压差范文10篇

时间:2023-03-19 19:15:39

压差范文篇1

在分户计量双管供暖系统中,为充分利用家用电器、灯光和人体等自由热量,通常是在每一组散热器上安装预设定型温控阀,因此整个系统是变流量运行,作用在温控阀上的压差随着流量的改变而发生变化。当其实际压差较大温控阀就可能产生噪音,尤其是在房间热负荷较小时,温控阀会频繁开关,产生振荡。振荡除引起不必要的磨损外,还导致回水温度升高,并影响系统中的其它温控阀,因此在一个设计良好的分户计量双管供暖系统中,一方面应使用系统中每个温控阀的热权度总是大于等于1,另一方面温控阀上所随的实际压差还应该保持在它的允许范围内[1].压差控制阀也称为自力式压差控制阀,在变流量系统中,它通过感应供热管道系统中两点的压力,可以使被控环路的压差保持恒定,保证被控环路中调节阀门的正常工作,那么在分户计量双管供暖系统设计时,控制阀应如何布置呢?通常有以下三个方案:

a.压差控制阀仅在设在建筑物供暖引入口,控制供暖引入口的压差为定值。

b.在下供下回式双管系统中,压差控制阀设在每组共用立管的起始端,控制立管的压差为定值。

c.压差控制阀设在每一户的引入口,控制户内系统的压差为定值。

目前,在实际设计中,这3个方案应如何选择,争议颇多,仅就保证温控阀平稳工作而言,方案1最差,但其初投资最少;方案3最好,但其初投资最高;方案2介于方案1和3之间。下面就针对这3个方案进行一些分析,希望为工程人员设计时,方案的选择提供一些有益的建议。另外应说明的是:本文所讨论的双管供暖系统是指户内、户外都为双管的系统。

二、方案分析

1.方案1:

压差控制阀仅设在建筑物的供暖引入口由于是双管系统,因此以户为单位,供暖系统内各户之间是并联关系。每一用户户引入口作用压差ΔPS可以由下式计算:ΔPS=ΔP1+ΔP2-ΔP3(1)

式中:ΔP1——建筑物供暖引入口压差控制阀控制压差;

ΔP2——所计算用户随的自然作用压头;

ΔP3——从供暖引入口压差控制阀的压差控制点到所计算用户户引入口之间供回水管路的阻力损失。

(1)式中各参数的讨论

a.建筑物供暖引入口压差控制阀控制压差ΔP1在系统运行过程中,ΔP1是定值,它取决于设计工况下,供暖系统最不利环路中,从供暖引入口压差控制点到最末端用户户引入口之间供回水管路的阻力损失△P''''3,最末端用户户内系统的总阻力损失△P''''s以及最末端用户所随的自然作用压头△P''''2.根据式

(1)有:△P1=△P''''3+△P''''s-△P''''2(2)

b.用户所随的自然作用压头ΔP2ΔP2取决于用户所处的楼层以及供回水立管中供回水温度[2].在系统的运行过程中,ΔP2是一个不断变化的量,因此在设计工况下,根据式(1)计算户引入口作用压差ΔPS时,其自然作用压头ΔP2应取最小值。因为如果取值较大,那么根据式(1)所计算的户引入口作用压差ΔPS就较大,在根据ΔPS设计户内系统时,其管道和温控阀的阻力损失就可能较大,当实际的自然作用压头ΔP2小于所选定值时,户引入口作用压差ΔPS就会低于设计值,导致温控阀上的实际压差小于设计值,此时,温控阀即使全开,散热器所提供的热量仍不足以维持设计室温,所以在设计工况下,自然作用压头ΔP2应取最小值。这样,在实际运行时,自然作用压头ΔP2总是大于等于最小值,因此能保证温控阀的热权度总是大于等于1,房间温度总是能达到设计值。不过,由于自然作用压头ΔP2的影响因素较多,要确定每一用户的最小值通常都很困难,因此为便于设计,在设计工况下计算户引入口作用压差ΔPS时,自然作用压头ΔP2可以不考虑。

c.从供暖引入口压差控制阀的压差控制点到所计算用户户引入口之间供回水管路的阻力损失ΔP3在变流量系统中,供回水管路的阻力损失ΔP3是一变量,它取决于管路中的流量以及管路的长度。在设计工况下,其值最大,当管路中的流量趋近于零时,ΔP3也趋近于零[1].同一供暖系统当采用同程式时,其ΔP3一般比采用异程式更大[2],因此根据式(1)可知;各用户由ΔP3所引起的ΔPS波动,同程式比率经异程式系统更大,由此可见,设计时应选择异程式系统。

d.户引入口作用压差ΔPS对于双管系统,在散热器热负荷一定的情况下,当户引入口作用压差ΔPS大于设计值时,由于散热器上温控阀的调节作用,户内系统各管段的流量会保持不变[1],因此各管段的阻力损失也不变,户引入口作用压差ΔPS的增加值会等量地作用在户内系统每一个温控阀上。由此可见,在系统设计时,只要保证运行过程中,户引入口作用压差ΔPS总是大于等于设计工况下户内系统总阻力损失,就可以保证在任何情况下,温控阀上的实际压差总是大于等于设计工况下的设计值,因此温控阀的热权度总是大于等于1,用户随时能获得设计所要求的室温。那么应如何设计才能使户引入口作用压差ΔPS总是大于等于设计工况下户内系统总阻力损失呢?

根据前面的分析可知:在设计工况下进行设计时,自然作用压头可以不考虑,管路的阻力损失ΔP3为最大。而在实际运行过程中,由于存在自然作用压头,管路的阻力损失ΔP3又较小,故根据式(1)可知:运行过程中,户引入口作用压差总是大于等于设计工况下的户引入口作用压差,因此在设计工况下,只要使户引入口作用压差大于等于户内系统的总阻力损失,那么运行过程中,户引入口作用压差就总是大于等于设计工况下户内系统的总阻力损失。而这一点在设计工况下进行水力计算时,可以很容易做到。

另外,由于户引入口作用压差ΔPS的波动反映了户内系统每个温控阀上作用压差的波动,因此只要控制户引入口的作用压差ΔPS的最大值,就能够保证运行过程中温控阀不超过它的最大工作压差。根据文献[3~4]可知:在设计工况下,户内系统包括热表和锁闭调节阀的阻力一般不应超过30kPa,因此在运行过程,只要控制ΔPS的最大值不超过30kPa,就能保证温控阀的正常工作。

(2)方案1分析的小结通过前面的分析可知:为保证运行过程中,温控阀上的实际作用压差不超过其正常工作最大压差,用户引入口的最大作用压差不超过30kPa,因此根据式(1)有:ΔPS=ΔP1+ΔP2-ΔP3kPa从上式可知:当ΔP3=0时,户引入口的作用压差ΔPS最大,故根据上式有:ΔP1≤30-ΔP2kPa上式中,对于自然作用压头ΔP2,在设计工况下,各用户所随的值最大[2],并且其最大值可以由下式计算:ΔP2=gH(ρh-ρg)kPa式中:H—上供下回式双管系统中,为建筑物的高度;下供上回式双管系统中,为建筑物的高度减去建筑物顶层的层高,m.ρh、ρg—设计工况下,供回水温度所对应的水的密度,kg/m3.故有ΔP1≤30-gH(ρh-ρg)/1000kPa因此,当仅在供暖引入口设压差控制阀时,其控制压差必须小于等于30-gH(ρh-ρg)/1000kPa,才能保证系统运行过程中,温控阀上的作用压差能够小于其正常工作的最大压差。另外,由于设计工况下进行水力计算时,不考虑自然作用压头,故根据式(2)有:△P1=△P''''3+△P''''s由此可见,只有当设计工况下最不利环路的阻力损失(△P''''3+△P''''s)小于30-gH(ρh-ρg)/1000kPa时,才可以采用方案1.

2.方案2

在每组共用立管上设压差控制阀本方案只适应于供下回式双管系统。参照前面对式(1)各参数的分析,方案2在设计工况下进行水力计算时,其自然作用压头同样可以不考虑,因此压差控制阀的控制压差ΔP1等于共用立管上最不利环路在设计工况下的阻力损失(△P''''3+△P''''s),其中为△P''''3为立管上压差控制点到户引入口之间供回水管路的阻力损失,另外,为保证共用立管上各用户在运行过程中户引入口作用压差ΔPS不超过30kPa,ΔP1同样应小于等于30-gHρh-ρg)/1000kPa,当ΔP1大于该值时,就不应采用方案2.

3.方案3:

在每户引入口设压差控制阀对于大型的供暖系统,当无法采用方案1和2时,就应采用本方案。其压差控制阀的控制压差ΔP1等于户内系统最不利环路在设计工况下的总阻力损失,其中包括户用热表和锁闭调节阀的阻力,ΔP1应小于等于30kPa[3~4].此时,各共用立管上只需设截止阀或闸阀,起关闭作用。

在本方案中,由于压差控制阀的调节作用,在系统的运行过程中,自然作用压头和系统流量的变化,不会对户内系统温控阀的工作产生影响。不过,为了在运行过程中保证压差控制阀的正常工作,其资用压差应始终大于等于其设计压差。压差控制阀的设计压差应等于设计工况下其本身的阻力与其控制压差之和,因此在设计工况下进行户外共用立管和供回水干管的水力计算时,自然作用压头可作为安全裕量,不予考虑。因为如果要考虑自然作用压头,一方面会使水力计算更复杂,另一方面自然作用压头不恰当的取值,会导致运行过程中,压差控制阀的资用压差小于其设计压差,有可能导致压差控制阀即使全开,通过的流量也不能满足用户要求。

另外在设计时应注意的是:供暖系统中所使用的压差控制阀一般都有最大工作压差限制,当作用在阀上的实际压差超过其最大工作压差时,阀就会被压坏,因此在使用方案2和3时,如果运行过程中,室外管网在供暖引入口的资用压差会超过供暖系统中所使用压差控制阀的最大工作压差时,就必须在供暖引入口设其它型号的压差控制阀,控制整个供暖系统的压差。此时,该压差控制阀的控制压差应等于供暖系统最不利环路在设计工况下的总阻力损失。

4.户内和户外系统形式对于户内系统,根据前面对供回水管路阻力损失ΔP3分析的相同理由,为减少运行过程中,温控阀作用压差的波动范围,应选择异程式系统。对于方案2和3的户外系统,也建议采用异程式系统。因为同一供暖系统,当采用异程式时,其系统的总阻力损失一般要比采用同程式更小[2].这样,可以减小供暖系统引入口所需要的资用压头。

三、结论

(1)分户计量双管供暖系统在设计工况下进行水力计算时,其自然作用压头可以不考虑,户内和户外系统应采用异程式。

(2)选用方案1时,其压差控制阀的控制压差ΔP1应等于供暖系统最不利环路在设计工况下的总阻力损失(△P''''3+△P''''s),并且ΔP1应小于等于30-gHρh-ρg)/1000kPa.

(3)选用方案2时,其压差控制阀的控制压差ΔP1应等于立管上最不利环路在设计工况下的总阻力损失(△P''''3+△P''''s),并且ΔP1也应小于等于30-gHρh-ρg)/1000kPa.

(4)方案3适应于大型供暖系统,其压差控制阀的控制压差ΔP1应等于户内系统最不利环路在设计工况下的总阻力损失,并且包括户用热表和锁闭调节阀的阻力,ΔP1应小于等于30kPa.

摘要:本文对压差控制阀在分户计量双管供暖系统中的3个应用方案进行了分析,给出了各方案的选择原则,并指出分户计量双管供暖系统在设计工况下进行水力计算时,自然作用压头可以不予考虑,户内和户外系统应采用异程式。

关键词:压差控制阀分户热计量双管供暖系统

参考文献:

1、戈特.磨擦勒,雷纳特.奥贝尔,编著,供暖控制技术,北京:中国建材工业出版社,1998

2、贺平,孙刚,编著,供热工程(新一版),北京:中国建材工业出版社,1993

压差范文篇2

关键词压差控制阀分户热计量双管供暖系统应用

一、概述

在分户计量双管供暖系统中,为充分利用家用电器、灯光和人体等自由热量,通常是在每一组散热器上安装预设定型温控阀,因此整个系统是变流量运行,作用在温控阀上的压差随着流量的改变而发生变化。当其实际压差较大温控阀就可能产生噪音,尤其是在房间热负荷较小时,温控阀会频繁开关,产生振荡。振荡除引起不必要的磨损外,还导致回水温度升高,并影响系统中的其它温控阀,因此在一个设计良好的分户计量双管供暖系统中,一方面应使用系统中每个温控阀的热权度总是大于等于1,另一方面温控阀上所随的实际压差还应该保持在它的允许范围内[1]。

压差控制阀也称为自力式压差控制阀,在变流量系统中,它通过感应供热管道系统中两点的压力,可以使被控环路的压差保持恒定,保证被控环路中调节阀门的正常工作,那么在分户计量双管供暖系统设计时,控制阀应如何布置呢?通常有以下三个方案:a.压差控制阀仅在设在建筑物供暖引入口,控制供暖引入口的压差为定值。b.在下供下回式双管系统中,压差控制阀设在每组共用立管的起始端,控制立管的压差为定值。c.压差控制阀设在每一户的引入口,控制户内系统的压差为定值。

目前,在实际设计中,这3个方案应如何选择,争议颇多,仅就保证温控阀平稳工作而言,方案1最差,但其初投资最少;方案3最好,但其初投资最高;方案2介于方案1和3之间。下面就针对这3个方案进行一些分析,希望为工程人员设计时,方案的选择提供一些有益的建议。另外应说明的是:本文所讨论的双管供暖系统是指户内、户外都为双管的系统。

二、方案分析

1.方案1:压差控制阀仅设在建筑物的供暖引入口

由于是双管系统,因此以户为单位,供暖系统内各户之间是并联关系。每一用户户引入口作用压差ΔPS可以由下式计算:

ΔPS=ΔP1+ΔP2-ΔP3(1)

式中:ΔP1--建筑物供暖引入口压差控制阀控制压差;

ΔP2--所计算用户随的自然作用压头;

ΔP3--从供暖引入口压差控制阀的压差控制点到所计算用户户引入口之间供回水管路的阻力损失。

(1)式(1)中各参数的讨论

a.建筑物供暖引入口压差控制阀控制压差ΔP1在系统运行过程中,ΔP1是定值,它取决于设计工况下,供暖系统最不利环路中,从供暖引入口压差控制点到最末端用户户引入口之间供回水管路的阻力损失,最末端用户户内系统的总阻力损失以及最末端用户所随的自然作用压头。根据式(1)有:

(2)

b.用户所随的自然作用压头ΔP2

ΔP2取决于用户所处的楼层以及供回水立管中供回水温度[2]。在系统的运行过程中,ΔP2是一个不断变化的量,因此在设计工况下,根据式(1)计算户引入口作用压差ΔPS时,其自然作用压头ΔP2应取最小值。因为如果取值较大,那么根据式(1)所计算的户引入口作用压差ΔPS就较大,在根据ΔPS设计户内系统时,其管道和温控阀的阻力损失就可能较大,当实际的自然作用压头ΔP2小于所选定值时,户引入口作用压差ΔPS就会低于设计值,导致温控阀上的实际压差小于设计值,此时,温控阀即使全开,散热器所提供的热量仍不足以维持设计室温,所以在设计工况下,自然作用压头ΔP2应取最小值。这样,在实际运行时,自然作用压头ΔP2总是大于等于最小值,因此能保证温控阀的热权度总是大于等于1,房间温度总是能达到设计值。不过,由于自然作用压头ΔP2的影响因素较多,要确定每一用户的最小值通常都很困难,因此为便于设计,在设计工况下计算户引入口作用压差ΔPS时,自然作用压头ΔP2可以不考虑。

c.从供暖引入口压差控制阀的压差控制点到所计算用户户引入口之间供回水管路的阻力损失ΔP3

在变流量系统中,供回水管路的阻力损失ΔP3是一变量,它取决于管路中的流量以及管路的长度。在设计工况下,其值最大,当管路中的流量趋近于零时,ΔP3也趋近于零[1]。同一供暖系统当采用同程式时,其ΔP3一般比采用异程式更大[2],因此根据式(1)可知;各用户由ΔP3所引起的ΔPS波动,同程式比率经异程式系统更大,由此可见,设计时应选择异程式系统。

d.户引入口作用压差ΔPS

对于双管系统,在散热器热负荷一定的情况下,当户引入口作用压差ΔPS大于设计值时,由于散热器上温控阀的调节作用,户内系统各管段的流量会保持不变[1],因此各管段的阻力损失也不变,户引入口作用压差ΔPS的增加值会等量地作用在户内系统每一个温控阀上。由此可见,在系统设计时,只要保证运行过程中,户引入口作用压差ΔPS总是大于等于设计工况下户内系统总阻力损失,就可以保证在任何情况下,温控阀上的实际压差总是大于等于设计工况下的设计值,因此温控阀的热权度总是大于等于1,用户随时能获得设计所要求的室温。那么应如何设计才能使户引入口作用压差ΔPS总是大于等于设计工况下户内系统总阻力损失呢?

根据前面的分析可知:在设计工况下进行设计时,自然作用压头可以不考虑,管路的阻力损失ΔP3为最大。而在实际运行过程中,由于存在自然作用压头,管路的阻力损失ΔP3又较小,故根据式(1)可知:运行过程中,户引入口作用压差总是大于等于设计工况下的户引入口作用压差,因此在设计工况下,只要使户引入口作用压差大于等于户内系统的总阻力损失,那么运行过程中,户引入口作用压差就总是大于等于设计工况下户内系统的总阻力损失。而这一点在设计工况下进行水力计算时,可以很容易做到。

另外,由于户引入口作用压差ΔPS的波动反映了户内系统每个温控阀上作用压差的波动,因此只要控制户引入口的作用压差ΔPS的最大值,就能够保证运行过程中温控阀不超过它的最大工作压差。根据文献[3~4]可知:在设计工况下,户内系统包括热表和锁闭调节阀的阻力一般不应超过30kPa,因此在运行过程,只要控制ΔPS的最大值不超过30kPa,就能保证温控阀的正常工作。

(2)方案1分析的小结

通过前面的分析可知:为保证运行过程中,温控阀上的实际作用压差不超过其正常工作最大压差,用户引入口的最大作用压差不超过30kPa,因此根据式(1)有:

ΔPS=ΔP1+ΔP2-ΔP3kPa

从上式可知:当ΔP3=0时,户引入口的作用压差ΔPS最大,故根据上式有:

ΔP1≤30-ΔP2kPa

上式中,对于自然作用压头ΔP2,在设计工况下,各用户所随的值最大[2],并且其最大值可以由下式计算:

ΔP2=gH(ρh-ρg)kPa

式中:H--上供下回式双管系统中,为建筑物的高度;下供上回式双管系统中,为建筑物的高度减去建筑物顶层的层

高,m。

ρh、ρg--设计工况下,供回水温度所对应的水的密度,kg/m3。

故有ΔP1≤30-gH(ρh-ρg)/1000kPa

因此,当仅在供暖引入口设压差控制阀时,其控制压差必须小于等于30-gH(ρh-ρg)/1000kPa,才能保证系统运行过程中,温控阀上的作用压差能够小于其正常工作的最大压差。另外,由于设计工况下进行水力计算时,不考虑自然作用压头,故根据式(2)有:

由此可见,只有当设计工况下最不利环路的阻力损失小于30-gH(ρh-ρg)/1000kPa时,才可以采用方

案1。

2.方案2:在每组共用立管上设压差控制阀

本方案只适应于供下回式双管系统。参照前面对式(1)各参数的分析,方案2在设计工况下进行水力计算时,其自然作用压头同样可以不考虑,因此压差控制阀的控制压差ΔP1等于共用立管上最不利环路在设计工况下的阻力损失,其中为为立管上压差控制点到户引入口之间供回水管路的阻力损失,另外,为保证共用立管上各用户在运行过程中户引入口作用压差ΔPS不超过30kPa,ΔP1同样应小于等于30-gHρh-ρg)/1000kPa,当ΔP1大于该值时,就不应采用方案2。

3.方案3:在每户引入口设压差控制阀

对于大型的供暖系统,当无法采用方案1和2时,就应采用本方案。其压差控制阀的控制压差ΔP1等于户内系统最不利环路在设计工况下的总阻力损失,其中包括户用热表和锁闭调节阀的阻力,ΔP1应小于等于30kPa[3~4]。此时,各共用立管上只需设截止阀或闸阀,起关闭作用。

在本方案中,由于压差控制阀的调节作用,在系统的运行过程中,自然作用压头和系统流量的变化,不会对户内系统温控阀的工作产生影响。不过,为了在运行过程中保证压差控制阀的正常工作,其资用压差应始终大于等于其设计压差。压差控制阀的设计压差应等于设计工况下其本身的阻力与其控制压差之和,因此在设计工况下进行户外共用立管和供回水干管的水力计算时,自然作用压头可作为安全裕量,不予考虑。因为如果要考虑自然作用压头,一方面会使水力计算更复杂,另一方面自然作用压头不恰当的取值,会导致运行过程中,压差控制阀的资用压差小于其设计压差,有可能导致压差控制阀即使全开,通过的流量也不能满足用户要求。

另外在设计时应注意的是:供暖系统中所使用的压差控制阀一般都有最大工作压差限制,当作用在阀上的实际压差超过其最大工作压差时,阀就会被压坏,因此在使用方案2和3时,如果运行过程中,室外管网在供暖引入口的资用压差会超过供暖系统中所使用压差控制阀的最大工作压差时,就必须在供暖引入口设其它型号的压差控制阀,控制整个供暖系统的压差。此时,该压差控制阀的控制压差应等于供暖系统最不利环路在设计工况下的总阻力损失。

4.户内和户外系统形式

对于户内系统,根据前面对供回水管路阻力损失ΔP3分析的相同理由,为减少运行过程中,温控阀作用压差的波动范围,应选择异程式系统。对于方案2和3的户外系统,也建议采用异程式系统。因为同一供暖系统,当采用异程式时,其系统的总阻力损失一般要比采用同程式更小[2]。这样,可以减小供暖系统引入口所需要的资用压头。

三、结论

(1)分户计量双管供暖系统在设计工况下进行水力计算时,其自然作用压头可以不考虑,户内和户外系统应采用异程

式。

(2)选用方案1时,其压差控制阀的控制压差ΔP1应等于供暖系统最不利环路在设计工况下的总阻力损失,并且ΔP1应小于等于30-gHρh-ρg)/1000kPa。

(3)选用方案2时,其压差控制阀的控制压差ΔP1应等于立管上最不利环路在设计工况下的总阻力损失,并且ΔP1也应小于等于30-gHρh-ρg)/1000kPa。

(4)方案3适应于大型供暖系统,其压差控制阀的控制压差ΔP1应等于户内系统最不利环路在设计工况下的总阻力损失,并且包括户用热表和锁闭调节阀的阻力,ΔP1应小于等于30kPa。

参考文献

1戈特·磨擦勒,雷纳特·奥贝尔,编著,供暖控制技术,北京:中国建材工业出版社,1998

2贺平,孙刚,编著,供热工程(新一版),北京:中国建材工业出版社,1993

压差范文篇3

关键字:冷冻水压差控制器旁通调节阀

前言

为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。

一、压差调节装置的工作原理

压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。

二、选择调节阀应考虑的因素

调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加了工程造价。

通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于10%。

另外,安装调节阀时还要考虑其阀门能力PV(即调节阀全开时阀门上的压差占管段总压差的比例),从调节阀压降情况来分析,选择调节阀时必须结合调节阀的前后配管情况,当PV值小于0.3时,线性流量特性的调节阀的流量特性曲线会严重偏离理想流量特性,近似快开特性,不适宜阀门的调节。

三、调节阀的选择计算

调节阀的尺寸由其流通能力所决定,流通能力是指当调节阀全开时,阀两端压力降为105Pa,流体密度为1g/cm3时,每小时流经调节阀的流体的立方米数。进口调节阀流通能力的表示方式通常有cv和kv两种,其中kv=c,而cv是指当调节阀全开时,流通60oF的清水,阀两端压力降为1b/in2时每分钟流过阀门的流量,cv=1.167kv。

压差旁通调节装置示意图如下:

(1)确定调节阀压差值(⊿P)

如上图所示,作用在调节阀上的压差值就是E和F之间的压差值,由于C-D旁通管路与经过末端用户的D-U-C管路的阻力相当,所以E-F之间的压差值应等于D-U-C管路压差(指末端用户最不利环路压差)减去C-E管段和F-D管段的压差值。

(2)计算调节阀需要旁通的最大和最小流量

对于单机组空调机系统,根据末端用户实际使用的最低负荷就可以确定最小负荷所需的流量,从而确定最大旁通流量,其公式为:

G=(Q-Qmin)*3.6/CP*⊿T(1)

公式中,G为流量单位为(m3/h),Q为冷水机组的制冷量(KW),Qmin空调系统最小负荷(KW),CP为水的比热,CP=4.187kJ/kg.oC,⊿T为冷冻水供回水温差,一般为5oC

根据实际可调比RS=10(PV)1/2(2)

即可算出调节阀的旁通最小流量

(3)计算压差调节阀所需的流通能力C

C=316G*(⊿P/ρ)-1/2(3)

公式中,ρ为密度,单位为(g/cm3),G为流量,单位为(m3/h),⊿P为调节阀两端压差,单位为(Pa)。根据计算出的C值选择调节阀使其流通能力大于且最接近计算值。

(4)调节阀的开度以及可调比的验算。根据所选调节阀的C值计算当调节阀处于最小开度以及最大开度情况下其可调比是否满足要求,根据计算出的可调比求出最大流量和最小流量与调节阀在最小开度及最大开度下的流量进行比较,反复验算,直至合格为止。

某写字楼共十二层,建筑面积约为11000平米,层高3.6米,采用一台约克螺杆冷水机组,制冷量为1122KW。

(1)压差的确定

经水力计算,系统在最小负荷(旁通管处于最大负荷)情况下总阻力损失H约为235KPa在系统冷冻水供回水主干管处设置压差旁通控制装置,旁通管处冷源侧水管道阻力损失为80KPa,末端最不利环路阻力损失为155KPa。

(2)通调节阀水量计算:

经过计算知,该空调系统在其最小支路循环时,其负荷为最小负荷,约为总负荷的35%,利用公式(1)G=(Q-Qmin)*3.6/CP*⊿T,算得所需旁通得最大流量为125.4m3/h,再由最不利环路压差155KPa。

(3)流通能力的计算

根据公式(2)C=316G*(⊿P/ρ)-1/2算得C=100.6

(4)调节阀选型

下表为上海恒星泵阀制造有限公司的ZDLN型电子式电动直通双座调节阀的技术参数表,由公式(2)算得C=100.6,该调节阀的固有流量特性为直线型和等百分比特性,按照等百分比特性选择最接近的C值,得到管径为DN80,C值为110,符合选型要求。

公称通径DN(mm)

25

32

40

50

65

80

100

125

150

200

250

300

400

额定流量系数

Kv

直线

12.1

19.4

30.3

48.3

75.9

121

193.6

302.5

484

759

1210

1936

2920

等百分比

11

17.6

27.5

44

69.3

110

176

275

440

693

1100

1760

2700

额定行程L(mm)

16

25

40

60

120

公称压力PN(MPa)

1.6、4.0、6.4

固有流量特性

直线、等百分比

固有可调比R

50:1

信号范围(mA.DC)

0~10、4~20

电源电压

220V、50Hz

作用方式

故障时:全开、全闭、自锁位

允许泄漏(1/h)

10-3×阀额定容量

工作温度

t(℃)

常温型

-20~200、-40~250、-60~250

散热型

-40~450、-60~450

高温型

450~650

低温型

-60~-100、-100~-200、-200~250

(5)调节阀的开度及可调比验算

旁通管段总长为6m,查上表当C=110时,由公式(4)⊿P=ρ(316G/C)2得到⊿P=129.8KPa,当旁通管道采用与调节阀相同的管径时,当旁通管道最大水量为125.4m3/h,经过水力计算,总沿程损失为42.8KPa,总局部损失为23KPa,调节阀两端压差为129.8-42.8-23=64KPa<129.8KPa,阀门能力PV=64/129.8=0.49,这时调节阀的流量特征曲线为等百分比特性,此时处理的实际最大旁通水量为88.1m3/h<125.4m3/h,其流量只有系统要求的最大旁通流量的70%,由公式(2)可以求得实际可调比Rs=7,即实际最小流量为88.1/7=12.6m3/h,最大流量与最小流量显然均不能满足实际要求,所以旁通管的管径选择DN80不合适。

按照上述计算方法,继续试算,当选用DN125的旁通管时,计算得调节阀两端压差为123.2KPa,PV=0.95,此时处理的最大旁通水量为122.1m3/h,相对开度为90%,相对流量为97.3%,由公式(2)可以求得实际可调比Rs=9.7,即最小旁通水量为122.1/9.7=12.6m3/h与调节阀工作在10%的开度下的流量12.21m3/h相比已非常接近。此时调节阀的流量特性已接近理想流量特性曲线,已能满足系统需要。

五、结论

通过以上分析,可以得出如下结论:

(1)调节阀流通能力C的确定是选择调节阀至关重要的一步,只有流通能力C计算正确,调节阀才有可能满足工艺要求。

(2)调节阀的阀门能力PV也是选择调节阀的重要指标之一,原则上要尽可能选择大的Pv值。

(3)调节阀的实际可调比Rs是决定调节阀能否满足工艺要求的参数之一。实际可调比往往远远小于理想可调比,但是在选择调节阀时要尽可能使实际可调比接近最大值。

(4)调节阀所能通过的最大流量与最小流量是选择计算的关键环节,这两个数值应该由实际可调比与工艺要求共同决定。

压差范文篇4

关键词:MSK5101大电流输出低电压跌落

1概述

集成稳压器在近十多年发展很快,目前国内外已发展到几百个品种。按电路的工作方式分,有线性集成稳压器和开关式集成稳压器。按电路结构形式分,有单片式集成稳压器和组合式集成稳压器。按管脚的连接方式分,有三端式集成稳压器和多端式集成稳压器。按制造工艺分,有半导体集成稳压器、薄膜混合集成稳压器和厚膜混合集成稳压器。而在线性集成稳压器方面,则以低压差、大电流、小体积的发展比较迅猛。

MSK5101是美国MSKennedy公司研制的一种新型低压差、大电流、低功耗线性稳压器,它有+3V、+5V、+12V和可调输出。输出晶体管采用单片工艺制造的超级PNP管,所以该系列型号的输入输出电压差很小。图1所示是MSK5101的内部结构框图。

图1

当MSK5101的输出电流为1.5A时,其压差只有350mV,因而它的效率很高,功耗较低。且输出电压精度可确保1%。此外,该系列稳压器也具有TTL/CMOS兼容的on/off使能脚以及故障信号输出脚。MSK5100采用可有效利用空间的10脚功率型SOIC封装,并且外壳上带有散热器铜接头。

MSK5101的体积很小。其外形如图2所示,尺寸大小为6.35mm×6.35mm×2.08mm,所以在很多有体积和重量限制的大功率稳压器应用中,该系列稳压器有很好的性价比。因此,可广泛应用于高效线性稳压器、恒压/恒流调节器、系统功率源、开关电源输出稳压器以及电池供电等设备。

MSK5101的主要特点如下:

●采用带散热器接头的紧密型10脚SOIC封装形式;

●输入输出电压差非常小,输出电流为1.5A时,压差只有350mV;

●具有3.3V、5V、12V和可调输出;

●采用开路集电极误差信号输出方式;

●带有TTL电平使能脚;可零电流关断;

●带有电源反接保护和负载短路保护功能;

●接地端电流只有22mA(满载时);

●输出电压精度可达1%;

●输出电流可达1.5A。

2主要参数

MSK5101的主要电气性能参数如表1所列。

表1MSK5101的主要电气性能参数

参数名称测试条件MSK5101系列单位

最小典型最大

输出电压公差Iout=1A,Vin=Vout+1V±0.5±1.0%

输入输出电压差Δvout=-1%,Iout=100mA80225mV

Δvout=-1%,Iout=1.5A350625mV

负载调整率Vin=Vout+5V±0.2±1.2%

10mA≤Iout≤1.5±0.3%

电源调整率(Vout+1V)≤Vin≤26VIout=10mA±0.05±0.6%

±0.5%

输出限流值Vout=0V,Vin=Vout+1V2.13.5A

接地端电流Vin=Vout+1V,Iout=0.75820mA

输出噪声Vin=Vout+1V,Iout=1.5A22mA

使能脚输入电压CL=10μF,10Hz≤f≤100kHZ400μV

使能脚输入电压高电平/导通2.41.2V

低电平/关断1.20.8V

使能脚输入电流高电平/导通2075μA

低电平/关断12μA

关断输出电流VENABLE≤08V1020μA

输出漏电流VOH=26V0.012μA

信号输出电压IOL≤250μA,Vin=Vout-2V0.20.4V

信号门限Vin=Vout-7%75mV

基准电压正常工作1.221.241.26V

基准电压温漂正常工作20PPm/℃

调整脚偏置电流全部温度范围,Vin=Vout+1V40150mA

热阻结到外壳4.55℃/W

过热关断温度结温JT1135℃

3应用说明

3.1稳压器保护

MSK5101系列稳压器具有输入电源极性反接、过电流、超温(Pd过大)和瞬态电压尖峰达到60V等各种保护功能,若将该稳压器用于负载接负电源的双电源中,则输出电压必须采用二极管箝位到地。

3.2输出电容

在输出端与接地端之间接入一只滤波电容可以减小MKS5101系列稳压器的输出电压纹波,该电容的最佳容量取决于应用情况,但至少应在10μF以上。也可在负载两端直接接入一只电容器来改善负载的瞬态响应能力。

3.3负载连接

在实际应用中,当稳压器负载电流很大时,负载的接法非常重要。为了不影响负载调整率,稳压器输出到负载之间连线的阻抗必须非常小,因为该阻抗可与负载组成分压器。为了保持稳压,MSK5101系列稳压器的最小负载电流应为10mA。

3.4使能管脚

MSK5101系列稳压器有一个与TTL信号兼容的使能(ENABLE)管脚,在该脚为TTL高电平时,内部偏压电路工作,并使稳压器电源接通。而当该脚为TTL低电平时,内部控制器关断,此时流入该器件的静态电流只有5μA。如果不需要使能功能,使能管脚可接到输入脚。

3.5故障信号输出脚

MSK5101系列中所有固定输出电压的稳压器产品都有一个故障信号输出脚。因为信号输出脚内为开路集电极输出电路,该脚电压可以上升到3V~26V之间的任意电压。这种特性允许该脚与任意逻辑电平接口。当信号比较器检测到“不稳压”状态时,该脚输出有效低电平(典型电压为0.22V)。MSK5101的故障信号状态包括输入电压过低、超温关断和输出限流等。实际上,当输入电压瞬态过高时,故障信号管脚也将输出高电平。

3.6散热器选择

采用对流散热时应按下式选择MSK5101系列稳压器所需的散热器:

TJ=Pd(Rθjc+Rθcs+Rθsa)Ta

式中:TJ为结温;

Pd为总功耗;

Rθjc为结到外壳的热阻;

Rθcs为外壳到散热器的热阻;

Rθsa为散热器到环境的热阻;

Ta为环境温度。

设计时,可首先按下式计算出功耗P:

P=(Vin-Vout)×Iout

然后,再选择最高结温。一般最高允许结温为125℃。为了计算所需散热器到环境的热阻,应将上述结温的表示式整理为:

Rθsa=[(TJ-Ta)/Pd]-Rθjc-Rθcs

以下为根据此式列出的一个散热器选择的实例:

若MSK5101_3.3型稳压器的输入Vin为+5V输出Vout为+3.3V连续直流电流Iout为1A。环境温度为+25℃,最高结温为125℃。Rθjc为5℃/W,Rθsa为0.5℃/W。则:

P=(5V-3.3V)×1A=1.7W

Rθsa=[(125℃-25℃)/1.7W]-5℃/W-0.5℃/W=53.32℃/W

因此,在该例中,为了保证结温不超过125℃,应选用热阻小于53℃/W的散热器。

4MSK5101-00的输出电压调整电路

压差范文篇5

1引言

自力式调节阀是一个新的自力式调节阀种类。相对于手动调节阀,它的优点是能够自动调节;相对于电动调节阀,它的优点是不需要外部动力。应用实践证明,在闭式水循环系统(如热水供暖系统、空调冷冻水系统)中,正确使用这种阀门,可以很方便地实现系统的流量分配;可以实现系统的动态平衡;可以大大简化系统的调试工作;可以稳定泵的工作状态等。因此,自力式调节阀在供热空调工程中有着广阔的应用前景。由于这种阀门在我国出现时间不长,所以对其适用条件还研究不够,本文试作一些分析,算作参加对这个问题的讨论。

按照自力式调节阀的控制参量可以分为四类:①控制网路中某个部分的流量;②控制网路中某个部分的压差;③控制热交换装置的出水温度;④控制供暖或空调房间的温度。本文以前两种自力式调节阀为讨论对象。

2验自力式调节阀的结构和工作原理

2.1自力式流量控制阀

自力式流量控制阀的作用是在阀的进出口压差变化的情况下,维持通过阀门的流量恒定,从而维持与之串联的被控对象(如一个环路、一个用户、一台设备等,下同)的流量恒定。自力式流量控制阀的名称较多,如自力式流量平衡阀、定流量阀、自平衡阀、动态流量简称阀等。各种类型的自力式流量控制阀,结构各有相异,但工作原理相似。这里以ZL47型自力式流量控制阀为例,介绍其结构和工作原理。

图1ZL47自力式流量控制结构示意图阀

ZL47型自力式流量控制阀从结构上说,是一个双阀组合,即由一个手动调节阀组和自动平衡阀组组成,如图1所示。手动调节阀组的作用于设定流量,自动平衡阀的作用是维持流量恒定。

对于手动调节阀组来说,流量,式中KV为手动调节阀阀口的流量系数,P2-P3为手动调节阀阀口两侧的压差。KV的大小取决于开度,开度固定,KV即为常数,那么只要不变,则流量G不变。而P2-P3的恒定是由自动平衡阀组控制的。比如进出口压差P1-P3增大,则通过感压膜和弹簧的作用使自动平衡阀组关小,使P1-P2增大,从而维持P2-P3的恒定;反之P1-P3减小,则自动平衡阀组开大,使P1-P2减小,维持P2-P3的恒定。

手动调节阀组的每一个开度对应一个流量,开度和流量的关系由试验台试验标定,并配有开度的显示和锁定装置。

2.2自力式压差控制阀

自力式压差控制阀的作用是维持施加在被控对象上的压差恒定。这里介绍ZY47型自力式压差控制阀的结构和工作原理。

ZY47型自力式压差控制阀按照安装在供水管还是回水管上,分为供水式结构和回水式结构,二者不可互换使用。这种阀门由阀体、双节流阀座、阀瓣、感压膜、弹簧及压差调整装置组成。图2a为回水式结构示意图,图2b为其安装位置示意图。

(a)

(b)

图2ZY47型自力式压差控制阀回水式结构及安装示意图

当网路的供回水压差P1-P3增大,则感压膜带动阀瓣下移,使得P2-P3增大,从而维持P1-P2(施加于被控环路的压差)恒定;反之,P1-P3减小,则阀瓣上移,P2-P3减小,使P1-P2不变。

若P1-P3不变,而图2b所示的环路内部阻力发生变化,比如某一支路判断,则环路的总阻力增大,在这个瞬间P2减小,

P1-P2增大;但随之感压膜的受力平衡被打破,阀瓣下移,压差控制阀的阻力增大,而使P2又回升到原来的大小,即P1-P2不

变。可见,无论是网路压力出现波动,还是被控对象内部阻力发生变化,自力式压差控制阀均可维持施加于被控对象的压差恒定。

3系统的运行调节方式与自力式调节阀的选择

(1)当系统的运行调节采用热源主动进行的集中量调节(比如随室外温度的变化而改变流量)时,不能采用自力式调节阀。因为这种调节是通过改变水量实现的,因而调节时改变了系统的水力工况,所以若采用自力式调节阀,势必造成有的阀能正常工作,但被控对象流量过大(超过此时的热负荷所对应的流量),有的阀全开仍达不到流量要求,有的阀因两端压差达不到启动压差而不能正常工作,即再现流量分配的混乱。显然,由于自力式调节阀的存在而造成了系统集中调节的不能实现。

这里若采用手动调节阀(比如平衡阀),则系统总流量增减时,各支路、各用户的流量可以同比例增减,即系统的集中调节可以传达至每一个末端装置。

(2)当系统的运行调节为抽调节时,可以采用自力式流量控制代和自力式压差控制阀,因为这种调节方式只改变供水温度,而与系统的水力工况无关,即在不改变系统的水力工况的情况下,把调节传达到每个用户和设备,采用自力式流量控制阀,可以吸收网路的压力波动,维持被控负荷载的流量恒定。采用自力式压差控制阀可以吸收网路的压力波动,以及克服内扰(被控环路内部的阻力变化),以维持施加于被控环路上的压差恒定。

(3)当系统采用分阶段改变流量的质调节时,虽然每个阶段流量不变,但若采用自力式调节阀,每个流量阶段要对控制流量或控制压差进行设定,给运行管理带来很大不便,所以不宜采用。

4点被控对象的内部调节与自力式调节阀的选择

4.1有内部调节

如图3所示,在一个环路入口处装设自力式流量控制阀,则环路流量恒定,那么环路中的一个支路进行流量调节,其调节量必然全部转移到其他支路上去。比如支路2关闭,则支路1和支路3的流量增大,两支路的流量增量即原支路2的流量。显然,装设自力式流量控制阀使各支路间出现较大的调节干扰;环路的水力稳定性很差。

图3自力式压差控制阀与电动二通阀的配合使用

而若如图2b所示,在环路入口处装设自力式压差控制阀,由于可以保持环路的压差(即P1-P2)恒定,将大大减弱各支路间的调节干扰。如果环路中干管的阻力相对于支路的阻力可以略不计,则可把干管视为静压箱,各支路的调节互不干扰,即一个支路的流量调节对另外支路的流量不产生影响。实际上,由于干管阻力的存在,例得各支路间的调节干扰不可避免,比如一个支路关小,其它支路的流量均将程度不同的有所增加。但在设计合理的情况下一步,这种干扰是微弱的。系统设计时对于被控环路的干管采用相对较大的管径,且在干管上不再装设其它阀门尽可能减小干管的阻力,可以使各支路间的调节干所降到最低程度,使环路具有较好的水力稳定性。

对于分户热计量的供暖系统,强调用热调节的自主性,而又必须从设计上考虑尽可能减轻各用户是的调节干扰,所以家采用自力式压差控制阀。

4.2无内部调节

在被控制对象无内部调节时,因为内部阻力不变,所以压差恒定必然流量恒定,因而装设自力式压差控制阀和装设自力式流量控制阀,具有同样的效果,都可以起到吸收网路的压力波动,保持被控对象流量恒定的作用。这种情况下,二者可以互

换。

对于采用集中质调节的供暖系统,一个支路上连接多个用户,无疑在支路入口处可以装设自力式压差控制阀。但如果各用户的调节是不经常的、无规律的以及相对于支路的总流量来说调节所产生的影响是轻微的,则也可以把支路的流量视为恒定,采用自力式流量控制阀。

对于二者均可采用的场合,推荐采用为自力式流量控制阀,因为流量控制阀可以直接设定和显示流量,且无需连接导压

管。

5自力式压差控制阀与电动二通调节阀的配合使用

电动二通调节阀的选型应遵循两个原则:①系统为设计工况时,阀门全开的流量稍大于设计流量(有的文献[1]认为应在开度90%时为设计流量);②阀权度足够大,文献(1)认为不能小于0.3,文献(2)认为不能小于0.5。对于第①个条件往往难以满足,因为同一种电动阀相邻两种口径的流通能力(即全开时的流量系数)大约相关60%,所以往往找不到流通能力恰好符合要求的口径,而只好选偏大的口径。那么对于口径偏大的电动阀,一是可能造成较多的时间阀在较小开度甚至接近于关闭的状态下工作,使阀的控制不稳定和不精确;二是全开状态不可避免(比如系统启动时,以及大的扰动出现时),而全开将使被控环路出现过流,同时使其他环路流量不足。

对于这种情况,一个简单的解决办法是与电动阀串联一个平衡阀,消耗一部分压差,从而使电动阀在接近全开时流量为设计流量。但这样处理又可能使阀权度过小,即不符合第②个要求。如图4a所示,负载(可以是一个环路,一个用户,一台设备等)入口压差为80Kpa,设计流量为8.5T/h,设计工况下负荷的阻力损失为40Kpa。则所选电动阀在设计工况下的压降应为40Kpa,流通能力应为

图4自力式压差控制阀与电动二通阀的配合使用

根据文献[1]中给出的ZAP型电动阀的参数表,ZAP-32B的流通能力为12,ZAP-40B的流通能力为20,所以只能选ZAP-40B,流量特性按线性考虑,则设计流量对应的开度只有68%。如图4b所示,串联一个平衡阀,使二通电动阀在全开时达到设计流量(为了分析和计算的方便,这里姑且以全开时达到设计流量考虑),则由可算得,此时电动阀门压降为ΔP=18Kpa,平衡阀的压降为80-40-18=28Kpa,电动阀的阀权度为显然阀权度太小。阀权度过小将导致阀工作时的压差变动范围较大,阀的工作特性严重偏离理论特性,使控制的精确度变差。此时可如图4c所示,与电动阀串联装设一个自力式压差控制阀(此图是ZY47型压差控制阀供水式结构的连接方法)。压差控制阀既可以代替平衡阀的作用,使电动阀在接近全开时达到设计流量,又可以保证电动阀上的压恒定,即阀权度接近于1,阀的工作特性与理论特性基本吻合,使电动阀工作稳定,控制精确。本例中仍按电动阀全开达到设计流量考虑,电动阀的设定压差应为18Kpa。压差控制阀可以保证电动阀始终在这个压差下工作,剩余压差、网络的压力波动及负载的压和变化,均由压差控制阀吸收。

6平衡阀与自力式调节阀的配合使用

一般而言,装设了自力式调节阀的地方,不需再装设手动平衡阀,但在如下两种情况可以考虑二者串联装设,配合使用。(1)每一种自力式调节阀都有其可以正常工作的压差范围,超出这个范围,就不能很好发挥应有的功能,甚至不能工作所以当作用于自力式调节阀的压差过大时,可串联一个平衡阀,吸收一部分压差,以保障自力式调节阀的正常工作。

(2)手动平衡阀一个很重要的功能就是可以进行流量的测定(实际上是测压差结合阀的特性算流量),所以手动平衡阀可以说是一个"诊断"工具。因而对流量的精确程度要求较高的系统,为了监测被控对象的流量,监测自力式调节阀的工作是否正常,从而做出相应的调整,可以与自力式调节阀串联一个平衡阀。并且,平衡阀的判断和泄水功能也是自力式调节阀所不具有的。

7结论

(1)对于质调节系统可根据恒定流量和恒定压差的需要,选用自力式流量控制阀和自力式压差控制阀。

(2)对于热源处主动进行集中量调节的系统,因运行调节时改变了系统的水力式工况,所以不能采用自力式调节阀。这时,若采用手动平衡阀,系统总流量变化时,各支路、各用户、各末端装置的流量同比例变化,即系统的集中调节可以传达至每一个末端装置。

(3)当被控对象有内部调节时,装设自力式流量控制阀,将使被控对象内部的各支路间出现较大的调节干扰。而装设自力式压差控制阀,既可吸收网路的压力波动、又可以使被控对象内部各支路音质调节干扰大大减弱。因而被控对象有内部调节时,可装设自力式压差控制阀,不可装设自力式流量控制阀。对于分户热计量的持调节供暖系统,在一个向多户供暖的支路入口处,宜装设自力式压差控制阀。

(4)被控对象无内部调节时,装设自力式流量控制阀和自力式压差控制阀,具有相同的效果,二者可以互换。当二者均可采用时,推荐采用自力式流量控制阀。

(5)自力式压差控制阀可与电动阀配合使用,以维持电动阀上的压差恒定,从而使电动阀工作稳定,控制精确。

(6)有时平衡阀与自力式调节阀可串联装设,配合使用。

参考文献

压差范文篇6

关键字单管跨越式系统定压差定流量水力失调

一、序言

建筑节能是建筑业的一声革命,是贯彻可持续发展战略的重要组成部分。而供热采暖中的热计量技术是工作的重要组成部分。建设部已将民用建筑有热表计量收费列入了全国建筑节能2010年规划的发展目标。

在热计量中,用户能自主调节室温并使室内温度保持在一定的范围内是实现采暖系统热计量的基础,用户的自调节必然引起系统流量,压力的变化,造成系统的水力失调,进而影响其他用户室温的变化在。而对原有单管式系统进行热计量的改造过程中,要将单管顺流式系统改造为单管跨越式系统,这种条件下加装定流量阀,定压差阀是十分必要的,因为根据文献[1]如果一个具有7个立管的供暖系统进行关闭某根立管上所有用户,以判断其它立管水力工况的变化,通过类推计算,会发现个别立管会因此增大约50%的流量。本文中将模拟简单系统,由于系统分别加装定流量阀、定压差阀,用户调节对其他用户产生的影响各不相同,所以本文结合两个简单的算例,在以上两种条件下分别进行调节,分析在给定的条件下,两种方案的适用范围以及调节产生影响的大小。

控制的目的决定控制的方式,控制的方式决定控制的手段,所以对于具体的情况下系统应选取定压差还要根据实际的情况加以选择。

二、引入算例

算例的介绍:本文以某一栋具有六根立管的单管跨越式六层建筑物为例,分析在某一单根跨越式立管上定压差以及定流

量,个体调节对整个立管上其他用户的影响;以及六根立管的单管跨越式系统在热力入口定流量,定压差的条件下用户调节对系统的影响。

本算例中,进流系数a=0.34,散热器选用普通4柱813型散热器[2],K=2.237Δt0.302,各层散热器散热量相同,根据热指标取60W/m2,面积20m2,设定Q1=2Q=3Q=4Q=5Q=6Q=1200W。系统的供回水温度为95/70℃。室内温度设定为18℃,室外计算温度为-9℃,跨越管进流系数为a=Gs/G=0.34

对于单管跨越式系统的散热器而言,存在以下四个公式:

(1)

(2)

(3)

(4)

式中:Q1----建筑物的供暖设计热负荷,w;

Q2----在供暖室外计算温度下,散热器放出的热量,w;

Q3----在供暖室外计算温度下,热水网络输送给供暖热用户的热量,w;

----供暖室内设计温度,℃,供暖室外设计温度,℃

----第i层散热器的供水温度,回水温度,℃

a,b----散热器的有关试验系数;F----散热器的散热面积,m2;

G----供暖热用户或散热器的循环水量;C----热水的质量热容C=4187J/(Kg·℃)

用户调节造成系统阻力数S发生变化。阻力数、数量、压力之间的关系为:

(5)

(6)

(7)

式中:P----立管压差SZ--总阻力G----流量

S----各层的阻力数

Sr----散热器的阻力数,Sb--表示旁通的阻力数

算例1是将计算模型中的某一立管为研究对象,在此立管上分别定压差和定流量,分析两种情况下不同用户调节对系统的影响。

算例2中作为计算模型是一个由六根立管,每根立管上六层散热器组成的一个单管跨越式系统,如算例2系统图所示。在楼房的热力入口分别安装定流量装置和定压差装置,考察用户调节对其他用户的影响。网路干管以及用户的阻力数如下表所示,其它条件不变。

三.算例的计算

3.1中心对于算例1的分析

在定流量的条件下:对算例1只有单根立管的单管跨越式系统,其他条件不变,考察在系统定流量条件下,用户的调节对其他用户的影响。为简化计算,本模型中各散热器上没有加装温控阀。因为温控阀的作用是减小用户调节对其他用户的影响,氢加装温控阀只能更所以加装温控阀只能更加减少用户的水利失调。本算例认为散热器阀门只存在两种调节状态:全开,关

闭。在没有调节前,散热器都为全开状态。并且设房间的保温措施良好,不考虑调节后相邻房间的换热问题。

定压差条件下在供回水管路之间加装定压阀,考察定压差条件下用户调节对其他用户的影响。此算例中加装自立式压差控制器,保证整个系统的压差不变。其它条件同上。

对两种模型进行计算分析比较,计算的结果如下表所示:

对模型1分别考虑两种极端情况:在定流量系统中考虑极端情况,关闭上面五层散热器,分析对底层的影响,结果造成用户的温度变为26.01℃;如果关闭下面五层,对第底层用户没有什么影响,室温保持18℃不变。在定压差系统考虑极端情况,当上面五层用户全部关闭,考察对最底层用户的影响。结果造成底层用户的温度变为19.66℃,温度失调9.22%。如果最下面的五层用户全部调节,则赞成顶层用户的室温为13.95℃,温度失调为-22.5%。

比较分析:定流量条件下用户调节,会使得该用户下层的房间温度升高,而上层各个房间的室温保持不变。最极端的情况下,即关闭上面五层,底层用户的室温为26.01℃,可以通过其它调节方式降低室内温度。相对而言,在定压差调节方式中,用户的调节,会造成所有用户室温的变化,结果是其上层用户温度降低,下层用户温度升高。在极端条件下,即关闭下面五层散热器,则顶层用户的室温是13.95℃,很难满足设计要求。该用户只能通过其他供热方式(比如电暖气供热)作为补充方来满足其对室温的要求。

3.2算例2的计算分析

本算例主要分析在给定的模型2条件下,热力入口定压差、定流量,用户调节对系统的影响。考虑三种情况,即同样是六个用户进行调节,考虑调节用户所处自控位置不同,分别位于第一根立管、第六根立管、和分散于六根立管上的情况。计算数值如下:

同理,可以计算出调节用户集中于第一根立管,第六根立管的情况。结果如有4所示。

比较分析:从算例2的计算我们可以看出,在三种调节的情况下,热力入口定流量造成的其他非调节用户的温度变化要比定压差的情况大。从图-2中我们可以明显的看出这些结论。

四、结论

通过对算例的计算归纳出下几点结论:

1.对于整个单管跨越式系统而言,入口定流量、定压差都可以降低个别用户调节对系统造成的影响,只是在定压差条件下,调节引起其他用户室温变化程度要小于定流量的条件下的变化。

2.对于单根立管定压差系统、定流量系统来说,个别用户的调节对于系统造成的影响是不相同的。在定流量系统中,用户的调节造成下层室温升,上层用户保持不变;达到压差系统中,用户的调节造成上层用户的室温降低,下层用户的室温升高,在最极端的情况下(顶层以下的用户全部调节)造成顶层用户的室温降低很多,很可能引起用户的不满。

3.考虑在实际的供热系统中不仅包括用户的个体调节还包括二次网的集中调节,所以对于热力入口定压差、定流量的系统还要考虑随着室外温度的变化适时进行量调节,采用变频泵以节约能源。可以考虑将二次网设置成变水量系统,这样采取定压差的系统更能适用于主频泵的使用。根据室外温度的变化在一个采暖季节中适时改变流量,保持系统的压力不变,在保证用户满意的条件下适时改变流量,节约能源。

参考文献

压差范文篇7

关键词空调空气幕作用压差

不设空气幕的空调建筑大门在5Pa正压作用下每平方米面积外泄的冷量相当于三百多平方米建筑所耗冷量。因此人员出入频繁的大门口要设计安装空气幕。但相当多的空调建筑空气幕实际未能起到应有作用。究其原因,从根本上说,是目前使用的空气幕设计计算方法不当造成的,其中空气幕作用压差计算不当是最主要的问题。空气幕是一种平面射流。平面射流在两侧压力不平衡时产生弯曲,偏向压力较小一侧。对空气幕而言,弯曲达到一定程度后就失去封闭作用。因而空气幕必须具有足够的抗弯能力,以抵抗相应的作用压差。因此,空气幕作用压差是空气幕设计后一个最重要的条件参数,其确定是空气幕计算的第一步,也是最重要的一步。但是国内对于空气幕总作用压差空竟由几部分组成,只计算某一部分会有多大误差,没有清楚的认识和明确的把握。目前国内广泛应用的几种计算方法,均是计算单一热压或单一风压作用下的空气幕的,虽然人们已认识到这是不合理的,但是目前还未有成熟的符合我国实际情况的方法[1],从而造成空气幕计算结果偏小的后果。为此,有必要对空调建筑的空气幕作用压差进行全面深入的分析,以便正确确定空气幕作用压差。

建筑内外空气总作用压差的形成建立在建筑物空气质量平衡的基础上。人们早已认识到它与热压Δph及风压Δpw有关。但这并非全部。对建筑物空气流动的原因进行全面分析,可知还有两项对总作用压差有重大影响的部分目前未引起足够注意。首先是建筑物特别是空调建筑内机械送风和排风量不平衡导致的室内外空气压差,称为机械压Δpm,如空调建筑保持的正压。其次是建筑物自然渗透发生变化引起的室内外空气压差变化,称为平衡压Δpe。实际建筑物内外交外压差即部作用压差Δpz是这四个因素综合作用的结果,可用其代数和表示,即

Δpz=Δpw+Δph+Δpm-Δpe时(1)

1风压Δpm

室外空气以一定速度流动,碰到建筑物后速度降低转化为静压而形成风压Δpw,可用下式表示:

(2)

式中Cw----建筑风压系数,或称空气动力系数,用以表达动压转化为静压的程度;

ρw----室外空气密度,kg/m3.

vw----室外风速,m/s.

Cw是建筑物在风场中相对于风向的形状和方位的函数,在有关的手册和专著中可查到。表1给出了长方形建筑的风压系

数,可以大致上了解风压系数的分布情况。室外风速vw一般采用国家建筑气象参数标准中给出的季节最大频率和风向的数据,这种数据是在地面以上10m高度获得的。实际上由于地形、高度和树木及其他建筑遮挡的原因,一般建筑表面附近的风速往往低于气象参数标准给出的室外风速,而10m以上的风速则高于此数:

长方形建筑的风压系数Cw表1

建筑方位垂直偏斜

迎风面0.950.70

侧面-0.4-

背风面-0.15-0.50

(3)

其中k=0.11~0.14。非高层建筑可不考虑此问题。

现有以自然通风计算法为基础的空气幕计算方法认为只要不是迎风面,为避免复杂计算,可忽略风压,仅计算热压引起的空气流动[2]。这种方法对以增大通风量业排除余热为目标的工业建筑通风是有好处的,因为它能加大计算的安全系数。但对以减小通过大门风量为目标的空调建筑空气幕设计,是不合适的,因为不能充分考虑可能的最大压力,会造成计算结果偏小,使得空过空气幕的风量增加从而加大冷热量的消耗。由表1,可知即使不是迎风面,风压系数仍有相当数值。另外,对于空调建筑物,由于夏季冷气的流动方向是由内而外,背风面负压加剧这种流动。因而空气幕计算中不论迎风在还是背风面,风压都不应忽略。

2热压Δph

室内外空气温度不同而产生密度差,使同一高度上承受的气柱压力不同,导致空气从冷侧向热侧流动的压力称为热压。热压用以下公式表式:

(4)

(5)

式中Ch----热压系数;Ch是建筑物内部纵向隔断状况的函数。对高大厂房之类无内部纵向隔断的场合等于1.0;

各层楼之间的楼梯间和电梯间均有门隔断的现代建筑,Ch是等于0.65[3]。

其余根据内部纵向隔断程度在此区间取值;

ρc,ρh-----分别是冷、热侧空气密度,kg/m3;

H,h-----分别是大门高度,建筑物最高排风点高度,m;

HZ-----空气幕作用下中和面高度,由地面起算,m;

q,μ-----分别是空气幕效率和空气幕作用下大门的流量系数;

Fm-----大门面积,m2;

Fp-----与大门处空气流动方向相反的空气流动总净面积,m2;

Fm-----与大门处空气流动方向相同的空气流动总净面积,m2;

由于现代空调建筑都采用铝合金门窗,气密性高,其缝隙的μF值在10-5,大大小于一般工业厂房的10-3水平,所以二楼以上的一般房间几乎没有渗透,应将注意力集中于大门、屋顶排风口等处。

中和面主度HZ主要与建筑高度、进排风面积比等因素有关。对一般建筑物为建筑高度的0.4~0.7倍。而建筑气密性好的建筑,在设有带空气幕的开敞大门时,可能超出此范围。

3机械压Δpm

为防止未经处理的空气无组织流入室内,空调建筑往往通过送风量大于排风量的方式保持室内正压。这种由送风和排风量的不平衡造成的室内外交困压差称为机械压。机械压与风压、热压叠加使室内外压差增大。根据我国暖通空调设计规范规定,空调房间的正压不应大于50Pa。一般空调房间按5Pa正压设计,实际上,由于设计和设备情况的不同,空调房间的正压从0到50Pa甚至更大,有一个很大的分布范围。

机械的大小于送排风量之差及护结构上的开孔或缝隙面积有关,可按下式计算:

(6)

式中Cm-----机械压系数,当排风量大于进风量,Cm=1;否则Cm=-1;

ρ-----进排风平均空气密度,kg/m3;

Lj、Lp-----分别是进风量,排风量,m3/s;

∑Fi-----进排风总净面积,m2,含设有空气幕的敞开大门在内。有效大门面积按下式计算:

(7)

q-----空气幕效率系数。

在没有确切的排风量数据时,上式中的Lj、Lp也可以用建筑物总的送风机和排风机容量代替。但因送排风管道阻力可能不同,会产生一定误差。

4平衡压Δpe

当风压、热压、机械压共同作用建立起室内外空气压差后,空气在此压差作用下将从围护结构上的孔洞和缝隙向压力较小一侧渗透,使得压差逐渐下降,直至进出建筑物的空气量平衡,形成一个新的稳定的总作用压差为止。这种建筑物为保持空气渗入和渗出量平衡而产生的压差变化,称不平衡压。平衡压与风压、热压、机械压的大小和围护结构的气密性有关,可在后三项之和的0~30%之间[4],必须通过整个建筑物的空气质量平衡计算才可算出:

(8)

式中I表示迎风面,o表示背风面,风压与计算点方位有关,热压与计算点的高度有关,可用计算机采用叠代法计算。不便要用上述方法计算时,也可采用以下结果偏大的公式近似计算[5]:

(9)

式中-----分别是迎风面、背风面的风压,用式(1)计算;

F′,F′′-----分别是空气幕作用下迎风面、背风面的总开口(缝隙)净面积,策m2。

其中设空气幕的大门面积按式(7)计算。

5各压差成分对总作用压差的影响及比例

如上所述,建筑物内外空气总作用压差Δp是风压、热压、机械压和平衡压四个因素综合作用的结果。可否忽略某些因素,只计算其中的1~2项呢?以下通过一个例子来考察。

【例】某空调建筑总高27m,内设直接采光的中庭,中庭顶部设有排风口,面积总计0.4m2,大门们地迎风面,宽B=4.4m,高H=2.5m。单层铝合金窗,窗缝总长L=2000m;其他门处于背风面,是经常关闭的,门缝总长L=30m;室内温度tn=26℃,ρ=1.181kg/m3,室外夏季空调计算温度tw=35℃,ρ=1.146kg/m3;室外平均风速1.6m/s;室内新风量为9.8m3/s,机械排风量为8m3/s。计算空气幕总作用压差并比较热压、风压、机械压、平衡压各部分相对大小。

【解】根据Δpz=Δpw+Δph+Δpm-Δpe由式(2)~(9),分别计算出风压、热压、机械压、平衡压的数值,列于表2。计算细节说明如下:

计算例表2

压差组成热压Δph风压Δpw设备压Δpm平衡压Δpe总压差Δpz

计算值(Pa)-0.751.39-1.700.54-1.59

比例0.470.871.070.341

(1)设计算对象近似矩形建筑,查得迎风面风压系数Cw=0.95,背风面风压系数Cw=-0.15,不考虑风速沿高度的变化。

(2)车间建筑设计对称,除大门以外,迎见面和背风面的其他空气流动面积(缝隙面积)分布均匀,可认为相等。

(3)由[9]表3.23推得铝合金窗窗缝μF≈3.2×10-5,由[5]表4-4门缝μF=0.01

(4)取空气幕效率q=0.8,据[4]空气幕射流角30°,,可用侧送空气幕的大门流量系数值。查[5]表4-3得μ=0.425,则包含空气幕的大门的迎风面空气流动面积F′和北风面空气流动面积F′′分别为:

F′=4.4×2.5×(1-0.8)×0.245+2000×3.20×10-5/3=0.56m2

F′′=30×0.01+2000×3.20×10-5×2/3+0.4×0.64=0.3+0.043+0.256=0.599

(5)考虑到空调送排风系统管道的复杂,计算热压时不计机械送排风开口的影响。

分析表2数据可看出:

(1)由于总作用压差是代数和,因而有可能出某项压差绝对值大于总压差的现象。

(2)夏季空调建筑热压所占比例很小。其原因首先是因为空调内外温差较小,如果按冬季空调,室内20℃,室外-10℃时,经试算热压将达2.93Pa,其绝对值大于总压差。其次现代空调建筑门窗气密性大大提高,使得中和面高度降低,热压减少。若按一般双层钢窗流量系数μF=0.0014计,经试算热压可达6.91Pa,其绝对值亦大于总压差。由此可知,对夏季密闭良好的空调建筑,仅计算单一热压来确定空调建筑空气幕时,计算结果将偏小。本例中小50%以上,其他情况下偏小程度与风速、温差、排风比和密闭程度有关。

(3)设备压所占比例相当大。本例中空调建筑为保持正压而设置的风机设备造成的压力绝对值比总作用压差还大,若忽略不计将造成重大误差。

(4)风压所占比例较高。娄室外风速较高时,风压绝对值有大于总作用压差的可能。但由于平衡压也随风速增大且与风压方向相反,部分抵消了风压的作用,故若用单一风压计算空气幕将有偏大和偏小两种可能,其偏离程度与风速、温差、排风比和密闭程度有关。

6结论

1.目前国内使用的空气幕设计方法未全面考虑空调建筑空气幕所实际随的压力,采用单一热压或风压做计算压差,计算结果严重偏小,不宜用于空调建筑物空气幕计算。

2.空调建筑空气幕总作用压差应综合考虑热压、风压、机械压及平衡压,按式(1)~(9)计算。

参考文献

1秦红,空气幕现有设计计算方法应用与扩展分析,2002年全国暖通空调制冷年学术年会论文集

2孙一坚,简明通风设计手册,北京:中国建筑工业出版社,1999

31989ASHRAEHandbook-Heating,Ventilating,andAirConditioningFundamentals

4FayeC.McQuiston,JerildD.Parker.Heating,VentilationandAirConditioningAnalysisandDesign.SecondEdition.NewYork:JohnWiley&.,198.

压差范文篇8

关键词:压差控制定风量变风量控制稳定性响应时间

1概述

压差控制在净化空调系统中是一个非常重要的环节。只有通过对净化区域的压差进行控制,保证合理的气流组织,才能达到净化和工艺的要求。例如洁净厂房必须保持一定的正压使外界未经净化的空气不会进人净化区域,保证洁净级别;并且通过对各净化区域的不同的压差控制,达到净化分区的作用,在GMP中就要求不同净化级别区域的压差应得到控制不小于+5Pa。在生物安全洁净室中,压差控制更是保证安全防护屏障的关键指标,在《生物安全实验室建筑技术规范》中指出必须使实验室的负压梯度得到稳定可靠的控制。因此对于净化空调系统来说,压差控制是非常重要的。

压差控制在实现中是比较困难,特别是在生物安全实验室中,要得到并保持精确、稳定的压差对于控制工程师而言绝对是一件具有挑战性的任务。因此在设计压差控制系统时,必须要根据实际情况从以下几个方面进行分析和确定:

①风险分析评估;

②定风量系统和变风量系统选择;

③压差控制和余风量控制方法;

④控制信号与噪声的影响;

⑤制稳定性及响应速度;

⑥建筑结构对压差控制的影响;风管泄漏对压力控制的影响。

首先,必须对压差控制的风险进行分析,例如对于高等级的生物安全实验室而言,因为它有生物污染的高风险,各种相关的标准都对其有保持稳定负压梯度防止污染泄漏的严格要求,因此控制系统就必须能够稳定可靠的实现这样的控制目标。

2压差控制方法

对于压差控制系统来说,其所达到的结果实质上是对渗人或渗出空气的控制,就其控制策略而言可分为被动式和主动式控制。

定风量(CAV)是一种被动式的控制方法,它使用手动风量调节阀,通过简单的送风和排风平衡,送风比排风少(或多)一定的量(余风量),来达到所期望的压差。在选择定风量这样的控制策略时必须认真的考虑,因为定风量系统有突出的局限性。主要有以下几点:

(1)所有时间,设备必须保持恒定的送风量和排风量。

(2)不能有任何排风设备(如生物安全柜等)增加或减少,灵活性差。未来的扩展会由于系统容量限制而受限。

(3)必须按全负荷设计,要有较大的余量来弥补由于过滤器等造成的送风和排风系统性能的下降,连续的全负荷运行使能耗极大,因此运行成本非常高。

(4)由于风机系统、过滤器系统等性能下降或风阀位置改变等情况下,系统经常要重新进行风平衡调试,需要大量的维护。

(5)由于在所有时间都是大风量运行,噪音会过高。因此如果不能接受以上的局限性时,就不应选取这样的控制策略。目前,通过在送风管和排风管上采用压力无关型的定风量控制装置(如文丘里阀)的定风量系统,在一定程度上可以主动的、动态的调节流量,消除系统静压波动造成的对流量的影响,从而保证流量的恒定和控制的稳定。

变风量系统(VAV)是一种主动式的压力控制策略,它通过电动风量调节阀连续不断的对送风量或排风量进行调节,以保持希望的压力。主动式的VAV压力控制方法可以分为两种:纯压差控制(OP)和余风量(又称为流量追踪)控制(AV).

2.1纯压差控制方法

纯压差控制方法相对而言简单明了,其基本原理如图1。其控制原理为:压差传感器测量室内与参照区域的压差(OP),与设定点(即期望的压差)比较后,控制器根据偏差按PID调节算法对送风量(或排风量)进行控制,从而达到要求的压差。可以看出,送风量(或排风量)是压差(Δp)、设定点以及PID常数(α,β)的函数。

另外一种相似的压差控制方法则是根据伯努利原理,利用一个装在小管内的风速探头,将小管置于洁净室与参照区之间的开孔中,由于洁净室内与参照区的压力差将使空气从此小管中流过,管中的风速探头就可传感洁净室内与参照区之间的空气流速,从而根据伯努利原理利用风速计算出洁净室与参照区的压差,根据此压差信号,按照上述的方法,控制器对洁净室的送风或排风量进行控制,达到所期望的压差值,这样的方法称为“伪压差”控制方法。

2.2余风量(气流追踪)控制方法

洁净室的送风量与排风量之间保持一定的风量差(称为余风量),必然会导致洁净室产生一定的压差。余风量(气流追踪)控制即控制系统实时测量风量(送风和排风量)变化,通过调节送风量或排风量,动态的达到相应的风量平衡,使送风量和排风量之间保持恒定的风量差,从而维持恒定的压差。其基本原理见图2,控制系统利用气流测量装置实时测量送风量和排风量,排风量可以在排风主管上测量,或如图中在各个单独的排风上进行测量并求和,控制器据此调节送风量,使其追踪排风量的变化,保持一定的余风量,从而达到所希望的压差值。可以看出余风量控制是一个开环控制系统。

在这里,余风量就是达到所希望压差时渗人或渗出洁净室的空气流量(单位为CFM)。负的余风量即总排风量大于总送风量,它将导致负压的产生,而正的余风量则是总送风量大于总排风量,它将导致正压产生。

在图2中的风量等式中,余风量是定值。但在实际情况下,它是变化的,例如当流量传感器发生偏移时,实际的余风量也将发生变化。因此,应该考虑选择足够大的余风量来弥补由于围护结构气密程度、风管泄漏以及流量测量装置精度误差等造成的影响。

上述的两种压差控制方法,在实际运用中都必须按照预定的频率进行验证。例如对余风量控制,每半年就应该进行对设定的余风量进行校正。

2.3混合控制系统

由于生物安全等级3或4级的生物安全实验室的研究和实验对象非常危险,实验室的压差控制以及气流方向控制更加重要,必须确保压差和气流方向得到稳定可靠的控制。对于这样压差控制非常关键的地方,采用纯压差控制和余风量控制两种方法混合的控制系统是很好的选择,它可以确保对实验室压差稳定可靠的控制。

通常的做法是采用余风量控制作为基本控制方法,同时加人压差传感器和控制器对余风量控制系统的余风量进行设定。当房间特性发生变化时,如风管的泄漏以及围护结构的气密性等发生变化,余风量也会发生变化(通常是变大),此时压差控制系统可以动态的计算出一个合适的余风量,以保持稳定的压差控制。

同时,一旦余风量增加到一个预定值时,系统将发出报警,此时可能需要对流量测量装置进行校正,或者对风管和围护结构的泄漏进行处理,使系统状态回到正常范围内。因此这样的系统可以通过对余风量的监视实现对整个实验室的控制系统、风管系统、围护结构完整性的监视。

3稳定性与响应速度

一般建筑技术构成的房间,它能够达到的控制压差约为2.5Pa,对于测量来说这是一个非常小的压差(信号),同样对于测量传感器的校正来说也是非常困难的。由于门的开关、生物安全柜调节门的移动、人员的运动等很多因素造成的扰动(噪声)约可达到25Pa。因此对于纯压差控制而言,其测量信号与噪声之比为1:10。这样的情形就如同测量一个湖泊的液位,要求精度在1厘米,而湖泊的波浪却有10厘米高,如果希望得到精确的测量值,就需要很长的时间来平均波峰和波谷。在这样的情况下,如果希望快速的响应就不可能保证精度,精度与速度(或响应时间)是矛盾的。

对于纯压差控制系统,响应时间一般要求在数分钟以内。因此,很多这样的控制系统都是牺牲稳定性来达到响应时间的要求,它在达到稳定控制之前需要在设定点附近波动相当长的时间。不幸的是,系统达到稳定控制的时间往往比扰动发生的频率长,因此系统可能整天都在波动,直到人员下班、工作结束,不再有扰动发生,系统才能够达到稳定状态。

对于“伪压差”控制系统,其测量对象是空气流速,它相对于纯压差控制更稳定、更快速一些,因为流速信号和噪音信号是与动压的开平方成比例关系,它大约能够把信号与噪声比提高到1:3。可以看出,测量对象的简单改变就可以大大改善系统的J性能。然而,即便如此,噪音依然达到了信号的3倍,当扰动发生后,控制系统仍需要超过60秒以上的时间达到稳定输出。需要注意的是,由于测量气流速度需要在房间与参照区域开孔,因此这样的控制系统对于很多场合的应用是不允许的,例如对洁净度有较高要求的场合,或高等级的生物安全实验室也不应使用。

对于压差和“伪压差”系统来说,在某些条件下会造成严重的压力问题,如在进行负压控制时,当洁净室门打开时,所有的测量信号如压差和流速都会消失。虽然一些控制器有按照预定时间锁定输出的功能来弥补这样的问题。然而,当门长时间打开时,压力控制系统就会关闭送风,以便使房间回到负压的设定点。此时,空气将会从过道(或相邻区域)被吸人打开的房间,过道(或相邻区域)的压力必然下降。而如果其他洁净室也是使用过道(或相邻区域)作为压差参照点,那么其他洁净室的压差控制器也将关闭送风,由此发生连锁反应,更多的空气被从过道(或相邻区域)吸入洁净室排走,测量压差值一直不能达到设定,而实际压力却在不断下降。同样对于正压控制也会产生类似的问题。可以想像,这将会造成整个洁净室严重的压力问题。当然,对于那些不要求严格房间压差控制,或风险评估对稳定时间以及稳定性没有较高要求的设施,并在HVAC系统设计中采取了措施(如采用双门互锁的缓冲间进行隔离)能够避免如上述问题发生的情况下,采用纯压差控制也是可行的。

相对而言,余风量(或流量追踪)控制系统的信号测量是采用流量测量装置对送风量和排风量进行测量。而送风量和排风量通常都是比较大的测量值,在这样的情况下,例如信号测量为1000CFM,而噪声(各种扰动)约能达到1000FM,信号噪声比可以高达10:1。因此,在这样的情况下,系统可以达到很高的精度、很高的稳定性以及非常迅速的响应。因此在对压差控制有较高要求的运用中,通常都推荐或要求使用这样的控制方法。

对于余风量控制系统来说,流量测量装置是影响系统性能的关键装置。一般常用的流量测量装置为热线风速传感器阵列和毕托管阵列。这样的流量测量装置有很高的精度.然而一旦有颗粒附着或堵塞在传感器上,或传感器受到腐蚀的影响时,其测量就会发生很大的偏差。对于毕托管阵列,还必须注意其在低风速时有很大的测量误差,所以应考虑其应用范围。流量测量装置的安装位置同样也需要严格按照其技术规格的说明进行选择,否则同样会造成测量的误差。

另外,在目前有一类流量控制装置出现在很多运用中。它是一种线性的、压力无关的风量调节阀,能够根据阀门位置提供相应流量反馈信号(例如文丘里阀),其标定和校正在出厂时已经由专业供货商完成。相对于单纯的流量测量装置,这种装置功能更加的集成,它在进行流量控制的同时能够进行流量测量。在实际使用时,这种压力无关装置的流量反馈精度,一般采用备份的流量测量装置进行验证。当前这样的压力无关型风量调节阀,已经在很多要求较高压差控制中取得了成功的应用。

4影响压差控制的其他因素

建筑技术对压差控制的性能和效果有很大的影响,不密闭的围护结构很难建立起稳定的压力梯度。它需要有很大的余风量才能弥补很多的泄漏,当使用很大的余风量时,将向相邻空间中抽取(或排出)大量的二次空气,因此可能会造成温度、湿度控制的问题。因此必须使洁净室有一个密闭的围护结构,才能保证相应的压差和合理的气流方向。

风管的泄漏也会对余风量控制的精度和性能造成影响。如果在流量测量装置和洁净室围护结构之间,有空气泄漏出风管或进人风管,将会造成流量测量的误差从而引起压力控制显著的偏差。如果是在定压系统中,这个误差相对恒定;但如果系统的静压是波动的,这个误差也将会波动,因此控制系统非常难以采取技术措施消除这样的误差,从而造成控制性能的恶化。因此,必须要求对送风和排风管道进行泄漏检测,允许的最大泄漏率最大不应超过0.5%(具体见空调专业设计要求)。

参考文献:

压差范文篇9

关键词:RS-485总线土工膜渗透系数耐静水压测试系统

土工膜主要应用于防渗工程中。它的渗透系数和耐静水压是土工膜水力性能的主要指标,因此在质量检测中是国家标准要求的必测项目。在工程应用中,土工膜在一定水压下不能破裂,还要保证最小的渗透率,防止水的流失。为了在施工前就能确定某一种土工膜是否符合工程需要,必须在实验室中对所使用的土工膜进行测定。其测试装置要求较高,测试过程复杂,国家标准要求每组试样不得少于五块。2001年作者等人承担了河南省科技攻关项目“土工膜水力性能测试仪的研制”,实现了单台手动/自动测试功能。但由于选取试样多,测试时间长,每块试样需要数小时才能完成,每组实验需要两天,因此在原测试仪的基础上,采用RS-485总线通讯方式,实现了对多台测试装置(五台)进行控制,大大缩短了测试时间,提高了测量精度,并由上位机实现了测试参数的制表打印、曲线绘制等功能,满足了实际要求。

1测试原理

土工膜在一定水力压差作用下将产生微小渗流。在规定水力压差(一般为100kPa)下,测定一定时间内通过试样的渗变量,然后即可根据试样厚度计算出渗透系数及透水率。渗透系数和透水率可按(1)式、(2)式分别计算。

K=v·T/(t·A·Δp)

ψ=v/(t·A·Δp)

式中,K为渗透系数;ψ为透水率,单位为m2/s;v为时间t内的渗流量,单位为cm3;T为试样厚度(实验压力Δp下),单位为cm;t为测定时间,单位为s;A为有效流流面积,单位为cm2;Δp为试样两侧的水力压差,单位为cm。

在测试装置的高压仓中注满水,放上经过充分浸泡湿润的土工膜试样,并利用网络使试样保持一定形状,连接低压仓,注入一定量的水。在高压仓中有一个和加压气源相通的气囊,通过调节气源的压力,使气囊膨胀,在高压仓产生压力,使试样两侧建立起一定的压差。

试样测试直径为φ=16cm,有效测试面积为201cm2,压力在0~1.6MPa之间连续可调。上述加压装置在试样两侧建立一定的压差,通过高压仓上安装的压力传感器检测出压力信号送入下位机。在一定压差情况下,用标准的细计量管及光栅位移传感器测量出时间t内的渗流量V,求出渗透系数。通过改变压差来测定不同水力压差条件下的渗透系统。在土工膜两侧的压差达到一定值后,土工膜就会破裂。耐水静压的测定是通过逐级增加试样两侧的水力压差并保持一定时间实现的,当渗透急速增加时,表明试样受到破坏,通过下位机采助记歌到这时的压差值,那么前一级压差值就是试样的耐水静压值。如果只需判定试样是否能达到某一规定耐静水压值,则可直接加压到此压差值,并保持两小时。如果土工膜没发生破裂,就判定试样符号此耐静水压值的要求。

根据国标GB/T17642-1998规定,有效渗流面积A≥200cm2。把高低压仓的口径及网络的有效渗流面积设计为A=201cm2,符合国标GB/T17642-1998的要求。

2系统组成

该系统由三部分组成:测试装置、下位机、上位机,如图1所示。

2.1测试装置

测试装置包括:高压仓、低压仓、气囊、气源、进气孔、注水口、网络、加压装置、水量、压力检测等。其功能主要是放置土工膜试样、调节压力、建立压差、输出压差信号、检测渗透水量及水量突变等。根据国标GB/T17642-1998的要求,渗透水量测定范围为0~3.7ml,精度为1/1000;压差值测试面积为201cm2,压差在0~1.6MPa之间连续可调;压力传感器工作电压为6V,量程为0~1.6MPa,精度为1/1000。

2.2下位机

以单片计算机89C52为核心,并配置由10位A/D转换器MC14433、功能按键、MAX487组成的RS-485接口等,实现对测试系统状态的设定,对压力、水量、时间的测定和与上位机进行数据通讯。测试系统原理图如图2所示。按键用来进行系统状态设定以及启、停等功能控制,压力传感器用来检测压力,电动调压阀用来控制加压装置以使压力保持恒定,位移传感器用来检测渗水量。其中,电动调压阀的控制采用光电耦合器,以提高系统的抗干扰性能。

2.3上位机

利用PC机自带的标准串行接口,通过专用的RS-232/RS-485转换器,形成RS-485总线与下位机的连接,可实现对下位机测量过程的监控,并对测试数据进行处理、制表打印、绘制曲线。

3通讯协议

通讯协议采用半双工异步通讯方式。数据格式为:1位起始位,8位数据位,1位停止位。帧格式包含呼叫帧和数据帧。呼叫帧由上位机发出,其格式为:起始字符,下位机地址,停止字符等。数据帧是下位机对上位机呼叫的响应,上位机呼叫地址与下位机地址一致时,下位机才发送数据帧,每一时刻只有一台下位机和上位机通讯。数据帧的格式如表1所示。

表1数据帧格式

起始字符下位机地址状态字段数据序列和校验停止字符

8位8位8位4×8位8位8位

其中,状态字段是当前的测试状态,每位表示的功能及操作如表2所示。

表2状态字段各位含义

测试项目测试状态测试次数测试物理量

D7D6

00-渗透系数

01-耐静水压D5D4

00-正常测试01-测试失败

10-状态过度11-测试完毕

D3D2

00-第1块

01-第2块D1D0

00-压力

01-位移

表2中,正常测试表示正在测试,所传送数据有效;测试挫败表示所传送数据无效;状态过度表示正在进行其它操作,所传送数据也无效。数据系列中,两个字节表示一个测试状态下的测试时间,另两个字节表示该测试状态下的测试物理量。

为了保证数据传送的准确性,对两种情况采用如下的差错处理方法:

(1)上位机发出呼叫帧4秒内没有收到下位机发送的数据帧,则上位机连续发4次呼叫帧;如下位机仍没有响应,则认为通讯故障,上位机报警。

(2)下位机发送数据帧,上位机收到后如果累加和有误,则要求重新发送;如果连续四次仍有错误,则上位机报警。

4软件设计

4.1下位机软件

根据测试原理及工艺过程,主程序框图如图3所示。先设系统工作状态和参数,再判断是渗透系数测定还是耐静水压测定。采用压力传感器检测压力变化,用位移传感器检测水量,用89C52的定时器T0计时,通过RS-485接口响上位机发送数据。改变压差,测不定期不同水力压差条件下的值,其间实时采集压力信号,经过数字滤波后,与该压力的给定值比较得到偏差信号,该偏差信号经PI运算后,控制电动调节阀,得到所需压力值。

4.2上位机软件编程技术

本系统上位机软件基于WINDOWS操作系统,编程软件为VB6.0,主要实现菜单/画面显示,接收下位机传送过来的信号及数据,根据式(1)求出渗透系数或耐静水压值,算出五台下位机测试结果的平均值,绘制测试曲线,打印测试报表。

4.3测试结果

利用该仪器对某厂生产的短纤针刺土工膜CGA1B1800/0.35进行测试,结果如表3所示。

表3CGA1B1800/0.35短纤针刺复合土工膜测试结果

试样抗渗透压(Mpa)渗透系数(cm3/cm2·s)

10.786.0×10-10

230.767.0×10-10

30.806.8×10-10

40.776.0×10-10

压差范文篇10

关键词:实验动物房;洁净空调;风管布置;自动控制

实验动物是生命科学研究的基础和条件,又是医药产业,卫生保健产业和相关产品质量检验的支撑条件。《实验动物环境及设施》GB14925-2010中定义实验动物为经人工培育,对其携带微生物和寄生虫实行控制,遗传背景明确或者来源清楚,用于科学研究,教学,生产,检定以及其他科学实验的动物[1]。这样定义是为了保证科学实验结果的可靠性,精确性和可重复性。而实验动物环境因素的稳定性和标准化,对实验动物的质量和实验结果都具有重要影响。最常使用的是SPF级动物(SpecificPathogenFree,无特定病原体级实验动物),它既排除病原体的干扰,价格又低于无菌动物和悉生动物,被广泛应用和肯定。实验动物对环境的依赖性很强,尤其是一些近交系动物和免疫缺陷动物,要求更严格的环境条件。目前国标对实验动物所处环境(温湿度、氨浓度、静压差、空气洁净度、噪声、照度动物笼具处气流速度等)指标均有严格控制。主要有以下指标:1)温湿度热湿环境对动物自身热平衡和生理反应影响很大,动物通过新陈代谢同周围环境不断进行物质和能量交换,温度过高或过低导致雌性动物性周期紊乱,湿度过高有利于病原微生物和寄生虫的生长和繁殖,低湿环境下大鼠、小鼠的哺乳母鼠经常发生拒哺或吃仔鼠的现象,仔鼠也常发育不良。所以实验的动物只有在舒适的环境中才能正常生长、发育、繁育和用于实验[2]。《实验动物环境及设施》GB14925-2010中规定实验动物生产间的环境指标如下:2)氨浓度动物粪尿等排泄物发酵分解产生的污染物种类很多,氨是这些污染物中浓度最高的一种,长期处于高浓度氨的作用下,实验动物呼吸道黏膜可出现慢性炎症,使这些动物失去作为实验动物的应用价值。氨有恶臭对人和动物有直接毒害。所有的动物设施中室内氨浓度应低于14mg/m3。3)静压差每个房间的功能往往不一样要求各异、饲育动物密度和品质不一样,为避免实验动物交叉感染和相互干扰,就需要建立良好的压差梯度保护屏障环境的洁净,形成合理气流组织,并能达到有效控制污染物的目的。屏障环境内相通区域的最小静压差≥10Pa。隔离环境内隔离设备内外静压差≥50Pa。4)空气洁净度空气中颗粒物对实验动物和人员的健康有直接影响。环境指标恒定,动物质量才有保证。动物实验结果会出现一致性、可靠性和可重复性。洁净度要求如上表1。由于屏障环境的特殊性,加上我国实验动物屏障设施建设起步晚、历史短、经验少,又处于实验动物蓬勃发展黄金时期,显然在专业化、标准化和准确化等方面有许多地方亟需我们不断进取。所以本文结合实际工程探讨在洁净动物房工艺布局合理的前提下,采用相对独立风管布置、结合空调控制方法,SPF级实验动物房获得压差控制,实现设计目标(使用安全、经济合理、维护方便、运行稳定)。

1工程实例———某实验动物房洁净空调现状及分析

某食品药品检验研究所实验动物房(改造中),地处杭州市,位于其实验楼的13层,总建筑面积1500m2,层高4.70m,包括SPF动物级饲养室,检疫间,实验室及辅助更衣,缓冲和准备间等功能房间。系统是带一次回风的全空气系统,单走道,饲养室净化级别为7级,正压。实际使用中,业主反馈的问题是:房间与走廊之间的压差不能保证最小静压差≥10Pa。每个房间不能保证独立使用和隔离消毒。臭味儿重,臭味儿会顺着楼梯间扩散到其他层。自控系统会出现失灵现象导致房间的环境技术指标达不到要求。为了方便讨论,本文截取组合净化空调机组PAU13-2负责的SPF级实验动物房区域进行讨论,约120m2的面积,送风系统平面布置如图2排风系统平面布置如图1。空调送风风机变频,风量7000m3/h机外余压700Pa,室内采用高效送风口(自带调节阀),送风风管布置呈枝状,各个房间的送风风口有串联现象。走廊送风口与房间送风口公用一根风管设置的。排风机设置在屋面上,排风机变频,另设置一根回风管接回空调机组里,两根风管设置调节阀进行风量调节分配。排风风管布置呈枝状,各个房间的风口有串联现象。室内采用铝合金回风口(自带调节阀),走廊排风与房间排风的风管是串联在一根风管上设置的。单独一个房间多个送风口支管和其余的风管是串联的关系,针对一个房间缺少其主送风管,导致每个房间都不能独立使用控制。相通房间压差不稳,很难保持压力梯度,说明自控系统不灵光。动物房臭味儿重的原因也在于压差梯度失稳和排风系统的不当设置。

2设计改进要点

常规空调多采用手动控制,这样很难实现对环境参数变化的跟踪和实现实时控制。即使调试可以达到在正压洁净环境下运行,但是对过滤器堵塞造成阻力增加、门的开闭、送排风机启停、因灭菌操作关闭阀门等的干扰还是无法克服,容易出现波动。与常规空调相比,由于实验动物房的发展历史不长,实验动物房洁净空调系统在实践中有很多问题没有得到妥善处理和引起足够重视。实验动物用洁净空调系统一般每个系统均需要负担多个房间,由于分批饲养或者需求量不稳定等因素,设计时以最大需求量设计总送风量,在部分使用时就减少这一部分送风,即实际是一个变风量空调系统。要求风机变频,各个房间的空调系统可相对独立。要想变风量系统投入使用后真正好用,前期空调设计本身必须打下良好的基础,不能过分依赖后期自控装置的调节。针对该实验动物房运行使用中出现的上述问题,对该洁净空调系统做以下三方面改进:1)风管布置从风管初布置时就创造各个房间能独立控制的基础,有条件的建筑物可以设置维修马道,实现吊顶空间内的无障碍维修及检修、避免踩踏吊顶板确保实验动物饲养环境洁净要求。所以每个房间有独立于其他房间的主送风管道很有必要,回风管管道布置同理。这样各房间送风管是并联关系回风管也是并联关系。若要实现独立的自净消毒、清扫、备用等状态只需要关闭该房间送回风主管上的阀门即可。除了风管布置,还有室内气流组织同样重要。上送下回的气流组织中,相较于四角回风,两侧回风更有利室内污染物排放[3]。2)风系统末端阀门设置每个房间的送风主管上设置电动密闭阀和双位定风量阀,排风主管道上设置电动密闭调节阀,通过调节风量调节阀满足房间的压差要求。在房间内设有压力传感器,当房间压力与设定压力相差较大时,精确调整房间排风变风量阀,达到要求的房间压力。房间设有房间门位开关,在开门与关门的瞬间,压力变化不作为控制的依据,排风变风量阀不动作。长时间未关门,蜂鸣报警。若室内有IVC笼具盒的饲养室,IVC笼具空调系统宜采用独立的空调系统模式,为保证IVC笼具盒压力恒定,送排风均为定风量,在IVC送排风管上均设置定风量阀和电动密闭阀。IVC系统设置的定风量阀具有响应时间快和风量调节准的特点,从而整个系统简便高效。经实践和对比,实验动物房采用定风量送风、变风量排风这种模式较好。这里所说的送风定风量并非送风量一直不变,当不同工况时需要改变送风量来满足要求。房间送风管道上装双位定风量阀,以调节不同工作状态下的换气次数。当该房间处于非工作状态时调节减少送风量,此时房间压差会发生变化,控制器根据房间压差的变化保持恒定,以保证与相邻房间的压力梯度不至于紊乱。若房间处于自净状态无人也无动物,关闭该房间主风管上的密闭阀,送风机根据风管上风速传感器调节变频器,改变总送风量。改进后的风管布置如图3、4。3)选择合适自控方式空调自控的任务是对空调室内的被控对象(空气参数)温度、湿度、洁净度、压差等参数自动检测、自动调节及有关信号的报警、连锁保护控制。目前仍有不少实验动物房设计成定风量,这样很难实现对环境参数变化的跟踪和实现实时控制。不同性质不同需求必然要求实验动物房是变风量系统。在变风量控制系统中,排除机组的控制环节后,风系统中只有房间参数控制环节和风机转速控制环节。为了避免交叉感染,该空调系统改造为全新风空调系统。实验动物房控制对象优先级为:洁净度、温湿度、氨浓度。动物房饲养主房间送排风机都是变频风机。洁净室压差控制系统按照送风(新风)、排风的不同控制分类。如何控制好该区域的送排风风量变化,区域压差能够稳定控制在允许范围内是控制系统的难点。动物房排风量及送风量的变化采用余风量控制方式,在房间设有压差传感器当房间压力与设定压力相差较大时,调节排风变风量阀,从而稳定形成一定的风量差,保证正确的房间压力。按工况,运行的房间不同,送风量不同,送风机变频控制。以达到节能的目的。排风机和送风机可靠连锁。风量调节逻辑框如图5。如果设计方案是送排风风管末端均设置变风量阀,送风机变风量排风机同时也变风量控制,理论上也能完成系统控制要求但有不尽人意的地方。一般多见的就是定静压控制或者变静压控制。定静压控制简单但大多是经验性设计,然而若是双风管系统无论是在系统调试的难度还是在系统的稳定性上都有待商榷。变静压控制需要条件:带阀位开度传感器并搭配传感器驱动、DDC需要采集阀位信号,且目前算法不够成熟,系统易振荡调试困难。再加上送风变风量排风量也变风量,那么房间压差和换气次数控制更是难上加难。所以,实际中不推荐使用送风量变排风量也变的控制策略。变风量控制方法的主要问题是如何保证系统的稳定性运行。系统的稳定性取决于系统的控制系统。排风机和送风机连锁,正压房间开机时先送风机-排风机。关机顺序为先排风机-送风机。设置备用风机,将气流开关信号作为运行风机的故障报警,并在机房及监控室发出故障报警,提醒维修故障风机。房间控制原理如图6。

3结论

要明确实验动物房的环境要求,不同种类不同级别的实验动物要求是不同的,级别越高控制要求也越严格,并在空调系统设计时逐一体现和达成。前期空调设计时要考虑充分,并为后期的自控创造好条件。风管布置要依据动物房的环境及要求特性进行设计布置,保证每个房间设置主送风管和排风管,这样达到独立使用的目的。风阀设置时不是仅仅依靠调节阀达到流量平衡的目的,而是要考虑实验动物房的特性,合理使用定风量阀门、变风量阀和密闭阀。依据控制策略设置阀门,为后期自控奠定基础。合适的控制方法关乎系统稳定性、可靠性、安全性的。定送风量保证足够的换气次数,变排风量控制去保证压差控制,送风机排风机均变频,控制运行简便、调试容易、还经济节能。

参考文献

[1]国家质量监督检验检疫总局.GB14925-2010实验动物环境及设施[S].2010

[2]徐龙进.山东省实验动物屏障环境设施管理的应用性实验研究[D].南京:南京农业大学,2011