稳压器范文10篇

时间:2023-03-26 15:00:23

稳压器范文篇1

关键词:步降开关稳压器;多用途芯片;L5973AD

L5973AD是ST公司推出的一种带2A开关电流限制的步降单片开关稳压器IC。这种新型器件的输入电压范围为4.4~36V,输出电压可以在1.235V到35V之间进行设置。由于该开关稳压器具有宽范围的电压输入和输出特点,因此可广泛应用于网络、工业控制、消费电子产品以及与计算机有关的应用领域之中。

1L5973AD的功能原理

L5973AD采用SO8封装形式,其引脚排列如图1所示。图2所示是L5973AD芯片的内部结构组成框图。L5973AD的内部电源电路由启动电路、预调节器、带隙电压参考和偏置电路组成。

L5973AD中的电压监视器可连续感测VCC和VREF,只要电压高于它们的门限电平,稳压器就会开始工作。

L5973AD的振荡器电路由频率移位器、时钟发生器、斜坡产生器和同步器组成。其中时钟产生器可为器件产生500kHz的开关频率,频率移位器则可在过电流或短路情况下,用于降低开关频率。时钟信号可应用在内部逻辑电路中,同时也是斜坡产生器和同步器的输入信号。斜坡产生器电路可为PWM控制和内部电压前馈提供锯齿波信号。

L5973AD有一个同步脚,可以以主/从模式工作。当作为主机时,可将外部器件同步到内部开关频率上;而在作从器件时,则可将自己同步到外部信号上。如果将两个器件连接在一起,其开关频率较低的一个应作为从机,另一个则作为主机。

图2

L5973AD中的电流限制保护电路具有脉冲接脉冲和频率折回两种电流限制保护方式。

由于最小接通时间不足以在500kHz下产生足够的占空比,因此,在较大的过电流或短路条件下,输出电流会再次增加。这样,为保持电感电流在它的门限电平之下,开关频率也必须降低。随着反馈电压因占空比的减小而减小,频率移位器也会使开关频率降低。

L5973AD芯片中的误差放大器是环路调节的核心。其同相输入端与内部的1.235V电压参考相连,而反相输入端FB则连接到外部电阻分压器,实际上,也可以直接连接到输出电压上。误差放大器输出脚COMP通常连接外部补偿网络,它将输出与振荡器锯齿波相比较,以执行PWM控制。

PWM比较器的作用是比较振荡器锯齿波和误差放大器的输出信号,以便为驱动级产生PWM控制信号。

L5973AD的内部驱动电路可在功率开关接通和断开时,根据PDMOS开关及栅极箝位状态的电流变化,来加速功率开关导通和截止的速度,同时妥善处理续流二极管的反向恢复时间。为防止内部开关栅极高于最大允许值,L5973AD内部还设置有栅极电压箝位电路。开/关(ON/OFF)控制单元用于避免在电源总线(Vcc)与地之间出现的跨越导通(即直通)。

此外,L5973AD除具有电流限制保护作用之外,还具有过热关断、反馈断路保护和输出过电压保护等功能。

2典型应用

2.13.3V输出降压隐压器

图3是由L5973AD组成的典型降压稳压器电路。该电路的输入电压VIN为4.4~25V,输出电压VOUT可在1.235V与VCC之间通过L5973AD的脚FB外部的电阻分压器进行调节。由于脚FB内部误差放大器的电压参考为1.235V,所以,其输出电压为:

VOUT=1.235V(R1+R2)/R2

图4

由于IC内误差放大器的低频增益为65dB,输出电压摆幅为0.4~3.65V,因此输出端COMP上的补偿网络的元件选择参数如下:

C3=220pF、C4=22nF、R3=4.7kΩ

D1应选2A/25V的二极管(STPS2L25V),L1可选15μH/3A的电感器(DO3316P-153)

由于L5973AD内使用的是P沟道DMOS功率开关,因而可省去自举电容器。该电路在无载条件下,其突发模式下的操作效率高于90%。

2.2降压-升压稳压器

图4给出的是一种降压-升压稳压器电路。该电路的输入电压VIN为5V,而其输出电压为12V,电流输出可达到0.6A。

稳压器范文篇2

关键词:MSK5101大电流输出低电压跌落

1概述

集成稳压器在近十多年发展很快,目前国内外已发展到几百个品种。按电路的工作方式分,有线性集成稳压器和开关式集成稳压器。按电路结构形式分,有单片式集成稳压器和组合式集成稳压器。按管脚的连接方式分,有三端式集成稳压器和多端式集成稳压器。按制造工艺分,有半导体集成稳压器、薄膜混合集成稳压器和厚膜混合集成稳压器。而在线性集成稳压器方面,则以低压差、大电流、小体积的发展比较迅猛。

MSK5101是美国MSKennedy公司研制的一种新型低压差、大电流、低功耗线性稳压器,它有+3V、+5V、+12V和可调输出。输出晶体管采用单片工艺制造的超级PNP管,所以该系列型号的输入输出电压差很小。图1所示是MSK5101的内部结构框图。

图1

当MSK5101的输出电流为1.5A时,其压差只有350mV,因而它的效率很高,功耗较低。且输出电压精度可确保1%。此外,该系列稳压器也具有TTL/CMOS兼容的on/off使能脚以及故障信号输出脚。MSK5100采用可有效利用空间的10脚功率型SOIC封装,并且外壳上带有散热器铜接头。

MSK5101的体积很小。其外形如图2所示,尺寸大小为6.35mm×6.35mm×2.08mm,所以在很多有体积和重量限制的大功率稳压器应用中,该系列稳压器有很好的性价比。因此,可广泛应用于高效线性稳压器、恒压/恒流调节器、系统功率源、开关电源输出稳压器以及电池供电等设备。

MSK5101的主要特点如下:

●采用带散热器接头的紧密型10脚SOIC封装形式;

●输入输出电压差非常小,输出电流为1.5A时,压差只有350mV;

●具有3.3V、5V、12V和可调输出;

●采用开路集电极误差信号输出方式;

●带有TTL电平使能脚;可零电流关断;

●带有电源反接保护和负载短路保护功能;

●接地端电流只有22mA(满载时);

●输出电压精度可达1%;

●输出电流可达1.5A。

2主要参数

MSK5101的主要电气性能参数如表1所列。

表1MSK5101的主要电气性能参数

参数名称测试条件MSK5101系列单位

最小典型最大

输出电压公差Iout=1A,Vin=Vout+1V±0.5±1.0%

输入输出电压差Δvout=-1%,Iout=100mA80225mV

Δvout=-1%,Iout=1.5A350625mV

负载调整率Vin=Vout+5V±0.2±1.2%

10mA≤Iout≤1.5±0.3%

电源调整率(Vout+1V)≤Vin≤26VIout=10mA±0.05±0.6%

±0.5%

输出限流值Vout=0V,Vin=Vout+1V2.13.5A

接地端电流Vin=Vout+1V,Iout=0.75820mA

输出噪声Vin=Vout+1V,Iout=1.5A22mA

使能脚输入电压CL=10μF,10Hz≤f≤100kHZ400μV

使能脚输入电压高电平/导通2.41.2V

低电平/关断1.20.8V

使能脚输入电流高电平/导通2075μA

低电平/关断12μA

关断输出电流VENABLE≤08V1020μA

输出漏电流VOH=26V0.012μA

信号输出电压IOL≤250μA,Vin=Vout-2V0.20.4V

信号门限Vin=Vout-7%75mV

基准电压正常工作1.221.241.26V

基准电压温漂正常工作20PPm/℃

调整脚偏置电流全部温度范围,Vin=Vout+1V40150mA

热阻结到外壳4.55℃/W

过热关断温度结温JT1135℃

3应用说明

3.1稳压器保护

MSK5101系列稳压器具有输入电源极性反接、过电流、超温(Pd过大)和瞬态电压尖峰达到60V等各种保护功能,若将该稳压器用于负载接负电源的双电源中,则输出电压必须采用二极管箝位到地。

3.2输出电容

在输出端与接地端之间接入一只滤波电容可以减小MKS5101系列稳压器的输出电压纹波,该电容的最佳容量取决于应用情况,但至少应在10μF以上。也可在负载两端直接接入一只电容器来改善负载的瞬态响应能力。

3.3负载连接

在实际应用中,当稳压器负载电流很大时,负载的接法非常重要。为了不影响负载调整率,稳压器输出到负载之间连线的阻抗必须非常小,因为该阻抗可与负载组成分压器。为了保持稳压,MSK5101系列稳压器的最小负载电流应为10mA。

3.4使能管脚

MSK5101系列稳压器有一个与TTL信号兼容的使能(ENABLE)管脚,在该脚为TTL高电平时,内部偏压电路工作,并使稳压器电源接通。而当该脚为TTL低电平时,内部控制器关断,此时流入该器件的静态电流只有5μA。如果不需要使能功能,使能管脚可接到输入脚。

3.5故障信号输出脚

MSK5101系列中所有固定输出电压的稳压器产品都有一个故障信号输出脚。因为信号输出脚内为开路集电极输出电路,该脚电压可以上升到3V~26V之间的任意电压。这种特性允许该脚与任意逻辑电平接口。当信号比较器检测到“不稳压”状态时,该脚输出有效低电平(典型电压为0.22V)。MSK5101的故障信号状态包括输入电压过低、超温关断和输出限流等。实际上,当输入电压瞬态过高时,故障信号管脚也将输出高电平。

3.6散热器选择

采用对流散热时应按下式选择MSK5101系列稳压器所需的散热器:

TJ=Pd(Rθjc+Rθcs+Rθsa)Ta

式中:TJ为结温;

Pd为总功耗;

Rθjc为结到外壳的热阻;

Rθcs为外壳到散热器的热阻;

Rθsa为散热器到环境的热阻;

Ta为环境温度。

设计时,可首先按下式计算出功耗P:

P=(Vin-Vout)×Iout

然后,再选择最高结温。一般最高允许结温为125℃。为了计算所需散热器到环境的热阻,应将上述结温的表示式整理为:

Rθsa=[(TJ-Ta)/Pd]-Rθjc-Rθcs

以下为根据此式列出的一个散热器选择的实例:

若MSK5101_3.3型稳压器的输入Vin为+5V输出Vout为+3.3V连续直流电流Iout为1A。环境温度为+25℃,最高结温为125℃。Rθjc为5℃/W,Rθsa为0.5℃/W。则:

P=(5V-3.3V)×1A=1.7W

Rθsa=[(125℃-25℃)/1.7W]-5℃/W-0.5℃/W=53.32℃/W

因此,在该例中,为了保证结温不超过125℃,应选用热阻小于53℃/W的散热器。

4MSK5101-00的输出电压调整电路

稳压器范文篇3

随着改革开放的深入和市场经济的发展,各种利益冲突日趋显现,诸多矛盾纠纷势必影响到地区稳定。为了把街道各类矛盾解决在萌芽状态,做到抓小、抓早、抓萌芽,定期组织辖区、社区民调组织排查地区各类矛盾纠纷,分析矛盾特点,研究产生矛盾纠纷原因,提出预防调处对策,采取有效处置手段,形成一整套调处和钝化矛盾方法,是我们眼前开展工作必须思考的问题。

一、现阶段各类矛盾纠纷的特点:

1、矛盾纠纷及群发性增多,影响面大。从今年上半年调处矛盾纠纷看,群发性矛盾增多,三小车车主上访、水上新村折迁、辖区单位改制等,虽然重大矛盾纠纷发生率低,但它涉及人数多,直接对社会稳定造成影响。

2、矛盾纠纷内容复杂,随着人民生活水平和法律意识提高,无原则纠纷和无理取闹的现象减少,矛盾绝大部分趋向维护自身权益的实质性问题。

3、矛盾纠纷主体多元化,过去以单一的自然人之间的矛盾居多,现在涉及到企业团体,甚至涉及到行政机关。

4、矛盾纠纷具有`突发性和激化性。从目前矛盾纠纷的产生发展情况看,矛盾当事人往往借助媒介,使矛盾社会化、公开化和复杂化,以此引起社会共鸣,给另一方施压。如果在处理上方法欠妥就造成一种大闹大解决、小闹小解决、不闹难解决的错误倾向。经常出现小题大做、借题发挥、调处不及时,发展成逐步升级、聚众上访。

5、矛盾纠纷调处难度加大,难度大有多方面原因。一是当事人对一般教育劝说不当回事,更有人喜欢挑逗帮倒忙。如市容队员执法时与违章摊点发生矛盾,本来处理比较顺利,后因摊主受人唆使,又出现反复与市容队员发生对抗,造成上百人围观,影响城市正常管理工作。二是有些实质问题,基层很难解决,必须上级机关出面才能协调好。

二、目前各类矛盾纠纷产生的原因:

1、经济结构调整后部分企业效益下降,大量职工下岗或失业,一方面出于生活需要,想要一份安定工作,另一方面在没有大锅饭吃的情况下,涉及到个人利益,他们即出现与政府对立。2、社会经济秩序不好引发群众利益的不法侵害。当群众找不到实施不法侵害当事人时,迁怒于行政机关和主管部门。3、城市发展加快管理力度加大,而少数人个人素质和心理承受能力与之不相适应,从而产生了管理与被管理的矛盾。4、某些执法部门和行政部门办事拖拉,不考虑群众的切身利益,迫使群众产生过激行动,以求问题得到尽快解决。

三、关于预防和调处矛盾纠纷的对策:

1、建立健全矛盾纠纷排查网络,定期开展矛盾纠纷排查,及时反馈矛盾信息,掌握主动权。通过基层调委会和依法治区联络员等工作网络,每月都要进行一次矛盾纠纷的定期排查,遇重大活动要上门排查,掌握主动权,有效控制矛盾激化。2、加强工作责任心,实事求是、雷厉风行,敢于正视矛盾纠纷,做耐心细致的思想工作。促进矛盾纠纷缓解,坚持责任制。不回避矛盾,要知难而进,解决问题。凡需上级部门调处的要以快报形式上报,并积极与主管部门联系,尽快调处,不使矛盾激化。3、多方配合,共同合作,实现社会大调解是解决矛盾纠纷的重要途径。在基层组织解决有困难时一定要协调有关部门,共同解决,并做好耐心细致的思想工作。公务员之家版权所有

四、关于重点时段重大矛盾纠纷的处置手段

重大矛盾纠纷的发生,对地区稳定造成影响,作为政府派出机构及时做好重大矛盾调处是义不容辞的。如去年上半年突击性的重点工作一个接着一个象老城环境改造、防非典、三小车整治、水上新村折迁、创卫等等,每项工作都有产生重大矛盾纠纷的可能性,我们通常采用“四个一”的处置手段:作一次排查纠纷摸底、制定一个疏导方案、成立一个调解信访领导小组、制定一个紧急预案。把排、疏、调、处形成一个有机的工作链,通过我们的实践,由于方法得当重大矛盾纠纷调处收到了一定的成效,

稳压器范文篇4

这个清单开始于一些基本要素:如输入电压、输出电压以及负载电流。然后尽可能多地添加其它信息。清单中包含的需求、约束和期望特性越多,就更容易缩小可选方案的范围。这一清单可以提示出什么是重要的,并帮助理解及证明自己的最终决定。清单的其它项可能包括:成本、尺寸、电压降(压差VIN-VOUT的最低值)、最小/最大输入电压、最小/最大可接受负载电压、容错/精度、负载瞬态电流、线路调整率、静态电流、电池类型及寿命、开/关脚、封装/布局/定位的限制、顺序、软起动、环境温度、期望和禁止的开关频率、对部件来源/类型的限制等等。除此以外,是否还有其它因素会影响到最终决策呢?

经过对需求与约束的充分考察并使之文档化后,第二个步骤是研究选择线性稳压器的可行性。这一步很有必要,这样可以在研究线性稳压器优劣的同时,快速地缩小可选范围。最重要的一些计算都很简单,通过这些计算可以确定功率损耗、效率以及需要的散热方式:首先,用IOUT与压差VIN-VOUT的乘积计算出功率损耗,然后与IC内部电路的功耗相加:PLOSS=[(VIN-VOUT)×IOUT]+PIC,其中,PIC=VIN×IGND(IGND亦为ISUPPLY或IQ)。

确认采用了最大的VIN和最小的VOUT来计算最差情况的数值。电源通常指定了最大VIN,而最小VOUT的准确值可以通过数据表得到。接下来计算给负载提供的功率,方法是用输出电压乘以负载电流:POUT=VOUT×IOUT。最后,计算效率:用加到负载上的输出功率除以系统总功率:效率=POUT/(POUT+PLOSS)。于是就得到了一些关键数据,可以用来筛选线性稳压器。

图1,线性稳压器压差VIN-VOUT(VDIFF)范围内,功率损失与IOUT关系。

功率损耗有两个后果:发热和低效率。使用线性稳压器的关键在于是否可以发散和耐受产生的热量,以及避免由此所致电池寿命的缩减。另一个关键问题是,是否能通过提高LDO稳压器的性能来维持它的候选资格。图1显示了在某个VIN-VOUT差(VDIFF)范围内,功率损耗与IOUT的关系。图2显示了几种常见封装的功率耗散能力。如图2所示,业界标准封装技术可以在不加散热片情况下提供超过2W的功耗。可将此数值与上面计算的PLOSS相比较。图3按图2所示顺序和相对大小列出了各种封装形式。

图2,在无散热片情况下,工业标准封装技术可以提供高于2.0W的功率耗散。

图3,按图2顺序列出的封装以及相对尺寸。

已知负载电流和压差VIN-VOUT确定功率损耗,那么如何提高LDO稳压器的性能,使之适应标准封装的限制?尽管负载决定了输出电流和电压,但仍可以减小输入电压和VDIFF。如果能降低这个电压差,就可以减小功耗和封装的约束,也就可以有更多可供选择的LDO稳压器方案。

图4,FET正在代替双极晶极管用于传输晶体管,因为FET的低导通电阻可以提供比双极晶体管固定饱和电压更低的压降。

新型LDO稳压器满足了这一要求,它具有比以往产品更低的电压降(VDIFF),以及降低最小输入电压和输出电压等级的方法。需要用场效应管(FET)代替双极晶体管来担当传输晶体管角色,因为FET的导通电阻电压降低于双极晶体管的固定饱和电压(图4)。但很遗憾,大多数的LDO稳压器仍然要求最低输入电压要高于控制电路的工作电压。市场上也出现了一些改进后的LDO稳压器:它们有一个VIN和一个VBIAS输入,即将主电流通路与IC的偏置通路分隔开。换句话说,该器件的控制电路运行在较高的标准电压下(5V),有极小的电流(3mA),而通向输出端的大电流通路则来自一个独立的低电压输入(VIN)。这种设置降低了压差VIN-VOUT以及功率损耗。美国国家半导体的LP3883就是使用VBIAS端的一个电路实例,它在3A输出电流时压降为210mV。可以从一个1.5V电源(另一个核心电压)为1.2V负载(3.6W)提供3A电流,而功率损失仅为900mW。再加上控制电路消耗的3mA电流(控制电路电压为5V),总的功率损耗只有915mW,因此可以采用很多封装形式。使用这些新型LDO稳压器,最佳策略就成了找到并利用电路板上的最低电压。标准封装的线性稳压器一般都比开关稳压器更便宜、更小,使用也更方便。

可以用以下公式确定应用的功耗对散热方式的要求:θJA=(TJ-TA)/PLOSS,其中θJA为封装的热阻;TJ为IC的最大结温(一般为125°C),TA为紧贴IC的环境温度(系统的内部环境)。在本例中,TA为30℃(大致的室内温度),TJ为125℃。计算出方案所需θJA后,将其与LDO数据表中的封装进行比较,选定一种封装形式。数据表中封装的θJA必须等于或小于计算出的θJA值,否则结温可能会超出设定的最大值。

现在,我们已经计算了某个线性稳压方案的功率损失,并且确定了用于散热的封装形式。下面要考虑一下功耗和效率对电池寿命的影响。电池寿命一般用毫安小时(mAh)来表示。可以粗略地认为一节100mAh的电池可以提供10个小时的10mA电流,或提供一个小时的100mA电流。(当然许多因素可以影响或降低这一数值。)

如果IC核心需要100mA电流,则无论输入电压或输出电压如何,线性稳压器都必须通过它的传输晶体管供给100mA电流。但是,开关稳压器可以通过控制传输晶体管的导通时间(占空比)来减少对输入端平均输入电流的需求。在大多数情况下,开关稳压器效率都高于LDO,因为它的输入电流是可以减小的,所以对那些需要高效率并对热量敏感的应用来说,开关稳压器方案更具吸引力。

关于线性稳压器有一个最后要注意的问题:如果核心电压是1.2V,应确定它是否能承受更高的电压。市面上大多数的线性稳压器都使用标准的带隙基准源,它的最低输出电压极限是大约1.25V。如果核心可以承受稍高的电压,可以选择的器件范围就宽多了,通常成本会更低。

现在,已经清楚了线性稳压方案的参数,如效率、功耗、压降以及封装。第三步查看一下开关稳压器。前面提到过的新型LDO稳压器电压降已经大幅减小,某些情况下已接近了开关稳压器的效率,拓宽了它们的应用范围。然而,开关稳压器总体上效率仍然更高,也有许多种类可供选择。

图5,计算出的效率曲线,1.2V输出电压,50mA至5A电流范围,分别对应于一个同步开关稳压器、一个异步开关稳压器和一个线性稳压器时。

先来比较一下开关稳压器的与线性稳压器的效率。图5显示了计算出的效率曲线,它们分别是一个同步开关稳压器、一个异步开关稳压器和一个线性稳压器,条件均为1.2V输出电压,输出电流范围为50mA至5A。当输入电压从3.3V降至2.5V和1.5V时,异步开关稳压器和线性稳压器的效率均有较大提高。对线性稳压器,效率大致为VOUT/VIN,所以当输入电压降为1.5V时,效率大约提高35%至80%,接近开关稳压器的效率。异步开关稳压器的效率增加约10%,因为当输入电压下降时,占空比增加,传输晶体管导通的时间多于二极管,这就需要更高的固定电压降(本例为0.5V)。应记住这些效率只是理论值。在实际应用中,由于开关稳压器有传输晶体管和电感的压降,从1.5V可能得不到1.2V电压,此时LDO稳压器就更具吸引力了。

现在,注意一下低输出电压条件下开关稳压器的效率,以及两种主要开关稳压器(同步和异步)之间的比较评定。开关稳压器效率较高是因为它们降低了对电源电流的需求。对线性稳压器,传输晶体管总是导通的,多余的能量(VDIFF×IOUT)都以热能形式散发出去。但是,开关稳压器可以把这个多余的能量储存在输出端的电感和电容中。负载可以从这里汲取能量,直至下一个开关周期刷新它们。由于开关稳压器是储存能量而不是浪费掉它们,因此降低了平均输入电流,提高了效率。

图6,异步稳压器使用一个三极管和一个二极管完成能量传送周期。同步稳压器则使用两个三极管。

异步稳压器使用一个三极管和一个二极管来完成能量传输过程(图6)。在周期的第一部分,三极管将能量从源头送给负载和LC滤波器。当三极管截止时,正向偏置的二极管使LC中储存的能量流向负载,完成周期的剩余部分。由于二极管导通需要较高的正偏电压,所以最好是尽量使传输晶体管导通时间加长,以提高效率。但不幸的是,低输出电压经常会产生短的占空周期。

同步稳压器用另一个三极管替代了异步稳压器中的二极管。这支三极管的电压降低于二极管,于是效率高于异步开关稳压器。但轻载时则是一个例外,因为此时低导通电阻对系统效率提升作用不大,但仍要开关同步FET管。图5显示了这一效应。当IOUT接近0A时,同步FET的开关损耗明显降低了效率。

一般而言,在需要低占空因数、大输出电流或低输出电压的情况下(如为处理器核心供电的情况),同步稳压器的效率仍然高于异步稳压器。

许多开关稳压器有在轻载时提高同步稳压效率的功能。有些可以跳过脉冲或降低开关频率,使开关动作不那么频繁。另一种方法是关掉同步FET驱动,使用一个异步二极管与同步FET并联组成通路。这种方法在轻载工作时取异步运行效率,而在正常工作状态用同步运行效率。当然,每增加一个特性都会增加复杂性、成本或电路体积。因此,必须将这些可选方案与需求和约束进行比较来作出决定。

哪个是设计中最重要的因素?效率、成本还是体积?糟糕的是,对开关稳压器来说,这三大因素的计算要比线性稳压器复杂得多。比较好的着手解决的方法是采用一般的效率曲线图(如图5所示)来确定哪种方案最适合对效率的要求。搞清楚成本和体积的限制是很关键的。高的开关频率使得电路可以采用更小的电感和电容,从而能够降低整体体积和方案成本。但开关频率的升高可能会降低设计的总体效率。

由于可选方案众多,因此应该从多个线性和开关稳压电源供应商那里获得帮助。有了需求清单,就可以对一系列可行方案进行快速鉴别,还可以对没有公开发表的新器件进行研究。一旦可选范围缩小后,就可以计算各方案的效率、成本和体积,并且再次利用供应商的支持与工具,比较各种可能方案的特性。还应记住,尽管新型开关稳压器可能包括亚带隙基准源,但大多数仍然继续沿用标准的带隙基准源,因此多数开关稳压器的最小输出电压仍被限制为1.25V。

稳压器范文篇5

在对线性稳压器作了评估后,我们还需要遍历所有的开关稳压器可选方案。是应该采用同步方式还是异步方式;用电流模式还是电压模式;脉冲宽度、脉冲频率还是磁滞开关?还需要其它特性吗?如果可选的线性稳压器和开关稳压器实在太多,要找到一个最适合自己产品的方案,就应该把应用需求列出一个详细清单,然后同各种可供选择的方案进行比较。应该记住:选择正确设计的过程包括三个步骤,第一步就是建立有关需求、约束以及所期望特性的完整清单,从而全面理解自己的需要并使其文档化。

这个清单开始于一些基本要素:如输入电压、输出电压以及负载电流。然后尽可能多地添加其它信息。清单中包含的需求、约束和期望特性越多,就更容易缩小可选方案的范围。这一清单可以提示出什么是重要的,并帮助理解及证明自己的最终决定。清单的其它项可能包括:成本、尺寸、电压降(压差VIN-VOUT的最低值)、最小/最大输入电压、最小/最大可接受负载电压、容错/精度、负载瞬态电流、线路调整率、静态电流、电池类型及寿命、开/关脚、封装/布局/定位的限制、顺序、软起动、环境温度、期望和禁止的开关频率、对部件来源/类型的限制等等。除此以外,是否还有其它因素会影响到最终决策呢?

经过对需求与约束的充分考察并使之文档化后,第二个步骤是研究选择线性稳压器的可行性。这一步很有必要,这样可以在研究线性稳压器优劣的同时,快速地缩小可选范围。最重要的一些计算都很简单,通过这些计算可以确定功率损耗、效率以及需要的散热方式:首先,用IOUT与压差VIN-VOUT的乘积计算出功率损耗,然后与IC内部电路的功耗相加:PLOSS=[(VIN-VOUT)×IOUT]+PIC,其中,PIC=VIN×IGND(IGND亦为ISUPPLY或IQ)。

确认采用了最大的VIN和最小的VOUT来计算最差情况的数值。电源通常指定了最大VIN,而最小VOUT的准确值可以通过数据表得到。接下来计算给负载提供的功率,方法是用输出电压乘以负载电流:POUT=VOUT×IOUT。最后,计算效率:用加到负载上的输出功率除以系统总功率:效率=POUT/(POUT+PLOSS)。于是就得到了一些关键数据,可以用来筛选线性稳压器。

图1,线性稳压器压差VIN-VOUT(VDIFF)范围内,功率损失与IOUT关系。

功率损耗有两个后果:发热和低效率。使用线性稳压器的关键在于是否可以发散和耐受产生的热量,以及避免由此所致电池寿命的缩减。另一个关键问题是,是否能通过提高LDO稳压器的性能来维持它的候选资格。图1显示了在某个VIN-VOUT差(VDIFF)范围内,功率损耗与IOUT的关系。图2显示了几种常见封装的功率耗散能力。如图2所示,业界标准封装技术可以在不加散热片情况下提供超过2W的功耗。可将此数值与上面计算的PLOSS相比较。图3按图2所示顺序和相对大小列出了各种封装形式。

图2,在无散热片情况下,工业标准封装技术可以提供高于2.0W的功率耗散。

图3,按图2顺序列出的封装以及相对尺寸。

已知负载电流和压差VIN-VOUT确定功率损耗,那么如何提高LDO稳压器的性能,使之适应标准封装的限制?尽管负载决定了输出电流和电压,但仍可以减小输入电压和VDIFF。如果能降低这个电压差,就可以减小功耗和封装的约束,也就可以有更多可供选择的LDO稳压器方案。

图4,FET正在代替双极晶极管用于传输晶体管,因为FET的低导通电阻可以提供比双极晶体管固定饱和电压更低的压降。

新型LDO稳压器满足了这一要求,它具有比以往产品更低的电压降(VDIFF),以及降低最小输入电压和输出电压等级的方法。需要用场效应管(FET)代替双极晶体管来担当传输晶体管角色,因为FET的导通电阻电压降低于双极晶体管的固定饱和电压(图4)。但很遗憾,大多数的LDO稳压器仍然要求最低输入电压要高于控制电路的工作电压。市场上也出现了一些改进后的LDO稳压器:它们有一个VIN和一个VBIAS输入,即将主电流通路与IC的偏置通路分隔开。换句话说,该器件的控制电路运行在较高的标准电压下(5V),有极小的电流(3mA),而通向输出端的大电流通路则来自一个独立的低电压输入(VIN)。这种设置降低了压差VIN-VOUT以及功率损耗。美国国家半导体的LP3883就是使用VBIAS端的一个电路实例,它在3A输出电流时压降为210mV。可以从一个1.5V电源(另一个核心电压)为1.2V负载(3.6W)提供3A电流,而功率损失仅为900mW。再加上控制电路消耗的3mA电流(控制电路电压为5V),总的功率损耗只有915mW,因此可以采用很多封装形式。使用这些新型LDO稳压器,最佳策略就成了找到并利用电路板上的最低电压。标准封装的线性稳压器一般都比开关稳压器更便宜、更小,使用也更方便。

可以用以下公式确定应用的功耗对散热方式的要求:θJA=(TJ-TA)/PLOSS,其中θJA为封装的热阻;TJ为IC的最大结温(一般为125°C),TA为紧贴IC的环境温度(系统的内部环境)。在本例中,TA为30℃(大致的室内温度),TJ为125℃。计算出方案所需θJA后,将其与LDO数据表中的封装进行比较,选定一种封装形式。数据表中封装的θJA必须等于或小于计算出的θJA值,否则结温可能会超出设定的最大值。

现在,我们已经计算了某个线性稳压方案的功率损失,并且确定了用于散热的封装形式。下面要考虑一下功耗和效率对电池寿命的影响。电池寿命一般用毫安小时(mAh)来表示。可以粗略地认为一节100mAh的电池可以提供10个小时的10mA电流,或提供一个小时的100mA电流。(当然许多因素可以影响或降低这一数值。)

如果IC核心需要100mA电流,则无论输入电压或输出电压如何,线性稳压器都必须通过它的传输晶体管供给100mA电流。但是,开关稳压器可以通过控制传输晶体管的导通时间(占空比)来减少对输入端平均输入电流的需求。在大多数情况下,开关稳压器效率都高于LDO,因为它的输入电流是可以减小的,所以对那些需要高效率并对热量敏感的应用来说,开关稳压器方案更具吸引力。

关于线性稳压器有一个最后要注意的问题:如果核心电压是1.2V,应确定它是否能承受更高的电压。市面上大多数的线性稳压器都使用标准的带隙基准源,它的最低输出电压极限是大约1.25V。如果核心可以承受稍高的电压,可以选择的器件范围就宽多了,通常成本会更低。

现在,已经清楚了线性稳压方案的参数,如效率、功耗、压降以及封装。第三步查看一下开关稳压器。前面提到过的新型LDO稳压器电压降已经大幅减小,某些情况下已接近了开关稳压器的效率,拓宽了它们的应用范围。然而,开关稳压器总体上效率仍然更高,也有许多种类可供选择。

图5,计算出的效率曲线,1.2V输出电压,50mA至5A电流范围,分别对应于一个同步开关稳压器、一个异步开关稳压器和一个线性稳压器时。

先来比较一下开关稳压器的与线性稳压器的效率。图5显示了计算出的效率曲线,它们分别是一个同步开关稳压器、一个异步开关稳压器和一个线性稳压器,条件均为1.2V输出电压,输出电流范围为50mA至5A。当输入电压从3.3V降至2.5V和1.5V时,异步开关稳压器和线性稳压器的效率均有较大提高。对线性稳压器,效率大致为VOUT/VIN,所以当输入电压降为1.5V时,效率大约提高35%至80%,接近开关稳压器的效率。异步开关稳压器的效率增加约10%,因为当输入电压下降时,占空比增加,传输晶体管导通的时间多于二极管,这就需要更高的固定电压降(本例为0.5V)。应记住这些效率只是理论值。在实际应用中,由于开关稳压器有传输晶体管和电感的压降,从1.5V可能得不到1.2V电压,此时LDO稳压器就更具吸引力了。

现在,注意一下低输出电压条件下开关稳压器的效率,以及两种主要开关稳压器(同步和异步)之间的比较评定。开关稳压器效率较高是因为它们降低了对电源电流的需求。对线性稳压器,传输晶体管总是导通的,多余的能量(VDIFF×IOUT)都以热能形式散发出去。但是,开关稳压器可以把这个多余的能量储存在输出端的电感和电容中。负载可以从这里汲取能量,直至下一个开关周期刷新它们。由于开关稳压器是储存能量而不是浪费掉它们,因此降低了平均输入电流,提高了效率。

图6,异步稳压器使用一个三极管和一个二极管完成能量传送周期。同步稳压器则使用两个三极管。

异步稳压器使用一个三极管和一个二极管来完成能量传输过程(图6)。在周期的第一部分,三极管将能量从源头送给负载和LC滤波器。当三极管截止时,正向偏置的二极管使LC中储存的能量流向负载,完成周期的剩余部分。由于二极管导通需要较高的正偏电压,所以最好是尽量使传输晶体管导通时间加长,以提高效率。但不幸的是,低输出电压经常会产生短的占空周期。

同步稳压器用另一个三极管替代了异步稳压器中的二极管。这支三极管的电压降低于二极管,于是效率高于异步开关稳压器。但轻载时则是一个例外,因为此时低导通电阻对系统效率提升作用不大,但仍要开关同步FET管。图5显示了这一效应。当IOUT接近0A时,同步FET的开关损耗明显降低了效率。

一般而言,在需要低占空因数、大输出电流或低输出电压的情况下(如为处理器核心供电的情况),同步稳压器的效率仍然高于异步稳压器。

许多开关稳压器有在轻载时提高同步稳压效率的功能。有些可以跳过脉冲或降低开关频率,使开关动作不那么频繁。另一种方法是关掉同步FET驱动,使用一个异步二极管与同步FET并联组成通路。这种方法在轻载工作时取异步运行效率,而在正常工作状态用同步运行效率。当然,每增加一个特性都会增加复杂性、成本或电路体积。因此,必须将这些可选方案与需求和约束进行比较来作出决定。

哪个是设计中最重要的因素?效率、成本还是体积?糟糕的是,对开关稳压器来说,这三大因素的计算要比线性稳压器复杂得多。比较好的着手解决的方法是采用一般的效率曲线图(如图5所示)来确定哪种方案最适合对效率的要求。搞清楚成本和体积的限制是很关键的。高的开关频率使得电路可以采用更小的电感和电容,从而能够降低整体体积和方案成本。但开关频率的升高可能会降低设计的总体效率。

由于可选方案众多,因此应该从多个线性和开关稳压电源供应商那里获得帮助。有了需求清单,就可以对一系列可行方案进行快速鉴别,还可以对没有公开发表的新器件进行研究。一旦可选范围缩小后,就可以计算各方案的效率、成本和体积,并且再次利用供应商的支持与工具,比较各种可能方案的特性。还应记住,尽管新型开关稳压器可能包括亚带隙基准源,但大多数仍然继续沿用标准的带隙基准源,因此多数开关稳压器的最小输出电压仍被限制为1.25V。

稳压器范文篇6

目前生产的大多数中高档汽车都配置了基于DVD的GPS导航系统作为标准设备(图1)。然而可以证实,如果想设计一个用于控制此类系统内不同电压轨的电源,其复杂程度丝毫不亚于设计笔记本电脑用的电源系统。一个标准的汽车导航系统有可能具有6个或更多的电源,包括8V、5V、3.3V、2.5V、1.5V和1.2V。8V电源用于给使光盘旋转的DVD电机供电;这常常需要高达2A的峰值电流。5V和3.3V电源轨通常为系统总线,一般要求各提供2A~3A的电流。2.5V电源轨用于存储器和I/O,因此输送1A~2A的电流便足够了。1.5V和1.2V电源轨分别用于提供CPU内核和DSP内核电压。这两个电源轨的功率电平一般均在3W~5W之间。

同时,随着这些系统中组件数目的增加,可用空间日渐狭小。因此,鉴于所有的实际散热器都很庞大以致于安装不便,出于对空间限制以及工作温度范围要求的考虑,转换效率的重要性变得更加突出。在低输出电压以及高于几百毫安的中等电流电平条件下,简单地采用一个线性稳压器来生成这些系统电压已不再可行。因此,在过去的几年里,主要由于散热方面的限制,开关稳压器一直在逐步取代线性稳压器。开关电源的优点包括较高的效率和较小的占位面积,这使得复杂度的增加以及EMI问题变得不那么重要。

如果考虑汽车导航系统中的开关稳压器限制条件,则其将需要拥有下列特点和特性:

宽输入工作范围

在一个宽负载范围内具有良好的效率

在正常操作、待机和停机状态下具有低静态电流

低热阻

最低的噪声和EMI辐射

让我们较详细地研究一下这些基本能力:

1.宽输入工作范围

任何开关稳压器都需要被规定在一个3V~60V的宽输入电压范围内工作,以确保可满足"冷车发动"和"负载突降"的条件。它还具有使这些汽车系统能够在14V或42V电压条件下运行的额外优点。而且,60V的额定电压还为通常被箝位于36V~40V的14V系统提供了一个良好的裕度。另外,60V的额定电压还使得该器件能够应用于未来的42V系统。这就意味着一款现今为14V系统所做的设计可以针对42V系统的要求轻而易举地升级,而无需进行任何重大的重新设计工作。

2.效率

在大多数汽车系统中,在一个宽负载范围内实现高效功率转换是必不可少的。例如,在10mA至2.5A的负载范围内,一个5V输出的功率转换效率被要求达到85左右。在高电流条件下,内部开关需要具有良好的饱和,通常在3A电流时为0.1Ω。为了改善轻负载效率,需减小驱动电流或使其与负载电流成比例。而且,用于内部控制电路的功率可以通过一个偏置引脚来提供,该偏置引脚可由输出来供电。这得益于一个降压型转换器的功率转换效率。由于该偏置电流吸收自输出(而不是输入),因而使得控制电路所需的输入电源电流有所减小,降幅为输出与输入电压之比。例如,一个于3.3V时的100μA输出电流只要求于12V时的30μA平均输入电流。这最大限度地减小了控制电路所需的输入电流,并且提高了轻负载时的效率水平。

3.低静态电流

汽车系统中有许多应用即使是在车辆处于停驶状态下也要求连续供电。这些应用的一个关键要求就是低静态电流。在输出电流降至大约100mA以下之前,该器件将运行于正常的连续开关模式。在该电流电平以下,开关稳压器必须跳过若干脉冲以便维持稳压状态。该稳压器可在脉冲之间进入睡眠模式,此时仅对部分内部电路供电。在轻负载电流条件下,开关稳压器需要自动切换至突发模式操作。在该模式中,对于一个12V至3.3V转换器,静态电流应降至100μA以下。在睡眠模式中,内部基准和电源良好电路将保持运行状态,以便监视输出电压。在停机模式中,静态电流应低于1μA。

4.低热阻

理想的情况是,结点至外壳热阻应该很低。如果器件的背部为裸露铜面并被焊接至PC板的表面,则PC板可被用来将热量传导至远离器件的地方。目前常用具有内部电源平面的四层电路板能够实现约40℃/W的热阻。具有至金属外壳良好热传导的高环境温度应用可获得接近10℃/W的典型结点至外壳热阻值。这有助于扩展工作温度范围。

5.关于噪声和EMI的考虑

虽然开关稳压器产生的噪声多于线性稳压器,但是其效率却比后者高得多。在许多敏感应用中已经证明只要开关电源按照可预测的方式运作,则噪声和EMI水平是可以控制的。如果开关稳压器在正常模式中以一个恒定的频率进行开关操作,且开关脉冲边缘干净并可预测(没有过冲或高频振铃),则EMI将得到最大限度的抑制。采用小尺寸封装和高工作频率能够实现小巧紧密的布局,这可以最大限度地减少EMI辐射。另外,如果稳压器能够与低ESR陶瓷电容器一道使用,则可最大限度地减小输入和输出纹波(它们是系统中的额外噪声源)。

显然,此类开关稳压器的设计和开发并不简单。不过,在过去的几年中,凌特公司(LinearTechnology)一直致力于这种高压DC/DC转换器的工作,并且拥有了一个专为满足这些要求而设计以及型款日渐增多的产品库(表1)。

LT3434便是近期推出的此类DC/DC转换器一个实例,它隶属于一个不断壮大和能够处理60V电压的单片降压型开关稳压器系列。该器件可解决上述汽车导航应用所需面对的诸多问题。LT3434可在3.3V至60V的宽输入电压范围内工作(图2)。它可在高达2.5A的负载电流条件下提供高效率。基准精度在所有的电压、负载和温度条件下均为±2。

由于该器件具有突发模式(BurstMode)操作功能,因此对于12V至3.3V应用其静态电流小于100μA。该器件采用具有非常低热阻的小外形扁平TSSOP封装,以实现小占位面积设计。最后,它采用了一种旨在实现上佳瞬态响应和简易补偿的电流模式拓扑结构,并且运用了用于在所有占空比条件下维持恒定峰值开关电流的专利电路。开关频率为恒定的200kHz,而且可将器件同步至一个更高的频率。它可在汽车温度范围内提供严格的电压调节,并具有电源良好(PowerGood)/复位、软起动和UVLO(欠压闭锁)功能。在高达2.5A的电流电平条件下,该电路提供了一种坚固、高效、小占位面积的解决方案。

稳压器范文篇7

图1所示电路看起来有点儿像降压型稳压器,并使用一个降压型控制器,但实际上是一种电压型同步回扫电路。在效率高于85%,输入电压范围为36V~60V的情况下,其面向的应用系统在输出电流为2A时要求输出电压为3.3V。这一电路在几种已评估过的技术中似乎是最有希望的,因为其效率和成本优于降压型稳压器和异步回扫电路。

图1,这种同步回扫电路具有很高的效率以及多种输入电压/输出电压比。

LM2743控制器启动之后,从MMBTA06晶体管和6.2V齐纳二极管以及从一个自举线圈获得功率。其EN(启动)输入端是一个提供UVL(低压切断)的比较器,用来防止在28V以下启动。控制器驱动一个损耗比肖特基二极管还低的同步开关,并利用更低的FET导通电阻作为限流检测电阻。在引脚11处的150kΩ电阻器产生一个250kHz的开关频率。由PulseEngineering公司()设计的回扫变压器是一个低成本部件,其初级线圈电感为50mH,线匝比为3:1,尺寸为13(长)×15(宽)×11(高)mm。3:1的线匝比防止初级开关流过满载输出电流,从而使得开关损耗比降压型稳压器小。输出端的小型LC滤波器能使一只10mF陶瓷电容器处理很大的有效(rms)波纹电流,此外,一只低成本铝电容器也能消除波纹并缓冲负载瞬态。

图2,图1所示电路在很宽的输出电流范围内具有高于85%的效率。

图2示出了图1所示电路在三种输入电压和若干种输出电流下的测量数据。左边三条最上方的曲线表示效率;三条较低的曲线表示按右边刻度计量的以W为单位的总损耗。在不加负载的情况下,VOUT波纹的峰-峰值为6mV,在输出电流为4A时上升到20mV。在输出电流为3.5A时,效率迅速下降,这是限流作用造成的。如同任何开关电源,特别回扫电路那样,印制电路板布局非常重要。如果采用四层或更多层的印制电路板,电源平面和接地平面分开,栅极驱动连线短而宽,你就可以获得最佳性能。尽管图1所示电路拟应用于7W单输出系统中,但这种同步回扫电路可适用于更大的功率范围;你只要增加次级绕组,就可轻易地将其扩展成多种输出。增加的输出端既可以使用二极管整流器,也可以使用低栅压驱动器驱动的附加FET。

稳压器范文篇8

关键词:电流变送器;电流环;应变桥;保护电路

引言

集成电流变送器亦称电流环电路,根据转换原理的不同可划分成以下两种类型:一种是电压/电流转换器,亦称电流环发生器,它能将输入电压转换成4~20mA的电流信号(典型产品有1B21,1B22,AD693,AD694,XTR101,XTR106和XTR115);另一种属于电流/电压转换器,也叫电流环接收器(典型产品为RCV420)。上述产品可满足不同用户的需要。

XTR系列是美国BB(BURR-BROWN)公司生产的精密电流变送器,该公司现已并入TI公司。该系列产品包括XTR101,XTR105,XTR106,XTR110,XTR115和XTR116共6种型号。其特点是能完成电压/电流(或电流/电流)转换,适配各种传感器构成测试系统、工业过程控制系统、电子秤重仪等。

1XTR系列产品的分类及性能特点

XTR系列精密电流变送器产品的分类及主要特点详见表1。

表1XTR系列产品的分类及主要特点

产品

型号满量程输入范围激励源输出输出电流Io/mA环路电源Us/V封装形式主要特点

XTR10110mV或50mV两路1mA电

流源4~2011.6~40DIP-14SOL-16能将各种传感器产生的微弱电压信号转换成4~20mA的电流信号,适配应变桥、热电偶及铂热

电阻

XTR1055mV~1V两路0.8mA电流源4~207.3~36DIP-14带2线制或3线制铂电阻接口,能实现温度/电流

转换

XTR106满量程范围由电阻Rs来设定2.5V及5V两路基准电压4~207.5~36DIP-14带2.5V或5V激励源,适配应变桥

XTR1100~5V或0~10V10V基准电压4~20或0~20或5~2513.4~40DIP-16可选择输入电压范围和输出电流范围

XTR11540~200μA2.5V基准电压4~207.5~36SO-8带2.5V激励源和+5V精密稳压器,可分别给应变桥和前置放大器单独供电,能简化电源设计

XTR11640~200μA4.096V基准电压4~207.5~36SO-8带4.096V激励源和+5V精密稳压器,可分别给应变桥和前置放大器单独供电,能简化电源设计

2XTR115型电流变送器的工作原理

2.1性能特点

1)它属于二线制电流变送器,内部的2.5V基准电压可作为传感器的激励源。XTR115可将传感器产生的40~200μA弱电流信号放大100倍,获得4~20mA的标准输出。当环路电流接近32mA时能自动限流。如果在脚3与脚5之间并联一只电阻,就可以改变限流值。

2)芯片中增加了+5V精密稳压器,其输出电压精度为±0.05%,电压温度系数仅为20×10-6/℃,可给外部电路(例如前置放大器)单独供电,从而简化了外部电源的设计。

3)精度高,非线性误差小。转换精度可达±0.05%,非线性误差仅为±0.003%。

4)环路电源电压的允许范围宽,Us=7.5~36V。XTR115由环路电源供电。工作温度范围是-40℃~+85℃。

5)专门设计了功率管接口,适配外部NPN型功率晶体管,它与内部输出晶体管并联后可降低芯片的功耗。

2.2工作原理

XTR115采用SO-8小型化封装,其内部电路框图及基本应用电路如图1所示。U+为电源端,接环路电源。UREF为2.5V基准电压输出端。II端接输入电流。IRET为基准电压源输出电流和稳压器输出电流的返回端,可作为输入电路的公共地。OUT为4~20mA电流输出端。UREG为+5V稳压器的输出端。B和E端为外部功率管的接口,分别接功率管的基极(B)和发射极(E)。功率管的集电极(C)接U+端。芯片内部主要包括输入放大器(A),电阻网络,输出晶体管(VT1),2.5V基准电压源和+5V稳压器。RLIM为内部限流电阻。元器件主要有输入电阻(RI),功率管(VT2),环路电源(Us)和负载电阻(RL)。输入电压UI先经过RI转换成输入电流II,再经过XTR115放大后从OUT端输出4~20mA的电流信号。为减小失调电压以及输入放大器的漂移量,要求UI>0.5V。输出电流与输入电流、输入电压的关系由式(1)确定。

Io=100II=100UI/RI(1)

3XTR系列产品的应用电路

3.1应变桥电流变送器

由XTR115构成应变桥电流变送器的电路如图2所示。将脚3视为公共地,由脚1给应变桥提供+2.5V的电源电压。前置放大器采用TL061型单运放(亦可采用OPA2277型双运放,仅用其中的一个运放),由+5V稳压器单独给运放供电。RI为20kΩ输入电阻,C为降噪电容,VT为外部NPN功率管,可选2N4922,TIP29C或TIP31B等型号。以2N4922为例,其主要参数为UCEO=60V,ICM=1A,PCM=30W。该电路的工作原理是当试件受力时,应变桥输出的电压信号首先经过前置放大器放大成0.8~4V的输入电压UI,再通过RI转换成40~200μA的输入电流II,最后经XTR115放大100倍后获得4~20mA的电流。

需要指出,XTR115只能配NPN功率管,不能配MOS场效应功率管。外部功率管应满足XTR115对电压、电流的要求,使用中还须给功率管装上合适的散热器。

3.2保护电路的设计

保护电路应兼有反向电压保护与正向过压保护两种功能。XTR115的保护电路如图3所示。反向电压保护电路由二极管整流桥VD1~VD4组成,可防止因将环路电源的极性接反而损坏芯片。整流二极管可选用1N4148型高速硅开关二极管,其主要参数为URM=75V,Id=150mA,trr=4ns。采用桥式保护电路之后就不用再考虑环路电源的极性,因为,无论Us的极性是否接反,它总能保证U+端接得是正电压。鉴于在任何时刻整流桥上总有两只二极管导通,因此,在计算环路电压ULOOP时须扣除两只硅二极管的正向压降(约为1.4V),由式(2)确定。

ULOOP=Us-IORL-1.4(2)

过压保护电路采用一只1N4753A型稳压管,其稳定电压为36V,稳定电流为7.0mA。当环路电压过高时就被钳位到36V。实验证明,即使环路电压达到65V,XTR115也不会损坏。为了改善瞬态过压保护特性,还可采用Motorola公司生产的P6KE39A型瞬态电压抑制器(其英文缩写为TVS,亦称瞬变电压抑制二极管)来代替稳压管。P6KE39A的钳位电压UB=39V,钳位时间仅为1ns,其性能远优于齐纳稳压管。

3.3配J型热电偶的电流变送器电路

由XTR101构成带冷端温度补偿功能的J型热电偶输入电路,如图4所示。该电路可将温度信号转换成4~20mA的电流信号。Rs为满量程(SPAN)设定电阻,其电阻值由式(3)确定。

Rs=40/[(ΔIo/U1)-0.016](3)

式中:ΔIo=20mA-4mA=16mA。

例如,当UI=100mV时,由式(3)不难算出,Rs=278Ω。Rs的引线应尽量短,以减小干扰。当Rs=∝时,UImax=1V。Rp为调零电位器,在0℃下调整Rp可使Io=4mA。冷端温度补偿电路由二极管VD1,分压电阻R1和R2组成,R1及R2均采用精密金属膜电阻。

J型热电偶在-200℃~+750℃测温范围内的平均温度系数αT=+51.70μV/℃。硅二极管正向压降的温度系数αD≈-2.1mV/℃,经过R1和R2分压后

稳压器范文篇9

蒸汽发生器;运行;事故;故障

Abstract:Thispaperdescribesaccidentsandtroublesinsteamgeneratoroperationandrecommendsrelevantpreventivestrategies,basedonextensiveoperatingexperienceofPWRsteamgeneratorsintheworldandtherelevantsituationofPWRsteamgeneratorsinChina.

Keywords:Steamgenerator;Operation;Accident;Trouble

国外核电站运行经验表明,蒸汽发生器是压水堆一回路压力边界最薄弱的环节。为了保证运行中蒸汽发生器的可靠性,从投运的那一天起就要跟踪、评估蒸汽发生器的运行情况,发现问题要及时研究、解决。对运行中蒸汽发生器的管理内容包括:状态跟踪与评估,对国外相似蒸汽发生器的调研,事故与故障预测,制订各种预防措施。预防措施包括杂质清除和在役检查,取管、堵管和衬管的修理技术,特殊堵管标准,泥渣冲洗和化学清洗技术,二回路水质的控制(包括杂质返回的检测等)。

1传热管破裂(SGTR)事故

1.1III类工况事故

考虑一根传热管完全断裂,这类事故是稀有事故,但在核电站的整个寿期内有可能发生。截至1994年,有10台蒸汽发生器的传热管破裂。其中有3台是由二次侧应力腐蚀引起的,有2台是由高周疲劳引起的,有2台是由松动零件磨损引起的,有2台是由一次侧应力腐蚀引起的,有1台则是由耗蚀引起的。破裂的部位有3个在管板上方,有6个在U形弯管段区,仅有1个在下部支撑板附近。破口的大小和形态也不一样,有7个破口是轴向破裂,裂纹长度为32~250mm,有2条裂纹呈360°的周向破裂,有1个为相邻的2条裂纹组成。

1.2事故的过程、判断和处理

(1)事故判断的主要依据是:凝汽器抽气器排气监测、蒸汽发生器排污水监测、主蒸汽管道外16N监测均显示放射性浓度急剧升高,并发出警报。

(2)传热管破裂时,由于蒸汽发生器一次侧压力比二次侧压力大得多,一次侧水进入二次侧。由于一次侧水的丧失,使稳压器水位下降,一回路压力也随着稳压器内蒸汽容积的膨胀而下降。图1、图2分别表示稳压器水位及压力随时间的变化,2条曲线反映2种传热器管的破坏情况。

(3)由于稳压器低压和低水位报警,上充泵流量将自动增加,稳压器中的电加热通电,力求稳定稳压器中的压力和水位。如果泄漏量超过上充泵流量,一回路水将继续减少,导致自动停堆,汽轮机自动停机。稳压器水位达到低低水位定值时,安注系统向一回路注水。

(4)由于一次侧水漏入破管蒸汽发生器的二次侧,导致二次侧的压力和水位升高,并出现给水量减少,蒸汽量和给水量失配。当水位达到高高水位整定值时,主给水隔离,辅助给水投入。

(5)此时如果有厂外电源,则利用蒸汽旁路系统,将蒸汽排入凝汽器,使一回路温度、压力迅速降低。

(6)如果没有厂外电源,则主泵不能运行,凝汽器不能使用,此时蒸汽发生器靠自然循环排出堆芯余热。

(7)破管蒸汽发生器的汽压迅速升高,当达到释放阀或安全阀动作的整定值时,带放射性的蒸汽将通过这些阀门向大气排放,造成环境污染。

(8)以辅助给水和安注水作为热阱吸收堆芯余热,因此,排入大气的蒸汽量逐渐减少,一、二次侧压力逐渐相等。

(9)隔离破管蒸汽发生器,并隔离凝汽器排气向大气的出口。

以上(8)、(9)两步是处理本事故的关键。为了使一、二次侧压力尽快相等,利用蒸汽旁路系统向凝汽器排汽是最快的方法,但放射性释放量大,污染范围扩大到二回路设备。如果蒸汽管道中存水,蒸汽释放可能引起水锤效应,使二回路设备损坏。当一、二次侧压力相等后,还可以用反充冷却、排污冷却等方法来进一步降温降压。

事故处理一般要求在30min内处理完毕,可分下列3个阶段:

(1)停堆到安注系统动作,时间约为5min;

(2)对事故的鉴定,时间约为10min;

(3)事故处理直到把破管蒸汽发生器隔离,时间约为15min。

2主蒸汽管道断裂(MSLB)事故

2.1IV类工况事故

假定安全壳外一根主蒸汽管道完全断裂,并且同时失去厂外电源,亦即凝汽器停止工作。属极限事故,被认为是极不可能发生的。事故期间,受影响的蒸汽发生器在很短时间内完全排空,随后所产生的蒸汽通过破口直接喷向大气,直到被隔离为止。不受影响蒸汽发生器的释放持续时间为8h。

为减轻和缓解主蒸汽管道断裂事故的后果,系统设计采取了若干措施。蒸汽发生器的蒸汽出口处加装了流量限流器,每条主管道上都安装有主蒸汽隔离阀。保护系统还可以触发安全注射、给水和蒸汽管道隔离等动作。

在主蒸汽管道破裂的初期,由于破口处蒸汽的泄漏,使蒸汽流量迅速上升,但流量加大的结果使蒸汽压力降低,所以蒸汽流量上升一段时间后会逐渐下降。事故发生后,由于一回路的突然冷却,一回路压力、温度降低,负的慢化剂反应性温度系数使冷却的结果减少停堆深度。假定停堆后有一束当量最大的控制棒卡在堆芯上部,堆芯便会不可控地发生再次临界的危险。事故发生后,安注系统启动向堆芯加硼,使其回到停堆状态。

2.2主蒸汽管道断裂事故分析准则

(1)假定一组控制棒卡棒,有或没有厂外电源,并假定一个安全系统发生单一故障的情况下,主系统不应受到损坏,堆芯应保持其完整性。

(2)发生最严重的主蒸汽管道断裂事故时,泄漏蒸汽不会使安全壳受到损害。

考虑事故后果时,可以认为堆芯达到了DNB点(沸腾危机,使传热系数剧烈下降)。但事实上,不论发生多大的破口,即使同时有当量最大的控制棒高位卡棒发生,也不会接近DNB。

2.3主蒸汽管道断裂事故时的保护功能

(1)安注系统动作。稳压器低压信号,蒸汽管道高压差信号,2条蒸汽管道高流量伴随一回路低低平均温度,或者1条蒸汽管道低压信号,安全壳高压信号均会触发安注系统动作。

(2)反应堆超功率停堆和安注信号引发反应堆停堆。

(3)多重主给水管道隔离措施。继续保持给水会加剧一回路的冷却,因此,除正常控制系统会关闭给水线路阀门外,安注信号将迅速关闭给水泵所有的给水控制阀和隔离阀。

(4)蒸汽管道上截止阀的迅速关闭。2条蒸汽管道高流量伴随一回路低低平均温度或蒸汽管道低压力,安全壳高高压力可引发主蒸汽管道上截止阀迅速关闭。

(5)位于安全壳外边的安全阀后,每一条蒸汽管道设有一个快速隔离阀。当一条蒸汽管道发生破裂时,隔离阀可以防止其它蒸汽管道内产生回流现象;如果破口位于隔离阀后面,它可以阻止蒸汽的继续泄漏。

(6)蒸汽发生器出口处装有一个流量限制器,能在极不可能发生的主蒸汽管道断裂事故中限制蒸汽流量。由于流量限制器的存在,当蒸汽流量大量增加时,将产生限制蒸汽流量的一个背压。从而提供几个保护上的好处:防止在安全壳内的压力迅速升高,将一回路水热量排出的速率保持在可接受的限值内,减少了在主蒸汽管道上的推力,以及维持蒸汽发生器内件,特别是管板和管子上的应力在可接受的限值内。

3水锤事故

美国从1969年初到1981年5月共报告了67个压水堆核电站的水锤事故,其中27个(占40)为蒸汽发生器的水锤事故。蒸汽发生器的水锤事故分别发生在13座压水堆核电站中,水锤事故的强度和后果差别很大,从较小的噪音、给水管的振动,到给水管主支架的破坏,直到给水管的穿透裂纹。

3.1事故情况

发生事故的蒸汽发生器都是美国西屋公司和燃烧工程公司设计,带有顶部给水环装置,给水通过底部开孔的给水环,与再循环水混合后流向下降通道。

当给水系统发生故障时(如事故停泵、阀门失灵或因某些瞬变过程引起给水量快速减少),给水量迅速降低,蒸汽发生器中的水位下降,给水环暴露在蒸汽之中。一般,给水环暴露1~2min,底部带有排水孔的给水环中的水有可能流尽,并被蒸汽充满。在这一瞬变后,当给水流量(一般为过冷度大的辅助给水)恢复时,给水通过水平给水管流入给水环,并在充满蒸汽的给水环下部流动,在蒸汽和过冷给水间的交界面上会出现蒸汽快速冷凝。另一方面,随着辅助给水量的增加,水平给水管与给水环连接处被水封除,水平管内形成一个孤立的蒸汽泡。由于汽泡内蒸汽的冷凝,汽泡外的压力可达到7MPa,孤立的汽泡迅速缩小而溃灭,产生压力脉冲。压力脉冲的大小及其在给水管中的传播取决于很多因素,其中包括汽泡内蒸汽的冷凝速率、汽泡和水块的初始容积、蒸汽压力、给水管道的声速和管道的几何形状及布置。当压力波在给水管道中逆向传播时,在管道中产生的冲击力,能够引起管道支撑、阻尼器及管道本身的破坏。

3.2防止和减轻水锤事故的措施

(1)在给水环顶部安装J形管。在给水环顶部安装J形管,并将其底部的小孔封死。这样,当水位降到给水环以下时,可大大降低给水环中的排水速率,排干水的时间要花20min以上,显著地推迟了给水环排空水的时间。

(2)给水提前进入蒸汽发生器。丧失主给水后,蒸汽发生器中的水位下降,当J形管的给水环暴露于蒸汽后,虽能显著地减缓给水环中水的疏干,但不能阻止给水环失水。如果蒸汽大量进入给水环前,立刻启动辅助给水(最好是自动启动),有助于保持给水环中充满水,防止水锤事故的发生。

(3)缩短蒸汽发生器给水入口水平给水管长度。蒸汽发生器的给水环和入口处的水平给水管,一般位于给水系统的最高位置,缩短给水入口处的水平管道长度,能减小排空的给水管道容积,从而使由冷凝引起的压力脉冲减小。西屋公司建议水平给水管的最大长度为2.4m。

4给水系统故障

4.1预防措施

给水系统故障包括给水管道、给水泵和给水流量调节阀等出现的故障。这些故障将降低二回路吸收一回路产生热量的能力,使一回路的压力和温度上升。为了避免蒸汽发生器的干涸,应启用辅助给水系统。

辅助给水用于蒸汽发生器正常给水系统中的一个失效时,辅助给水系统成为应急手段用以排出堆芯余热直到反应堆余热排除系统投入运行。在这种情况下,由一回路放出的热量通过蒸汽发生器(由辅助给水)输给二回路,向凝汽器或大气排放。

表1为秦山一期核电站给水系统故障与分析。针对主给水管道破裂在设计时采取了一些措施,当一条给水管道破裂不会危及另一条给水管道、主蒸汽管道和一回路管道时,其措施为:(1)2条给水管道之间进行隔离;(2)对管线进行限位和设置阻尼装置;(3)设置阻挡喷出流体的屏障。如果有一条给水管道破裂,另一条完好的给水管道上的止回阀、隔离阀和调节阀仍能正常工作。给水调节阀(气动)接到关闭信号后5s内关闭,而电动隔离阀在接到隔离信号后20s内全关。当接到下列任一信号,上述阀门随即关闭,并且给水泵停止运行:(1)主蒸汽压力低;(2)蒸汽发生器高高水位;(3)给水高流量、一回路水低流量;(4)给水高流量、一回路低平均温度;(5)一回路低平均温度。

为了保证给水系统能正常工作,系统中的重要设备要进行定期检查,并进行下列试验:

(1)给水管道安装结束后,要进行投运前的冷态水压试验;

(2)冷态水压试验后,要进行热态功能试验;

(3)要进行在役检查和定期维修。

4.2给水系统故障引起的事故

给水系统故障会引起给水温度下降、给水流量增加、正常给水流量丧失和给水系统管道破裂等事故。

(1)给水温度下降。对反应堆一回路的影响与二回路蒸汽流量增大相似。此事故不产生反应堆保护信号,在新的一、二次侧ΔT下,反应堆在一回路平均温度和压力低于初始值下达到平衡。

(2)给水流量增加。需分析2种工况:①零负荷下事故开启一个给水控制阀。蒸汽发生器水位高使主给水隔离,稳压器压力低低使一台高压安注泵启动。分析应表明反应堆没有重返临界,燃料元件没有损坏的风险。②满负荷下事故开启一个给水控制阀。蒸汽发生器水位高信号触发反应堆紧急停堆和汽轮机停机。分析应表明,DNBR(偏离泡核沸腾比)大于安全限定值,不存在燃料元件损坏的危险。

(3)给水流量丧失。分析时假设辅助给水系统单一故障,汽动辅助给水泵失效。一台蒸汽发生器水位低低与给水流量低同时出现,将触发辅助给水电动泵启动,水位低低使反应堆紧急停堆。分析应表明,蒸汽发生器水位低低信号会向反应堆提供保护。没有一回路水从稳压器排出,也不会丧失。蒸汽发生器水位虽然有所下降,但辅助给水系统仍可以确保堆芯余热的导出,因此不会有元件损伤。

(4)主给水管道破裂。主给水管道破裂事故(破口定位于止回阀和蒸汽发生器之间的给水管道上)导致排热能力减小。应分析2种工况:工况1,假设停堆后失去厂外电源,热量由自然循环导出;工况2,没有丧失厂外电源,热量由强迫循环导出。分析应表明,完好蒸汽发生器低水位信号和给水/蒸汽流量失配信号同时出现,触发辅助给水系统和紧急停堆。一回路系统不会发生大容积沸腾,辅助给水能够充分地带走余热,没有堆芯裸露的危险。

5水位过高或过低的故障

当水位调节系统发生故障,给水流量降低,或正常给水丧失,导致蒸发器水位过低,会引起蒸汽进入给水环,发生水锤的危险。如果蒸发器水位过高,会淹没分离器甚至干燥器,出口饱和蒸汽湿度过高,会加速汽轮机叶片的磨蚀。

在低功率运行时的蒸汽发生器,控制水位很困难,会出现水位过高或过低的故障。造成这些故障的原因是蒸汽产生过程不稳定。因为蒸汽发生器的自然循环是由下降通道与上升通道(管束)之间流体静压头的不平衡来维持的。高功率运行时,运动压头很明显,能导致相对稳定运行。但当功率下降时,管束内蒸汽含量下降,两相流体密度增加,减少了运动压头。当下降通道与上升通道中的静压头趋于相等时,自然循环接近停滞状态。在这种状态下,水位难以控制。这种现象能在低水位或低功率的瞬态和稳态运行时随时发生,如果控制系统不作适当调整,将会导致水位波动。

美国对在役压水堆核电站调查表明,核电站停堆事故的30以上是主给水系统事故,其中,当功率低于20时,蒸汽发生器的水位故障是造成紧急停堆的主要原因。特别是在启动时,水位控制更加困难,因为运行人员缺乏手动控制水位的经验。一个设计合理的自动低功率给水控制系统能大大地减少核电站的水位故障。美国在St.Lucie核电厂中安装了自动低功率给水控制系统,经历了11次以上的停堆,没有一次是由于蒸汽发生器水位故障而造成的。

大亚湾核电站蒸汽发生器的水位控制系统实现了从0~100负荷的给水自动控制,这不排除在异常情况下的人为干预。蒸汽发生器的水位调节是指控制其相应的给水阀开度,即控制进入蒸汽发生器的给水流量。蒸汽发生器的给水管线并列安装着主给水阀和旁路给水阀。负荷为18以下时,水位由旁路给水阀调节,主给水阀则用于正常运行时的调节。由于在低负荷时,流量测量因压差太小而不精确,且信/噪比变坏,造成水位控制异常困难。旁路给水阀的引入和其专用控制部分的设计,改善了低负荷下的给水调节,也避免了主给水阀的过多磨损。

秦山一期核电站当负荷大于20额定负荷时,水位是由控制主给水阀开度的三元系统控制的。三元系统是由水位、主蒸汽流量和主给水流量组成的一个协调系统。负荷为20以及以下时,水位由旁路给水阀控制,其开度受水位自动控制,也可在主控制室由运行人员手控。

6水质不良故障

6.1水质不良的3个级别

为了使蒸汽发生器二次侧水质指标的偏差值和持续时间减到最小,规定了下列3个等级的纠正措施:

一级措施:水质偏离正常值,但不一定会导致蒸汽发生器管材的腐蚀,必须迅速识别异常值的原因,并加以纠正。在确认偏差后1星期内,把水质指标恢复到正常值。如果水质指标没有回到正常值,那么这些指标就要进入二级措施。

二级措施:水质偏离正常值,如果继续运行,会导致一定程度的蒸汽发生器管材的腐蚀,要下降功率,使腐蚀减到最小,必须迅速查明杂质的来源,并加以纠正。在最初4h内下降功率到合适水平(一般为满功率的30或更低),在100h内使水质指标恢复到正常值。否则,这些指标就要达到三级措施。

三级措施:水质偏离正常值,将会导致蒸汽发生器管材的迅速腐蚀,必须快速停堆,避免有害杂质的进入和浓缩。在4h内停堆,通过充分排污或排空,进行清洗,直到水质指标达到正常值。

6.2纠正行动

当水质指标超出正常值时,一般要采取下列纠正行动:

(1)增加蒸汽发生器的排污,以便最大程度地除去有害杂质;

(2)连续监督仪表的读数,并与实验室分析结果相比较;

(3)比较实验室用各种分析得出的结果,以便取得一致;

(4)对关键的水质指标,发现有增加趋势时,在短期内要增加取样和分析的次数;

(5)探明并排除有害杂质的进入。

当水质指标达到某个纠正措施时,就要执行该级别的纠正行动,这些行动将根据水质指标和核电站的具体情况而定,每个核电站要对纠正措施规定行动的程序。

7出口蒸汽湿度不合格

目前世界上绝大多数立式蒸汽发生器的出口蒸汽湿度的设计指标为0.25。为了提高汽轮机的效率和可靠性,近来将这一指标提高到0.1。51型蒸汽发生器在法国Bugey核电站上出现过出口蒸汽湿度不合格的现象,通过试验对汽水分离装置进行了改进。D0型旋叶式分离器(直径为508mm)安装在美国的许多蒸汽发生器上,这些蒸汽发生器的出口蒸汽湿度勉强能达到或有时超过规定的湿度指标。秦山一期核电站也发生过出口蒸汽湿度超标现象,经试验和现场改造后解决了该问题。

法国Bugey核电站1号机组采用51型蒸汽发生器,旋叶式分离器直径为1420mm,出现过出口蒸汽湿度不合格的现象。为改善蒸汽品质,进行了一系列的改进与性能试验。现场试验表明,改进后的汽水分离装置,改善了分离性能,使出口蒸汽湿度减小到0.04。

为了把D0型旋叶式分离器用于法国1300MW核电站用的68/19型蒸汽发生器上,对该型分离器进行过改进。先利用水——空气、水——蒸汽和氟里昂试验台进行了一系列的试验。选定的几种新型的旋叶式分离器再在EVA试验台上进行试验,经选型而重新设计的D2.1型分离器,可用于68/19型蒸汽发生器上,后来还决定将这种分离器用于55/19型蒸汽发生器上。1985年初,在Paluel核电站的蒸汽发生器(68/19型)上,对该型分离器进行实测表明,汽水分离装置在全负荷下蒸汽出口湿度不超过0.03。

参考文献

[1]丁训慎.压水堆核电厂蒸汽发生器传热管破裂事故及其处理.核电工程与技术,1991,4(3):20~24

[2]丁训慎.压水堆核电厂蒸汽发生器的水锤事故及其防止措施.核动力运行研究,1991,4(1):36~41

[3]吴清,卢毅力.秦山核电二期工程瞬态事故分析.核动力工程,2003,24(2)增刊:56~60

稳压器范文篇10

但我的朋友又披露了另一个统计数字:他设计的典型电路板上有约30个独立的电源网络。每个电源网络都有不同的标称电源电压、精度以及调整率;在有些情况下,这些标称电压只相差十分之几伏。再则,每个电源网需要有自己的稳压器以及一系列去耦电容器,以便控制从近乎直流直至几百千赫带宽内的旁路阻抗。设计师必须分析并实现每个电源网络的供电与返回路径,以及大量的PCB板走线。在最终设计中,直流电源子系统的走线与电容器要占去电路板面积的一大部分。设计师必须精心建立所有这些因素的模型,以确保电流路径得当,以及IR压降很小。在达到这些电流电平时,这可不是件简单的工作。

然而,高质量电源子系统与其配电系统之间却存在一个难题。尽管供电在任何系统中都是一种不可或缺的功能,但它却无法获得用户的直接赞赏或认同。用户需要的是额外的特性、功能和性能;供电被看作设计中固有的部分。增加特性有利于营销宣传,并获得更多的利润,而电源网络的元件成本和占板面积却没有这些好处。事实上,有些人会把电源子系统占用的电路板面积看作没有意义的负担,就像财务部门或邮件收发室一样。

我希望,你作为系统设计师或电路设计师能对物料清单上的元器件的选择产生重大影响。我的这位朋友指出,为最大限度地减小电源网络的负担,你可以做几件基本工作。首先,要帮助电源子系统设计师开发设计一组基本的稳压器(可以使用线性稳压或开关稳压技术),这样,你就可以在电路板上重用这些设计。为了使这项工作有价值,你还应该根据每一个标称电压来平衡电流负载,使之处于同一范围内,因为你找不到一种经济实惠设计能支持10mA和1A两种负载。