能强制性标准,建设单位要按照相应的建筑节能标准委托工程项目的规划设计,项目建成后应经建筑能效专项测评,凡达不到工程建设节能强制性标准的,有关部门不得办理竣工验收备案手续。

当今,绝大多数公共建筑有一个共性,就是采暖能耗、空调能耗特别高。在公共建筑全年能耗中,大约60%消耗于采暖和空调,而其中的20~50%由护结构传热所消耗。在围护结构方面,由于此类建筑大多数都要求具有良好的自然采光,因而,玻璃门窗设计得尺寸很大,窗墙比很高,或干脆设计成玻璃幕墙结构。

玻璃与其优良的透光性能和特殊的质感在建筑上的运用是其它材料无法替代的。长久以来,由于玻璃材料本身的特性造成了玻璃自身的保温隔热性能差,不能满足现代建筑所要求的节能和舒适的要求。特别是那些大面积采用玻璃幕墙的大型公共建筑,过去,由于使用了不节能的普通钢化玻璃或普通中空玻璃制作幕墙,该部分建筑的能耗特别高,而且冬冷夏热很不舒适。

随着玻璃深加工技术的发展,各种各样的节能玻璃象雨后春笋一样蓬勃发展。真空玻璃的出现超越了以往所有的节能玻璃品种,标志着真空玻璃节能时代即将到来。

二、真空玻璃的基本结构真空玻璃是一种保温、隔声性能非常突出的高新技术产品

真空玻璃是由两块平板玻璃,中间由微小支撑物将其隔开,玻璃四周用玻璃钎焊料封边,通过抽气口抽真空,然后封接抽气口保持真空层的一种结构。为了长久保持真空度,延长真空玻璃寿命,新立基公司生产的真空玻璃在真空腔内还放置了吸气剂。微小支撑物是外径0.5mm,厚度0.15mm的金属环,由于体积微小,对人的视觉和玻璃的光学性能几乎没有影响。

真空玻璃的保温原理和结构与保温瓶极为相似,建筑上使用真空玻璃就好象把建筑罩在一个巨大的保温瓶中,保温节能效果可想而知。

三、真空玻璃的保温性能Low-E中空玻璃是目前市场上运用较为普遍、节能效果也很好的玻璃品种。

中空玻璃利用了空气导热系数低的特点。从传热学上讲空气虽然导热系数较小,但毕竟是要进行热传导,其它气体包括惰性气体也一样。中空玻璃由于存在着较大的空气传导热量,使得使用Low-E玻璃降低辐射热的最终保温隔热效果大为降低。只有真空状态才能消除热传导,使玻璃的综合传热性能优势充分发挥出来。

常规真空玻璃产品系列中的真空玻璃保温。最好的Low-E中空玻璃和充氩气的Low-E中空玻璃的保温。通过对比真空玻璃和中空玻璃不难得出下述结论:

1、真空玻璃热导随着所用原片的有效发射率的降低而迅速降低,中空玻璃热导降低的并不明显。

2、如果Low-E玻璃发射率做得很低,比如0.05以下,辐射热导到了几乎可以忽略的地步,此时再降低Low-E玻璃发射率对中空玻璃来讲意义已经不大,但真空玻璃传热系数可以做到0.5W/m2.k,而充空气的中空玻璃传热系数只能做到1.60W/m2.k,充氩气的中空玻璃传热系数只能做到1.23W/m2.k.

3、就传热系数K值而言,真空玻璃K值只有充空气中空玻璃的三分之一,充氩气中空玻璃的二分之一,在不考虑太阳光辐射的情况下,比如,夜晚,真空玻璃比充空气的中空玻璃节能近70%,比充氩气的中空玻璃节能50%.

4、在辐射热导可以忽略的情况下,真空玻璃热导的主要来源是支撑物热导0.5W/m2.k,随着科学技术的进步,有望进一步降低该数值,比如在玻璃强度提高的情况下,减小支撑物直径或增大支撑物的间距都有望大幅度减小热导;充空气(或氩气)的中空玻璃热导的主要来源是气体对流传热和气体导热,为2.1(或1.5)W/m2.k,该数值不可能再有下降。从发展的观点来看,在保温性能上真空玻璃将超越中空玻璃(或充氩气的中空玻璃)更多。

5、由于真空玻璃的厚度通常只有中空玻璃厚度的一半,因此,真空玻璃的表观导热系数更显著地小于中空玻璃的表观导热系数。真空玻璃可以使用三块玻璃制成双真空层的真空玻璃,热阻增加一倍,热导降低一倍,而厚度在单真空层真空玻璃厚度的基础上只增加4mm,比中空玻璃还是薄。

可以说在保温性能上,现阶段真空玻璃已经大大超越了中空玻璃,将来会超越得更多。

四、真空玻璃的光学性能和隔热常规真空玻璃由两片玻璃组成,真空间隔层对太阳光谱是通透的,间隔层支撑物很小。

新立基公司所用支撑物为环形金属片,外径只有0.5mm,高度约0.15mm,即使按圆柱形考虑,每平方米约1600个支撑物对辐射的遮挡面积只有:1600×π×0.252=0.000314(m2),约占玻璃总面积的万分之三,故支撑物对辐射的遮挡作用可以忽略。

我们知道,建筑上的传热除了要考虑温差因素引起的传热外,还要考虑太阳辐射因素。太阳辐射透过玻璃的能量与玻璃光学特性有直接关系。最重要的就是要考虑得热系数SHGC(太阳能总透射比)。

严寒地区冬季寒冷,夏季凉爽,应多考虑冬季阳光的射入,以减少取暖热耗,选用得热系数大的真空玻璃对节能更为有利;夏热冬暖地区,夏季阳光强烈,气候炎热,冬季温暖,应多考虑遮阳,减少阳光的射入以节约制冷能耗,选用得热系数小的真空玻璃更为合理。

五、真空玻璃工程实例

1.天恒大厦工程天恒大厦2005年6月落成,位于北京东直门立交桥东南角,地上22层,地下4层,建筑高度89米,总建筑面积57000平方米,是一座具有5A智能系统的高级写字楼。天恒大厦北侧有一面横隐框竖明框玻璃幕墙,西北角是一面横明框竖隐框,向内与垂直面倾斜15°的三角形玻璃幕墙。幕墙设计和施工单位是江苏省建伟幕墙装饰工程有限公司,两面幕墙所用玻璃全部是新立基公司提供的真空玻璃。玻璃最大尺寸为1985×1161mm(矩形),其西北角幕墙由于是三角形立面,所用玻璃很大部分是异形(梯形和三角形)。两面玻璃幕墙总面积约7000平方米,共用去真空玻璃3365块,合4848平方米。另外,大厦各种窗户所用玻璃也全部是新立基公司提供的真空玻璃。窗面积约2500平方米,用真空玻璃共用去1636块,合1540平方米。

天恒大厦玻璃的传热系数(K值)和空气计权隔声量经国家建筑工程质量监督中心检测,A结构真空玻璃K值=1.0w/m2.k,B结构真空玻璃K值=1.2w/m2.k.B结构真空玻璃空气计权隔声量Rw=36dB.天恒大厦幕墙玻璃采用FB双面复合中空的做法,除了能够使K值在NL真空玻璃的基础上进一步提高外,主要考虑了幕墙抗风压和人身安全方面的要求。与室内外空气接触的玻璃采用两块6mm钢化玻璃,有效地承受了正负风荷载,室内钢化玻璃还有效防止了人的身体对玻璃的冲击可能引起的伤害并保护了玻璃的真空部分。

2.清华大学超低能耗示范楼工程清华大学超低能耗示范楼落成于2005年3月,是北京市科委重点科研和“奥运科技专项”项目。该项目还是国家“十五”科技攻关项目“绿色建筑关键技术研究”的技术集成平台,用于展示和实验各种低能耗、生态化、人性化的建筑形式及先进的技术产品。

超低能耗示范楼座落于清华大学校园东区,总建筑面积2930m2,地下一层,地上四层。新立基公司的真空玻璃产品用于南立面幕墙玻璃和西面、北面的门窗玻璃。该工程幕墙部分共使用真空玻璃72块,合计74m2,最大玻璃尺寸为1982×1200mm;门窗部分共使用真空玻璃92块,合计50m2,最大玻璃尺寸为1356×964mm.幕墙设计施工单位是深圳市方大装饰工程有限公司,门窗制造和安装单位是日本YKKAP公司。玻璃结构见图3幕墙玻璃K值=1.0w/m2.k,门窗玻璃由于在中空层玻璃上用一块低辐射镀膜玻璃代替了普通钢化玻璃,使得K值=0.9w/m2.k.幕墙玻璃考虑到面积较大和承受正负风荷载的影响,内外两面均为钢化玻璃。门窗面积较小,除室内考虑人身可能的冲击使用5mm钢化玻璃外,朝向室外的玻璃未使用钢化玻璃。

由于该幕墙为隐框幕墙,玻璃面积大,玻璃的自重和风压等荷载较大。

六、节能效果试验和分析

1、真空玻璃节能试验2003年冬季,在建筑科学院的协助下,进行了真空玻璃冬季节能效果试验。结果表明真空玻璃与中空玻璃相比有非常明显的节能效果。

该试验所用真空玻璃为新立基公司的产品,当时常规真空玻璃的K值为1.4w/m2.k,复合真空玻璃的K值为1.2w/m2.k试验是在北京市马家堡选用的两个同样户型、面积、朝向,同一层相邻的两户新建单元房501、502室中进行。该户型的南向房间建筑面积15.12m2,北向房间为10.8m2.外墙为240mm,砖墙加60mm厚聚苯夹心石膏板保温。实验过程是502户的南北钢窗保持原样,仅把501户南北钢窗拆下,换成塑钢窗。这就形成501塑钢窗与502单玻钢窗(南向),双玻窗(北向)的对比试验。试验期间塑钢窗按需更换,分别为中空玻璃(N4+A9+N4),常规真空玻璃(N3+V+L4)、复合真空玻璃(N3+V+L4+A9+N3)。试验的测量元件采用热流计和铜—康铜热电偶测温元件。测量元件布置在窗玻璃、窗框、阳台门肚板和房间的各内外墙上,通过BXSCC-1型便携式数据采集和处理系统,每小时检测一次。试验从2002年12月11日开始采集,至2003年元月9日为止,共取得22昼夜实测数据。试验期间,南向阳台门窗户全部打开,使试验窗直接面临室外气候。房间房门关闭,室内供暖没有控制。

试验遇到北京多年未遇寒冷天气,连续几天下雪阴天,曾测量到日平均气温-7.9℃。日最低气温达-9.3℃的严寒天气。针对上述气候状况,采用南向有阳光,北向无阳光和阴天三种工况来统计试验结果。试验大部分时间室外的平均气温低于节能规范,即北京地区采暖期间室外日平均气温为-1.6℃。

2、天恒大厦节能效果分析以天恒大厦为例,假设该大厦分别采用白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃、标准真空玻璃组合双中空六种情况,进行耗能比较。并对真空玻璃节能经济效益作估算。

以国内某玻璃企业生产的白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃和新立基公司为天恒大厦生产的真空玻璃参数为根据进行计算。

结论

(1)从全年节能来分析,复合真空玻璃比其它玻璃节能,最低的达28%,最高可达72%.

(2)北京属于寒冷地区,冬季复合真空充分发挥了节能优势。但夏天节能却不如热反射中空玻璃,其原因是真空玻璃的遮蔽系数较高,但降低其遮蔽系数又会影响室内采光和冬季太阳辐射进热。遮蔽系数应取合适值。从全年节能来看复合真空比热反射中空节能36%.

(3)与其它各种玻璃比较,采用复合真空,可节能、省电、节省电费开支,最低62万元/年,最高424万元/年,经济效益十分明显。同时由于节能,可节省发电燃煤,减少环境污染,保护地球,造福人类。

(4)由于节省能源费用,对于单片玻璃,使用真空玻璃当年即可收回投资,即使对于Low-E中空2年内也可基本收回多付出的投资成本。

七、结束语

天恒和清华工程分别落成于2005年9月和2005年3月,为两个工程提供的真空玻璃的生产时间是在2004年下半年。事实上,新立基公司真空玻璃的生产技术在这两年里又有了新的发展,产品质量也有了很大的提高。

第一,Low-E玻璃作为生产真空玻璃的原片,质量有了很大提高。南方玻璃集团和皇明太阳能有限公司的离线硬膜Low-E玻璃的辐射率都做到了0.11以下,这为大幅度降低真空玻璃的传热系数,提高真空玻璃的保温性能作出了重要贡献。以上两个工程NL真空玻璃部分的传热系数为1.3w/m2.k左右,而目前NL真空玻璃的传热系数已经可以做到0.85w/m2.k,LL真空玻璃的传热系数已经可以做到0.70w/m2.k.第二,研制成功了具有国内专利的夹层真空玻璃,使得真空玻璃又多了一个安全玻璃品种。

第三,真空腔内置入了吸气剂,使得真空玻璃寿命得到延长。

真空玻璃范文篇5

一、建筑节能在整个节能工作中占有极其重要的地位。我们知道建筑能耗在社会整个能源消耗中占到30%以上,建筑节能工作的好坏直接影响到整个节能工作

特别是现有的许多大型公共建筑,数量特别巨大,能耗特别严重。目前,中国每年竣工的各类建筑的建筑面积约为20亿平方米,其中公共建筑约为4亿平方米。

年初,建设部、国家发展改革委员会、财政部、监察部、审计署联合《关于加强大型公共建筑工程建设管理的若干意见》,要求新建大型公共建筑必须严格执行《公共建筑节能设计标准》和有关的建筑节能强制性标准,建设单位要按照相应的建筑节能标准委托工程项目的规划设计,项目建成后应经建筑能效专项测评,凡达不到工程建设节能强制性标准的,有关部门不得办理竣工验收备案手续。

当今,绝大多数公共建筑有一个共性,就是采暖能耗、空调能耗特别高。在公共建筑全年能耗中,大约60%消耗于采暖和空调,而其中的20~50%由护结构传热所消耗。在围护结构方面,由于此类建筑大多数都要求具有良好的自然采光,因而,玻璃门窗设计得尺寸很大,窗墙比很高,或干脆设计成玻璃幕墙结构。

玻璃与其优良的透光性能和特殊的质感在建筑上的运用是其它材料无法替代的。长久以来,由于玻璃材料本身的特性造成了玻璃自身的保温隔热性能差,不能满足现代建筑所要求的节能和舒适的要求。特别是那些大面积采用玻璃幕墙的大型公共建筑,过去,由于使用了不节能的普通钢化玻璃或普通中空玻璃制作幕墙,该部分建筑的能耗特别高,而且冬冷夏热很不舒适。

随着玻璃深加工技术的发展,各种各样的节能玻璃象雨后春笋一样蓬勃发展。真空玻璃的出现超越了以往所有的节能玻璃品种,标志着真空玻璃节能时代即将到来。

二、真空玻璃的基本结构真空玻璃是一种保温、隔声性能非常突出的高新技术产品

真空玻璃是由两块平板玻璃,中间由微小支撑物将其隔开,玻璃四周用玻璃钎焊料封边,通过抽气口抽真空,然后封接抽气口保持真空层的一种结构。为了长久保持真空度,延长真空玻璃寿命,新立基公司生产的真空玻璃在真空腔内还放置了吸气剂。微小支撑物是外径0.5mm,厚度0.15mm的金属环,由于体积微小,对人的视觉和玻璃的光学性能几乎没有影响。

真空玻璃的保温原理和结构与保温瓶极为相似,建筑上使用真空玻璃就好象把建筑罩在一个巨大的保温瓶中,保温节能效果可想而知。

三、真空玻璃的保温性能Low-E中空玻璃是目前市场上运用较为普遍、节能效果也很好的玻璃品种

中空玻璃利用了空气导热系数低的特点。从传热学上讲空气虽然导热系数较小,但毕竟是要进行热传导,其它气体包括惰性气体也一样。中空玻璃由于存在着较大的空气传导热量,使得使用Low-E玻璃降低辐射热的最终保温隔热效果大为降低。只有真空状态才能消除热传导,使玻璃的综合传热性能优势充分发挥出来。

常规真空玻璃产品系列中的真空玻璃保温。最好的Low-E中空玻璃和充氩气的Low-E中空玻璃的保温。通过对比真空玻璃和中空玻璃不难得出下述结论:

1、真空玻璃热导随着所用原片的有效发射率的降低而迅速降低,中空玻璃热导降低的并不明显。

2、如果Low-E玻璃发射率做得很低,比如0.05以下,辐射热导到了几乎可以忽略的地步,此时再降低Low-E玻璃发射率对中空玻璃来讲意义已经不大,但真空玻璃传热系数可以做到0.5W/m2.k,而充空气的中空玻璃传热系数只能做到1.60W/m2.k,充氩气的中空玻璃传热系数只能做到1.23W/m2.k.

3、就传热系数K值而言,真空玻璃K值只有充空气中空玻璃的三分之一,充氩气中空玻璃的二分之一,在不考虑太阳光辐射的情况下,比如,夜晚,真空玻璃比充空气的中空玻璃节能近70%,比充氩气的中空玻璃节能50%.

4、在辐射热导可以忽略的情况下,真空玻璃热导的主要来源是支撑物热导0.5W/m2.k,随着科学技术的进步,有望进一步降低该数值,比如在玻璃强度提高的情况下,减小支撑物直径或增大支撑物的间距都有望大幅度减小热导;充空气(或氩气)的中空玻璃热导的主要来源是气体对流传热和气体导热,为2.1(或1.5)W/m2.k,该数值不可能再有下降。从发展的观点来看,在保温性能上真空玻璃将超越中空玻璃(或充氩气的中空玻璃)更多。

5、由于真空玻璃的厚度通常只有中空玻璃厚度的一半,因此,真空玻璃的表观导热系数更显著地小于中空玻璃的表观导热系数。真空玻璃可以使用三块玻璃制成双真空层的真空玻璃,热阻增加一倍,热导降低一倍,而厚度在单真空层真空玻璃厚度的基础上只增加4mm,比中空玻璃还是薄。

可以说在保温性能上,现阶段真空玻璃已经大大超越了中空玻璃,将来会超越得更多。

四、真空玻璃的光学性能和隔热常规真空玻璃由两片玻璃组成,真空间隔层对太阳光谱是通透的,间隔层支撑物很小

新立基公司所用支撑物为环形金属片,外径只有0.5mm,高度约0.15mm,即使按圆柱形考虑,每平方米约1600个支撑物对辐射的遮挡面积只有:1600×π×0.252=0.000314(m2),约占玻璃总面积的万分之三,故支撑物对辐射的遮挡作用可以忽略。

我们知道,建筑上的传热除了要考虑温差因素引起的传热外,还要考虑太阳辐射因素。太阳辐射透过玻璃的能量与玻璃光学特性有直接关系。最重要的就是要考虑得热系数SHGC(太阳能总透射比)。

严寒地区冬季寒冷,夏季凉爽,应多考虑冬季阳光的射入,以减少取暖热耗,选用得热系数大的真空玻璃对节能更为有利;夏热冬暖地区,夏季阳光强烈,气候炎热,冬季温暖,应多考虑遮阳,减少阳光的射入以节约制冷能耗,选用得热系数小的真空玻璃更为合理。

五、真空玻璃工程实例

1.天恒大厦工程天恒大厦2005年6月落成,位于北京东直门立交桥东南角,地上22层,地下4层,建筑高度89米,总建筑面积57000平方米,是一座具有5A智能系统的高级写字楼。天恒大厦北侧有一面横隐框竖明框玻璃幕墙,西北角是一面横明框竖隐框,向内与垂直面倾斜15°的三角形玻璃幕墙。幕墙设计和施工单位是江苏省建伟幕墙装饰工程有限公司,两面幕墙所用玻璃全部是新立基公司提供的真空玻璃。玻璃最大尺寸为1985×1161mm(矩形),其西北角幕墙由于是三角形立面,所用玻璃很大部分是异形(梯形和三角形)。两面玻璃幕墙总面积约7000平方米,共用去真空玻璃3365块,合4848平方米。另外,大厦各种窗户所用玻璃也全部是新立基公司提供的真空玻璃。窗面积约2500平方米,用真空玻璃共用去1636块,合1540平方米。

天恒大厦玻璃的传热系数(K值)和空气计权隔声量经国家建筑工程质量监督中心检测,A结构真空玻璃K值=1.0w/m2.k,B结构真空玻璃K值=1.2w/m2.k.B结构真空玻璃空气计权隔声量Rw=36dB.天恒大厦幕墙玻璃采用FB双面复合中空的做法,除了能够使K值在NL真空玻璃的基础上进一步提高外,主要考虑了幕墙抗风压和人身安全方面的要求。与室内外空气接触的玻璃采用两块6mm钢化玻璃,有效地承受了正负风荷载,室内钢化玻璃还有效防止了人的身体对玻璃的冲击可能引起的伤害并保护了玻璃的真空部分。

2.清华大学超低能耗示范楼工程清华大学超低能耗示范楼落成于2005年3月,是北京市科委重点科研和“奥运科技专项”项目。该项目还是国家“十五”科技攻关项目“绿色建筑关键技术研究”的技术集成平台,用于展示和实验各种低能耗、生态化、人性化的建筑形式及先进的技术产品。

超低能耗示范楼座落于清华大学校园东区,总建筑面积2930m2,地下一层,地上四层。新立基公司的真空玻璃产品用于南立面幕墙玻璃和西面、北面的门窗玻璃。该工程幕墙部分共使用真空玻璃72块,合计74m2,最大玻璃尺寸为1982×1200mm;门窗部分共使用真空玻璃92块,合计50m2,最大玻璃尺寸为1356×964mm.幕墙设计施工单位是深圳市方大装饰工程有限公司,门窗制造和安装单位是日本YKKAP公司。玻璃结构见图3幕墙玻璃K值=1.0w/m2.k,门窗玻璃由于在中空层玻璃上用一块低辐射镀膜玻璃代替了普通钢化玻璃,使得K值=0.9w/m2.k.幕墙玻璃考虑到面积较大和承受正负风荷载的影响,内外两面均为钢化玻璃。门窗面积较小,除室内考虑人身可能的冲击使用5mm钢化玻璃外,朝向室外的玻璃未使用钢化玻璃。

由于该幕墙为隐框幕墙,玻璃面积大,玻璃的自重和风压等荷载较大。

六、节能效果试验和分析

1、真空玻璃节能试验2003年冬季,在建筑科学院的协助下,进行了真空玻璃冬季节能效果试验。结果表明真空玻璃与中空玻璃相比有非常明显的节能效果。

该试验所用真空玻璃为新立基公司的产品,当时常规真空玻璃的K值为1.4w/m2.k,复合真空玻璃的K值为1.2w/m2.k试验是在北京市马家堡选用的两个同样户型、面积、朝向,同一层相邻的两户新建单元房501、502室中进行。该户型的南向房间建筑面积15.12m2,北向房间为10.8m2.外墙为240mm,砖墙加60mm厚聚苯夹心石膏板保温。实验过程是502户的南北钢窗保持原样,仅把501户南北钢窗拆下,换成塑钢窗。这就形成501塑钢窗与502单玻钢窗(南向),双玻窗(北向)的对比试验。试验期间塑钢窗按需更换,分别为中空玻璃(N4+A9+N4),常规真空玻璃(N3+V+L4)、复合真空玻璃(N3+V+L4+A9+N3)。试验的测量元件采用热流计和铜—康铜热电偶测温元件。测量元件布置在窗玻璃、窗框、阳台门肚板和房间的各内外墙上,通过BXSCC-1型便携式数据采集和处理系统,每小时检测一次。试验从2002年12月11日开始采集,至2003年元月9日为止,共取得22昼夜实测数据。试验期间,南向阳台门窗户全部打开,使试验窗直接面临室外气候。房间房门关闭,室内供暖没有控制。

试验遇到北京多年未遇寒冷天气,连续几天下雪阴天,曾测量到日平均气温-7.9℃。日最低气温达-9.3℃的严寒天气。针对上述气候状况,采用南向有阳光,北向无阳光和阴天三种工况来统计试验结果。试验大部分时间室外的平均气温低于节能规范,即北京地区采暖期间室外日平均气温为-1.6℃。

2、天恒大厦节能效果分析以天恒大厦为例,假设该大厦分别采用白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃、标准真空玻璃组合双中空六种情况,进行耗能比较。并对真空玻璃节能经济效益作估算。

以国内某玻璃企业生产的白玻、普通中空玻璃、热反射玻璃、热反射中空玻璃、Low-E中空玻璃和新立基公司为天恒大厦生产的真空玻璃参数为根据进行计算。公务员之家

结论

(1)从全年节能来分析,复合真空玻璃比其它玻璃节能,最低的达28%,最高可达72%.

(2)北京属于寒冷地区,冬季复合真空充分发挥了节能优势。但夏天节能却不如热反射中空玻璃,其原因是真空玻璃的遮蔽系数较高,但降低其遮蔽系数又会影响室内采光和冬季太阳辐射进热。遮蔽系数应取合适值。从全年节能来看复合真空比热反射中空节能36%.

(3)与其它各种玻璃比较,采用复合真空,可节能、省电、节省电费开支,最低62万元/年,最高424万元/年,经济效益十分明显。同时由于节能,可节省发电燃煤,减少环境污染,保护地球,造福人类。

(4)由于节省能源费用,对于单片玻璃,使用真空玻璃当年即可收回投资,即使对于Low-E中空2年内也可基本收回多付出的投资成本。

七、结束语

天恒和清华工程分别落成于2005年9月和2005年3月,为两个工程提供的真空玻璃的生产时间是在2004年下半年。事实上,新立基公司真空玻璃的生产技术在这两年里又有了新的发展,产品质量也有了很大的提高。

第一,Low-E玻璃作为生产真空玻璃的原片,质量有了很大提高。南方玻璃集团和皇明太阳能有限公司的离线硬膜Low-E玻璃的辐射率都做到了0.11以下,这为大幅度降低真空玻璃的传热系数,提高真空玻璃的保温性能作出了重要贡献。以上两个工程NL真空玻璃部分的传热系数为1.3w/m2.k左右,而目前NL真空玻璃的传热系数已经可以做到0.85w/m2.k,LL真空玻璃的传热系数已经可以做到0.70w/m2.k.

第二,研制成功了具有国内专利的夹层真空玻璃,使得真空玻璃又多了一个安全玻璃品种。

第三,真空腔内置入了吸气剂,使得真空玻璃寿命得到延长。

真空玻璃范文篇6

玻璃幕墙是一种有别于传统的新型建筑外墙形式,这种外墙形式最突出的优势就是节能环保,完全改变了人们对建筑行业污染环境、浪费材料等的初期印象。目前建筑行业中,普遍使用的玻璃幕墙有双层玻璃幕墙和真空玻璃幕墙两种这两种都具有节能环保的优势,但是所表现的节能原理以及节能形式有所不同。笔者总结如下。

2建筑双层玻璃幕墙

这种玻璃幕墙还有很多的名称,比如热通道幕墙或者是呼吸式以及通风式幕墙,从上述这些名称中我们可以充分的了解到这种玻璃幕墙的优势,即:通风散热具有热通道的功能。所谓双层玻璃墙不言而喻,其是由内、外两层构成,在这两层之间存有一定的空隙,用来设置换气通风层,最突出的优势就是其外层幕墙设计了出风以及进风两个出人口,进而使得通风层开合自如,这是双层玻璃幕墙能够实现节能的关键,有些双层玻璃幕墙内外层之间不仅仅设计了换气通风层,还设计了百叶,这种设计在做到节能的同时,还能够对自然光进行有效的调节,以使人们生活得更加舒适。其主要的节能原理为:内外层玻璃之间有大量的空气存在,所以缓冲作用比较明显,达到了节能保温的效果。这种玻璃幕墙如果根据通风层结构来划分来可以将其划分为两种不同的循环体系,这两种体系的差别在于,一个是敞开式,另一个是封闭式;一个是外循环,另一个是内循环。封闭内循环是一个体系,敞开外循环是另一个体系。前者要求建筑外墙采取封闭式处理的方法,处理时采用两种材料,一种是中空玻璃,另一种是断热材料,内层可以设计为开启玻璃,也可以设计为单层玻璃,这两层之间的换气层通常在10cm~20cm之间。换气通风层并不是单独的一个体系,其与建筑的整个通风系统相关联,进而实现空气循环,最终使得内部玻璃幕墙的温度始终保持与室内的温度相当,这是封闭式内循环体系的玻璃幕墙能够真正的实现节能的主要原因。敞开式外循环体系的玻璃幕墙与前面阐释的封闭式内循环系统略有不同,尤其是构成的材料,前者外层是单层玻璃,其属于非断热的材料,另外,其透过滤非常好,则前者玻璃幕墙主要由两种材料构成,一种是断热性能良好的材料,另一种是中空玻璃。敞开式外循环体系的玻璃幕墙内外层之间也设置了换气通风层,其两端也有相应的排风以及进风的设备。温度相对比较高的季节,可以把通风口打开,由此使得通道之中的所有气体的温度都有所升高,随着气体温度的升高,其运动的方向也就越往上,待到达到最顶部的时候就随之排出,使得通道内的热量全部被带走,最终达到隔热的目的。在温度比较低的季节中,进风口以及出风口都要关闭,这样外层玻璃与内层玻璃之中的空气将无法排出,进而实现了保温目标,在当夜晚来临时,其中的热量会逐渐的被释放,这样室内就不会出现温度骤降的现象,让居住者感到不适。有研究表明,与单层玻璃幕墙比较,双层玻璃幕墙在夏季制冷时可以节约38%60%的能源,在冬季供暖时能够节约42%52%的能源。另外,在双层玻璃幕墙之间加入百叶,使其节能效果更好。

3建筑真空玻璃幕墙

这种玻璃幕墙也是建筑工程中使用率比较高的一种玻璃幕墙,其所使用的两块玻璃平板都处于封闭状态中,玻璃平板之间的差距非常小,最大的也不超过0.2mm而且平板之间的空气会全部被抽走,直至达到真空的状态。玻璃传热一般有传导、辐射和对流三种方式,有研究表明对流传热占总体传热的70%以上,而真空玻璃幕墙就是利用真空来减少对流传热。由于中间是真空,所以使传导传热和对流传热能够较大程度的减弱,应保证组成的两块玻璃至少一片是Low-E玻璃,这样能够保证降低辐射传热。真空玻璃和中空玻璃结构比较相似,都是两块相间隔的玻璃组成。他们之间的不同是:真空玻璃中间层是真空,而中空玻璃中间层是空气;真空玻璃要求至少一块玻璃是Low-E玻璃;真空玻璃的两块玻璃之间的间距较小,仅为0.15mm左右,而中空玻璃间距一般再10mm以上。由于真空玻璃的构造,与中空玻璃相比具有更好好的隔热保温性能。有研究表明,一片6mm厚的真空玻璃,其隔热性能和370mm的粘土砖相当,同时真空玻璃有较好的隔声性能。有资料表明,应用真空玻璃后,能使建筑的空调节能一半左右。另外,同中空玻璃相比,真空玻璃的防结霜结露性能更优越,由于真空玻璃的内层有真空隔绝,其温度不会过低,与中空玻璃容易在冬季出现室内结露现象相比,真空玻璃具有防止冬季室内出现结露的功能。由于真空层的存在,使其比中空玻璃具有更好的隔声效果,尤其是对中频的声音,真空玻璃具有较好的隔绝效果。真空玻璃除了这些良好的隔声、防露、防雾、隔热性能外,还有较好的抗风压性能。真空玻璃的两块玻璃紧密的结合在一起,一般其耐风压性能比中空玻璃强1.5倍。因此,与中空玻璃相比,真空玻璃在各方面具有更优良的性能。

4结语

真空玻璃范文篇7

关键词:节能玻璃,建筑节能设计,PC板

随着现代化居民文化水平的提高,人们对环保也有了进一步的认识,建筑设计领域也顺应着社会潮流,逐步向节能设计转变,其中建筑节能设计就是一项明显的表现,调查显示,全球近一半的能源消耗,1/3左右都源于建筑活动,而作为建筑领域中常见的材料———玻璃,也逐步受到重视,因此节能玻璃应运而生。加大节能玻璃在建筑节能设计中的应用,能够有效减少建筑活动能源消耗。

1常见的节能玻璃

建筑节能设计是通过建筑设计,达到节能目的,主要是节约家用电器供热、照明以及调节室内空气质量、温度、湿度等的能源消耗。节能玻璃的应用是建筑节能设计的重要组成部分。玻璃在整个建筑物中承担着室内外温度连接、空气交换等重要任务,其节能可占建筑节能的25%左右,在建筑节能设计中具有重要地位。常见的节能玻璃主要包括中空玻璃、泡沫玻璃、热反射玻璃以及太阳能玻璃等,与此同时,近年来也开发出玻璃替代品———PC板。

2中空玻璃

2.1中空玻璃的概念。中空玻璃是由两片或者两片以上的玻璃片组合而成,将玻璃片及其周边用间隔框分开并采用专业密封胶进行密封处理,让多个玻璃片中间形成中空的,具有干燥气体的空间。中空玻璃通常采用5mm~10mm不等的玻璃片,中空空间的厚度一般为6mm,9mm或12mm。2.2中空玻璃的特性。第一,光学性能。中空玻璃的透光性比一般玻璃强,由于中空玻璃可以选用不同种类的玻璃片组合而成,所以它具有不同的光学性能。一般而言,中空玻璃对可见光的透光率达到85%左右。第二,隔温性能。中空玻璃的中空部分可以较好隔绝室内外温度,尤其是隔绝冷空气。在室外温度低于室内温度时,单层玻璃可能会结霜结露,而双层或多层的中空玻璃露水不易附着在其表面。由于一般中空玻璃为双层,而内外玻璃之间的真空层有效隔绝温度,所以即使室外温度很低,外层玻璃受室外温度影响很冷,内层玻璃也不易受到室外影响而变冷。中空玻璃的露点可达-35℃而在同等条件下一般单层玻璃的露点是-20℃左右。第三,隔音性能。中空玻璃中间的真空层能有效隔绝室内外声音。真空环境作为不传播声音的环境,可有效隔绝室内外声音,减弱室外噪声对室内的影响。一般而言可将80dB的噪声减弱到50dB左右,保证了室内安静舒适的环境。第四,热工性能。中空玻璃的热透系数是单层玻璃热透系数的1/2。由于两片玻璃之间真空层阻隔,使室内热度散发小,利于留住热空气,其传热系数为1.6W/(m2•K)~3.2W/(m2•K)。2.3使用中空玻璃的优势。由于中空玻璃的透光度、隔温性、隔音性以及热工性能都远远超过单片玻璃,而且就价格而言也比较亲民,所以中空玻璃在建筑节能设计中得到了最为广泛的应用,它可以有效缓解室内外温差较大情况,防止室外低温渗入室内以及室内温度流失室外,可以较好保持室内安静环境。

3热反射玻璃

3.1热反射玻璃的概念。热反射玻璃有时也被称为热反射镀膜玻璃,这种薄膜镀在合适的玻璃上可以对太阳辐射以及紫外线辐射产生良好的阻隔作用,在用于夏季隔温方面性能很好。并且,这种热反色玻璃可以反射多色光,可以将周围的景色自然映射到玻璃上,会使整个建筑物看起来与周围环境融合,十分应景。3.2热反射玻璃使用优势。第一,隔热性。可以有效反射太阳辐射,隔绝室外高温,使室内保持舒适温度。第二,抗眩光性。可以减轻眩光作用,使工作生活环境更加舒适。此外,可以利用单片热反射玻璃制作中空玻璃,综合两种玻璃的优势。

4PC板

4.1PC板的概念。PC板学名聚碳酸酯板,又被称为透明塑料片或阳光板或耐力板。属于最新研制的节能玻璃的一种,而其性能又高于一般的节能玻璃。4.2PC板的性能。耐冲击性是PC板优于其他节能玻璃的突出性能,它的耐冲击性是其他节能玻璃的90倍甚至更多,保温性能优于其他普通玻璃,可以冷成型,是较为理想的采光材料。更重要的是,它比一般的玻璃安全、保温、通透、易弯曲、重量轻、抗冲击、色彩多变丰富,这些优良的性能使其在建筑节能领域得到越来越广泛的应用。PC板经过高科技的光稳定工艺处理后,具有一定的抗老化功能,解决了其他玻璃不能解决的问题。第一,防结露性能加强:在室内外温差超过30℃,室内外相对湿度超过80%的情况下才会产生结露现象。第二,阻燃性能加强:PC板的自燃温度高达630℃,正常情况下不易燃烧,并且其燃烧过程中也不会产生如氯化物、硫化物等有毒性气体。第三,易加工:可以采用真空成型法加工成中空玻璃,也可以在低温条件下进行冷成型,在常温状态下的PC板的最小弯曲半径为厚板的170倍,PC单层板最小弯曲半径为厚板的140倍。第四,耐候性:PC板在-40℃~+120℃期间保持稳定性,其低温催化温度为-110℃,高温软化度为零上360℃[1]。

5使用节能玻璃的注意事项

5.1中空玻璃。第一,中空玻璃制作时一定要严格遵循制作工艺流程,将中间夹层部分抽取成真空并用专业密封技术严格密封。第二,安装中空玻璃的工作温度应高于4℃。第三,使用热反射玻璃、钢化玻璃制作成的中空玻璃,安装时应正确区分内外侧,一般而言镀膜层应当是外侧玻璃。此外,为了优化以及提高中空玻璃的性能,建议使用热反射玻璃或PC板作为组成中空玻璃的单片玻璃。5.2热反射玻璃。热反射玻璃的镀膜层应当朝向室内。5.3PC板PC。板最大的缺陷是变黄现象,随着时间推移变黄会加剧,耐磨性比一般玻璃较差,膨胀与收缩比较明显。所以在使用PC板时,应重视其收缩与扩张性,对其加工工艺与加工技术不断改进,以适应当期需要。

6建筑节能设计中节能玻璃的应用

6.1应用原理。建筑物往往由于在材料等方面的限制,在隔热、隔冷等方面存在不可避免的缺陷,而玻璃作为门窗等材料的主要材料,可以有效弥补这方面的不足。由于玻璃允许太阳辐射进入室内带来的有利与不利两种相反的作用,而阳光间+“双层皮”+智能玻璃便逐渐成为建筑节能设计领域中较为普遍的应用。早在20世纪中后期,中空玻璃在建筑节能设计领域中普遍应用,而热反射玻璃在住宅建筑中的应用甚至可以追溯到20世纪初期,各种节能玻璃的组合产品备受国内外建筑节能设计领域的青睐。阳光间+“双层皮”+智能玻璃属于典型的节能玻璃在建筑节能领域中的应用方式,其中,以设计师罗吉德设计的比尔市生态公寓为代表,使用这种方式实现了春秋冬三季温润空气储存达25%~35%的房间所需要的热能,大大降低了保温隔热的能源消耗。6.2具体应用。以近年来节能玻璃在建筑节能设计中的经典应用项目———南疆石金奥写字楼为例,具体阐述节能玻璃在建筑节能设计中的应用。首先,在玻璃立面的选择中,该写字楼运用智能玻璃立面,由中心计算机统一控制,并且与通风管和屋顶结合,使室内温度可以在四季中保持适宜人们工作的温度,这减少了空调等调节温度的电器的使用。同时,中空玻璃的使用有效减少室外噪声对室内的影响。其次,LOFT设计概念。写字楼主体采用无承重墙的开放式简约设计,实现了与智能玻璃理念的高效契合[2]。此外,随着科技进步与经济的发展,节能玻璃的使用越来越倾向于中空玻璃。6.3结。上述金奥写字楼的例子充分说明了节能玻璃可以在建筑节能设计中良好运用,并可以有效降低能源消耗,节约资源能源,进而产生节约成本的功效,此外还说明,若是节能玻璃配合LOFT设计概念与智能化技术,节能玻璃的功效将得到更好地发挥。由此可以推断,节能玻璃在应用于建筑节能设计中应当注重技术革新:首先,要革新密闭技术,使中空层更好密封,使建筑材料与玻璃门窗更好衔接;其次,革新玻璃搭配组合,综合各种单面玻璃优点制作功效较为齐全的中空玻璃;最后,开发太阳能技术,革新热反射玻璃,使之可以适当收集太阳能为它所用。

7结语

节能玻璃是一种高效、美观且实用的建筑材料,在整个节约资源的大环境下在建筑领域发挥着不可替代的作用,建筑设计师们应充分考虑节能玻璃的优缺点,将各种节能玻璃用在合适的地方,还应当考虑建筑的外观与采光程度,这样可以在节约能耗的同时还可以保持建筑物的美观。

参考文献:

[1]何少敏.建筑节能在建筑设计中的应用[J].住宅与房地产,2018(18):102.

真空玻璃范文篇8

1建筑新材料在建筑设计中的应用

传统建筑物中人们主要通过一些现代化的电力设备对建筑物中的温湿度、采暖等影响居住舒适度的室内参数进行控制,达到冬暖夏凉的目的,但是,大量电力设备的应用不可避免的要消耗大量的电能,不利于建筑的绿色节能环保,而且大量的采暖和制冷设备需要安装也大大限制了建筑设计的可能性,影响建筑的艺术性和美观性。近年来,随着科技发展,建筑领域涌现出来了各种各样的功能性新材料,可以有效提高建筑物本身的调节能力,为建筑设计提供了新的可能性。1.1保温建筑材料在建筑设计中的应用。传统的建筑设计通常通过单纯的增加建筑的厚度以增强建筑物的保温或绝热效果,而建筑物厚度的增加又会严重影响到建筑设计过程,例如,建筑物中窗洞的深度增加,不同建筑之间层间距降低等等,不仅使得建筑物外观的美观度下降,还严重影响到人们在建筑中居住体验。近年来相关建筑材料的研究人员开发出了一种新的建筑材料——真空隔热板。真空隔热板以金属和纸质材料为外壳,在壳间形成真空内腔,真空内腔中填充多孔结构的纤维、泡沫塑料或是压缩硅酸盐,真空隔热板的二氧化碳的排放量很小,并且在厚度很薄的情况下就可以达到良好的保温绝热效果。一般情况下,厚度为50mm的真空隔热板,其保温绝热效果就相当于厚度为200mm的普通矿物棉材料形成的建筑墙体,大大避免了由于建筑墙体厚度多大对建筑设计的限制,具有很强的应用前景。真空隔热板主要通过真空的导热系数低提高其保温绝热效果。建筑采用的玻璃材料也是影响建筑保温采光效果的重要因素。为了进一步提高建筑物的保温绝热采光效果,各种新的玻璃材料也相继出现,例如,吸热玻璃、复合玻璃、热反射玻璃、调光玻璃等等。其中,复合玻璃是一种透明的绝热塑料,这种透明的绝热塑料内部呈圆形的蜂窝状,不仅能够节约建筑材料,降低建筑施工成本,还可以吸收太阳的辐射热,具有对太阳光进行反射,另外,复合玻璃主要包括玻璃、空气间层和吸热面层。黑色的吸热面层位于复合玻璃的最外侧,在夏季避免建筑外的热量通过复合玻璃进行室内,冬季建筑室内的热量向外部散发,起到绿色节能的效果[1]。1.2通风建筑材料在建筑设计中的应用。传统建筑中通风设计主要通过门窗开合进行室内通风,但是,这种通风方式无法调节进风量,通风的舒适度很难保证。为了调整建筑通风情况,近年来,相关人研发出了一种新型门窗及其开合结构,建筑物使用该门窗进行通风的过程中,室外的空气先从门窗的底部进入,然后流向门窗的顶部由门窗的顶部进入室内,避免室内和室外空气直接对流,空气流动速度过快,气流感过强造成的不适感。而且,该门窗结构中设置的噪声吸收板,可以有效避免冷凝水进入室内,并且有效过滤进入的空气。该门窗结构的作用原理是,利用风和气体动力的有效作用面积不同形成的压力差,在不同的通风条件下,使用者可以通过总线系统及计算机对门窗的能量消耗进行有效,降低门窗的能耗[2]。

2建筑新技术在建筑设计中的应用

2.1将生态技术融入建筑设计中形成生态建筑设计。随着人们生活水平的日益提高,在解决了温饱问题之后,越来越多人开始认识到生态环保的重要性,开始在生活或工作的方方面面践行生态理念,建筑领域也不例外,为了提高建筑的生态效益,人们逐渐开始在建筑设计的过程中融入生态技术形成生态建筑设计。生态建筑设计就是指通过生态技术和建筑设计相结合使人、生态环境与建筑三者和谐共存,使建筑兼顾居住舒适度、经济效益与生态效益。生态建筑设计在建筑施工过程中要求最大限度的提高各种能源的利用率,避免造成环境污染和生态破坏;在建筑物的形式与内涵设计上,要注意体现出建筑的自然性和社会性,保证建筑方面在居住的舒适性与安逸性,充分利用建筑本身实现通风、保温或采光功能,充分利用在自然太阳能、热能、风能等。具体的,在建筑设计中采用太阳能供暖、风能供电等都是生态建筑设计的具体体现[3]。2.2数字化技术在建筑设计中的运用。随着经济和科技的发展,数字化技术的应用日渐普及,建筑设计过程中也开始应用起数字化技术。简单来讲,数字化技术实质是指信息处理和储存的技术。在建筑设计中的运用数字化技术可以进一步实现建筑的智能化设计,人们无需出门,可以在家中完成工作、购物以及学习,极大的便利了人们的生活和工作,效的节约了城市办公建筑的面积,减缓城市的交通拥堵状态,进而降低了城市生活造成的环境污染。例如:南昌的绿地紫峰大厦,就是将数字化技术与建筑设计相结合形成SOHO建筑模式,通过计算机网络技术集小型办公与居住为一体,打破了传统的群居和集体办公模式。

3结语

综上所述,随着经济发展与时代进步,各种建筑新材料和和新技术不断涌现,在科技发展的推动下,我国的建筑风格更加趋向多元化,将建筑设计与新材料新技术可以推动我国建筑向着环保绿化节能发展,提高人们日常居住的舒适度,对于我国建筑行业的健康发展具有重要意义。

参考文献

[1]张丞韫,陈柯.建筑设计中的新技术和新材料的应用探讨[J].建材与装饰,2019(9):69-70.

[2]刘欣,王柏龙.传统建筑材料在当代环境艺术设计中的运用与研究[J].中国建材科技,2018,27(5):70-71.

真空玻璃范文篇9

关键词:建筑耗能;建筑外窗节能性能

建筑外窗是建筑围护结构的组成部分,同时也是外维护结构中保温性能最薄弱的环节,据有关资料显示,当前我国的社会总能耗中建筑能耗就占了三成,而在建筑能耗中,建筑外窗能耗又占了近一半。换句话说,建筑外窗能耗占了社会总能耗的近1/7,因而建筑外窗节能性能是被动房达到节能指标的关键。为此,河北省自2015年5月1日起,省行政区域内申报施工图设计审查的新建(含改建、扩建)居住建筑均执行65%节能标准,2017年5月1日执行75%节能标准。这标志着河北省节能减排工作又向前迈进了一大步。因此,建筑外窗的节能性能在工程应用中显得尤为重要。

一、建筑外窗热量损耗因素分析

众所周知,能量的消耗主要是通过介质的传递来实现,而建筑外窗属于其中的介质。节能建筑外窗的常见节能参数主要就是传热系数(K值)、窗墙比和气密性等。要想降低能耗,其实关键的就是改变节能参数。

二、降低建筑外窗热量损耗的途径

(一)降低建筑外窗的传热系数(K值)。从材料的热传导性能来说,金属材料比玻璃的导热系数高,塑料的、木材的导热系数又比玻璃底,常有的建筑外窗相关材料的导热系数见表1。影响建筑外窗传热系数的因素主要是材料的传热系数和玻璃的传热系数,因此要想降低建筑外窗的传热系数关键是要降低建筑外窗型材的传热系数和玻璃传热系数。1.型材的选用。目前市场上占据主导地位的建筑外窗主要是断桥铝合金建筑外窗和塑钢建筑外窗。断桥铝建筑外窗是在传统的铝合金建筑外窗和塑料建筑外窗的基础上利用结构原理制作出来的一种新型建筑外窗。(1)断桥铝复合材料制作的主要工艺是利用高隔热材料(尼龙隔热条,隔热性高于铝型材1250倍),将室内外两层铝合金既隔开又紧密地连接成一个整体,构成一种新的隔热型的铝型材。针对断桥铝合金窗型材,降低断桥铝合金窗型材的传热系数最有效的途径。首先是在满足型材强度规范的前提下加高隔热条的高度并降低热量传导,其次是在断桥内填充保温材料用来降低空气对流的影响。断桥铝合金型材的传热系数主要与隔热条间隙宽度大小有关,按照《建筑门窗玻璃幕墙热工计算规程》JGJ151-2008给出的隔热条宽度与断桥铝合金型材的传热系数的关系如图1所示。此外,“65系列”的断桥铝型材可实现建筑外窗的三道密封结构,合理分离水汽腔,有效实现气水等压平衡,大幅度增加建筑外窗的水密性和气密性。(2)塑钢型材针对于塑钢型材,主要就是增加塑钢型材的腔室以降低空气对流的影响进而达到降低型材传热系数的目的。塑钢型材保温性能见表2。(3)木型材或铝木复合型材与窗框厚度尺寸及木材湿度有关,按照《JGJ-T151-2008建筑门窗玻璃幕墙加工计算规程》中给出的木窗框与窗框的关系图如图2所示。2.玻璃的选用。(1)中空玻璃,中空玻璃是由两片或多片玻璃组成,玻璃间用内部灌有干燥剂的空心铝管隔离,同时将中空部分充入干燥空气或惰性气体,并用丁基胶、聚硫胶或结构胶进行密封处理,形成干燥空间的玻璃,其传热系数优于单层玻璃的传热系数。(2)低辐射镀膜玻璃,低辐射镀膜玻璃又称Low-E玻璃,该玻璃有较好对光学的控制性能,对波长以0.3~2.5mm的太阳光有良好的反射和吸收能力,能够明显减少太阳光的辐射能的传递,低辐射镀膜玻璃也可以做成中空玻璃,对节能有更好的效果。(3)真空玻璃,真空玻璃是将两块平板玻璃的四周密封,将其中间间隙抽成真空后密封排气孔,两片玻璃之间的间隙通常为0.1~0.2mm,真空玻璃的两片一般至少有一片是低辐射玻璃,这样将通过真空玻璃的传导、对流和辐射方式散失的热量降到最低。以上三种玻璃都具有很好的隔热保温性能,因此能有效地达到节能目的。3.窗型的设计。如建筑节能设计标准、被动房塑料窗的配置图3所示。就建筑外窗产品而言,节能建筑外窗的窗型主要是平开窗和固定窗两种,推拉窗因窗扇四周密封性能较差,不能很好地降低热传递,所以推拉窗不是真正意义上的节能建筑外窗,平开窗和固定窗四周均有很好的密封,能有效地降低能量的消耗,因此平开窗和固定窗都属于节能建筑外窗的范围就节能效果而言,单从窗型上来说,固定窗的保温效果要优于平开窗,因为平开窗虽然开启部位密封效果很好,但毕竟是开启部位,主要是利用密封胶条实现封闭效果,但与固定窗还是存在一定的差距。因此,固定窗的密封效果优于平开窗,能量消耗也同样优于平开窗。所以,在窗型设计方面,在满足通风和消防规范的前提下,应尽量减少开启部位的设计,进而达到建筑外窗节能目标。4.建筑外窗的制作。在建筑外窗制作过程中,要严格控制建筑外窗制作工艺和质量要求,严格把控建筑外窗的加工精度,保证建筑外窗各部位的配合间隙,同时对密封胶条的选用也要严格控制,建议使用三元乙丙材质密封胶条,三元乙丙材质的密封胶条使用寿命长、生产能耗低、伸缩强度大、密封性能好,这也是建筑外窗节能的保证。重点推荐:90铝包木内开系列门窗,开启方式:固定/平开(对平开)/平开上悬(对平开上悬)/悬开(上悬、下悬)/推拉;玻璃配置:双层玻璃5+15A+5,三层玻璃5+9A+5+9A+5;5+12A+5+12A+5;密封配置:EPDM\软硬共挤复合型胶条、斯劳格密封胶条;铝材配置:窗系列铝材壁厚≥1.4mm,门系列铝材壁厚≥2.0mm;纱窗配置(备选项):一是外挂式纱窗,二是金刚网一体纱窗;产品性能:抗风压性能-8级,空气隔声性能-4级,保温性能-8级;特点:具有纯木窗特点,外观更加豪华大气,外铝颜色多样,可与建筑物融为一体,铝材耐腐性能优良,可延长产品寿命,市场认可度高,清洁方便,容易保养。图5图65.对外窗透明部分的基本性能要求玻璃的透明部分性能是较为复杂的,需同时满足如下要求:玻璃的传热系数应满足K≤0.8W/(m2•K);玻璃的太阳能总透射比G≥0.35;玻璃的选择性系数S,愈大愈好;并满足S=TL/g≥1.25的要求;其中TL是可见光透射比。

三、结语

在当下的建筑外窗市场下,各种各样的建筑外窗琳琅满目,为更好地更有效地达成节能减排、保护环境的目标,降低建筑耗能是关键,而大力发展节能建筑外窗就是最有效的途径。

参考文献:

[1]邹明妍.《门窗节能的重要性》.  

[2]张锐.《浅谈建筑门节能窗》.

[3]王戊已.《浅谈建筑节能门窗的设计与应用》.

[4]被动房之家.《如何选择被动房门窗》.

真空玻璃范文篇10

1.1重要性分析

建筑施工中应用节能材料,能够有效降低资源消耗,对环境保护及资源节约至关重要。建筑施工中,材料消耗能源的占比较大,节能材料进行应用十分必要,在满足建筑使用功能的前提下,要在价格以及使用效果上都能够得到充分的体现。建筑节能材料中相变节能材料的应用比较广泛,在节能以及温度的控制等方面发挥着着重要作用,将相变材料在建筑材料有效应用能够保障建筑质量以及环保性能。

1.2应用趋势分析

建筑节能材料的具体应用对建筑的质量有着比较好的效果,随着相关技术的进一步发展,节能材料的应用将会得到进一步的提升。目前,由于在实际应用中,建筑材料应用施工的水平不够及工序不正确等,造成了对节能建筑材料的应用效果不佳,针对这一情况,就要在建筑节能材料进行推广的过程中构建一套设计标准。要加大对节能材料研发的鼓励力度,使节能建筑材料理论和技能实际相结合,达到更深层的应用。

2具体应用分析

2.1建筑外墙保温材料

对建筑节能材料的实际应用要从多个结构进行分析,对建筑外墙保温材料的应用主要是聚苯乙烯泡沫塑料及对岩棉的应用,对聚苯乙烯节能材料,其性能优质,聚苯乙烯的主要原材料是树脂,经过发泡而制成的内部带有封闭微孔的材料,导热系数相对比较小,吸水率也相应较小,有着比较好的防震和吸声等诸多优点。将聚苯乙烯节能材料在建筑的外墙施工中加以应用,能够起到节能环保的效果。

2.2加气混凝土砌块

节能材料在建筑墙体当中进行有效应用也能够起到良好的环保效果,加气混凝土砌块的应用相对比较广泛,在材质上较为稳定,强度较高。砌块材料在建筑墙体施工中进行有效应用,能够起到很好的隔热保温作用。混凝土空心砖的应用也很重要,这是当前应用较为广泛的新型建筑材料,其原材料主要是以水泥作为胶结料,将砂石等作为主要集料,通过粉煤灰等进行混合搅拌而成,能够起到理想的节能环保效果,墙体的热阻得到有效增加。

2.3门窗的材料

对建筑施工中的节能门窗,是建筑物内外部实施能量交换的重要通道,也是建筑物热交换以及热传导较多的部分。建筑门窗材料在整个建筑施工过程中所占据的比例相对较大,对节能建筑门窗材料进行应用,不仅能够起到环保效果,在质量上也能够得到有效保障。对门窗节能材料的应用要根据门窗材质以及种类来确定,对与之相匹配的密封条也要精心选择,使缝隙完全密封。

2.4玻璃

玻璃在建筑施工节能材料中的应用应当得到充分重视,当下,比较常用的是泡沫玻璃及真空玻璃。真空玻璃被广泛应用,效果比较好,真空玻璃的间隙最小化,真空度也达到相应标准,使玻璃间的传导热接近零,在保温效果上比较好。泡沫玻璃作为节能材料,主要是把废弃的玻璃以及含有玻璃的物质为主要原料,并添加相应的发泡剂以及促进剂等而制成的节能材料,导热系数上比较小,有耐腐蚀的特性,密度较小,对建筑的结构质量有效降低,从而有效扩大使用面积。

2.5其他节能材料

建筑施工中节能材料的应用,还有其他材料,例如通过钢结构以及钢结构的混凝土,在建筑中是主体材料,这一结构在质量上相对较轻并能进行回收利用,对环境保护以及能源的节约上能起到很好作用。进行推广使用非常必要。

3结语