稳压电源的设计与制作十篇

时间:2023-12-07 17:47:05

稳压电源的设计与制作

稳压电源的设计与制作篇1

设计并制作开关稳压电源。

要求:在电阻负载条件下,①输出电压Uo可调范围:30V~36V;②最大输出电流LOmax:2A;③U2从15V变到21V时,电压调整率SU≤0.2%(Io=2A);④Io从0变到2A时,负载调整率S1≤0.5%(U2=18V);⑤输出噪声纹波电压峰—峰值UOPP≤1V(U2=18V,Uo=36V,Io=2A);⑥DC—DC变换器的效率%`≥85%(U2=18V,Uo=36V,Io=2A);⑦具有过流保护功能,动作电流Io(th)=2.5?.2A,排除过流故障后,电源能自动恢复为正常状态;⑧能对输出电压进行键盘设定和步进调整,步进值1V,同时具有输出电压、电流的测量和数字显示功能;⑨变换器(含控制电路)只能由UIN端口供电,不得另加辅助电源。

总体分析

首先我们需要确定出系统方案。输出电压Uo可调范围30~36V,而隔离变压器副边输出为15~21V,整流滤波后最大约27V,小于30V,显然在整个电压范围内都需要升压输出。

其次,要求变换器整体效率大于85%,对小功率电源来说,这个要求已经比较高了,可以计算,在72W的额定功率、85%的效率下,变换器的损耗不能超过12.7W,要达到此项要求,就必须使用尽量少的器件,不论是功率主电路,还是控制测量电路,都应该使其尽量简单。

器件选择

(1)输入电感和输出滤波电容的选取。首先计算升压电感的大小。整流输出电压的大小为19~27V,输出电压范围为30—36V,由临界电流公式Iob=Uo/2Lf8lD(1—D)(2),当D=1/3时,临界电流有最大值1obm=2Uo/27Lfs,要使电感电流连续,则最小负载电流(题目要求可空载,这里取0.1A)应大于Iobm,由此解得

L≥2Uo/27fsIobm=2*36/27*30*0.1

=1.33mH,取L=2mH。

(2)开关管的选取。开关管Q关断时承受的正向电压为36V,考虑一定的尖峰余地,IRF3205的正向击穿电压为55v,导通电阻仅为8m%R,所以不会击穿同时导通损耗也很小。输出整流二极管选取导通电阻小的肖特基二极管MBR20100,其导通压降为0.7V,反向击穿电压为100V。MOSFET的驱动选专用驱动芯片IR2110.

(3)其它元件的选取。测量控制电路的损耗跟元件的工作电压有关,信号放大用的运放选低电源电压、Rail—To—Rail型运放INA132和OPA350,可降低功耗。

单片机的功耗与CPU时钟频率有关,降低单片机时钟频率也可使损耗减小,此设计中凌阳单片机的CPU时钟为24.576MHz。

制作

第一个问题是整流桥(耐流能力为10A)总是被烧毁。滤波电容越大、二极管的导通角0越小,流过二极管的电流峰值就越大。其值很容易大于10A。后来我们在整流桥后面串入电感L1,因为电感有一定续流作用而使二极管导通角变大,从而减小电流峰值以保护整流桥,改进后整流桥不再烧毁。但是开机时保险管(额定电流10A)常被熔断,分析发现,开机时整流桥后的滤波电容呈瞬时短路状态,所以开机存在较大冲击电流,所以我们在整流桥前串联NTC、问题也得到解决。其原理是,开机时NTC温度较低而呈现很大电阻,所以开机电流不会很大,随着电路接通,NTC发热而呈现很小电阻,所以正常工作时NTC上电压降很小,不会影响电路正常工作。(见图1)

遇到的第二个问题就是电压调节慢和稳压不好,刚开始我们以为是软件调节器的问题,检查很久后发现是测量电压不准造成的。负载两端电压正比于节点1与2之间电压,我们刚开始直接测量节点2与地之间电压,表面上看来0.1%R的采样电阻影响不大,但电路中流过的电流为2A时,电流采样电阻上的压降为0.2V,误差约为0.5%,可见误差并不小。另一方面,若用此种采样方案,会因电路中电流的不同,造成的测量误差也不同,随电压变化误差呈现一定的非线性,这会给电压调节带来麻烦。所以,我们后来改用差分的方式采集电压,也就是使用差分运放在节点1和节点2之间采样,这样可大大减小误差,改进后取得了很好的效果。测量电路的各个环节都应准确可靠,采样电阻也应尽量准确稳定。类似,若在AD转换的入端需要对待测电压或电流信号滤波,则滤波电容不宜过大,否则会影响响应时间而造成测量滞后,自然会使调节不准确。这些问题虽然简单却影响很大,若能快速准确的测量,单片机的调节将顺利得多。

稳压电源的设计与制作篇2

关键词:数控直流电源;稳压电源;电压源;电流源

中图分类号:TM461文献标识码:A文章编号:10053824(2013)04006707

0引言

数控直流稳压电源应用非常广泛,是学习电子信息工程、通信工程、机电一体化、电气自动化等电类专业学生必然涉及到的一个电工电子课程设计项目。全国大学生电子设计竞赛曾于第一届A题、第二届A题和第七届F题(电流源),全国首届高职院校技能竞赛样题以及省级院校竞赛都有涉及,用来检验学生的电子设计能力,可见其普遍性。

虽然较多论文都涉及,但电路设计的多样性以及制作经验篇幅鲜少,不足以使读者完成作品并举一反三。笔者参阅数十篇关于数控直流电源系统的设计,发现许多很难读懂的问题。例如,给出参数设计输出达20 V电压,但运放直接驱动达林顿管明显无法输出达22 V以上。又如,通篇无关紧要的内容,唯独缺少比较放大环节设计及关键电路的完整连接,也就是说DAC输出到调整管之间内容匮乏,这也是本文解决问题的初衷。

直流稳压电源按照功率管工作状态,分为线性稳压电源、开关稳压电源2种。鉴于电类专业课程设计的需要,本文重点解析线性稳压电源之关键设计,如与OP放大器设计联系密切的部分,希望对读者制作该项目或写论文有所帮助。

1设计要求的性能指标与测试方法

1)输出电流IL(即额定负载电流),它的最大值决定调整管(三端稳压器)的最大允许功耗PCM和最大允许电流ICM,要求:IL (Vimax-Vomin)

2)根据输出电压范围和最大输出电流的指标,U/I可计算出等效负载阻值。例如,输出电压要求达30 V,最大输出电流1 A,因此模拟负载应满足从几Ω到30 Ω之间,调整管耗散功率应满足30 W以上,考虑加散热片。

1.2质量指标

纹波电压:是指叠加在输出电压Uo上的交流分量。在额定输出电压和负载电流下,用示波器观测其峰一峰值,Uo(p-p)一般为毫伏量级,也可以用交流电压表测量其有效值。纹波系数是纹波电压与输出电压的百分比。设计中主要涉及滤波电路RLC充放电时间常数的计算。一般在全波式桥式整流情况下,根据下式选择滤波电容C的容量:RL・C=(3-5)T/2,式中T为输入交流信号周期,因而T=1/f=1/50=20 ms;RL为整流滤波电路的等效负载电阻。

稳压系数Su和电压调整率Ku均说明输入电压变化对输出电压的影响[2],因此只需测试其中之一即可。电源输出电阻ro和电流调整率Ki均说明负载电流变化对输出电压的影响[2],因此也只需测试其中之一即可,具体操作参照指标的定义来实施。

2.2DAC接口电路的设计

2.3调整管控制电路、电压采样与电流采样电路的

2.4ADC接口电路的设计、同时具备电压源与电流源功能的设计

2.6具备电压预置记忆存储部分的设计

2.7保护电路的设计

2.8.2滤波电路的设计

3结语

曾经查阅数十篇类似稳压电源电路图,深感模拟电路设计的重要性。本文将电压源与电流源的设计方案同时罗列,便于读者理解设计要领。重点解析DAC输出后的电路设计,图中电压、电流数据全部基于proteus交互式仿真完成。电路设计的连贯性、采样电路取值、运放电路与驱动电路设计等,是同类论文较少论述的环节,可以有效解决目前存在的诸多问题,有助于读者提高电路解析能力。仅此抛砖引玉,希望本文的设计能对读者在实际工作中有所帮助,不当之处请多指教。

参考文献:

[1]高吉祥.全国大学生电子设计竞赛培训系列教程――基本技能训练与单元电路设计[M].北京:电子工业出版社,2007.

[2]邓坚,杨燕翔,齐刚. 数控直流稳压电源设计[J].计算机测量与控制,2008,16(12):19911993.

[3]杨秀增,黄灿胜. 基于Nios II的高精度数控直流稳压电源设计[J]. 电子设计工程,2009,17(9):4749.

[4]许艳惠. 一种智能化高精度数控直流电源的设计与实现[J]. 微计算机信息,2007,23(32):136138.

[5]DAC0832手册.National Semiconductor Corporation DS005608[EB/OL].(20020120)[20121011]. http:///product/dac0832.

[6]冈村迪夫.OP放大电路设计[M].王玲,徐雅珍,李武平,译.北京:科学出版社,2004.

[7]铃木雅臣.晶体管电路设计(上)[M].周南生,译.北京:科学出版社,2004.

[8]江海鹰,孙王强,孙杰,等. 实用高精度数控直流电流/电压源[J].济南大学学报:自然科学版,2006,20(3):249251.

[9]彭军.运算放大器及其应用[M].北京:科学出版社,2008.

[10]清华大学电子学教研组.模拟电子技术基础简明教程[M].3版.北京:高等教育出版社,2006.

[11]黄智伟.全国大学生电子设计竞赛系统设计[M].北京:北京航空航天大学出版社,2011.

[12]陈光明,施金鸿,桂金莲.电子技术课程设计与综合实训[M].北京:北京航空航天大学出版社,2007.

稳压电源的设计与制作篇3

[关键词]单片开关电源 复合式 AC/DC MAX8873

一、引言

电源是现代电力电子设备不可缺少的组成部分,其性能的优劣直接影响设备的性能。传统的电源由于笨重、效率低而逐渐被重量轻、体积小、效率高的开关电源所代替。复合式开关电源作为一种高效率的开关电源,是对线性稳压电源和开关稳压电源进行优化组合形成的一种电源设计方案,它即具有输出电压稳定程度高、纹波电压小、电源转换效率高等众多优点。本文介绍了一种新型复合式开关稳压电源,该电源采用了一种新型单片AC/DC单片开关电源作为前级稳压器,为低压差线性稳压器MAX8873提供直流输入电压,然后利用低压差线性稳压器MAX8873获得高质量的稳压输出,组成高效率、输出可调的复合稳压电源。实验证明该电路具有良好的性能,有很高的实用性。

二、AC/DC开关电源

本设计采用基于Trench DMOS工艺设计的一种AC/DC开关电源管理芯片。该芯片的工作方式为PWM即脉冲宽度调制方式;电路正常工作温度范围是-35℃至130℃;工作的开关频率为100KHz;占空比调节范围是3%~65%。其特点是宽压输入,输出电压纹波小,芯片效率高。该开关电源变换器集成了耐650V高压的功率开关管、电流限流比较器、振荡器、旁路调整器/误差放大器、高压电流源、基准源和过温、过压/欠压、过流及自动重启等保护电路,采用PWM调制模式达到在不同的负载下的高效率,采用隔离结构降低了芯片的EMI。开关电源控制集成电路的原理图如图1所示:

针对变压器原边绕组的漏感产生的高压毛刺,采用二极管D1与稳压管VR1并联接入原边绕组侧,用来吸收高压毛刺。光电耦合三极管U2的偏置电压由二极管D3与电容C3构成的整流电路提供。稳压管VR2、电阻R1、光电耦合三极管U2、电容C5组成电压反馈电路,用来确保电压稳定能都稳定输出。稳压管VR2和电阻R2保证了电源空载或轻载时输出电压的稳定性。利用电容C2降低输出直流电压的交流纹波。

电路工作原理:输入交流电先经过整流桥BR1整流,之后再经电容C1滤波,最后转变为脉动的直流电压。当MOSFET开关管导通时,电容C1两端的电压加到反激变压器的原边,流过原边绕组的电流线性增加,变压器储存能量。当MOSFET开关管关断时,电感原边电流由于没有回路而突变为零,此时稳压管VR1的击穿电压高于原边的感应电势而截止。

该AC/DC开关电源控制芯片结构示意图如图2所示,该集成电路的主要组成部分有旁路调整器/误差放大器、锯齿波/振荡发生电路、PWM比较器、基准电压源、软启动电路、上电复位电路及其它保护电路等。

从图2可以看出控制芯片的最大特色是把外置管脚数控制为三个。振荡器和功率管的内置使管脚数减少,功率管的内置还提供了启动偏置电压。控制引脚C不仅给内部供电,还提供了反馈电流信号,可用于控制电路的旁路电流和控制PWM占空比。此外,来利用功率管的导通电阻作为敏感电阻,来实现各个周期内的限流保护,这些都是该电路的特色。

三、低压差线性集成稳压器MAX8873

低压差集成稳压器是近年来应用广泛的高效率线性稳压集成电路。传统的三端集成稳压器普遍采用电压控制型,为保证稳压效果,其输入输出压差一般取2V~4V来保证正常工作。低压差稳压器采用电流控制型,选用低压降的晶体管作为内部调整管,能够把输入输出压差降低到0.6V以下,提高了电源的转换效率。产品主要有MAXIM公司生产的MAX8873系列,MICREL公司生产的MIC39500系列,TI公司生产的TPS767系列,LT公司生产的LT1528系列等。本文采用应用广泛的MAX8873芯片,MAX8873的典型工作电路如图3所示。

MAX8873是MAXIM公司生产的输出120mA的低压差线性稳压器。其中IN和OUT分别为电压输入端和输出端,GND为公共端,SET和SHDN分别为调整端和控制端。其主要特点有:组成电源元件最少,压差低,静态电流低,有关闭电源控制,输出电压固定,由外接电阻组成的分压器时输出电压可调,内部有输出电流限制、过热保护及电池反接保护等。

MAX8873有两种工作模式:工作在预置的电压模式下或工作在可调的电压模式下。在预置的电压模式下,内部电位器能够设置它的输出电压,我们通过连接SET端到地选择这种模式。在可调模式下,我们通过在SET端连上两个外部电阻作为分压器来选择输出电压,电压范围可从1.25V到6.5V。

为了减小寄生电容的影响,我们在电阻R1两端串上一个10PF到25PF的电容。而在预置电压模式下,SET端和地之间的阻值不能小于100K,否则SET端的电压将超过两种工作模式的门限值60mV。

四、新型复合式开关稳压电源的设计

本复合式开关稳压电源的原理图如图4所示。

电源输入交流宽输入电压85V-265V,双路输出电压+5V/1.5A,-5V/1.5A,输出功率15W。电路包括输入整流滤波,脉宽调制,高频变压器,电流反馈,低压差线性稳压,整流滤波输出等几部分。交流输入经整流滤波后,产生一个的直流电压加在变压器初级绕组的一端和控制芯片的源极,变压器初级的另一端由控制芯片内的高压功率管驱动。变压器两组副边经整流滤波后分别产生±5.5V的输出电压,该电压经LC滤波后输入到MAX8873中,经MAX8873输出后再通过下一级LC输出滤波得到±5V的高稳定输出。

在设计PCB板时要注意,电容C2负极应直接连反馈绕组,将反馈绕组上的浪涌电流直接返回到输入滤波电容,提高抑制浪涌干扰的能力。控制端附近的电容应尽可能靠近源极和控制端的引脚。控制芯片的源极采用单点接地法,即控制端旁路电容C12的负极、反馈电路的返回端、高压返回端应分开布线,最后在源极管脚处汇合。安全电容C13应通过宽而短的印制导线分别接至反馈绕组和次级绕组的返回端。尽量使用大尺寸的低电感引线。

五、实验结果

在市电输入下,当负载从0达到额定值时,电路的负载调整率为95%,输出电压纹波在40mV左右,输出纹波主要由变压器漏感的电压和整流管电压产生,可以通过进一步优化PCB版布局等方法来改善。

六、结束语

本文采用基于Trench DMOS工艺设计的一种AC/DC开关电源管理芯片和低压差线性稳压器MAX8873设计了一种新型通用的复合式开关稳压电源。该电源具有体积小,效率高,输出电压稳定,负载调整率好等优点,实验表明该电源是一种性能良好的高精度稳压源。

参考文献:

[1]黄俊,王兆安.电力电子变流技术.北京:机械工业出版社,1999.

[2]刘胜利.现代高频开关电源实用手册.北京:电子工业出版社,2001.

[3]沙占友.新型单片开关电源设计与应用技术.北京:电子工业出版社,2004.

稳压电源的设计与制作篇4

关键词:反激 绕组 充电 切换 稳压

中图分类号:TD6 文献标识码:A 文章编号:1007-3973(2012)010-032-02

各类矿山在线安全监测系统经常处于高温、多尘、高湿、高寒、雷电等极端恶劣条件中,同时,矿山环境又存在频繁停电、供电线路屡遭破坏的实际问题。因此,在线安全监测系统的可靠性问题—特别是供电的可靠性问题—已经成为业界关注的焦点问题之一。大多数矿山在线安全监测系统在紧急事故中因供电中断导致的系统瘫痪,极大地限制了其应用范围,也为矿山安全生产埋下了隐患。基于这种现状,矿山行业迫切需要一种能够提供具备高可靠性,可以在外部失电情况下为用电设备提供稳定电源供给,保证系统或者局部关键设备能稳定持续工作的不间断直流电源。

为解决上述问题,本文提出一种高可靠性的不间断直流供电装置。目前,常用不间断直流供电技术有两种,一种是电池常在线型,电池在不停的充电同时也在为后端用电设备不停的提供能量;另一种是电池后备型,正常情况下,市电通过转换为用电设备提供能量,当市电故障时,电池才投入使用。文中提出的装置属于第二种类型,在市电正常的情况下通过市电转换为稳定的输出电压;当市电故障时电池投入使用,经过转换提供稳定的输出。正常情况下电池一直处于充电管理过程中,采用这种方式可以极大的保证电池的使用寿命,延长设备使用年限。

1 不间断直流电源实现方法

1.1 不间断直流电源基本架构

文中提出的不间断电源装置采用反激开关电源设计,分为初级变换、输出稳压两级结构。初级变换采用反激隔离变换实现电池充电和初级电压变换,输出稳压级是一组DCDC变换单元,实现二次输出稳压变换。

初级变换单元采用反激变换器的形式,实现输入输出隔离,副边输出两组绕组S1和S2,其中S2绕组的输出提供给电池充电,S2绕组的输出采用闭环控制,实现对电池的恒流恒压充电控制;S1绕组的输出开环无稳压调节,直接连接到后级的输出级稳压DC-DC线路输入端。电池的输出经过一个整流MOS管连接到DC-DC线路的输入端。

1.2 S2绕组设计

变压器S2绕组的输出经过整流后向后级电池进行充电,对S2绕组整流后输出的电压及电流进行检测,通过一级放大后反馈到变压器原边控制器的输入参考电压端,进而调整控制器的开关占空比实现输出的稳流稳压控制。

在电池欠电严重的情况下,先实现恒流控制,快速的给电池提供能量;当电池电压升到一定数值以后实现输出恒压控制,减缓电池充电速度。

图2为电池恒流恒压充电反馈检测控制线路图。其中,恒流与恒压数值的可以通过调整取样电阻进行修改,在使用过程中根据不同电池的充电性能进行相应调整。

1.3 S1绕组设计

变压器副边S1绕组的输出是开环状态,经过整流后,输出一个波动的直流电压,当电池电量充满时,S1绕组的整流输出要大于电池的电压,保证在任何状态下S1绕组的输出始终大于电池电压。

1.4 切换电路设计

S1绕组的整流输出直接连接到DCDC稳压线路,电池的输出经过一个反接的N沟道整流MOS管连接到DCDC稳压线路输入端。

在输入交流电压存在时,初级反激变换器S1绕组的输出电压始终大于电池的充电输出电压,由于MOS管内部二极管的反向截止作用,S1绕组的整流输出向DCDC稳压线路单元提供能量,电池处于热备份充电管理状态。

在输入交流电压消失后,S1的绕组输出电压开始下降直至消失,当电池的电压大于S1绕组输出的时候,MOS管的反向二极管开始导通,电池开始给DCDC稳压线路提供能量,保证输出电压的稳定。

S1的输出监测及MOS控制线路是一组辅助功能单元,实现在S1无输出的情况下,控制MOS管开通;当S1输出恢复时,关断MOS管。

S1绕组的整流输出与电池之间通过MOS内部的反向二极管特性实现切换,当S1输出确定已经消失的情况下通过控制线路开通MOS管,屏蔽二极管导通状态,减少器件功率消耗。

1.5 输出DCDC稳压线路

输出DCDC稳压线路实现输出的最终稳压。线路支持宽范围电压输入,保证在S1整流输出供电或电池供电的状态下最终输出电压的稳定。

1.6 保护线路

该不间断直流电源的各类保护线路通过嵌入式MCU进行监测和控制,主要实现电池及输出的过压、过流、欠压等检测控制和多状态配合保护。

2 测试及性能分析

2.1 试验测试方法

不间断直流电源的测试主要是针对电池的充电和输入掉电电池切换,交流正常输入情况下,将一组欠电电池接入,通过示波器或万用表监测电池的充电状态、输出电压状态;当电池充满电后切掉交流输入,监测输出电压的变化。

2.2 电池充电测试

该电源所用的电池为标称电压12V的锂电池,容量2300mAh,在充电过程中对电池电压进行监测,绘制电池充电电压图表。

从图4中可以看出,在电池充电起始阶段,电池电压上升比较快,这个阶段电池一直处于恒流充电状态,当电池充电到接近75%能量,既电压充到接近10.5V的时候,转为恒压充电状态,从这时开始电池电压缓慢稳步上升,在充电电压达到12V的时候转为浮充状态。

2.3 电池切换输出电压测试

在电池充好电以后,切掉输入交流输入,在设备输出带80%负载的情况下监测输出电压状态。

在进行电池切换的过程中输出电压并无明显的波动,说明该电源产品实现了交流输入与电池之间的无抖动切换,保证设备在电池切换过程中输出电压无跌落,供电稳定。

3 总结

实验表明,本文设计的不间断直流电源能够在正常输入交流供电的情况下,对电池的进行良好充电,并在供电故障状态下,实现输出电压的无抖动切换。同时,电池在输入正常情况下处于热备份状态,当输入消失后才投入工作,有效的增加了电池的使用寿命,保证了设备的可靠供电,为各类设备和在线监测系统在恶劣矿山环境下的稳定运行提供了有效保障。

参考文献:

[1] 任锦瑞.矿山电源质量问题及谐波处理[J].机电与自动控制,2008,06(29):39-41.

[2] 闫福军.宽电压输入反激式开关电源的研究[D].成都:电子科技大学,2010.

[3] 张维.单端反激式开关电源研究与设计[D].西安:西安电子科技大学,2011.

[4] 应建华.锂电池充电器中恒流恒压控制电路的设计[J].微电子学,2008,03(38):445-448.

稳压电源的设计与制作篇5

关键词: 电子负载; 负载调整率; 自动测试; 小功率直流稳压电源

中图分类号: TN710?34; TP274 文献标识码: A 文章编号: 1004?373X(2013)10?0159?03

0 引 言

电子负载具有体积小,调节方便,工作方式灵活,性能稳定,精度高等优点,被广泛应用于电源类产品和各类电子元器件的实验、测试、检定和老化环节[1]。该方案基于51单片机,设计了一种智能电子负载,与其他同类设计[1?7]相比,具有直流稳压电源负载调整率自动测试功能。

1 系统原理

整个智能电子负载系统由单片机、恒流控制电路、功率负载器件、电压电流检测电路、过压保护、供电电源等构成,系统原理框图如图1所示。

2 硬件电路设计

2.1 恒流及电压电流检测电路

2.2 模/数、数/模转换电路

为了使系统达到一定的精度,且节省单片机I/O口资源,分别选用12位串行模/数、数/模转换器,分辨率达[212=4 096]。[U1],[U3]分别为模/数、数/模转换器提供稳定的参考电压。模/数转换器选用TCL2543[8?9],数/模转换器选用TCL5618[10?11]。

2.3 过压保护电路

3 系统程序设计

系统程序采用模块编程、主程序调用各模块的方式实现。主要由定电流、被测电源输出电压检测、被测电源输出电流检测、负载调整率自动测试、按键检测、显示驱动等模块组成。

4 结 语

以51单片机为主控芯片设计了一种新型智能电子负载,使运算放大器工作在深度负反馈条件下实现功率负载恒流,选用12位串行的模/数和数/模转换器,设计过压过流保护电路,通过软件编程实现直流稳压电源负载调整率自动测试功能。实际设计与制作表明,该方案满足设计要求。

参考文献

[1] 丁锐霞,马秀坤.基于Atmega16的智能电子负载设计[J].山西师范大学学报:自然科学版,2008,22(2):24?27.

[2] ,李家武.基于ARM 的实时调整型电子负载的设计与实现[J].计算机测量与控制,2008,16(9):1295?1297.

[3] 杨振吉,付永杰.电子负载的设计[J].计量技术,2003(5):24?25.

[4] 王子剑,孔峰.基于DSP的数字电子负载控制器设计[J].计算机技术与发展,2012,20(2):241?244.

[5] 蒋益飞,周杏鹏.基于STM32直流电子负载的设计与实现[J].仪器仪表用户,2012,19(3):68?70.

[6] 张胜高,张庆范,王思尧,等.基于TMS320F28335的恒流型馈能式电子负载的设计[J].电子设计工程,2012(10):103?109.

[7] 朱金刚.智能电子负载的设计[J].实验技术与管理,2006,23(6):26?29.

[8] 鲁成杰,惠力,杨英.C51环境下TLC2543的软件设计[J].山东科学,2010,23(5):100?106.

[9] 叶钢.基于TLC2543数字电压表的设计[J].数字技术与应用,2011(10):59?62.

稳压电源的设计与制作篇6

关键词:线性稳压器;开关稳压器;电源

中图分类号:TP303+.3 文献标识码:A 文章编号:1009-3044(2014)11-2656-04

Abstract: Analyzes the basic principles and characteristics of the DC-DC regulator, analyzes and compares the performance and structure of the principle of linear regulator and switching regulator, and provides a variety of important factors in the actual situation of the DC-DC design. Describes to the basic method of power chip selection, and provides a reference for the DC power circuit design.

Key words: linear regulator; switching regulator; power supply

电源的应用无处不在,所有的电子系统都需要恒压电源或者恒流电源的支持。输出直流称为直流电源,由前端直流转后端直流的称为DC-DC变换器,而直流转交流的变换器称为逆变器。所以,DC-DC变换器是用于提供DC电源的电路或模块。

1 DC-DC变换器的主要分类

1.1 线性型(Linear)

线性型变换器:可以从电源向负载连续输送功率的DC-DC变换器。线性型变换器通过在线性区域内运行的晶体管或场效应晶体管(Field Effect Transistor或FET),电路的输入电压中减去超额电压,调节从电源至负载的电流流动,从而产生经过调节的输出电压。

1.2 开关电源型(Switcher)

开关电源型变换器:以脉宽方波的形式从电源向负载输送功率。其特点是开关器件的周期性开通和关断(定频型、变频型、定变混合型)。将原直流电通过脉冲宽度调制PWM(Pulse Width Modulation)或脉冲频率调制PFM(Pulse Frequency Modulation)来控制有效的直流输出。PWM调制稳定电压的方式是,在开关频率不变化的前提下,依靠脉冲宽度的增大或缩小改变占空比例,进而调节电压达到稳定,它核心部件是脉宽调制器。在PFM调制方式运作的时候,脉冲宽度是固定的,开关频率的增加或减少控制了占空比,使得电压保持稳定,脉频调制器是它的核心部件[1]。

2 线性稳压器(Linear Regulator)

线性稳压器如78XX系列三端稳压器等,是一种无需使用开关元件而能提供恒定电压恒定电流输出的DC-DC转换器。

2.1 线性稳压器的工作原理

线性稳压器和输出阻抗形成了一个分压网络。线性稳压器等效于受控的可变电阻器,可根据输出负载自行调解以保持一个稳定的输出。输出电压通过连接到误差放大器反相输入端的分压电阻采样,误差放大器的同相输入端连接到一个参考电压Vref。误差放大器试图使其两端输入相等2.2 线性稳压器的类型

线性稳压器中的元件是双极型晶体管或场效应管MOSFET。双极型线性稳压器具有较高的压降电压,并能支持较高的输入电压并拥有更好的瞬态响应。MOSFET低压差线性稳压器LDO(Low Dropout Regulator)能支持非常低的压降,低静态电流,改善噪声性能和低电源抑制。为使线性稳压器处在正常工作状态之下,Vin和Vout之间最小压差称为压降电压(Drop-out Voltage),不同的稳压器结构会产生不同的压降电压,这也是几种线性稳压器的最大区别。如LM340和LM317这些稳压器使用NPN达林顿管,称其为NPN 稳压器(NPN Regulator)。然而低压差(Low-dropout)稳压器(LDO)和准LDO稳压器(Quasi-LDO)为新型电源设计提供了更高性能[2]。

2.3 LDO的应用选择

开关稳压器是一种采用开关组件与能量存贮部件(电容器和感应器)一起输送功率的DC-DC转换器,它提高了电源转换效率和设计灵活性。开关稳压器主要分为以下两类:电感储能开关稳压器和无电感型开关稳压器(充电泵)。

3.1 电感储能开关稳压器的工作原理

电感用于储存能量及向负载释放储能,电感在开关管开通状态下从Vg获得能量。

4 DC-DC变换器的应用选择

5 结论

通过分析比较最常见的两类三种直流稳压电源,了解了直流稳压电源的结构及构成原理,提出了电源电路环路控制的设计方案,为直流稳压电路正确合理的设计提供了参考方案。根据不同的实际设计需要和参数选用不同类型直流稳压电源,有利于整个系统平稳安全的工作。

参考文献:

[1] 杨建伟.谈开关电源的原理和发展趋势[J].科技与企业,2012(22):359.

[2] Tulte D.Low-V in buck regulator toggles fast-switching/very low-dropout modes[J]. Electronic Design,2005,53(21):27.

[3] Oliver N. Charge pump versus boost converter the great battle between white LED driver solutions[J].Global Electronics China.2005(9):49-50.

[4] 王学智.开关电源的原理和发展趋势[J].黑龙江科技信息,2007(11):21.

[5] 严惠琼,都思丹.新型National系列半导体电源芯片分析综述[J].南京大学学报,2007(43):35-46.

稳压电源的设计与制作篇7

关键词:Atmega16单片机;DA转换器;开关稳压芯片;BUCK电路

数控直流电压源,就是输出电压可控的直流电压源。如今,电子设备己成为人们日常工作和生活中必不可少的一部分,而电源恰恰是电子设备的心脏,为电子设备提供所必需的能量,起着万分关键的作用。电源系统对安全性、可靠性、便捷性以及实用性的要求正变得越来越高,数控直流电压源也因此逐渐受到人们的青睐。传统可调电源往往通过电位器来达到目的,虽然这样的电源有很大的输出功率,但很难做到精确调整,效率也不高。而数控直流电压源输出精确可调,亦有较高的输出功率以及转换效率,且更加轻便。本文的目的就是研究和实现高效低耗的数控直流电压源。

1数控直流电压源基本组成及工作原理

本文所设计的数控直流电压源的基本组成结构框图如图1所示,系统中,MCU选用AVR单片机Atmega16,它内部资源丰富,功耗低,可以保证系统稳定、可靠运行。DA转换器选用TLC5615,其基准源由基准源芯片REF5020产生。模拟电路模块包括开关稳压芯片LM2596_ADJ,运放芯片TL082,开关型电压转换芯片LMC7660以及功率电感等器件,共同构成一个BUCK电路。输出电压、电流经采样电路采入MCU并由液晶LCD5110进行显示。按键作为输入设备,对输出电压进行设置。

本设计工作原理是将单片机与DA转换器进行SPI通信,使DA输出可调的控制电压,送到运放TL082反相端。而以开关稳压芯片LM2596_ADJ为核心的BUCK电路上电后即输出电压,经分压后送到运放同相端,此时TL082作为比较器使用以比较上述两个电压。运放输出信号经二极管IN4148送入LM2596-ADJ的反馈脚(FB端)控制输出电压,由于LM2596-ADJ内部有1.235V基准电压以及比较器,当FB脚处电压小于基准时,会抬高输出电压;反之,则会降低,最终达到稳定从而达到数控的功能。接上负载后,输出电压、电流经采样点路送入MCU,就能在LCD5110上显示输出电压与输出电流。当采得电流值大于额定值,则将软件关闭LM2596_ADJ的使能端,进行过流保护。

2系统硬件电路设计

2.1 单片机最小系统电路设计

单片机最小系统是利用最少的器件而使单片机工作的电路组织形式。 最小系统电路原理图如图2,包括单片机、振荡电路、复位电路及供电电路。

2.2 DA转换器及其基准源电路设计

DA转换器及其基准源电路设计如图3所示, REF5020电路简单,在其2脚(Vin)与4脚(Gnd)之间加上18V以下直流电压,再在6脚(Vout)接小电容即可得到基准电压。TLC5615为10位DA转换器,其1~4脚可与单片机标准SPI口PB4~7相连,通过收到的10位数字码控制输出电压。它的5脚与8脚加上供电电压,6脚(REFIN)接来自基准源的2.048V电压,就能在7脚获取DA的输出电压。

2.3 稳压电路及其后级滤波电路设计

LM2596系列是降压型开关稳压芯片,其电路为一标准BUCK电路。稳压电路及其后级滤波电路设计如图4所示,输入电压从其1脚(IN)与3脚(GND)接入,输入电压为40V以下直流电压。开关信号由其2脚(OUT)输出,加到电感与吸纳二极管上。5脚(ON/OFF)为芯片使能端,低电平有效。4脚(FB)为反馈端,接入反馈信号以控制输出电压。图中上半部分为5.0V稳压输出,为单片机供电。下半部分为主稳压电路,输出可数控的电压。PCB设计要点,输出电感、电容以及后级滤波电路参数设计可按实际设计要求参考芯片技术手册。

2.4 负电压产生电路设计

由于需为运放提供双电源,故需产生一负电压,可利用开关型电压转换芯片LMC7660。负电压产生电路设计如图5,在芯片8脚(V+)与3脚(GND)加入一正直流电压,并在2脚与4脚之间串上一10~22μF电容,即可在5脚得到对应正电压的负电压。

2.5 比较电路设计

比较电路设计如图6所示,本部分电路的核心思想是将输出电压(经分压后)与DA输出的控制电压进行比较,若输出电压小,则抬高输出电压;反之,则降低,使两个电压达到动态平衡以达到数控目的。本电路中,运放与反相端之间的电容,与反馈端的电阻构成一个类似积分器的结构,当平衡时,正负偏移量相等,故系统输出将很稳定。

3系统软件设计

系统软件总流程图如图7所示,本部分设计包括单片机与DAC的SPI通信子程序、AD采样子程序、掉电保持子程序、液晶显示子程序以及键盘扫描子程序,从而达到控制DA输出电压、获取实时电压电流、掉电保持、实时显示以及键盘控制等多项功能,具体见下文分析。

3.1 单片机SPI通信程序设计

AVR单片机Atmega16的标准SPI口为PB4~PB7,当直接使用时,只需配置若干相关寄存器即可进行数据的主从机传输,且由于本程序无需从DA传数据到单片机,故实际上MISO(PB6)口是不需工作的。工作时,需要配置SPI相关寄存器,即SPCR寄存器以及确定主机模式、时钟频率等。当使能端(PB4)有效,将一个字节数据赋给数据寄存器SPDR,就可传送一个字节的数据到TLC5615,完成后状态寄存器SPSR中的SPI完成标志位置位,在下次传送时需软件清零,完成后PB4拉高以停止SPI数据传输。

3.2 AD采样程序设计

Atmega16单片机内部集成了一个8通道10位的AD转换器。使用时,首先需要配置AD模式寄存器ADMUX以确定AD的参考电压选取、采样通道、放大倍数等。下面要配置ADC控制和状态寄存器ADCSRA寄存器以决定分频率,AD中断是否使能,AD是否启动等。另外,若要使用AD中断,还要配置全局中断寄存器SREG。完成后就会开始进行AD转换,转换得到的10位数字码存在两个寄存器ADCH与ADCL,在程序中取出两个寄存器内容后进行一定的转换即可。

3.3 掉电保持程序设计

Atmega16内部具有512字节EEPROM,地址范围为0~511。EEPROM的读写方便,ROM的每个地址可存储一个字节。每当用于控制的10位数字码变化,就将其按高低8位拆分,存入ROM中,当开机时再取出相应地址里的内容,重组10位数字码,即可完成掉电保持功能。

3.4 液晶显示程序设计

LCD5110是84*48点阵液晶显示屏,它采用串行接口与MCU进行通信且支持多种串行通信协议。液晶显示字符的原理就是将每个6*8的点阵进行选择性点亮,使其显示出相应字符的形状。本设计需显示电压、电流,当得到AD采样结果后,将数据按位拆分,并显示在不同位置即可。

4结论

通过测试,本文所设计的数控直流电压源性能稳定可靠,设计电路实用、简单,效率高,带负载能力较强,该系统有如下特点:

(1)本系统输出电压在0~24V可调,步进为0.1V,输出电流最大可达3A,输出电压值、电流值由液晶LCD5110显示。

(2)最大输出功率45W以上,电源效率在80%以上,纹波不大于100mV。

(3)具有掉电保持、过流保护、常用电压预置等多种功能。

本数控直流电压源设计方案巧妙、电路及控制原理简单,输出可调且具有不错的带负载能力、很高的转换效率,可应用于供电电压在24V以下的各类电子设备供电。

参考文献:

[1]左现刚,张志霞.基于AVR单片机的数控直流稳压电源的设计[J].微型机与应用2012,31(8):84-86.

[2]蔡宣三,倪本来.开关电源设计与制作基础[M].北京:电子工业出版社,2012.6

[3]陈学清,黄世震.一种新型数控直流稳压电源的设计[J].通信电源技术2006,23(2):17-20.

[4]路秋生.开关电源技术与典型应用[M].北京:电子工业出版社,2009.

作者简介:

沈瀚祺,男,(1991~)浙江桐乡人,杭州电子科技大学电子信息学院本科生,研究方向:数字图像处理与DSP芯片设计。

稳压电源的设计与制作篇8

摘 要:以UC3842和FQP12N60C为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;UC3842

引言

现应用UC3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为CPU供电的+5V电源误差范围在0.1V,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用PWM控制技术实现DC-DC转换,通过FQP12N60C的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250V±40%,输出:直流+24V、6A;+5V、2A。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于UC3842和FQP12N60C所组成的开关电源的电路原理图。包括整流、滤波、PWM控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从AC(L)线路进线串联保险丝(F1),起到过流保护作用。从AC(N)线路进线串联热敏电阻(RT110D-9),对接通AC电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(VR1),对接通AC电源时产生的浪涌电压起限制作用。之后并联安规电容CX1,泄流电阻R5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联X2电容。然后经过整流桥D1整流,在直流侧并联电解电容C10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻R1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻R2实现线电压检测。由电阻R6,电容C30,开关管ZD1,二极管D88组成简单的RCD箝位电路。达到保护开关管的目的。因而T1可以使用较高的初次级匝数比,以降低次级整流管D3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(IC2)电压及光耦合器(IC1)决定。电阻R9提供进入齐纳二极管的偏置电流,产生对+5V输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132KHz模式下。输入:直流250V±40%,输出:+24V、6A;+5V、2A。

(2)功率计算。

P=24×6×1+5×2×1=154W (1)

(3)磁芯选择。由公式(2)、(3)

Sj=0.15■=2.01cm2 (2)

P1=■=■=181.18W (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯EER40。

(4)工作时的磁通密度计算。对于EER40的磁芯,振幅取其一半Bac=0.195T。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中D为占空比,VS为原边输入电压,VOR为原边感应电压。D=■本文选定占空比D=0.5。

(6)计算变压器的原边匝数:Np=■=42匝。

(7)计算变压器的副边匝数。对于+5V,考虑到整流管的压降0.7V以及绕组压降0.6V。则副边+5V电压值:V2=(5+0.7+0.6)V=6.3V。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5V副边绕组匝数为:N5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到E型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5V副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持V-S值相等。由此可得:+24V副边绕组匝数为:N24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。NS=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mH),根据LP=VS■则全周期TS的平均输入电流IS=■=■=1A。

相应的Im=■=2A,IP1=■=1A。

IP2=3IP1=3A在ton期间电流变化量i=IP2-IP1=2A,LP=VS■=150×■=0.56mH。所以电感系数Al=■=■=0.00049×■。根据所选磁芯的AL=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分Bdc。根据公式计算可以得到:Bdc=?滋H=185mT

而交流和直流磁感应强度相加之和得到的磁感应强度最大值Bmax=?滋H=■+Bdc=282.5mT,而从磁性材料曲线可知BS=390mT,故工作时留有余量,设计通过。

(1、烟台德尔自控技术有限公司,山东 烟台 264006 2、沈阳工业大学,辽宁 沈阳 110178)

摘 要:以UC3842和FQP12N60C为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;UC3842

引言

现应用UC3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为CPU供电的+5V电源误差范围在0.1V,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用PWM控制技术实现DC-DC转换,通过FQP12N60C的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250V±40%,输出:直流+24V、6A;+5V、2A。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于UC3842和FQP12N60C所组成的开关电源的电路原理图。包括整流、滤波、PWM控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从AC(L)线路进线串联保险丝(F1),起到过流保护作用。从AC(N)线路进线串联热敏电阻(RT110D-9),对接通AC电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(VR1),对接通AC电源时产生的浪涌电压起限制作用。之后并联安规电容CX1,泄流电阻R5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联X2电容。然后经过整流桥D1整流,在直流侧并联电解电容C10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻R1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻R2实现线电压检测。由电阻R6,电容C30,开关管ZD1,二极管D88组成简单的RCD箝位电路。达到保护开关管的目的。因而T1可以使用较高的初次级匝数比,以降低次级整流管D3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(IC2)电压及光耦合器(IC1)决定。电阻R9提供进入齐纳二极管的偏置电流,产生对+5V输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132KHz模式下。输入:直流250V±40%,输出:+24V、6A;+5V、2A。

(2)功率计算。

P=24×6×1+5×2×1=154W (1)

(3)磁芯选择。由公式(2)、(3)

Sj=0.15■=2.01cm2 (2)

P1=■=■=181.18W (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯EER40。

(4)工作时的磁通密度计算。对于EER40的磁芯,振幅取其一半Bac=0.195T。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中D为占空比,VS为原边输入电压,VOR为原边感应电压。D=■本文选定占空比D=0.5。

(6)计算变压器的原边匝数:Np=■=42匝。

(7)计算变压器的副边匝数。对于+5V,考虑到整流管的压降0.7V以及绕组压降0.6V。则副边+5V电压值:V2=(5+0.7+0.6)V=6.3V。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5V副边绕组匝数为:N5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到E型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5V副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持V-S值相等。由此可得:+24V副边绕组匝数为:N24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。NS=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mH),根据LP=VS■则全周期TS的平均输入电流IS=■=■=1A。

相应的Im=■=2A,IP1=■=1A。

IP2=3IP1=3A在ton期间电流变化量i=IP2-IP1=2A,LP=VS■=150×■=0.56mH。所以电感系数Al=■=■=0.00049×■。根据所选磁芯的AL=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分Bdc。根据公式计算可以得到:Bdc=?滋H=185mT

而交流和直流磁感应强度相加之和得到的磁感应强度最大值Bmax=?滋H=■+Bdc=282.5mT,而从磁性材料曲线可知BS=390mT,故工作时留有余量,设计通过。

3 结论

24V输出电压波形

参考文献

[1]张占松,蔡宣三.开关电源的原理与设计[M].第一版.北京:电子工业出版社,1999,7.

[2]赵书红,谢吉华,曹曦.一种基于TOP Switch的变频器开关电源[J].电气传动,2007,26(9):76-80.3 结论

24V输出电压波形

参考文献

稳压电源的设计与制作篇9

摘 要:以uc3842和fqp12n60c为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;uc3842

引言

现应用uc3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为cpu供电的+5v电源误差范围在0.1v,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用pwm控制技术实现dc-dc转换,通过fqp12n60c的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250v±40%,输出:直流+24v、6a;+5v、2a。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于uc3842和fqp12n60c所组成的开关电源的电路原理图。包括整流、滤波、pwm控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从ac(l)线路进线串联保险丝(f1),起到过流保护作用。从ac(n)线路进线串联热敏电阻(rt110d-9),对接通ac电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(vr1),对接通ac电源时产生的浪涌电压起限制作用。之后并联安规电容cx1,泄流电阻r5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联x2电容。然后经过整流桥d1整流,在直流侧并联电解电容c10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻r1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻r2实现线电压检测。由电阻r6,电容c30,开关管zd1,二极管d88组成简单的rcd箝位电路。达到保护开关管的目的。因而t1可以使用较高的初次级匝数比,以降低次级整流管d3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(ic2)电压及光耦合器(ic1)决定。电阻r9提供进入齐纳二极管的偏置电流,产生对+5v输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132khz模式下。输入:直流250v±40%,输出:+24v、6a;+5v、2a。

(2)功率计算。

p=24×6×1+5×2×1=154w (1)

(3)磁芯选择。由公式(2)、(3)

sj=0.15■=2.01cm2 (2)

p1=■=■=181.18w (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯eer40。

(4)工作时的磁通密度计算。对于eer40的磁芯,振幅取其一半bac=0.195t。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中d为占空比,vs为原边输入电压,vor为原边感应电压。d=■本文选定占空比d=0.5。

(6)计算变压器的原边匝数:np=■=42匝。

(7)计算变压器的副边匝数。对于+5v,考虑到整流管的压降0.7v以及绕组压降0.6v。则副边+5v电压值:v2=(5+0.7+0.6)v=6.3v。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5v副边绕组匝数为:n5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到e型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5v副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持v-s值相等。由此可得:+24v副边绕组匝数为:n24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。ns=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mh),根据lp=vs■则全周期ts的平均输入电流is=■=■=1a。

相应的im=■=2a,ip1=■=1a。

ip2=3ip1=3a在ton期间电流变化量i=ip2-ip1=2a,lp=vs■=150×■=0.56mh。所以电感系数al=■=■=0.00049×■。根据所选磁芯的al=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分bdc。根据公式计算可以得到:bdc=?滋h=185mt

而交流和直流磁感应强度相加之和得到的磁感应强度最大值bmax=?滋h=■+bdc=282.5mt,而从磁性材料曲线可知bs=390mt,故工作时留有余量,设计通过。

(1、烟台德尔自控技术有限公司,山东 烟台 264006 2、沈阳工业大学,辽宁 沈阳 110178)

摘 要:以uc3842和fqp12n60c为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;uc3842

引言

现应用uc3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为cpu供电的+5v电源误差范围在0.1v,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用pwm控制技术实现dc-dc转换,通过fqp12n60c的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250v±40%,输出:直流+24v、6a;+5v、2a。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于uc3842和fqp12n60c所组成的开关电源的电路原理图。包括整流、滤波、pwm控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从ac(l)线路进线串联保险丝(f1),起到过流保护作用。从ac(n)线路进线串联热敏电阻(rt110d-9),对接通ac电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(vr1),对接通ac电源时产生的浪涌电压起限制作用。之后并联安规电容cx1,泄流电阻r5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联x2电容。然后经过整流桥d1整流,在直流侧并联电解电容c10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻r1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻r2实现线电压检测。由电阻r6,电容c30,开关管zd1,二极管d88组成简单的rcd箝位电路。达到保护开关管的目的。因而t1可以使用较高的初次级匝数比,以降低次级整流管d3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(ic2)电压及光耦合器(ic1)决定。电阻r9提供进入齐纳二极管的偏置电流,产生对+5v输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132khz模式下。输入:直流250v±40%,输出:+24v、6a;+5v、2a。

(2)功率计算。

p=24×6×1+5×2×1=154w (1)

(3)磁芯选择。由公式(2)、(3)

sj=0.15■=2.01cm2 (2)

p1=■=■=181.18w (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯eer40。

(4)工作时的磁通密度计算。对于eer40的磁芯,振幅取其一半bac=0.195t。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中d为占空比,vs为原边输入电压,vor为原边感应电压。d=■本文选定占空比d=0.5。

(6)计算变压器的原边匝数:np=■=42匝。

(7)计算变压器的副边匝数。对于+5v,考虑到整流管的压降0.7v以及绕组压降0.6v。则副边+5v电压值:v2=(5+0.7+0.6)v=6.3v。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5v副边绕组匝数为:n5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到e型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5v副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持v-s值相等。由此可得:+24v副边绕组匝数为:n24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。ns=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mh),根据lp=vs■则全周期ts的平均输入电流is=■=■=1a。

相应的im=■=2a,ip1=■=1a。

ip2=3ip1=3a在ton期间电流变化量i=ip2-ip1=2a,lp=vs■=150×■=0.56mh。所以电感系数al=■=■=0.00049×■。根据所选磁芯的al=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分bdc。根据公式计算可以得到:bdc=?滋h=185mt

而交流和直流磁感应强度相加之和得到的磁感应强度最大值bmax=?滋h=■+bdc=282.5mt,而从磁性材料曲线可知bs=390mt,故工作时留有余量,设计通过。

3 结论

24v输出电压波形

参考文献

[1]张占松,蔡宣三.开关电源的原理与设计[m].第一版.北京:电子工业出版社,1999,7.

[2]赵书红,谢吉华,曹曦.一种基于top switch的变频器开关电源[j].电气传动,2007,26(9):76-80.3 结论

24v输出电压波形

参考文献

稳压电源的设计与制作篇10

关键词:稳压电源;单片机;D/A转换;直流电源;电压调节

中图分类号:TM131文献标识码:A文章编号:1009-2374(2009)21-0036-02

随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。其良好的性价比更能为人们所接受,因此,具有一定的设计价值。

一、系统设计

(一)方框图设计

该电路采用单片机(AT89C51)作为主控电路,由三端集成稳压器(LM317)作为稳压输出部分。另外,电路还增加参考电压电路、D/A转换电路、电压放大电路、显示电路等部分电路。其方框图如图1所示:

整个电路的运行需要模拟电压源提供+5V,±15V的模拟电压,以便使电路中的集成数字芯片能够正常工作。电路运行时,首先由单片机设置初始电压值,并送显示电路显示。然后将电压值送D/A转换电路进行数模转换,再经放大电路进行电压放大,最终反馈到三端集成稳压器(LM317)输出模拟电压。

(二)硬件设计

本电路的硬件组成部分主要由单片机(AT89C51)、变压器、整流电路、滤波电路、稳压器(LM317)、参考电压电路、D/A转换电路(DA0832)、放大电路、显示电路等组成。

硬件电路如图2所示,整个电路通过单片机(AT89C51)控制,P0口和DAC0832的数据口直接相连,DA的CS和WR1连接后接P26,WR2和XFER接地,让DA工作在单缓冲方式下。DA的11脚接参考电压,通过调节可调电阻使LM336的输出电压为5.12V,所以在DAC的8脚输出电压的分辨率为5.12V/256=0.02V,也就是说DA输入数据端每增加1,电压增加0.02V。

DA的电压输出端接放大器OP07的输入端,放大器的放大倍数为(R8+R9)/R8=(1K+4K)/1K=5,输出到电压模块LM317的电压分辨率为0.02V×5=0.1V。所以,当MCU输出数据增加1的时候,最终输出电压增加0.1V,当调节电压的时候,可以以每次0.1V的梯度增加或者降低电压。

本电路设计两个按键,S1为电压增键,S2为电压减键,按一下S1,当前电压增加0.1v,按一下S2,当前电压减小0.1V。

显示部分由三位共阳数码管和74LS164串入并出模块组成,电路如图3所示,可以显示三位数,一位显示十位,一位显示个位,另外还有一个小数位,比如可以显示12.5v,采用动态扫描驱动方式。本主电路的原理就是通过MCU控制DA的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是稳压模块LM317输出。

(三)软件设计

在本电路中由于CPU的工作任务是单一的,因此,源程序的工作过程为:系统上电复位后,默认输出9V电压,然后扫描S1,S2键,当S1或S2键有按下时,程序跳转至相应的按键处理子程序,经按键子程序处理后,再嵌套调用显示子程序,完成显示与输出操作后返回主程序,继续扫描此两键,程序运行原理如下:

程序设计需要考虑的主要问题有两个方面:一方面要找出数字量Dn与输出电压的关系,这是程序设计的依据;另一方面要建立显示值与输出电压值的对应关系,这是程序设计是否成功的标志。因为在本系统中,显示的输出电压值不是之前从输出电路中通过检测得到的,因此显示与输出并不存在直接联系。但为了使显示值与实际输出值相一致,在程序编写时,必须人为地为两者建立某种关系。采用的方法是:在程序存储器中建立TAB1和TAB2两张表格,TAB1放101个Dn值,数值从小到大顺序排列,其值分别对应输出电压0~10v,TAB2存放数码显示器0~9字符所对应的数据。TAB1表格的数据指针存放在内存RAM中23H单元,内存20H,21H和22H三个单元分别存放数码显示器小数点一位,个位和十位的字符数据指针。在主程序中初始化后之后首先给23H赋予40的偏移量,这个偏移量指向TAB表中的Dn为145,此值对应的输出电压为9V,由于这个原因,必然要求显示器显示的字符为“05.0”,为此,须分别给20H,21H和22H赋予0,5和0的偏移量,这三个偏移量分别指向TAB2中0,5和输出两者之间就建立了初步的对应关系。为了使两者保持这种对应的关系,在K1和K2按键处理子程序中,必须使23H,20H,21H和22H四个数据指针保持“同步”地变化,即为当K有键时,23H单元增加1指向下一Dn时,20H单元也相应增加1指向下一字符,并且20H单元(小数点一位指针)、21H单元(个位指针)和22H元(十位指针)应遵循十进制加法的原则,有进位时相应各位应作出相应地变化;当K2有键时,23H单元减1指向前一Dn时,20H单元也相应减1指向前一字符,并且20H,21H,22H三个单元的数据指针应遵循十进制减法原则,有借位时相应的各位须作出相应地变化。按照这一算法只要控制TAB1表格数据指针不超出表格的长度就能使显示值与输出值保持一一对应的关系,即显示器能准确地显示出电源输出电压值的大小,达到电路设计的目的。由于理论计算与实际情况还存在着一定的差异,为了使显示值更加接近实际输出值,本电路需要对输出电压进行校正。

二、调试与分析

调试仪器:数字万用表、电烙铁、斜口钳、尖嘴钳、吸锡器、镊子。

硬件调试:首先检查整个电路,电路连接完好,没有明显的错连,漏连。接上电源,电源指示灯亮,数码管显示初始电压值+5V,用万用表的两只表笔测试LM317的输出电压为4.96V。当按下S1键一次,数码显示电压值变为4.9V,万用表读数变为4.85V。再按下S2键一次,数码显示电压值变为5.0V,万用表读数再次变为4.96V。通过改变显示电压值,用万用表测得几组输出电压数据见表1:

系统平均误差Δd=0.41V。

误差原因分析:(1)工作电源不够稳定,不能为数字集成块提供精确工作电压;(2)电路参数设定不够精确;(3)提供给D/A转换的参考电压不够精确,使得转换过程存在误差;(4)单片机的P0口传输给D/A转换的数据不够准确,使得输出出现误差;(5)系统缺少电压电流采样电路。

三、结语

在本文中,实现了以单片机为核心的直流稳压电源的智能控制,达到了预期的目的和要求。

参考文献

[1]郝立军.直流稳压电源的设计方法[J].农业机械化与电气化,2007,(1).

[2]王翠珍,唐金元.可调直流稳压电源电路的设计[J].中国测试技术,2006,(5).

[3]殷红彩,葛立峰.一种多输出直流稳压电源的设计[J].传感器世界,2006,12(9).

[4]何希才.稳压电源电路的设计与应用[M].北京:中国电力出版社,2006.

[5]郑耀添.直流电源技术的发展方向[J].韩山师范学院学报,2005,26(3).

[6]Lu Yansun.Manufacturing Development Emphases On Power Generation and Transmission Apparatus In 11th Five-Year Plan Period And Prospect To the Year 2020 [J].ELECTRICITY,2004.

[7]陈宁.基于单片机的高品质直流电源[[J].电子产品世界,2005,(2).

[8]顾旭.关于直流稳压电源整流电路的探讨[J].科技信息,2005,(10).

[9]葛晖.直流稳压电源的基本原理[J].集宁师专学报,2004,26(4).

[10]韩建文.基于单片机的智能稳压电源的设计[J].琼州大学学报,2004,11(2).