探测技术范文10篇

时间:2023-04-07 20:14:57

探测技术

探测技术范文篇1

关键词扫描;探测;;拓扑图;自动化管理

1引言

随着网络技术的飞速发展,网络的安全风险系数不断提高,需要在不影响网络性能的情况下对网络进行监听和探测,从计算机网络系统的各个终端主机、应用系统以及若干关键点收集信息,并分析这些信息,发现漏洞、缺陷以及潜在的威胁,从而提供对网络的实时保护,提高信息安全基础结构的完整性。

2探测技术介绍

2.1常用简单的扫描技术

扫描是一种基于Internet的远程检测网络或主机的技术,通过扫描发现检测主机TCP/IP端口的分配情况、开放的服务已经存在的安全漏洞等信息。主要使用的技术有Ping扫描、端口扫描以及漏洞扫描等。

Ping扫描是通过发送ICMP包到目标主机,检测是否有返回应答来判断主机是否处于活动状态。这种方法具有使用简单、方便的优点,但是由于ICMP包是不可靠的、非面向连接的协议,所以这种扫描方法也容易出错,也可能被边界路由器或防火墙阻塞。

端口扫描技术就是通过向目标主机的TCP/IP服务端口发送探测数据包,并记录目标主机的响应。通过分析响应来判断服务端口是打开还是关闭,就可以得知端口提供的服务或信息。端口扫描也可以通过捕获本地主机或服务器的流入流出IP数据包来监视本地主机的运行情况,它仅能对接收到的数据进行分析,帮助我们发现目标主机的某些内在的弱点,发现系统的安全漏洞,了解系统目前向外界提供了哪些服务,从而为系统管理网络提供了一种手段。端口扫描主要有TCP全连接、SYN(半连接)扫描等方式。

图1Sniffer探测信息矩阵图示

漏洞扫描技术主要通过以下两种方法来检查目标主机是否存在漏洞:在端口扫描后得知目标主机开启的端口以及端口上的网络服务,将这些相关信息与网络漏洞扫描系统提供的漏洞库进行匹配,查看是否有满足匹配条件的漏洞存在;通过模拟黑客的攻击手法,对目标主机系统进行攻击性的安全漏洞扫描,如测试弱势口令等。若模拟攻击成功,则表明目标主机系统存在安全漏洞。

2.2利用探测工具

网络探测工具非常多,种类非常繁杂,功能也不尽相同,这里只以网络侦听工具Sniffer和X-scan扫描器为例进行阐述。

Sniffer是一种通过网络侦听获取所有的网络信息(包括数据包信息,网络流量信息、网络状态信息、网络管理信息等),具有实时检测网络活动、产生可视化的即时报警和通报信息、基于网络特定终端,会话或任何网络部分的详细利用情况收集和错误统计、保存基线分析的历史数据和错误信息等功能。Sniffer还可以根据抓获的数据包信息动态绘制各主机直接的通信关系图示。

X-scan采用多线程方式对指定IP地址段(或单机)进行安全漏洞检测,支持插件功能,提供了图形界面和命令行两种操作方式,扫描内容包括:远程服务类型、操作系统类型及版本,各种弱口令漏洞、后门、应用服务漏洞、网络设备漏洞、拒绝服务漏洞等二十几个大类。对于多数已知漏洞都给出了相应的漏洞描述、解决方案及详细描述链接。扫描结束后生成检测报告。

图2X-scan检测报告图示现在网上还有其他各类有特色的扫描器,种类繁多,如nMAP、SATAN、iris等,在此不一一介绍。

2.3路由交换设备的探测与管理

通过SNMP协议MIB库,可以获取网络中的交换机的交换表和路由器的路由表,实现流量统计,速率统计等功能,绘制出网络拓扑结构图。通过MIB库定义的接口,还可以远程控制和修改路由器、交换机的配置信息。

2.4获取应用系统的运行信息

通过收集网络中的防火墙、防病毒软件以及其他应用系统的运行日志,发现非法入侵或越权访问信息,程序运行报警信息等,及时掌握网络和系统的安全特性,在遇到攻击或威胁时可以进一步采取措施,避免造成损失,并有效防止损失的扩大化。

2.5部署的探测技术

在网络中设立一台服务器,安装服务程序,在网络中需要探测的计算机上安装客户端程序,并制定一些特定的协议,服务器端定期查询客户端的状态和日志信息,或者按照服务器端制定的策略,客户端定期将自己的状态、日志、或应用程序运行信息发送给服务器,服务器端对这些信息进行过滤、分析、整理和审计,以获取反映客户端微机的运行状态。如果服务器端在制定的策略时间范围内没有接收到该客户端的信息,则可以判断该客户端处于离线状态,或者网络线路出现故障。

3探测技术的应用

应用一:掌握和了解系统运行情况

通过探测技术,获取计算机的在线状态,可以及时发现网络中离线或出现故障的计算机,或者发现哪些计算机没有运行本该运行的程序和应用,还可以通过这些探测信息及时发现计算机系统存在的漏洞以及计算机系统运行存在的风险,如:入侵检测系统。

图3Cisco交换机的流量和数量统计图示

应用二:实时反映网络拓扑结构

探测的结果还可以用来实时反映网络的连接结构,为实时绘制网络的拓扑结构图,实时反映网络的运行状态等提供了依据。如:HPOpenView网络节点管理器,鼠标放在某个节点上将显示该节点的详细信息,示例图示如下:

图4HPOpenView绘制网络拓扑图示

应用三:实现网络的自动化管理

通过探测收集到网络的运行信息,为网络的安全管理依据和手段,这样就可以在制定相应的策略指导下实现个应用系统之间的联动,如给防火墙设置新的安全规格,发现病毒后对杀毒软件的病毒库进行及时更新等,建立起一套统一、安全、高效的安全检测、监控、管理体系,实现网络的互连、互控、互动和集中统一防御,从而达到了自动化管理的目标。

为了提供自动化管理效率和准确性,可以在管理员的干预下建立一个专家数据库,对系统的联动提供指导和依据。

4结束语

一般来说,在线探测技术是网络管理的基础,探测结果是实施下一步安全管理、系统联动等管理手段的依据,所以保证检测结果的正确性非常必要,因此需要对探测收集到的信息需要进行验证,以达到去伪存真的目标,提高管理的准确性和效率。

参考资料

[1]王曦杨健编著.《网络安全技术与实务》,电子工业出版社,2006

[2]余承行主编,刘亲华等副主编.《信息安全技术》科学出版社,2005

[3]李石磊.网络安全扫描技术原理及建议,东软教育在线网站

探测技术范文篇2

论文摘要:本文论述了激光探测系统信息接口技术;讨论了激光探测接口的一般设计思想。

1引言

激光具有波长单一和良好的方向性,所以和传统的探测方法相比,激光探测具有精度高,抗干扰能力强等特点,在激光测距、激光雷达、激光告警、激光制导、目标识别等军事领域,都得到了广泛应用。针对不同武器系统的需求,激光探测系统接口呈现出多样性。

近年来,随着应用需求和集成化度的增加,激光探测系内部、激光探测系统和各武器平台之间集成了不同厂商的硬件设备、数据平台、网络协议等,由此带来的异构性给探测系统的互操作性、兼容性及平滑升级能力带来了问题。

对激光探测系统而言,接口技术的设计是整个系统集成的关键技术。一个激光探测系统的设计、实施,有很大的工作量是在接口的处理上,好的接口设计可以提高系统的稳定性、运行效率、升级能力等,本文以激光探测系统接口技术为研究对象,着重分析其接口技术类型、设计考虑因素和验证方法。

2激光探测系统几种主要接口技术

接口是多要素或多系统之间的公共边界部分,对激光探测系统的接口包括机械接口、电气接口、电子接口、软件接口等,本文着重讨论电子接口。按物理电气特性划分,常用的激光探测系统接口类型可分为以下几类:

1TTL电平接口:最通用的接口类型,常用做系统内及系统间接口信号标准。驱动能力一般为几毫安到几十毫安,在激光探测系统中主要应用是作为长距离的总线数据和控制信号的传输

2CMOS电平接口:速度范围与TTL相仿,驱动能力要弱一些。

3ECL电平接口:为高速电气接口,速率可达几百兆,但相应功耗较大,电磁辐射与干扰与较大。

4LVDS电平接口:在标准中推荐的最大操作速率是655Mbps,电流驱动模式,信号的噪声和EMI都较小。

5GTL接口电平:低电压,低摆幅,常用作背板总线型信号的传输,虽然使用频率一般在100MHz以下,但上升沿一般都比较陡,特别是对沿敏感的信号,如时钟信号。

6RS-232电平接口:为低速串行通信接口标准,电平为±12V,用于DTE与DCE之间的连接。RS-232接口采用不平衡传输方式,收、发端的数据信号是相对于信号地的电平而言,其共模抑制能力低,传输距离近,多用于点对点接口通讯。

7RS-422/RS-485接口:采用平衡方式传输,采用差分方式,使其在通讯速率、抗干扰性和传输距离较RS-232接口有较大改善。多用于多点接口通迅。RS485电平接口可驱动32个负载,忍受-7V到12V共模干扰。

9光隔离接口:能实现电气隔离,更高速率的器件价格较昂贵。

10线圈耦合接口:电气隔离特性好,但允许信号带宽有限

11以太网:经常采用的是10Base-T和100Base-T两种主流标准,主要应用激光探测系统和分系统之间的接口通讯和数据传输。以太网接口具有性价比高、数据传输速率高、资源共享能力强和广泛的技术支持等众多优点。

12USB接口:USB总线接口是一种基于令牌的接口,USB主控制器广播令牌,总线上的设备检测令牌中的地址是否与自身相符,通过发送和接收数据对主机作出响应,其最大的优点是安装配置简单。

3激光探测系统接口方案设计考虑因素

随着大规模数字处理芯片和高速接口芯片的迅猛发展,激光探测系统也呈现出智能化、小型化、模块化的趋势。在激光探测系统中,信息接口的设计逐渐向标准化、网络化、多节点、高速等方向展

3.1接口信号传输中的干扰噪声

3.1.1接口信号传输中的主要干扰形式

a)串模干扰:杂散信号通过感应和辐射的方式进入接口信道的干扰。串模干扰的产生原因主要是传输中插件等所产生的接触电势、热电势等噪声引起的。

b)共模干扰:干扰同时作用在两根信号往返线上,而且幅指相同。共模干扰产生的原因,主要是传输线路较长,在发送端和接收端之间存在着接地的电位差。

3.1.2接口信号传输中的抗干扰措施

a)传输线的选择

为了抑制由于杂散电磁场通过电磁感应和静电感应进入信道的干扰,接口传输线应尽量选用双绞线和屏蔽线,并将屏蔽层接地,而且屏蔽层的接地要于激光探测系统一端浮地的结构形式配合,不要将屏蔽线层当作信号线和公用线。

b)传输线的平衡和匹配

采用平衡电路和平衡传输结构是抑制共模干扰的有力措施。目前广泛使用的是差分式平衢性线电路,例如RS-422/RS-485标准串口电路。

接口信号传输时还要考虑与传输线特性阻抗的匹配问题。一般长线传输的驱动器接收器都适用于驱动特性阻抗为50Ω—150Ω的同轴电缆和双绞线,一般接口接收器的输入阻抗要比传输线的特性阻抗大,因此要设法将两者匹配,最好将发送端和接收端匹配。

控制信号线的具体配置:控制信号线要和强电、数据总线、地址总线分开,尽量选用双绞线和屏蔽线,并将屏蔽层接地。

c)隔离技术:电位隔离是常用的抗干扰方法,接口信号采用光电隔离和电磁隔离可以切断接口内外线路的电气连接,从而减弱露流、地阻抗耦合等传导性干扰的影响。3.2接口硬件的选择原则:

3.2.1为各类接口选择合适的总线接口芯片、接口总线,并设计具体的接口电路。

3.2.3选择接口芯片时应根据激光探测系统CPU/MPU类型,总线类型/宽度和系统所完成的功能并按照高效、经济、可靠,方便、简单的原则来确定。

3.2.4设计具体的接口电路应具体考虑电源问题

3.2.5数据/命令的锁存和驱动

激光探测系统内部及激光探测系统和其他系统间实施数据/命令传输时,一般采用数据锁存技术来适应双方读写的时间要求。

3.3接口的实时性

由于激光探测系统对数据处理和传输的实时性要求很高,设计时要使时钟抖动、通道间时延、工作周期失真以及系统噪声最小化,所以设计接口时尽量选用高通讯速率和同步工作方式。

接口软件的设计原则

同步通讯系统软件设计要充分考虑数据流量的控制,最好在数据发送方发送数据时每隔一段时间插入一段空闲时间,从而保证数据同步传输的可靠性。

异步通讯系统软件设计要充分考虑合理的数据校验方式,可以根据系统要求选择冗余校验、校验和、冗余校验的方法。

4激光探测系统接口方案设计验证

构建高速有效的激光探测系统接口是非常有挑战性的,并且设计者需要在设计接口前后就考虑多个因素,详细的系统级的验证都是必须的。

4.1设计前的验证

基于指令集模拟器和硬件模拟器软硬件模拟技术是一种高效、低代价的系统验证方法。接口设计软件采用汇编,C,C++等语言编写,用户编写的接口源程序经过交叉编译器和连接器编译,输入到软件指令集模拟器进行软件模拟。而接口硬件验证则采用硬件描述语言如VHDL设计,经过编译后由硬件模拟器模拟。但设计前的验证也有一定的局限性,比如只能验证数字接口和验证环境理想化等缺点。这些都需要设计后的验证

4.2设计后的验证

最常见的验证方法是制作模拟激光探测系统内部接口和系统间外部接口的通用信号源,通用信号源可以模拟探测系统内部的如主回波、时统、显示、键盘等信号,也可以模拟输入外部操控命令,并将激光探测系统状态、测量数据等信息显示输出。

4.3通过验证,发现问题,修改设计,然后再模拟,最终完成满足要求的软硬件接口设计。

探测技术范文篇3

关键词:物探技术;煤矿;地质探测

物探技术是一种至关重要的地质探测技术,在煤矿生产中占据着关键地位。传统的采煤方法与采煤作业形式具有效率低、安全性低等问题,对作业人员的人身安全造成一定威胁。利用物探技术探测煤矿地质条件,可以为煤矿生产提供数据资料,避免煤矿生产出现安全事故,因此在进行煤矿地质探测时需灵活应用物探技术。

1物探技术简析

1.1物探技术的概念与发展

物探即地球物理勘探,指的是以岩石、矿石或围岩的物理性质为基础进行物理场分布及其变化的观测,从而分析地球内部结构与构造、地层当中的能源,并为灾害预报提供依据[1]。物探主要是利用岩石的密度、电导率、磁导率、弹性、放射性以及热导率等物理性质进行地球内部结构的分析,常用的物探方法有重力勘探法、电法勘探法、磁法勘探法、地震勘探法、地温法勘探法以及核法勘探法等。人们在二十世纪中后期开始应用物探技术,且物探技术在煤矿开采前勘测工作中的应用范围十分广泛,可有效增强煤矿开采的安全系数。

1.2物探技术的应用现状

当前,主要将物探技术应用在煤矿开采与水害治理当中。例如,可以利用电法勘探技术与瞬变电磁法勘探技术处理水灾害;可以利用地震勘探技术、坑透技术与超波技术进行地表与地质结构的勘测;也可以利用三维地震动态解释系统分析物探技术在煤矿开采中的应用效果。

2物探技术在煤矿地质探测中的作用

第一,在进行煤矿开采前需进行地质探测,便需要利用地面高分辨二维地震勘探法、电法探测法等方法进行地质探测,这样在后续进行煤矿开采设计时便可以获取大量的煤矿开采区域的地质数据信息。第二,在安装大型超千吨综采设备之前,需要明确和控制开采区域中的地质异常体,例如小褶曲、小断层等情况[2]。若存在这些地质异常体将会严重影响煤矿开采的效率与安全性,甚至会引发水灾害。而应用物探技术可以及时发现这些地质异常体,有利于异常体的控制与开采计划的优化。

3常用的物探方法与物探技术

3.1物探方法

为了解决煤矿开采中的问题,提高煤矿开采的质量,增强煤矿开采的安全性,我国在不断研究新的物探技术,为煤矿地质探测提供技术支持。在煤矿地质探测中常用的物探方法有很多,按照探测空间可以将物探方法分为地面物探法、矿井物探法与测井法等。其中,电法勘探法、地震勘探法、磁法勘探法等方法属于地面物探法;矿井物探法有电法、磁法、地震法、放射性法、巷道重力法以及红外线遥测法等;测井法包括热测井法、电法测井法、声波测井法、放射性测井法以及磁测井法等[3]。按照物理场可以将物探法分为地震法、地热法、磁法、重力法、电法、放射位法等。例如,重力勘探法是重要的物探方法,主要是根据组成地壳的岩体、矿体之间的密度差引起的地表的重力加速度值的变化进行地质勘探,其理论基础是牛顿的万有引力。而磁法勘探法也是常用的物探方法,主要是根据岩石与矿石不同的磁性产生的不同磁场进行地质勘探的,不同的磁场可以使局部区域出现变化,继而出现地磁异常,便可以进行地质探测。

3.2物探技术

在煤矿地质探测中常用的物探技术有高密度数字三维地震技术、三维地震叠前偏移处理技术等,这些技术当中都应用了信息技术等先进技术,有效提升了物探技术的信息化水平与智能化水平。第一,高密度数字三维地震技术。该技术涉及到了多种技术,例如高密度数字三维地震采集技术、高密度数字成像技术与三维地震精细解释核心技术等,是一种较为先进的物探技术。其中,高密度数字三维地震采集技术具有小道距、小面元与高密度采样;全方位观测;高覆盖次数;连续采样减小采集脚印;应用数字检波器(如DSU3检波器)等特点。相比于普通的检波器,数字检波器实现了信号接收与信号传输的数字化,具有较强的抗干扰能力,在动态范围、抗电磁干扰、高频响应等方面中具有较大的优势(模拟检波器与数字检波器的振幅与相位特性曲线对比如图1所示)。高密度数字成像技术也涉及到了很多技术,例如三维子集噪音衰减技术、全空间噪音压制技术、全频带去噪及高频信号保持技术、同相叠加技术等。三维地震精细解释核心技术包括地质构造地震精细解释技术、煤层厚度与煤层顶板岩体力度参数估算技术、煤层顶底板富水带与煤层瓦斯富集带地震预测技术、煤层冲刷带精细描述地震技术等。总之,高密度数字三维地震技术的小断层识别能力相对较高。例如,在进行某煤矿地质探测时应用高密度数字三维地震技术进行小断层识别。在断距超过2m时,其识别准确率能够达到85.17%,但是当断距小于2m时,其小断层识别能力相对较差(如表1所示)。第二,三维地震叠前偏移处理技术。三维地震叠前偏移处理技术具有多重功能,例如可以对时间偏移进行处理,也可以对深度偏移进行处理。首先,利用三维地震叠前时间偏移处理技术可以提高资料信噪比、振幅恢复与能量补偿,可以进行叠前时间偏移成像,也可以进行叠前时间偏移之后的去噪处理。其次,三维地震叠前深度偏移处理技术的关键在于叠前深度偏移成像处理,在成像处理过程中需要做好高质量叠前时间域道集准备工作、构建速度-深度模型、应用克希霍夫积分偏移算法。总之,在煤矿地质探测中应用三维地震叠前偏移处理技术可以有效增强成像的准确性,将横向分辨率控制在合理范围内。同时,应用这种技术也可以准确反馈地质构造当中的异常情况。第三,属性本解释技术。相比于其他技术,属性本解释技术的重要意义主要体现在可准确分析地震反射波的情况,例如可以分析地震反射波的频率、地震反射波的能力等各方面情况,从而获取地震属性数据体。技术人员可以利该技术获取地质小型结构的剖面图,且剖面图的解释精度比较高,可以为后续的煤矿生产奠定基础。第四,岩性反演资料处理及解释技术。技术人员可以利用该技术提升地震剖面的纵向分辨率,并降低地震反射波的检测难度,从而为含水层富水情况与煤层瓦斯分布情况的分析奠定基础,为后续煤矿开采计划的制图1模拟检波器与数字检波器的振幅与相位特性曲线定提供依据。岩性反演技术主要是利用已知的地质信息与测井资料反演地震资料并进行波阻抗资料的推算。同时,技术人员可以在波阻抗剖面上标定通过钻井获取的地层变化信息,为反演出的地层波阻抗赋予地质含义,在后续就可以准确描述煤层的厚度、深度以及岩性等参数[4]。岩性反演的结果会受到多种因素的影响,例如原始资料的质量、子波的影响、合成地震记录的质量以及地质模型等。在进行岩性反演时应当重构岩性特征、对测井数据进行规格化处理、标定岩性、构建初始模型,最终进行三维测井约束反演。

4在煤矿地质探测中应用物探技术的策略

4.1在水灾害防治中应用物探技术的策略

在开采煤矿之前,需要利用物探方法探测水文地质数据,从而增强煤矿生产的安全性,有效防治水灾害,增加煤矿企业的经济效益。物探技术在水灾害防治中发挥着重要作用。首先,技术人员可以利用物探技术探测矿井的水文地质问题。例如,技术人员可以利用物探技术探测开采面底板的隔水层厚度、隐藏的导水通道、老窖积水区的情况、含水层的富水性与陷落柱的富水性等,且探测准确率比较高,可以达到90%以上。其次,技术人员可以利用瞬变电磁超前预测系统对开采区域前的含水构造进行预测,预测准确度也非常高。

4.2在地质灾害防治中应用物探技术的策略

煤矿地质探测的技术手段有很多,而物探技术的效果相对较好,可以减少地质灾害的发生。在进行煤矿开采时很容易出现矿井顶板与突水现象,会对采矿工作与作业人员造成威胁。利用物探技术可以有效勘测煤矿开采区域的地质水文情况,从而掌握开采区域的瓦斯层、含水层、内岩层、断层等各方面情况,了解开采区域的地质构造,科学制定施工计划。物探技术在地质灾害防治中的应用主要体现在以下三个方面。第一,在地质灾害防治中应用相干体与方差体技术。相干体与方差体技术主要是利用三维资料中的CDP电信息进行常规抽线解释,在解释过程中不会出现将小断层遗漏的情况。在三维成像当中,技术人员分析地下断层情况时可以应用数据切片与透视等方式。相干体与方差体切片对断层十分敏感,技术人员便可以利用这一技术准确分析断层的情况[5]。技术人员可以利用常规剖面图进行断层的显示或调整,之后再利用该技术进行闭合调整,从而在地震反射层当中分析断层的情况。第二,三维地震勘探法在采矿区构件机理分析中的应用。在煤矿开采过程中,可能会出现突水情况,若不及时处理可能会引发煤矿安全事故。为了解决这一问题,技术人员可以利用三维地震勘探法探测煤矿开采区域的地质情况。在探测之前,技术人员需要充分了解煤层表面的水文状况,并分析抽水孔数据,为后续探测工作奠定基础。完成这些工作之后,技术人员可以利用该技术对煤层顶板砂岩的含水厚度以及含水深度进行探测,同时需要探测煤层的深度、煤层的结构变化情况,之后根据探测结果制定煤矿开采方案,增强煤矿开采的安全性。第三,在地质灾害防治中应用等时切片技术。技术人员可以利用该技术显示某一刻三维数据体当中包含的地震信息,从而掌握不同地质层位的分布情况。等时切片中的水平切片上含有同相轴,其强度可以反映反射波的强度,其错开大小可以反映断层断距的大小[6]。同时,水平切片的小断层分辨能力相对较强,优于垂直时间剖面的小断层分辨能力。

5结语

科学应用物探方法可以保障煤矿开采工作的正常开展,常用的物探方法有磁法、放射位法、电法、地热法等,常用的物探技术有高密度数字三维地震技术、三维地震叠前偏移处理技术等。为了充分发挥物探技术在煤矿地质探测中的作用,应当将其应用在水灾害防治与地质灾害防治中,为煤矿开采提供数据信息。

参考文献

[1]刘强.浅谈物探技术在煤矿地质开采方面的应用[J].当代化工研究,2021(19):33-34.

[2]王祥邦.瑞利波技术在煤矿地质构造超前探测中的应用[J].内蒙古煤炭经济,2019(22):208-209.

[3]刘佳,聂肖剑,李想,等.浅析物探技术在探测河南地区矿山地质中的应用[J].世界有色金属,2019(8):133+135.

[4]吴琰杰.三维地震技术在探测煤矿地质构造中的应用[J].内蒙古煤炭经济,2019(2):149-150+156.

[5]王兆欣.综合物探技术在煤矿陷落柱中的探测应用分析[J].煤炭与化工,2018,41(4):60-63.

探测技术范文篇4

海底热流探测,记录的是来自地球内部的热能。当两种不同温度介质接触时,分子的动能会在两种介质之间传递,直至达到热平衡。热流表示由温差引起的能量传递。沉积物热流以热传导为主,在一维稳态纯传导的条件下,地热流q可以用下式描述[1]:

海底地温梯度是一个向量,表示地球等温面法线方向上温度变化程度及变化方向,因此只要知道深度间距dZ和它们之间的温差dT即可。

热导率κ是一个表征沉积物导热能力快慢的物理量,沉积物的组成类别及水含量不同热导率κ也不同。热导率测量的理论基础是从瞬间热脉冲由无限长圆拄形金属探针进入无限大介质的传导理论上发展起来的(Blackwell等,1954;Hyndman等,1979),该理论认为[2,3]当探针温度、沉积物温度与环境温度达到平衡时,热脉冲使探针温度升高,高于环境温度,在热脉冲过后的一定时间内,地热探针内的热敏电阻的温度T(t)由下式给出:

2海底热流原位探测技术

2.1海底温度梯度原位测量

海底沉积物的温度梯度测量自20世纪50年代至今一直沿用两大方法,即Bullard(布拉德)型探针和Ewing(艾文)型探针。

温度梯度测量开始于1948年,首先由美学者Bullard(布拉德)设计了海底热流计,如图1所示。它用来测量海底沉积物的地温梯度,并利用取样器将沉积物样品取回,在实验室测量它的热导率。经过十多年的完善,Bullard型热流计也由灵敏度较差的热电偶改为灵敏度较高的热敏电阻,同时确立了海底温度梯度原位测量的基本模式。

Bullard型海底热流计探针的基本结构尺寸:,长3~6m,外经Φ27mm,内经Φ11.2mm的钢管。探针的上、下两端各安装一个热敏元件,上部有一密封仓,内置记录系统,下部装一针尖,以便插入海底沉积物时减小阻力,设备*自重插入沉积物。上世纪70年代后期,加拿大实用微系统公司(AML)研制的TR-12S型Bullard式探针得到了进一步改进,结构尺寸长3m,直径Φ16mm,探管内有8个YSI-44032热敏电阻,从测量精度到外观设计都有了极大提高。

随着制造技术的不断进步,热流计的发展趋势是探针逐渐变细、变薄、热敏电阻的数量也在增加,目的在于探针变细可进一步减少插入沉积物时带来得扰动,变薄可提高热敏电阻对沉积物温度变化的灵敏度,热敏电阻数量的增加可以在梯度计算时相互验证,并确保测量的准确性。

上世纪60年代初期,Ewing(艾文)完成了自己设计的海底温度梯度测量计[4],即人们通常说的Ewing型热流计,也称为拉蒙特型热流计,是从拉蒙特地质观察所普及开的。它的结构特点,图2所示。在柱状取样器周围,相隔一定距离不同方位安装3~8个很细的探针,探针直径3mm,长20~24mm,避免了Bullard型热流计在设备插入沉积物时带来的搅动和测量时间过长等问题,提高了海上测量的工作效率;但仍没有解决海底测量热导率的问题。

以上两大类热流计在早期的沉积物温度梯度测量中,发挥了积极的作用。随着社会的进步,设备制造技术的发展,人们不仅对沉积物热流原位测量中的温度梯度感兴趣,而且更加关注沉积物热导率的原位测量问题。

2.2海底沉积物热导率测量

热导率与物质的组成、结构、密度、温度及压强有关。海底沉积物热导率测量技术的发展,历经几十年的探索,由原始的水分法、细针探测法,逐渐发展到了原位测量法。水分法是依据Ratcliffe(1960)关于海洋沉积物热导率与水分的关系,通过测定沉积物的水分,不需要特殊的仪器,即可估算热导率值。细针探测法(VonHerzenandMaxwell,1959)是通过均匀的电阻丝,给圆柱小探针连续加热,温升随时间增加,逼近一条对数渐进线,渐进线的斜率正比于探针周围材料的热阻率。其研究证明,该方法需从海底取回沉积物样品在实验室内测量,同时把温度和压力修正到沉积物在海底的条件,势必造成热导率和温度梯度不在同一站位测定的问题。所以要寻找一种能在同一站位获得热导率和温度梯度两种参数的测量方法,而不必取样,这正是我们研究的海底原位热导率测量方法。

2.2.1连续加热线源法

连续加热线源法,由Sclater等人于1969年用于海底沉积物的热导率测量[5],它把探针理想化为无限长的完全导热圆柱,通过恒定电流对其加热,探针内加热电阻丝的温度升高快慢程度与沉积物的热导率有关,沉积物的导热性能差,温度升高快;沉积物的导热性能好,温度升高慢。沉积物的热导率k与探针内加热电阻丝表面的温升关系,可以通过求解无限长圆柱体的导热微分方程来得到[6],当时间t=0时,探针的温度为T0;时间t时的温度T为:

其中T1是探针周围沉积物的平衡温度。沿圆柱长度加上一恒定的热量Q,就可以测定热导率κ,假设开始时温度为零,则有(Jaeger,1956[7)]:

(8)式中T1和T0是可求的,所以热导率κ就可以用最小二乘法对测量温度进行拟合。

上世纪80年代初期,上述方法在美国伍兹霍尔海洋研究所(WHOI)得到了进一步的发展和应用,但其致命弱点是,海底沉积物含水量很大,持续供热导致探针温度不断升高,很容易导致探针周围的孔隙水发生对流,而使根据热传导方程推导的公式带来很大的误差;其次海上作业时间长,船的漂移难以控制,机械扰动严重以及持续供热需要大量的电能等问题,故这种技术没有得到广泛的应用。

2.2.2脉冲加热法

1979年,Liste(r李斯特)在Bullard型热流计的基础上,进行了大胆、彻底的革新,首先将Bullard型热流计点热敏元件保留在两端不动,在中间插入热敏元件组。点热敏元件仍然完成地温梯度的测量,热敏元件组测量热脉冲后的平均温度,用于计算沉积物的热导率。随着科学技术的发展和进步,Liste(r李斯特)在记录方式上采用了数字化格式,使其测量精度得到提升。这样Liste(r李斯特)在Bullard型热流计的基础上利用“热线源法”的理论,完成了海底沉积物地温梯度和沉积物热导率原位测量的技术革新,即海底沉积物热导率原位测量技术[8]。

探针插入海底沉积物,加上热脉冲后,可以把探针看作是处于沉积物温度之上的、恒定的初始温度T0的条件下,假设没有接触电阻(对于海洋沉积物,这假设大多正确),那么在时间t,探针的温度Tτ为:

式中:k是沉积物的扩散系数;a是探针的半径;c是沉积物的比热;ρ是沉积物的密度;S是探针单位长度的热容;τ定义为探针的热时间常数;α是沉积物热容与探针材料热容之比的两倍,J(nX)和Y(nX)分别为是n阶贝塞尔函数的第一项和第二项。

当探针的热时间常数τ>1时,Bullard函数为:

脉冲加热法是在探针内不仅装有一组热敏元件,同时还包括一根加热电阻丝,当仪器仓控制电路给电阻丝瞬间加热后,电阻丝会使探针温度突然升高,然后随时间缓慢衰减,热敏元件组记录温度随时间的变化,最终依据计算出热导率。

通过对连续加热线源法与脉冲加热法两种技术进行比较,脉冲加热法应用较为广泛。

3海底热流原位测量技术需要解决的几个问题

3.1提高探针自行插入的能力

一般热流原位测量设备在海上使用的成本较高,由于波浪、海流及风的作用,海洋的工作环境相当复杂,要求测量设备必须插得住,同时需要在沉积物中保持10~20min才能达到温度平衡,此时船舶可漂移400~500m。表1是三个航次探针插入沉积物的实际情况[9,10]。

通过对三个航次的测量结果分析,地热探针的结构设计必须在保证刚度的前提下,对探针水中的运动特性和插入沉积物瞬间的力学特性进行反复计算和演算,用于确定最佳配重和外形设计的依据,这样就会减少由于测量设备带来的拖倒、拉断及丢失。

3.2提高海上测量的准确度

目前对同一调查站位,采用在冬季和夏季进行重复测量,根据观测资料来确定海水温度变化对地壳热流的影响程度,判定水温变化随海底地壳深度衰减的情况。研究发现,直到海底之下6~7m二者方趋于一致,这说明6~7m之下,水温变化的影响已大幅度减弱。而目前地热探针长度一般为3.0~4.5m,这样增加了海上重复探测的工作量,为了减少重复,加长地热探针,使下插深度增大,以尽可能采用下部热敏元件的记录来进行资料处理。

3.3常年观测系统

研究业已证明海洋底层水温变化大,大气温度的日变化可影响到海底以下5m左右,气温的年变化可影响到海底以下50m。而对于水体则影响更深,再加上海流、波浪、潮汐的混合作用,气温变化的影响可波及到1500~2000m深的水体。而水温的变化又直接作用于海底沉积物。通过大量的实测温度分析可以看出,温度随深度呈非线性变化,特别是海底之下0~5m范围内,温度变化更加复杂,由此可见,地表因素的影响非常大。但如何从地热资料中消除这些浅层影响,而得出真正来自地下深处的热信息也是一个未解的难题。如果在海上作业中,首先在预定站位投放一长期温度监测设备,自动记录沉积物和底层海水的温度变化。可以通过声通讯设备定时发送到岸站,可获得常年的温度变化记录,从而设计计算程序,消除浅层因素的影响;同时,也为防灾减灾提供原始的连续资料。

4结束语

本文分析了海底沉积物热流探测技术的发展与理论的建立,鉴于我国目前在该技术领域的工作开展还比较薄弱,极大的限制了我国海洋热流探测和应用。因此,在充分认识和了解海洋热流探测技术的发展和现状的情况下,开发我国具有自主知识产权的海洋热流原位探测技术刻不容缓。

参考文献:

[1]DLTurcotte,GSchubert,Geodynamics.Applicationsofcontinuumphysicstogeologicalproblems[M].JohnWiley&Son(slstedition),1982,134-137.

[2]BullardEC.TheflowofheatthroughtheflooroftheAtlanticocean[J].ProcRSocLondonSerA,1954,222:408-429.

[3]BullardEC,DayA.TheflowofheatthroughtheflooroftheAtlanticocean[J].GeophysJRastronSoc,1961,4:282-292.

[4]GerardR,LangsethMG,EwingM.ThermalgradientmeasurementsinthewaterandbottomsedimentofwesternAtlantic[J].JGeophysRes,1962,67:785-803.

[5]SclaterJG,CorryCE.In-situmeasurementofthethermalconductivityofocean-floorsediments[J].JGeophysRes,1969,74:1070-1081.

[6]陈忠荣.海洋地热研究中沉积物热导率原位测定[J].海洋技术,1988,7(1):24-33.

[7]JaegerJC.Conductionofheatinaninfiniteregionboundedinternallybyacircularcylinderofaperfectconductor[J].AustralianJPhysics,1956,9:167-179.

[8]ListerCRB.Measurementofin-situconductivitybymeansofaBullard-typeprobe[J].GeophysJ,1970,19:521-533.

[9]李乃胜.冲绳海槽地热[M].青岛:青岛出版社,1995,7-67.

[10]李乃胜.中国东部海域及周边地壳热流初探[J].海洋科学,1992,2:48-51.

探测技术范文篇5

物探——地球物理勘探的简称,它是以地下岩土层(或地质体)的物性差异为基础,通过仪器观测自然或人工物理场的变化,确定地下地质体的空间展布范围(大小、形状、埋深等)并可测定岩土体的物性参数,达到解决地质问题的一种物理勘探方法。

按照勘探对象的不同,物探技术又分为三大分支,即石油物探、固体矿物探和水工环物探(简称工程物探),我们使用的为工程物探。

工程物探技术方法门类众多,它们依据的原理和使用的仪器设备也各有不同,随着科学技术的进步,物探技术的发展日趋成熟,而且新的方法技术不断涌现,几年前还认为无法解决的问题,几年后由于某种新方法、新技术、新仪器的出现迎刃而解的实例是常见的。它是地质科学中一门新兴的、十分活跃、发展很快的学科,它又是城市建设和水利电力岩土工程勘察的重要方法之一,在某种程度上讲,它的应用与发展已成为衡量地质勘察现代化水平的重要标志。

下面介绍两种实用的直流电法勘探技术——三维直流电法探测技术和岩土体电阻率测试技术,供广大物探同仁工作时参考。

2三维直流电法探测技术

三维直流电法探测就是应用现有的直流电法仪器和勘探方法,在施工方法上优化改进,进行加密采样数据以取得三维数据体,然后采取电阻率层析成像技术进行资料处理和成图。该方法是传统直流电法的三维化,可使勘探精度得到很大提高,在原有仪器设备条件下提高了传统直流电法勘探的能力,但野外测试工作量较大,是以“时间换取空间上的高分辨率”。把它应用到工程与环境地球物理勘探中,不失为一种较理想的方法。三维直流电法勘探施工采取一次布极,多极距测量技术,通常采用的装置形式有两极装置、单极——偶极装置和偶极——偶极装置等。

本文主要介绍两极装置形式,把供电电极B和测量电极N置于无穷远处,在勘探区域布置m条测线,每条测线布置n个测点(电极),测网密度根据探测对象及其探测深度而定,在城市建设和水利电力工程勘测中,一般选取测线距L=2~10米、测点距D=2~5米即可满足勘探要求。外业工作时将m×n个电极一次布置完毕(详见图1),其中单一测点(电极)的编号为aij(i=1,2,3……m;j=1,2,3……n)。

对于两极装置,理论上OB=∞,ON=∞,视电阻率计算公式为:

式中:ρs—视电祖率(Ω·m);rAM—供电电极A与测量电极M之间的距离(m);UAM—测量电极M的观测电位(mV);I—供电电极A的电流强度(mA)。

外业施工过程为:选择a11点为供电点,逐点测量a12,a13,a14,…,a1j,…,a1n各点的电位和供电电流强度,代入(1)式可求得各测量点的视电阻率值。然后再以a12点为供电点,逐点测量a13,a14,a15,…,a1j,…,a1n各点的电位和供电电流强度,依此类推,直到供电点移到a1n-1点为止,即完成其中一条测线a1j的测试任务。其它测线a2j、a3j、a4j……amj的电位和供电电流强度测试按照上述方法和顺序进行,便可获得全测区内各测点不同电极距的视电阻率参数。

资料处理与解释主要目的是便于研究勘查区内地电异常体的空间赋存规律和变化特征。一般程序为:由外业观测数据分别绘制极距d=D,2D,3D,4D,5D,6D……米的视电阻率水平切片,再把它们按对应的水平位置并依电极距大小叠放在一起便可形成倒梯形的三维视电阻率图,据此进行推断解释。根据试验研究和工程实测结果得出:该法的勘探深度一般为(0.6~0.8)d。

图2为文献⑶在城市工程勘查中的应用实例:该测区由于地下人防工程充水、坍塌而呈现低阻电性特征。图2⑴可以看出NE—SW向有一低阻条带,根据本区地质特征和钻孔资料可知,低阻带为地下人防工程上部反映,埋深在1.4~1.6m左右,图右下角的高阻为墙基影响造成;图2⑵因完全充水,低阻带电阻率较d=2m时低,埋深应在2.8~3.0m左右;图2⑶的等值线形态与图2⑵基本一致,为人防工程的完全充水部分,深度在4.2~4.4m左右;图2⑷为人防工程基底反映,深度在5.6~6.0m左右。据以上分析,人防工程平面位置为图2⑴虚线圈定区域,人防工程呈NE—SW走向贯穿勘探区域,深度在2~6m左右。据报道该测区解释成果经开挖验证完全符合客观实际。

该法较传统直流电法勘探具有信息量大、精度高的优点,在工程勘察中有较好的应用效果,同时又拓展了老式电法仪的应用范围,延长了老式仪器的经济使用寿命;但又具有施工量大的缺点,性价比决定其适合于小区域的工程勘察。

3岩土体电阻率测试技术

对岩土体电阻率的测试,可以采用多种方法。下面主要介绍直流电测深中的温纳装置在岩土体电阻率测试中的具体应用。根据试验研究和工程实测结果可知该法具有快速、准确地测定岩土体电阻率,并对不同岩性层划分做出客观解释。

实际工作中,根据测试场地的大小,可选用对称四极装置或三极装置进行测量。由于温纳装置是等比装置,且MN/AB=1/3,所以视电阻率与电位差及电流强度的关系式为:

式中:ρs—视电祖率(Ω·m);△UMN—测量电极MN观测电位差(mV);I—供电电极AB之间的电流强度(mA);k为装置系数:

由此可分别得到四极和三极的装置系数:

(四极装置适用)

(三极装置适用)

在现场观测过程中,将AB供电极距逐渐加大,以增加勘探深度,可以测得不同电极距下的视电阻率ρs。实用的供电极距及测量极距见表1。

表1供电极距和测量极距单位:m

AB

1.8

2.4

3.0

4.2

5.7

7.8

10.2

13.2

17.4

22.8

30

42

57

78

102

AB/2

0.9

1.2

1.5

2.1

2.85

3.9

5.1

6.6

8.7

11.4

15

21

28.5

39

51

MN

0.6

0.8

1.0

1.4

1.9

2.6

3.4

4.4

5.8

7.6

10

14

19

26

34

数据处理与解释采用现场作图的方式,可快速测定电阻率及划分岩性层位。以MN为横坐标,计算MN/ρs,并以MN/ρs为纵坐标,在双对数坐标纸上绘制MN/ρs与MN的关系图,详见图3。对图中不同极距的测试值,找出不同深度、相同斜率的点,对这些点进行连线,使其均匀地分布在直线上或直线两侧。求直线段斜率的倒数,可获得测点处各层的电阻率ρij。

式中:i为层位序号(i=1,2,3,…);j为测深点编号(j=1,2,3,…)。对各测深点依次作图解释,可求得各测点处分层的电阻率值,对获得的各层电阻率值进行数理统计,便可获得地层的平均电阻率值。计算公式为:

其中:—第i岩性层平均电阻率值;ρij—第j测深点处第i岩性层计算电阻率值;n—测深点数。

根据下式确定标准差,以求得第i岩性层电阻率值的变化范围±si。

物性层位的划分可以采用计算机数值模拟计算、量板法或其它手工解释方法,但由于对解释结果的影响因素很多,例如不同时代不同成因的地层、岩性特征、地层倾角、构造特征等,使其垂直方向和水平方向上均存在较为复杂的变化,地下高阻或低阻屏蔽层的影响,实际地层的各向异性等等,都将对岩性层参数的解释结果产生较大影响。由此可知该解释只能是电性层参数,而不是所求目的地质层参数。因此地质层位的划分尚需将电性层参数转化为地质层参数,在实际工作中,必须进行层位厚度校正。具体做法是:首先在已知地层剖面处进行电测深(如钻孔处),通过已知地层剖面确定校正系数,即确定AB/2极距与层位深度的关系。再通过已知地质剖面或钻孔处的电测深数据作视电阻率拟断面等值线图,在视电阻率拟断面等值线图上划分地层,用已知地层深度或钻孔深度h与地质层面对应的AB/2对比,求取不同深度AB/2的校正系数λi:

(i=1,2,3,…)

实测工作时,可对每个钻孔进行统计,求取深度校正系数的算术平均值。如在没有钻孔(或已知地层剖面)的测区,可采用工程类比法获得,如采用邻近地质条件相似地区的深度校正系数即可满足工程需要。

据文献⑷报道,他们的研究和工作过的测区,其极距与钻孔对比的校正系数为0.66左右。而温纳装置选取MN/AB=1/3,MN≈0.66(AB/2),因此,以MN作横坐标,以MN/ρs为纵坐标作图,则不同斜率的直线交点处对应的横坐标即为层位顶面的深度(见图3)。

同样,在不同的地区还可以AB/2作横坐标,以(AB/2)/ρs作纵坐标,作双对数坐标图,用不同斜率的直线交点处对应的AB/2乘以校正系数,求取地质层位顶面的埋深。图4为某变电站场地电阻率及层位划分实际解释应用图(见文献⑷)。该图是以AB/2作横坐标,以(AB/2)/ρs为纵坐标,作双对数坐标图。从图中可以很好地划分出4个层位并计算直线段斜率的倒数,获得各层的电阻率值。依据实际经验该方法对于电阻率相差不大的相邻地层的划分也有较好的地质效果。

该方法较传统的解释方法具有快速(可由记录员现场绘图取得解释成果)、准确的特点,相对于传统的解释方法而言更适合工程物探在解决地层划分和电阻率测试中的应用。另外,场地的岩土电阻率是工程设计接地装置的一个重要参数。它的确定对电流尽快地散入大地,达到足够小的接地电阻及接地装置地下部分的合理布局起到十分重要的作用,它沿地层深度的变化规律是选择接地装置型式设计的主要依据。岩土中含水量和温度的变化,对岩土体电阻率的影响较大。温度降低,岩土电阻率增大;温度升高,岩土电阻率变小。岩土湿度变小,电阻率增大;岩土湿度变大,电阻率变小。但岩土含水量增加较大时,岩土电阻率反而增加;另外,水的矿化度不同,对岩土电阻率的影响也是不一样的。所以,如果条件允许,应在冬天干旱季节,对变电站场地的岩土电阻率进行测定,以获取场地在一年四季中最大的电阻率,供设计接地装置使用。

4结束语

以上较为详细地介绍了三维直流电法探测技术、岩土体电阻率测试技术的现场施工方法、资料处理及其解释的技术路线,由此可以看出,它们在城市建设和水利电力工程勘测中具有信息量大、准确、直观、经济、快速、便于分析等特点而具有广泛的应用前景。

随着电子和数据处理技术的发展,城市建设和水利电力工程物探技术也随之提高和拓宽,许多新技术、新方法在生产实践中显示出强大的生命力而不断的发展完善,应用范围也不断拓展;如地质雷达技术、面波勘探技术、电阻率层析成像和地震(声波)CT技术等都在工程实践中取得了良好地应用效果,发挥着愈来愈重要的作用;同样,常规物探方法的应用范围和应用领域以及数据处理技术也不断进展和创新,在工程建设和实践中发挥着不可替代的作用,取得了良好的经济效益和社会效益。

参考文献:

⑴傅良魁.电法勘探教程[M].北京.地质出版社,1990.

⑵MHLoke.Electricalimagingsurveysforenvironmentandengineeringstudies[EB/OL].2002,2.

⑶许新刚等.三维直流电法勘探在地下人防工程勘察中的应用[J].物探与化探,2004(2).

探测技术范文篇6

【关键词】微电子化计量仪;半导体探测器;特性研究;试验方法

半导体技术近年来被运用于多种领域,尤其是在核辐射探测器方面的运用,将半导体技术的优势发挥得淋漓尽致,为社会经济发展做出了巨大贡献。近年来,细数将半导体技术引入核辐射探测器领域的过程,我国的相关科研单位耗费了大量的人力、财力和物力。随着时代的发展,深化半导体材料和技术在核辐射探测器的运用研究将继续为我国的科技发展提供重要支持。结合本文研究方向,拟从半导体探测器特性的实验研究层面展开,利用实验数据进行相关讨论。

1半导体探测器的内涵

半导体探测器以其高效、实用、成本低、性能稳定等特性,目前在各个领域的应用十分广泛。明确半导体探测器的内涵概念,能够深化我们对半导体探测器的了解,为接下来的更深入的探究工作打下坚实基础。接下来笔者就从半导体探测器的概念及发展历程两个方面来粗浅剖析半导体探测器的内涵:1.1半导体探测器的概念。顾名思义,半导体探测器就是利用半导体材料和特点研发的探测设备。结合原理分析,半导体探测器是一种通过锗、硅等半导体材料物理属性、并利用其作为探测介质的辐射探测器。由于半导体探测器的工作原理和气体电离室有诸多相似之处,因此半导体探测器也被称之为固体电离室。从技术原理的层面来讲,半导体探测器的工作原理是在半导体探测器的灵敏体积内带电粒子产生“电子——空穴对”,之后“电子——空穴对”在外电场环境下做出漂移继而产生并输出信号。经过大量科学家的研究,半导体探测器诞生至今,经过不断的技术概念和材料改良,目前性能和效用已经十分优良。1.2半导体探测器的发展历程。半导体技术在核辐射探测器方面的应用分为几个阶段:第一个阶段是八十年代之前。当时的探测器受到技术技术条件和认知的影响,最为常见的探测器是GM计数管探测器。这种GM计数管探测器的产品性能和效果并不理想。随着技术的不断更新和科学家探索的深入。第二个阶段是九十年代之后,在法国、德国出现了用半导体材料作探测器的小型剂量仪器。至此,半导体技术正式被应用于探测器领域。这种半导体探测器具有体积小、工作电压低、耗能少等优势,这些特点为半导体探测器的应用空间和范围奠定了良好基础。

2用于微电子化计量仪的半导体探测器特性的实验方法

为了进一步地探究半导体探测器的特性,更明确地了解并认知其优势,笔者通过一组实验来进行说明。在这一实验中笔者所用的半导体测试器是目前业界内比较新型的设备,它是笔者单位和某原子能科学研究院合理研发的。实验中与半导体探测器相连接的电力属于微电子学混合电路。下面笔者对实验方法(如图2.1所示)作详细的论述与分析:图2.1实验示意图考虑到夜晚的干扰信号比白天小很多,因此我们在做此实验时选择在了晚上的时间段。为了处理好半导体探测器特性实验中噪音大的问题,本次实验所选择的单道阈值是0.21V。在实验中,主放大倍数为50积分、微分常数为0.5μs。定标器的工作方式为积分,脉冲为正脉冲方式。基于上述这些情况,我们的“用于微电子化计量仪的半导体探测器特性”实验研究正式开始。

3用于微电子化计量仪的半导体探测器特性的实验数据及处理

关于特性研究实验过程中的实验数据及处理方式,笔者对其进行了详细的记录。笔者将半导体的探测器面积分为10平方豪米、25平方毫米和50平方毫米三种数据类型来进行测验。第一,半导体探测器的面积为10平方毫米,98型的半导体探测器辐射响应特性的数据结果如图3.1、3.2所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系;99型的半导体探测器所反馈的实验曲线如图3.3、3.4所示,98型半导体探测器的辐射响应特性数据如图3.5、3.6所示。图中所反映出来的数据指标是偏压为1V和3V的情况下,98型号的半导体探测器中净计数和剂量率之间的关系。第二,当半导体探测器的面积增加到25平方毫米之后,99型的半导体探测器辐射响应特性的数据结果如图3.5、3.6所示,图中所反映出来的数据指标是偏压为1V和3V的情况下,99型号的半导体探测器中净计数和剂量率之间的关系。基于系列实验分析,当半导体探测器的面积从10平方豪米增加到25平方毫米,在递增到50平方毫米的过程中,在不同的偏压下,98型和99型的半导体探测器的净计数率在0.869cGy/h点上,半导体探测器的型号和探测器偏压的关系如表1所示。在表中,在照射量率为均为1的情况下,当半导体探测器的偏压设定为1V时,探测面积为10平方毫米的98型探测器的净计数率是68.2,探测面积为25平方毫米的98型探测器的净计数率是104.0;探测面积为50平方毫米的98型探测器的净计数率是181.7,探测面积为10平方毫米的99型探测器的净计数率是125.3。当半导体探测器的偏压设定为3V时,探测面积为10平方毫米的98型探测器的净计数率是90.4,探测面积为25平方毫米的98型探测器的净计数率是167.6;探测面积为50平方毫米的98型探测器的净计数率是316.4,探测面积为10平方毫米的99型探测器的净计数率是178.6。

4用于微电子化计量仪的半导体探测器特性的结果与讨论

通过上述关于不同型号半导体探测器在不同辐射面积中辐射响应特性等相关数据的分析我们可以得出如下三个方面的结论:第一,该半导体探测器的工作电压相对较低,对γ响应十分敏感。当“用于微电子化计量仪的半导体探测器特性研究”的实验电压在1V—3V单偏压电源数据之间变动时,半导体探测器的灵敏度能够在68-316S/(R/h)区间进行变化。结合实验数据的分析与反馈,总体来讲,辐射面积为10平方毫米的99型探测器性能比辐射面积为10平方毫米的98型探测器性能优良。在同样的实验条件中,用来测定DM91的辐射面积为10平方毫米的半导体探测器灵敏度情况如下:当实验偏压为1V时,10平方毫米的半导体探测器灵敏度为87.2;当实验偏压为3V时,10平方毫米的半导体探测器灵敏度是1.8。对比关于试验偏压和不同辐射面积的半导体探测器灵敏度的这几组实验数据,我们可以得出如下结论:辐射面积为10平方毫米的99型半导体探测器敏感度性能相比较国外辐射面积为10平方毫米的半导体探测器,在对γ辐射方面的灵敏度方面性能要高出很多。也就是说我们目前的辐射面积为10平方毫米的半导体探测器性能已经达到并超出国外同类探测器的水平。第二,从噪音阈值的层面来讲,本次实验中所采用的半导体探测器噪音极小,这种小分贝的噪音数值可以显著提升信噪比,这种情况可以促进微电子学设计工作的更好开展。这一点在微电子化计量仪的半导体探测器特性实验中虽然是一个细节,但也应当充分引起我们的注意和重视。第三,本次“用于微电子化计量仪的半导体探测器特性”实验中,当探测器的屏蔽材质发生变化时,其抗干扰能力也会有明显改变。这一现象表明在实验室中,空间的电磁干扰因素需要引起实验者的重视。

5结束语

综上所述,半导体探测器在当前多种行业中所发挥的作用不容忽视,为了探究“用于微电子化计量仪的半导体探测器特性”,笔者通过开展一项专题实验来进行阐述与说明,在上述文段中,笔者不仅对实验的方法进行罗列和描述,还对实验的数据及处理进行对比分析,并有针对性地提出自己的见解。通过上述实验的分析,笔者希望能够唤起更多业界同行对于半导体探测器特性的关注,通过群策群力,为促进半导体探测器的运用水平贡献力量。

作者:马骏 单位:东华理工大学

参考文献

[1]崔晓辉,谷铁男,张燕,袁宝吉,刘明健,闫学昆.离子注入型与金硅面垒型半导体探测器温度特性比较[J].辐射防护通讯,2011,31(02):26-28.

[2]蔡志猛,周志文,李成,赖虹凯,陈松岩.硅基外延锗金属-半导体-金属光电探测器及其特性分析[J].光电子.激光,2008(05):587-590.

探测技术范文篇7

关键词:地质勘查;物探;特点比较

在地质勘查工作实践中,相对于钻探法的成本高、风险大、周期慢、连续性较差等弊端,地球物理勘查方法(简称物探法)以其成本低、效率高、方便快捷、整体性/连续性较好而备受关注,应用范围也日益拓展。随着科技的发展,物探技术、设备、手段也日益完善和多样化。但各种物探技术也不是万能的,都有其自身的特点和一定的适用范围。

1电法勘探

1.1传导类电法勘探

(1)电测深法:最常用的对称四极电测深法可以探测水平或倾角<20°岩层电性层的电阻率和埋深。(2)电剖面法:联合剖面法可探测产状较陡的层状、脉状低阻体或断裂破碎带;中间梯度法可探测产状较陡的高阻薄脉如石英岩脉、伟晶岩脉。(3)高密度电法:可用于地基勘查、坝基选址、水库或堤坝查漏和探测裂缝、岩溶塌陷、煤矿采空区。(4)自然电场法:勘查埋藏较浅的金属硫化物矿床和部分金属氧化物矿床,寻找石墨和无烟煤,确定断层位置,寻找含水破碎带,确定地下水流向。(5)充电法:判定充电导体的形状和范围、顶部和边界,主要用来勘探良导性多金属矿床、无烟煤、石墨以及水文地质、工程地质问题的解决。(6)激发极化法:判断脉状体的产状。

1.2感应类电法勘探

(1)连续电导率剖面法:岩土电导率分层、地下水探测、基岩埋深调查、煤田高分辨率电探、金属矿详查和普查、环境调查、咸/淡水分界面划分,勘探深度1000m。(2)CSAMT:电性源CSAMT探测深度较大,通常可达2km,主要用于探测地热、油气藏、煤田和固体矿产深部找矿。(3)TEM:剖面法:同点装置剖面法即共圈回线法经常用于勘查金属矿产;大回线装置剖面法采用边长达数百米矩形回线。由于TEM用宽频带观测,在音频干扰大地区如有线广播工作时比较困难。(4)甚低频率法VLF:主要用于探测金属矿床、水资源和地质填图。(5)地质雷达法GPR:划分花岗岩风化带,可清晰地分辨出表土以下全风化带、强风化带、弱风化带之间的界面,主要用于隧道探测。(6)管线探测法。主要是在非开挖的情况下探测地下管线的走向与埋深。一类是利用电磁感应原理探测金属管线、电/光缆,以及一些带有金属标志线的非金属管线,这类简称管线探测仪。另一类是利用电磁波探测所有材质的地下管线,也可用于地下掩埋物体的查找,俗称管线雷达。(7)核磁共振找水法(NMR):是目前唯一直接找水的新方法。与传统物探方法相比,其优点是具有高分辨率、高效和唯一性解,在探测地下淡水时更具优越性,可高效地用于区域水文地质调查,确定远景找水区,圈定地下水三维空间分布状态,选定可靠水井位置。应用范围:①探测古河床、古墓、覆盖层、滑坡体、砂卵砾石层;②探测隐伏地质构造、岩溶、地下暗河、人工坑洞;③探测含水层富水带,划分咸淡水界线,测水库漏水点;④工程质量检测、探测地下管线。特点:①电测深法、电剖面法、高密度电法:抗干扰性强,但受地形限制大;②自然电场法:方便快捷,但受地电干扰大;③充电法:能探测地下水流向;④激发极化法:适用于探测地下水、金属矿体等高极化体,但受地形限制大;⑤连续电导率剖面法:受地形影响较小,探测深度1km。但探测深度不如CSAMT,而且抗干扰性弱;⑥CSAMT:受地形影响较小,探测深度2km~3km,但设备笨重(期望随着科技发展能大大减小仪器的体积和重量,使之轻便化);⑦TEM:受地形影响较小,探测深度随线圈长度而增加(可达数百米),但受地电干扰大;⑧甚低频率法:可探测高极化体,但受地电干扰大;⑨地质雷达:分辨率高,但探测深度小(10m~30m);⑩管线探测法:可探测地下管线,但只限于地表浅层。

2弹性波法

弹性波法包括地震勘探(地震勘探又分为折射波法、反射波法、瑞雷波法)、超声波法、场地波速测试,地脉动测试。地震勘探:勘探深度较大、分辨率较高、解释结果较直观。能迅速查明复杂储油气构造和含煤构造。探测地下含水层、地下水位、基岩起伏、断裂带、覆盖层厚度。间接探测与构造有关的矿产(如铝钒土、砂金、铁、磷、铀)。应用范围:①探测地质构造;②探测覆盖层厚度、断层破碎带、滑动面、潜水位;③探测岩体动弹性模量;④探测地脉动卓越周期、桩基及建筑物基础;⑤测定岩体完整性系数。特点:①折射波法。能探测100m以浅土石界限、围岩分级、低速带;②反射波法:探测断层、采空区,探测深度较大,但要求场地相对平缓;③瑞雷波法。优势:场地评价、计算横波,方法简便,但探测深度较小;④超声波法:构件评价;⑤场地波速测试:场地类型评价,模量参数,沙土液化;⑥地脉动测试:安全性评价。

3重力勘探

应用范围:探测区域地质构造,深部断层,大溶洞,巨大的埋藏谷。特点:可探测密度体异常、采空区边界,推测深大断层、断裂。

4磁法勘探

应用范围:探测岩浆岩体界线,断层带,地下管线,考古。适用条件:探测地质体与围岩有明显密度差异,探测对象规模与埋深比要足够大。特点:探测磁性体异常,深大断层、断裂。

5放射性勘探

应用范围:探测基岩裂隙水、断层带,测量土的湿度、密度,环境监测。适用条件:探测对象与围岩有放射性差异,探测对象埋深较浅。特点:探测断层、裂隙带、采空区边界。

6地温勘探

应用范围:判定地温异常的深大断裂位置,探测地表与深部地温的变化规律。适用条件:地质体之间有温度差异,在深部钻孔中探测地温变化情况。特点:深大断层定位。

7井下物探

井下物探包括电测井、放射性测井、水文测井、单孔声波测井、跨孔声波测井、声波及超声成像测井、孔间电磁波透射法、孔间地震波透射、钻孔技术测量。基本原理:用仪器观测钻井及井间岩土物理差异所引起的天然或人工物理场变化规律,以研究井壁和井周空间地质构造,测定岩土自然状态下物理力学和水文地质参数。应用范围:划分软弱夹层、风化层厚度,探测断裂带和岩溶位置,探测测井中出水位置、水文地质参数,探测岩土物理力学参数,监测地下水污染,核处理场地的选址。适用条件:电测井、无线电波透视、声波测井应在有泥(水)浆无套管的孔中进行,水文测井应在无套管或有滤管经洗井后的清水井中进行。用途:①电测井:划分地层;②放射性测井:井液电阻率与电位电阻率反向;③水文测井:划分地层,确定含水层位;④单孔声波探测、跨孔声波探测、声波及超声成像测井、孔间电磁波透射波、孔间地震波透射:查找孔间裂隙带、溶洞。

8建议

鉴于物探技术是一种间接的勘探方法,由于各种地质条件和围岩条件的差异性,以及解释方法的多解性,再加上环境和人为因素的干扰,单独基于物探技术进行的判断和解释都有程度不一的误差甚至是误判,所以,在地质勘查工作中应用各种物探技术进行分析时必须紧密结合已有的地质资料科学研究,有时要运用不同的物探方法进行相互印证,才能提高物探成果的准确性和解析精度。

作者:杨占军 单位:河北省煤田地质局

参考文献:

[1]刘天佑.地球物理勘探概论[M].北京:地质出版社,2007:207-217.

探测技术范文篇8

关键词:消防工程;火灾自动报警技术;发展趋势

以火灾自动报警技术为核心的建筑消防系统,是预防和遏制建筑火灾的重要保障。近年来,我国火灾自动报警工程应用技术实现了较快发展,但由于在实际应用中,火灾自动报警系统的通讯协议不一致,火灾自动报警工程技术水平还相对落后,还存在着一些比较突出的问题。①适用范围过小。我国火灾自动报警系统技术比美、英等发达国家起步较晚,安装范围主要是《高层民用建筑设计防火规范》、《建筑设计防火规范》规定的场所和部位,而在易造成群死群伤的中小型公众聚集场所和社区居民家庭甚至部分高层住宅都没有规定安装火灾自动报警系统,适用范围过小,防范措施不到位。②智能化程度低。我国使用的火灾探测器虽然都进行了智能化设计,但由于传感器件探测的参数较少、支持系统的软件开发不成熟、各种算法的准确性缺乏足够验证、火灾现场参数数据库不健全等,火灾自动报警系统难以准确判定粒子(烟气)的浓度、现场温度、光波的强度以及可燃气体的浓度、电磁辐射等指标,造成迟报、误报、漏报情况较多。③网络化程度低。我国应用的火灾119动报警系统形式基本上以区域火灾自动报警系统、集中火灾自动报警系统和控制中心火灾自动报警系统为主,安装形式主要是集散控制方式,自成体系,自我封闭,尚未形成区域性网络化火灾自动报警系统。④组件连接方式有待改善。火灾自动报警系统以多线制和总线制连接方式为主,探测器和报警器及控制器之间是采用两条或多条的铜芯绝缘导线或铜芯电缆穿管相接,存在耗材多、成本高、抗干扰能力差的缺点。同时,铜导线耐高温性能差、易磨损,系统施工维修复杂,影响了火灾自动报警系统的可靠性和更广泛的应用。⑤火灾自动报警系统误报、漏报问题较多。由于火灾探测器的安装环境极其复杂,加之各种传感器在探测火灾方面存在着某些先天不足,无法准确地感应各种物质在燃烧过程中所特有的声波、光谱、辐射、气味等诸多方面发生的微妙变化,对火灾发生过程中所产生的不同粒径和颜色的烟存在探测“盲区”,误报、漏报现象时有发生。⑥超早期火灾探测报警技术应用还几乎处于空白。国外已开发出适合洁净空间高灵敏度感烟火灾探测报警系统,如激光式高灵敏度感烟火灾探测器,吸气式高灵敏度感烟火灾探测报警系统和气体火灾探测报警系统,与普通火灾探测报警系统相比,其探测灵敏度提高了两个数量级,甚至更多,这些系统采用了激光粒子计数、激光散射等原理监视被保护空间,以单位体积内粒子增加的多少来判断是否发生火灾,系统可在火灾发生前几小时或几天内识别潜在的火灾危险性,实现超早期火灾报警。而该技术我国目前还处于起步阶段有待进一步研究开发应用。

针对上述问题,火灾自动报警应用技术应进一步着眼于当前国际发展的新形势,加快更新改造进程,加强对数字技术和新工艺、新材料的应用,改进系统能力,使火灾自动报警应用技术向着高可靠、低误报和网络化、智能化方向发展。当前,国外火灾自动报警应用技术的发展趋势主要表现为七个方面。

1网络化

火灾自动报警系统网络化是用计算机技术将控制器之间、探测器之间、系统内部、各个系统之间以及城市“ll9”报警中心等通过一定的网络协议进行相互连接,实现远程数据的调用,对火灾自动报警系统实行网络监控管理,使各个独立的系统组成一个大的网络,实现网络内部各系统之间的资源和信息共享,使城市“ll9”报警中心的人员能及时、准确掌握各单位的有关信息,对各系统进行宏观管理,对各系统出现的问题能及时发现并及时责成有关单位进行处理,从而弥补现在部分火灾自动报警系统擅自停用,值班管理人员责任心不强、业务素质低、对出现的问题处置不及时、不果断等方面的不足。

2智能化

火灾自动报警系统智能化是使探测系统能模仿人的思维,主动采集环境温度、湿度、灰尘、光波等数据模拟量并充分采用模糊逻辑和人工神经网络技术等进行计算处理,对各项环境数据进行对比判断,从而准确地预报和探测火灾,避免误报和漏报现象。发生火灾时,能依据探测到的各种信息对火场的范围、火势的大小、烟的浓度以及火的蔓延方向等给出详细的描述,甚至可配合电子地图进行形象提示、对出动力量和扑救方法等给出合理化建议,以实现各方面快速准确反应联动,最大限度地降低人员伤亡和财产损失,而且火灾中探测到的各种数据可作为准确判定起火原因、调查火灾事故责任的科学依据。此外,规模庞大的建筑使用全智能型火灾自动报警系统,即探测器和控制器均为智能型,分别承担不同的职能,可提高系统巡检速度、稳定性和可靠性。

3多样化

(1)火灾探探测技术的多样化。我国目前应用的火灾探测器按其响应和工作原理基本可分为感烟、感温、火焰、可燃气体探测器以及两种或几种探测器的组合等,其中,感烟探测器一枝独秀,但光纤线性感温探测技术、火焰自动探测技术、气体探测技术、静电探测技术、燃烧声波探测技术、复合式探测技术代表了火灾探测技术发展和开发应用研究的方向。此外,利用纳米粒子化学活性强、化学反应选择性好的特性,将纳米材料制成气体探测器或离子感烟探测器,用来探测有毒气体、易燃易爆气体、蒸气及烟雾的浓度并进行预警,具有反应快、准确性高的特点,目前已列为我国消防科研工作者的重点研究开发课题。

(2)设备连接方式的多样化。随着无线通信技术的成熟、完善和新型有线通信材料的研制,设备间、系统间可根据具体的环境、场所的不同而选择方便可靠的通信方式和技术,设备间可以用无线技术进行连接,形成有线、无线互补,同时新型通信材料的研制开发可弥补铜线连接存在的缺陷。而且各探测器之间也可进行数据信息传递和交流,使探测器的设置从枝状变成网状,探测器不再是各自独立的,使系统间、设备间的信息传递更方便、更可靠。

4小型化

火灾自动报警系统的小型化是指探测部分或者说网络中的“子系统”小型化。如果火灾自动报警系统实现网络化,那么系统中的中心控制器等设备就会变得很小,甚至对较小的报警设备安装单位就可以不再独立设置,而依靠网络中的设备、服务资源进行判断、控制、报警,这样火灾自动报警系统安装、使用、管理就变得简洁、省钱、方便。

5社区化

目前我国火灾自动报警系统只被安装在重要建筑上,而在美国、日本等发达国家,包括许多居民家庭都安装了火灾自动报警系统。随着我国经济的不断发展、人们安全意识的增强、火灾自动报警系统的进一步完善以及智能化程度的提高,在社区家庭特圳是高级住宅积极推广应用防盗、防火联动报警装置或独立式感烟探测器,对干预防居民家庭火灾是非常必要和行之有效的措施。公务员之家

6蓝牙技术无线化

与有线火灾自动报警系统相比,蓝牙技术无线火灾自动报警系统具有施工简单、安装容易、组网方便、调试省时省力等特点,而且对建筑结构损坏小,便于与原有系统集成且容易扩展,系统设计简单且可完全寻址,便于网络化设计,可广泛应用于医院、文物古建筑机场、综合建筑和不便联网、建筑物分散、规模较大,干扰较小的建筑。对正在施工或正在进行重新装修的场所,在未安装有线火灾自动报警系统前,这种临时系统可以充分保障建筑物的防火安全,一旦施工结束,蓝牙技术无线系统可以很容易转移到别的场所。

7高灵敏化

以早期火灾智能预警系统为代表。该系统除采用先进的激光探测技术和独特的主动式空气采样技术以外,还采用了“人工神经网络”算法,具有很强的适应能力、学习能力、容错能力和并行处理能力,近乎于人类的神经思维。此外,该系统的子机与主机可以进行双向智能信息交流。使整个系统的响应速度及运行能力空前提高,误报率几乎接近零,灵敏度比传统探测器高l000倍以上,能探测到物质高热分解出的微粒子,并在火灾发生前的30min到20min预警,确保了系统的高灵敏性和高可靠性,实现早期报警。

针对当前火灾自动报警系统存在的通讯协议不一致,系统误报、漏报频繁,智能化程度低,网络化程度低、特殊恶劣环境的火灾探测报警抗干扰等问题较为突出的现象,提出在符合国家消防规范的基础下采用统一、标准、开放的通讯协议,通过对新技术、新工艺、新材料和新设备的应用研究,对系统方案、设备选型的优化组合,改进火灾自动报警系统的工作性能、减少维护费用和维护要求,向着高可靠性、高灵敏性、低误报率、系统网络化、技术智能化方向发展,为更好的预防和遏制建筑火灾提供了强有力的保障,从而更好的保护国家和人民的生命、财产安全。这是火灾自动报警应用技术的研究发展趋势。

参考文献

探测技术范文篇9

关键词:消防工程;火灾自动报警技术;发展趋势

以火灾自动报警技术为核心的建筑消防系统,是预防和遏制建筑火灾的重要保障。近年来,我国火灾自动报警工程应用技术实现了较快发展,但由于在实际应用中,火灾自动报警系统的通讯协议不一致,火灾自动报警工程技术水平还相对落后,还存在着一些比较突出的问题。①适用范围过小。我国火灾自动报警系统技术比美、英等发达国家起步较晚,安装范围主要是《高层民用建筑设计防火规范》、《建筑设计防火规范》规定的场所和部位,而在易造成群死群伤的中小型公众聚集场所和社区居民家庭甚至部分高层住宅都没有规定安装火灾自动报警系统,适用范围过小,防范措施不到位。论文百事通②智能化程度低。我国使用的火灾探测器虽然都进行了智能化设计,但由于传感器件探测的参数较少、支持系统的软件开发不成熟、各种算法的准确性缺乏足够验证、火灾现场参数数据库不健全等,火灾自动报警系统难以准确判定粒子(烟气)的浓度、现场温度、光波的强度以及可燃气体的浓度、电磁辐射等指标,造成迟报、误报、漏报情况较多。③网络化程度低。我国应用的火灾119动报警系统形式基本上以区域火灾自动报警系统、集中火灾自动报警系统和控制中心火灾自动报警系统为主,安装形式主要是集散控制方式,自成体系,自我封闭,尚未形成区域性网络化火灾自动报警系统。④组件连接方式有待改善。火灾自动报警系统以多线制和总线制连接方式为主,探测器和报警器及控制器之间是采用两条或多条的铜芯绝缘导线或铜芯电缆穿管相接,存在耗材多、成本高、抗干扰能力差的缺点。同时,铜导线耐高温性能差、易磨损,系统施工维修复杂,影响了火灾自动报警系统的可靠性和更广泛的应用。⑤火灾自动报警系统误报、漏报问题较多。由于火灾探测器的安装环境极其复杂,加之各种传感器在探测火灾方面存在着某些先天不足,无法准确地感应各种物质在燃烧过程中所特有的声波、光谱、辐射、气味等诸多方面发生的微妙变化,对火灾发生过程中所产生的不同粒径和颜色的烟存在探测“盲区”,误报、漏报现象时有发生。⑥超早期火灾探测报警技术应用还几乎处于空白。国外已开发出适合洁净空间高灵敏度感烟火灾探测报警系统,如激光式高灵敏度感烟火灾探测器,吸气式高灵敏度感烟火灾探测报警系统和气体火灾探测报警系统,与普通火灾探测报警系统相比,其探测灵敏度提高了两个数量级,甚至更多,这些系统采用了激光粒子计数、激光散射等原理监视被保护空间,以单位体积内粒子增加的多少来判断是否发生火灾,系统可在火灾发生前几小时或几天内识别潜在的火灾危险性,实现超早期火灾报警。而该技术我国目前还处于起步阶段有待进一步研究开发应用。

针对上述问题,火灾自动报警应用技术应进一步着眼于当前国际发展的新形势,加快更新改造进程,加强对数字技术和新工艺、新材料的应用,改进系统能力,使火灾自动报警应用技术向着高可靠、低误报和网络化、智能化方向发展。当前,国外火灾自动报警应用技术的发展趋势主要表现为七个方面。

1网络化

火灾自动报警系统网络化是用计算机技术将控制器之间、探测器之间、系统内部、各个系统之间以及城市“ll9”报警中心等通过一定的网络协议进行相互连接,实现远程数据的调用,对火灾自动报警系统实行网络监控管理,使各个独立的系统组成一个大的网络,实现网络内部各系统之间的资源和信息共享,使城市“ll9”报警中心的人员能及时、准确掌握各单位的有关信息,对各系统进行宏观管理,对各系统出现的问题能及时发现并及时责成有关单位进行处理,从而弥补现在部分火灾自动报警系统擅自停用,值班管理人员责任心不强、业务素质低、对出现的问题处置不及时、不果断等方面的不足。

2智能化

火灾自动报警系统智能化是使探测系统能模仿人的思维,主动采集环境温度、湿度、灰尘、光波等数据模拟量并充分采用模糊逻辑和人工神经网络技术等进行计算处理,对各项环境数据进行对比判断,从而准确地预报和探测火灾,避免误报和漏报现象。发生火灾时,能依据探测到的各种信息对火场的范围、火势的大小、烟的浓度以及火的蔓延方向等给出详细的描述,甚至可配合电子地图进行形象提示、对出动力量和扑救方法等给出合理化建议,以实现各方面快速准确反应联动,最大限度地降低人员伤亡和财产损失,而且火灾中探测到的各种数据可作为准确判定起火原因、调查火灾事故责任的科学依据。此外,规模庞大的建筑使用全智能型火灾自动报警系统,即探测器和控制器均为智能型,分别承担不同的职能,可提高系统巡检速度、稳定性和可靠性。

3多样化

(1)火灾探探测技术的多样化。我国目前应用的火灾探测器按其响应和工作原理基本可分为感烟、感温、火焰、可燃气体探测器以及两种或几种探测器的组合等,其中,感烟探测器一枝独秀,但光纤线性感温探测技术、火焰自动探测技术、气体探测技术、静电探测技术、燃烧声波探测技术、复合式探测技术代表了火灾探测技术发展和开发应用研究的方向。此外,利用纳米粒子化学活性强、化学反应选择性好的特性,将纳米材料制成气体探测器或离子感烟探测器,用来探测有毒气体、易燃易爆气体、蒸气及烟雾的浓度并进行预警,具有反应快、准确性高的特点,目前已列为我国消防科研工作者的重点研究开发课题。

(2)设备连接方式的多样化。随着无线通信技术的成熟、完善和新型有线通信材料的研制,设备间、系统间可根据具体的环境、场所的不同而选择方便可靠的通信方式和技术,设备间可以用无线技术进行连接,形成有线、无线互补,同时新型通信材料的研制开发可弥补铜线连接存在的缺陷。而且各探测器之间也可进行数据信息传递和交流,使探测器的设置从枝状变成网状,探测器不再是各自独立的,使系统间、设备间的信息传递更方便、更可靠。

4小型化

火灾自动报警系统的小型化是指探测部分或者说网络中的“子系统”小型化。如果火灾自动报警系统实现网络化,那么系统中的中心控制器等设备就会变得很小,甚至对较小的报警设备安装单位就可以不再独立设置,而依靠网络中的设备、服务资源进行判断、控制、报警,这样火灾自动报警系统安装、使用、管理就变得简洁、省钱、方便。

5社区化

目前我国火灾自动报警系统只被安装在重要建筑上,而在美国、日本等发达国家,包括许多居民家庭都安装了火灾自动报警系统。随着我国经济的不断发展、人们安全意识的增强、火灾自动报警系统的进一步完善以及智能化程度的提高,在社区家庭特圳是高级住宅积极推广应用防盗、防火联动报警装置或独立式感烟探测器,对干预防居民家庭火灾是非常必要和行之有效的措施。公务员之家

6蓝牙技术无线化

与有线火灾自动报警系统相比,蓝牙技术无线火灾自动报警系统具有施工简单、安装容易、组网方便、调试省时省力等特点,而且对建筑结构损坏小,便于与原有系统集成且容易扩展,系统设计简单且可完全寻址,便于网络化设计,可广泛应用于医院、文物古建筑机场、综合建筑和不便联网、建筑物分散、规模较大,干扰较小的建筑。对正在施工或正在进行重新装修的场所,在未安装有线火灾自动报警系统前,这种临时系统可以充分保障建筑物的防火安全,一旦施工结束,蓝牙技术无线系统可以很容易转移到别的场所。

7高灵敏化

以早期火灾智能预警系统为代表。该系统除采用先进的激光探测技术和独特的主动式空气采样技术以外,还采用了“人工神经网络”算法,具有很强的适应能力、学习能力、容错能力和并行处理能力,近乎于人类的神经思维。此外,该系统的子机与主机可以进行双向智能信息交流。使整个系统的响应速度及运行能力空前提高,误报率几乎接近零,灵敏度比传统探测器高l000倍以上,能探测到物质高热分解出的微粒子,并在火灾发生前的30min到20min预警,确保了系统的高灵敏性和高可靠性,实现早期报警。

针对当前火灾自动报警系统存在的通讯协议不一致,系统误报、漏报频繁,智能化程度低,网络化程度低、特殊恶劣环境的火灾探测报警抗干扰等问题较为突出的现象,提出在符合国家消防规范的基础下采用统一、标准、开放的通讯协议,通过对新技术、新工艺、新材料和新设备的应用研究,对系统方案、设备选型的优化组合,改进火灾自动报警系统的工作性能、减少维护费用和维护要求,向着高可靠性、高灵敏性、低误报率、系统网络化、技术智能化方向发展,为更好的预防和遏制建筑火灾提供了强有力的保障,从而更好的保护国家和人民的生命、财产安全。这是火灾自动报警应用技术的研究发展趋势。

参考文献

探测技术范文篇10

火灾自动报警系统网络化是用计算机技术将控制器之间、探测器之间、系统内部、各个系统之间以及城市“ll9”报警中心等通过一定的网络协议进行相互连接,实现远程数据的调用,对火灾自动报警系统实行网络监控管理,使各个独立的系统组成一个大的网络,实现网络内部各系统之间的资源和信息共享,使城市“ll9”报警中心的人员能及时、准确掌握各单位的有关信息,对各系统进行宏观管理,对各系统出现的问题能及时发现并及时责成有关单位进行处理,从而弥补现在部分火灾自动报警系统擅自停用,值班管理人员责任心不强、业务素质低、对出现的问题处置不及时、不果断等方面的不足。

2智能化

火灾自动报警系统智能化是使探测系统能模仿人的思维,主动采集环境温度、湿度、灰尘、光波等数据模拟量并充分采用模糊逻辑和人工神经网络技术等进行计算处理,对各项环境数据进行对比判断,从而准确地预报和探测火灾,避免误报和漏报现象。发生火灾时,能依据探测到的各种信息对火场的范围、火势的大小、烟的浓度以及火的蔓延方向等给出详细的描述,甚至可配合电子地图进行形象提示、对出动力量和扑救方法等给出合理化建议,以实现各方面快速准确反应联动,最大限度地降低人员伤亡和财产损失,而且火灾中探测到的各种数据可作为准确判定起火原因、调查火灾事故责任的科学依据。此外,规模庞大的建筑使用全智能型火灾自动报警系统,即探测器和控制器均为智能型,分别承担不同的职能,可提高系统巡检速度、稳定性和可靠性。

3多样化

(1)火灾探探测技术的多样化。我国目前应用的火灾探测器按其响应和工作原理基本可分为感烟、感温、火焰、可燃气体探测器以及两种或几种探测器的组合等,其中,感烟探测器一枝独秀,但光纤线性感温探测技术、火焰自动探测技术、气体探测技术、静电探测技术、燃烧声波探测技术、复合式探测技术代表了火灾探测技术发展和开发应用研究的方向。此外,利用纳米粒子化学活性强、化学反应选择性好的特性,将纳米材料制成气体探测器或离子感烟探测器,用来探测有毒气体、易燃易爆气体、蒸气及烟雾的浓度并进行预警,具有反应快、准确性高的特点,目前已列为我国消防科研工作者的重点研究开发课题。

(2)设备连接方式的多样化。随着无线通信技术的成熟、完善和新型有线通信材料的研制,设备间、系统间可根据具体的环境、场所的不同而选择方便可靠的通信方式和技术,设备间可以用无线技术进行连接,形成有线、无线互补,同时新型通信材料的研制开发可弥补铜线连接存在的缺陷。而且各探测器之间也可进行数据信息传递和交流,使探测器的设置从枝状变成网状,探测器不再是各自独立的,使系统间、设备间的信息传递更方便、更可靠。

4小型化

火灾自动报警系统的小型化是指探测部分或者说网络中的“子系统”小型化。如果火灾自动报警系统实现网络化,那么系统中的中心控制器等设备就会变得很小,甚至对较小的报警设备安装单位就可以不再独立设置,而依靠网络中的设备、服务资源进行判断、控制、报警,这样火灾自动报警系统安装、使用、管理就变得简洁、省钱、方便。

5社区化

目前我国火灾自动报警系统只被安装在重要建筑上,而在美国、日本等发达国家,包括许多居民家庭都安装了火灾自动报警系统。随着我国经济的不断发展、人们安全意识的增强、火灾自动报警系统的进一步完善以及智能化程度的提高,在社区家庭特圳是高级住宅积极推广应用防盗、防火联动报警装置或独立式感烟探测器,对干预防居民家庭火灾是非常必要和行之有效的措施。

6蓝牙技术无线化

与有线火灾自动报警系统相比,蓝牙技术无线火灾自动报警系统具有施工简单、安装容易、组网方便、调试省时省力等特点,而且对建筑结构损坏小,便于与原有系统集成且容易扩展,系统设计简单且可完全寻址,便于网络化设计,可广泛应用于医院、文物古建筑机场、综合建筑和不便联网、建筑物分散、规模较大,干扰较小的建筑。对正在施工或正在进行重新装修的场所,在未安装有线火灾自动报警系统前,这种临时系统可以充分保障建

筑物的防火安全,一旦施工结束,蓝牙技术无线系统可以很容易转移到别的场所。

7高灵敏化

以早期火灾智能预警系统为代表。该系统除采用先进的激光探测技术和独特的主动式空气采样技术以外,还采用了“人工神经网络”算法,具有很强的适应能力、学习能力、容错能力和并行处理能力,近乎于人类的神经思维。此外,该系统的子机与主机可以进行双向智能信息交流。使整个系统的响应速度及运行能力空前提高,误报率几乎接近零,灵敏度比传统探测器高l000倍以上,能探测到物质高热分解出的微粒子,并在火灾发生前的30min到20min预警,确保了系统的高灵敏性和高可靠性,实现早期报警。

针对当前火灾自动报警系统存在的通讯协议不一致,系统误报、漏报频繁,智能化程度低,网络化程度低、特殊恶劣环境的火灾探测报警抗干扰等问题较为突出的现象,提出在符合国家消防规范的基础下采用统一、标准、开放的通讯协议,通过对新技术、新工艺、新材料和新设备的应用研究,对系统方案、设备选型的优化组合,改进火灾自动报警系统的工作性能、减少维护费用和维护要求,向着高可靠性、高灵敏性、低误报率、系统网络化、技术智能化方向发展,为更好的预防和遏制建筑火灾提供了强有力的保障,从而更好的保护国家和人民的生命、财产安全。这是火灾自动报警应用技术的研究发展趋势。

参考文献

[1]于潇.浅谈我国火灾自动报警系统生产行业的发展概况[J].科技资讯,2005,(23).

[2]李卓.蓝牙技术在火灾自动报警系统中的应用探讨[J].消防科学与技术,2005,(3).