氢气范文10篇

时间:2023-03-30 02:39:32

氢气

氢气范文篇1

使学生掌握实验室用金属和酸反应制取氢气的化学反应原理,初步了解实验室制备实验的一般思路和方法;

了解置换反应的概念,对给定反应物、生成物的化学反应,能初步判断反应类型;

根据气体的性质,学会判断气体收集的方法。

能力目标

培养学生的观察能力,通过观察了解启普发生器的工作原理,并根据其原理,用易得廉价的简单实验仪器,自行设计制备氢气的简易装置。

情感目标

通过对氢气纯度的检验,使学生了解点燃可燃性气体之前,需要进行验纯的必要性,加强对学生进行安全教育。

教学建议

本节课是元素化合物的基础知识课,难度虽不大,但知识面广,这些知识是后续教学的基础。

1.准确恰当地抓住教学目标,本节课要抓住置换反应的概念和氢气的实验室制取装置等主要内容,紧紧围绕这些知识的形成过程进行教学活动。因此教学目标应具体、明确,教材处理详略得当,紧紧围绕教学大纲的规定和教材内容的要求,重视能力培养和养成教育。

2.教学内容应有序、合理

教学过程从水的电解产物和氧气的有关知识开始,可以用计算机等媒体放映"氢气的用途"资料片,导出新课。再通过实验,师生共同讨论,建立置换反应的概念,同时简介原子团的知识。在此基础上,结合实物展示,巧设问题,由简到繁,从易到难,根据仪器药品,让学生在课堂上设计出一套制氢气的合适装置,通过设计实验,一可培养学生的动手、动脑的能力,二可增强他们学习兴趣,三可巩固已学知识。

3.优选教学方法,教学手段多样化

本节教学方法是实验探究法,以实验为前提,通过实验观察,实物展示和录像、计算机、投影等电化教学手段,集实验、讨论、讲述、讲解、归纳、练习为一体,这种方法既充分体现了以实验为基础的学科特点,又体现了教为主导,学为主体二者统一的教学原则。

4.重视能力培养,注意养成教育

本节教学应灵活运用多媒体教学手段,通过实验或启发性、探究性的问题,激发学生的学习兴趣,增加学生动眼、动手、动口、动脑的机会,培养和发展学生观察、操作、思维与自学等多种技能和多种能力。同时,教学中每一个知识点都是以已有知识或化学事实、探究性问题开始,通过实验观察、引导思考、讨论、自学等多种方式,突出对学生学习过程的指导,教给学生学习方法和思维方式,这样有利于逐步建立有效的学习方法,养成良好的学习习惯。此外,教学中还可结合"氢气的发现史"和"制氢发生装置"的分析讨论,以及知识的迁移过程,同时向学生进行辩证唯物主义认识论和科学态度、科学方法的教育,这些都有利于对学生进行素质教育。

教学设计方案

早在十六、七世纪的时候,有好几位科学家都发现了金属跟酸反应能产生一种可燃性的气体——氢气。直到现在,氢气的实验室制法仍然选用金属跟酸反应。那么用哪种金属,用哪种酸为最好呢?

一、验室制取氢气的原理:

(实验)取四支试管,分别向其中加入镁条、锌粒、铁钉、铜片,然后向试管中加入等量的同种稀硫酸,观察产生气体的速率。

(现象)稀硫酸同时与Mg、Zn、Fe、Cu接触,实验现象是:Mg与稀硫酸反应剧烈,锌与酸反应,产生氢气的速率较快,Fe与稀硫酸反应很慢,铜与稀硫酸接触,没有明显现象。

实验室制取气体,要求便于操作和收集,而Mg反应速率过快,不方便收集;Fe反应速率过慢,因此常选用锌为最合适。

二、实验室制取氢气的装置和收集方法

1.制备装置:

完整的气体制取装置包括发生装置(即发生反应生成该气体的装置)和收集装置两部分。

气体发生装置的确定,要依据反应原理,特别是反应物的状态和反应条件。实验室制取氢气所用的锌是颗粒状固体,所用的稀硫酸呈液体,常温下两种药品接触即可发生反应。由此可见,只需用容器将锌和稀硫酸盛放在一起,并将产生的氢气通过导管导出即可。因此组装发生装置应包括盛装药品的反应容器(大试管、广口瓶、锥形瓶、烧瓶等均可),用于封闭反应容器口的胶塞,穿过胶塞用于导出氢气的玻璃导管(用试管或烧瓶作反应容器时还需用铁架台固定)。这种装置是最简单的氢气发生装置,如下图(A)、(B)所示。

(讨论)但这种发生装置的缺点是必须当锌和稀硫酸中至少有一种完全反应后该反应才能停止,如何使制取气体的过程连续呢?

实验中常加一长颈漏斗,通过长颈漏斗分次加酸来控制反应,如下图所示。

长颈漏斗下部必须浸泡在酸液中,为什么呢?

此时将导气管一端堵死,观察实验现象。如学生看不清楚,可重复几次,并提示学生应注意的问题。

(请同学简述现象,分析原因)

展示启普发生器,介绍部件名称,作用,介绍使用方法。

2.气体的收集:

气体的收集装置要依据该气体的收集方法而定。氢气的收集方法有两种:向下排空气法(因为氢气密度最小)和排水法(因为氢气难溶于水且不和水反应),如图(E)、(F)所示。

如果用向下排空气法收集氢气,难于验满,因此收集氢气的最佳方法是排水法。

注意事项:仪器连接好以后应先检查装置的气密性,然后再装入药品制取氢气;将锌粒装入试管时,应将试管倾斜,使锌粒滑入试管底部,以免直接投入时砸破试管底;对产生的氢气经验纯后再收集或直接应用;收集满氢气的集气瓶应倒置在桌上,防止氢气很快逸散。

三、氢气纯度的检验方法

实验操作:用排水法或向下排气法收集一试管氢气,用拇指堵住,移近火焰,如果听到尖锐的爆鸣声,表明氢气不纯。然后按上述方法再收集、再检验,至点燃时发出的响声很小时,表明氢气已经纯净。实验操作过程如下图:

注意事项:当开始收集的氢气经检验不纯,这时需要再收集、再检验。若下一步要采用向下排空气法收集氢气,应先用拇指把试管口堵住一会儿,再去收集、检验氢气。否则刚用于检验氢气的试管内的火焰可能没有熄灭,立即用这个试管去再收集氢气时,可能会点燃导管口不纯的氢气,引起装置爆炸,发生危险。

四、置换反应:

置换反应:由一种单质跟一种化合物起反应,生成另一种单质和另一种化合物的反应叫做置换反应。

置换反应中“置换”的涵义是:反应物之一的单质中所含元素,代换了参加反应的化合物中的某种元素。

置换反应是化学基本反应类型之一。

表达式:单质+化合物=新单质+新化合物

A+BCAC+B

锌+稀硫酸==硫酸锌+氢气

Zn+H2SO4==ZnSO4+H2

单质化合物化合物单质

置换反应的特点是:参加反应的物质只有两种,且一定是一种单质和一种化合物。生成物也只有两种,一种一定是单质,另一种一定是化合物。掌握了这些特点,就能够正确地判断置换反应。

五、原子团的概念:

锌+稀硫酸==硫酸锌+氢气

Zn+H2SO4==ZnSO4+H2

在锌与硫酸进行反应时,反应物硫酸,生成物硫酸锌均有相同的集团,即:

H2SO4和ZnSO4中的画线部分。在许多化学反应中,作为一个整体参加反应,就好像一个原子一样,这样的原子集团叫做原子团。

常见的原子团有:

KClO3氯酸根

KMnO4高锰酸根

NaOH氢氧根

H2SO4硫酸根

KNO3硝酸根

探究活动

1用废旧的可乐瓶(塑料)、吸管、粘合剂,根据启普发生器原理,制作一个简易装置。

2根据启普发生器的原理,设计三套类似的实验装置,画出装置图。

氢气范文篇2

使学生了解氢气的物理性质,掌握氢气的可燃性、还原性,并了解有关的实验过程和现象以及注意事项;

根据氢气的性质了解其主要用途;

从得氧和失氧的角度对照了解氧化反应和还原反应,氧化剂和还原剂。

能力目标

通过对实验现象的观察,培养学生的观察能力和思维能力。

情感目标

通过氢气燃烧与爆炸和还原性与还原反应的教学,进行量变引起质变和对立统一规律的辩证唯物主义教育。

教学建议

教法建议

在讲氢气的性质之前,学生已学过氧气的性质、制法和氢气的实验室制法。教师根据学生已有的知识水平、化学教学大纲的要求和教材的特点,确定恰当的知识范围和实验内容,使学生了解氢气的物理性质,掌握氢气的可燃性、还原性及有关实验现象和化学方程式;了解点燃氢气之前为什么要检验氢气的纯度以及检验的方法,结合实验内容明确提出培养学生观察能力,结合氢气的可燃性对学生进行环境保护教育等。

在教学过程中,教师应始终围绕教学目标,层层深入地展开教学内容。教师讲新课之前先复习旧知识,以实验室用什么药品制取氢气,收集氢气有几种方法等问题导入新课,而后展示一瓶瓶口倒置的氢气,请学生通过观察氢气在通常状态下的色、态、水溶性、密度等,让学生通过观察思考自己总结出氢气的物理性质。这种从感性到理性认识问题的方法,层次清楚,符合学生认识规律和能力形成与发展的规律。在讲授氢气的可燃性和还原性时,也应先演示氢气在空气中安静燃烧、氢气中混有空气点燃发生爆鸣、氢气在氯气中燃烧在瓶口出现白雾、氢气还原氧化铜的实验等,而后运用投影,进行反应实质的总结,写出化学方程式。这种运用探索性实验的教法,能使学生从感性认识上升到理性认识,揭示了知识的本质和内在联系。

最后教师通过让学生看书进行小结,再通过让学生做练习题进行巩固,使大多学生都能掌握基本的、重点的知识,从而圆满地完成教学任务。

其它一些建议:

(1)为使操作方便,节省时间和药品,氢气发生装置宜选用启普发生器。

(2)为增加实验兴趣,可在实验3-4的肥皂水中加入颜色。

(3)氢气燃烧实验必须绝对安全,氢气燃烧除焰色、发热和爆炸外,还可引导学生注意产物,即可在烧杯内壁涂上遇水显色的物质。

(4)认真做好氢气还原氧化铜实验,使学生掌握操作步骤。

(5)引导学生分析反应物和产物,为下章学习打下基础。

(6)复习氧化反应,引入还原反应。先以氢气和氧化铜为例理清概念,不要急于将前面各种氧化反应均分析一下哪个是氧化剂、还原剂。

(7)使学生了解用途对性质的依赖关系。

关于“燃烧”概念的扩展

从对比氢气在空气中燃烧和氢气在氯气中燃烧时火焰的颜色不同和生成物不同,不仅能总结出两个反应的特殊性,同时也能找出它们的共性——剧烈的、发光放热的化学反应。从而扩大了“燃烧”概念的内涵。

同时,还可以观察到它们的火焰构造与酒精灯和蜡烛的火焰结构不同。氢气在空气中和氯气中燃烧的火焰都是内外两层,这是因为气体燃烧时不必经气化阶段,所以没有气化层的“焰芯”。

氢氧混合气体的爆鸣

在导管口点燃氢气之前,必须先检验氢气的纯度,完全是由氢气易燃且放出大量热的性质所决定的。

课本选用了纸筒的实验。但书中只描述了"刚点燃时,氢气安静地燃烧,过一会儿,突然听到"砰"的一声响,爆炸的气浪把纸筒高高掀起。事实上,这个实验如果做得好,所能观察到的现象要比以上课本的那段描述复杂些。所能说明解释的问题也更深入些。实验的具体情况是:

用一个没有盖的纸筒(或罐头筒)底上穿一个小孔,小孔用一尖细小木条塞紧(或用火柴杆也行)。把筒倒立,用排空气法迅速充满氢气,将纸筒向下平置于桌面上,在拔掉小木条的同时,就小孔处点燃逸出的氢气。最初氢气在小孔处安静地燃烧,一会儿听“嗡嗡”的声响,而且声音逐渐增强,最后才是砰然巨响,爆炸的气浪使纸筒腾空而起。

教学设计方案

重点:氢气的化学性质

一复习提问:

1.写出实验室制氢气的化学方程式。

2.画出实验室制氢气的简易装置图。

二导入新课:氢气的性质。

1.氢气的物理性质:

按照描述氧气物理性质的顺序,回忆上节课的实验现象描述氢气的色、态、味和溶解性等。

【实验3-4】装置如图所示。球形干燥管里装有碱石灰干燥剂。导管口蘸些肥皂水,控制氢气流速,吹出肥皂泡。当肥皂泡吹到足够大时,轻轻摆动导管,让肥皂泡脱离管口,这时可以观察到肥皂泡上升。

肥皂泡上升说明氢气密度小。在标准状况(1大气压,0℃)下,氧气、空气、氢气的密度分别为1.429克/升,1.293克/升,0.0899克/升,它们的比值为16∶14.5∶1。(为什么用排空气法收集?)

氢气在通常状况下,是一种没有颜色、没有气味的气体,难溶于水,比空气轻。

2.氢气的化学性质:

【实验3-5】在带尖嘴的导管口点燃纯净的氢气,观察火焰的颜色。然后在火焰上方罩一个冷而干燥的烧杯,过一会儿,观察烧杯壁上有什么现象发生。

引导观察燃烧的焰色和烧杯内壁有什么现象出现。把烧杯传递给学生,让学生用手触摸烧杯,感觉热量。证明氢气具有可燃性,燃烧时放出大量的热。

(1)氢气的可燃性:

在这个实验中为什么强调“纯净”呢?如果氢气不纯净燃烧时会怎么样呢?

【实验3-6】取一个一端开口,另一端钻有小孔的纸筒(或塑料筒等),用纸团堵住小孔,用向下排空气法收集氢气,使纸团内充满氢气。把氢气发生装置移开,拿掉堵小孔的纸团,用燃着的木条在小孔处点火,注意有什么现象发生。(人要离开,注意安全。)

引导学生观察:

①注意小孔处点火时的开始情况;

②仔细倾听音响的变化;

③观察随音响变化而发生的现象。

板书氢气不纯混有空气或氧气,点燃时发生爆炸。

为什么点燃纯净的氢气能安静地燃烧,而混合气体却会发生爆炸呢?

点燃纯净的氢气时,在导管口流出的氢气量少,与氧气接触少,反应时产生的热量也少,且散失较快,所以点燃时安静地燃烧。

点燃纸筒中氢气时,随着氢气的消耗,空气不断从纸筒底部进入筒内。氢气和空气接触并混和,与氧气接触面多,点燃时快速反应,产生的热量在极短时间内、有限空间里急剧膨胀,就发生了爆炸。

实验测定,当空气中混入氢气的体积达到总体积的4%~74.2%时,点燃即发生爆炸。这个范围叫做氢气的爆炸极限。所以,点燃需要纯净的氢气,点燃氢气前必须检验氢气的纯度。

【实验3-7】用排水法收集一试管氢气,用拇指堵住,移近火焰,移开拇指点火。如果听到尖锐的爆鸣声,就表明氢气不纯,需要再收集,再检验,直到响声很小,才表明氢气已经纯净,如果用向下排空气法收集氢气,经检验不纯而需要再检验时,应该用拇指堵住试管口一会儿,然后再收集氢气检验纯度,以免暗焰引发氢气发生器爆炸。

【实验3-8】在干燥的硬质试管底部铺一层黑色的氧化铜,管口微向下倾斜。通入氢气,过一会儿再给氧化铜加热。注意观察黑色的氧化铜有什么变化,管口有什么生成。反应完成后停止加热,还要继续通入氢气,直到试管冷却后,再停止通氢。

引导学生思考:

(1)放氧化铜的试管口为什么要略向下倾斜?

(2)导气管为什么要伸入到试管底部,管口不能用塞子塞住?

(3)为什么先通一会儿氢气,再加热氧化铜?氢气的纯度是否需要检验?

(4)实验在停止加热时,为什么还要继续通入氢气到试管全部冷却为止?

联系已学过的有关知识逐一讨论。归纳出实验步骤韵语记忆口诀:

板书“一通、二点、三灭、四撤”。

引导学生用化学式表述反应过程

氢气和氧化铜反应:

练习:实验室制备氢气并使氢气跟灼热的氧化铜反应有以下主要步骤,请按正确的操作顺序排列序号___________________。

A检验氢气发生装置的气密性;B给试管中的氧化铜加热;

C向氢气发生装置里添加药品;D停止加热;

E向装有氧化铜试管中通入氢气;F停止通入氢气;

G检验氢气的纯度。

复习提问:什么是氧化反应?氢气与氧化铜反应是否是氧化反应?

分析:在氢气与氧化铜反应中,氢气夺取了氧化铜中的氧,发生了氧化反应。而氧化铜失去了氧变成了单质铜,则氧化铜发生了还原反应。

在反应中,氢气夺取了氧化铜中的氧,发生了氧化反应。使铜被还原出来,说明氢气有还原能力,我们称之为还原性,而把氢气称之为还原剂。

氧化铜失去了氧,发生了还原反应。使氢气发生了氧化反应,说明它具有氧化能力,我们称之为氧化性,而把氧化铜称之为氧化剂。

氢气:得氧~有还原性~是还原剂~发生了氧化反应。

氧化铜:失氧~有氧化性~是氧化剂~发生了还原反应。

练习:在高温下,三氧化二铁与一氧化碳反应生成单质铁和二氧化碳。此反应中氧化剂是_______,还原剂是_______,_______,发生了氧化反应,________发生了还原反应。

氢气的用途:阅读课本57页图3-14。

物质的用途是由其性能决定的。

密度小——氢气球;

可燃性——氢氧焰、高能燃料等;

还原性——冶炼金属、制备硅等;

另外还可用于合成氨气、制备盐酸。

探究活动

1.家庭小实验在如教材第53页所示的实验3-4中,可以用蜡烛不断点燃产生、上升的氢气泡。想办法使氢气泡中含有少量空气,一来可减慢氢气上升的速度,二来又可产生强烈的爆鸣声。

氢气范文篇3

使学生了解氢气的物理性质,掌握氢气的可燃性、还原性,并了解有关的实验过程和现象以及注意事项;

根据氢气的性质了解其主要用途;

从得氧和失氧的角度对照了解氧化反应和还原反应,氧化剂和还原剂。

能力目标

通过对实验现象的观察,培养学生的观察能力和思维能力。

情感目标

通过氢气燃烧与爆炸和还原性与还原反应的教学,进行量变引起质变和对立统一规律的辩证唯物主义教育。

教学建议

教法建议

在讲氢气的性质之前,学生已学过氧气的性质、制法和氢气的实验室制法。教师根据学生已有的知识水平、化学教学大纲的要求和教材的特点,确定恰当的知识范围和实验内容,使学生了解氢气的物理性质,掌握氢气的可燃性、还原性及有关实验现象和化学方程式;了解点燃氢气之前为什么要检验氢气的纯度以及检验的方法,结合实验内容明确提出培养学生观察能力,结合氢气的可燃性对学生进行环境保护教育等。

在教学过程中,教师应始终围绕教学目标,层层深入地展开教学内容。教师讲新课之前先复习旧知识,以实验室用什么药品制取氢气,收集氢气有几种方法等问题导入新课,而后展示一瓶瓶口倒置的氢气,请学生通过观察氢气在通常状态下的色、态、水溶性、密度等,让学生通过观察思考自己总结出氢气的物理性质。这种从感性到理性认识问题的方法,层次清楚,符合学生认识规律和能力形成与发展的规律。在讲授氢气的可燃性和还原性时,也应先演示氢气在空气中安静燃烧、氢气中混有空气点燃发生爆鸣、氢气在氯气中燃烧在瓶口出现白雾、氢气还原氧化铜的实验等,而后运用投影,进行反应实质的总结,写出化学方程式。这种运用探索性实验的教法,能使学生从感性认识上升到理性认识,揭示了知识的本质和内在联系。

最后教师通过让学生看书进行小结,再通过让学生做练习题进行巩固,使大多学生都能掌握基本的、重点的知识,从而圆满地完成教学任务。

其它一些建议:

(1)为使操作方便,节省时间和药品,氢气发生装置宜选用启普发生器。

(2)为增加实验兴趣,可在实验3-4的肥皂水中加入颜色。

(3)氢气燃烧实验必须绝对安全,氢气燃烧除焰色、发热和爆炸外,还可引导学生注意产物,即可在烧杯内壁涂上遇水显色的物质。

(4)认真做好氢气还原氧化铜实验,使学生掌握操作步骤。

(5)引导学生分析反应物和产物,为下章学习打下基础。

(6)复习氧化反应,引入还原反应。先以氢气和氧化铜为例理清概念,不要急于将前面各种氧化反应均分析一下哪个是氧化剂、还原剂。

(7)使学生了解用途对性质的依赖关系。

关于“燃烧”概念的扩展

从对比氢气在空气中燃烧和氢气在氯气中燃烧时火焰的颜色不同和生成物不同,不仅能总结出两个反应的特殊性,同时也能找出它们的共性——剧烈的、发光放热的化学反应。从而扩大了“燃烧”概念的内涵。

同时,还可以观察到它们的火焰构造与酒精灯和蜡烛的火焰结构不同。氢气在空气中和氯气中燃烧的火焰都是内外两层,这是因为气体燃烧时不必经气化阶段,所以没有气化层的“焰芯”。

氢氧混合气体的爆鸣

在导管口点燃氢气之前,必须先检验氢气的纯度,完全是由氢气易燃且放出大量热的性质所决定的。

课本选用了纸筒的实验。但书中只描述了"刚点燃时,氢气安静地燃烧,过一会儿,突然听到"砰"的一声响,爆炸的气浪把纸筒高高掀起。事实上,这个实验如果做得好,所能观察到的现象要比以上课本的那段描述复杂些。所能说明解释的问题也更深入些。实验的具体情况是:

用一个没有盖的纸筒(或罐头筒)底上穿一个小孔,小孔用一尖细小木条塞紧(或用火柴杆也行)。把筒倒立,用排空气法迅速充满氢气,将纸筒向下平置于桌面上,在拔掉小木条的同时,就小孔处点燃逸出的氢气。最初氢气在小孔处安静地燃烧,一会儿听“嗡嗡”的声响,而且声音逐渐增强,最后才是砰然巨响,爆炸的气浪使纸筒腾空而起。

几种可燃性气体与空气混合的爆炸界限

气体最低成分%最高成分%

氢气4.174.2

一氧化碳12.574.2

甲烷5.015.0

乙炔2.580.0

教学设计方案

重点:氢气的化学性质

一复习提问:

1.写出实验室制氢气的化学方程式。

2.画出实验室制氢气的简易装置图。

二导入新课:氢气的性质。

1.氢气的物理性质:

按照描述氧气物理性质的顺序,回忆上节课的实验现象描述氢气的色、态、味和溶解性等。

【实验3-4】装置如图所示。球形干燥管里装有碱石灰干燥剂。导管口蘸些肥皂水,控制氢气流速,吹出肥皂泡。当肥皂泡吹到足够大时,轻轻摆动导管,让肥皂泡脱离管口,这时可以观察到肥皂泡上升。

肥皂泡上升说明氢气密度小。在标准状况(1大气压,0℃)下,氧气、空气、氢气的密度分别为1.429克/升,1.293克/升,0.0899克/升,它们的比值为16∶14.5∶1。(为什么用排空气法收集?)

氢气在通常状况下,是一种没有颜色、没有气味的气体,难溶于水,比空气轻。

2.氢气的化学性质:

【实验3-5】在带尖嘴的导管口点燃纯净的氢气,观察火焰的颜色。然后在火焰上方罩一个冷而干燥的烧杯,过一会儿,观察烧杯壁上有什么现象发生。

引导观察燃烧的焰色和烧杯内壁有什么现象出现。把烧杯传递给学生,让学生用手触摸烧杯,感觉热量。证明氢气具有可燃性,燃烧时放出大量的热。

(1)氢气的可燃性:

在这个实验中为什么强调“纯净”呢?如果氢气不纯净燃烧时会怎么样呢?

【实验3-6】取一个一端开口,另一端钻有小孔的纸筒(或塑料筒等),用纸团堵住小孔,用向下排空气法收集氢气,使纸团内充满氢气。把氢气发生装置移开,拿掉堵小孔的纸团,用燃着的木条在小孔处点火,注意有什么现象发生。(人要离开,注意安全。)

引导学生观察:

①注意小孔处点火时的开始情况;

②仔细倾听音响的变化;

③观察随音响变化而发生的现象。

板书氢气不纯混有空气或氧气,点燃时发生爆炸。

为什么点燃纯净的氢气能安静地燃烧,而混合气体却会发生爆炸呢?

点燃纯净的氢气时,在导管口流出的氢气量少,与氧气接触少,反应时产生的热量也少,且散失较快,所以点燃时安静地燃烧。

点燃纸筒中氢气时,随着氢气的消耗,空气不断从纸筒底部进入筒内。氢气和空气接触并混和,与氧气接触面多,点燃时快速反应,产生的热量在极短时间内、有限空间里急剧膨胀,就发生了爆炸。

实验测定,当空气中混入氢气的体积达到总体积的4%~74.2%时,点燃即发生爆炸。这个范围叫做氢气的爆炸极限。所以,点燃需要纯净的氢气,点燃氢气前必须检验氢气的纯度。

【实验3-7】用排水法收集一试管氢气,用拇指堵住,移近火焰,移开拇指点火。如果听到尖锐的爆鸣声,就表明氢气不纯,需要再收集,再检验,直到响声很小,才表明氢气已经纯净,如果用向下排空气法收集氢气,经检验不纯而需要再检验时,应该用拇指堵住试管口一会儿,然后再收集氢气检验纯度,以免暗焰引发氢气发生器爆炸。

【实验3-8】在干燥的硬质试管底部铺一层黑色的氧化铜,管口微向下倾斜。通入氢气,过一会儿再给氧化铜加热。注意观察黑色的氧化铜有什么变化

,管口有什么生成。反应完成后停止加热,还要继续通入氢气,直到试管冷却后,再停止通氢。

引导学生思考:

(1)放氧化铜的试管口为什么要略向下倾斜?

(2)导气管为什么要伸入到试管底部,管口不能用塞子塞住?

(3)为什么先通一会儿氢气,再加热氧化铜?氢气的纯度是否需要检验?

(4)实验在停止加热时,为什么还要继续通入氢气到试管全部冷却为止?

联系已学过的有关知识逐一讨论。归纳出实验步骤韵语记忆口诀:

板书“一通、二点、三灭、四撤”。

引导学生用化学式表述反应过程

氢气和氧化铜反应:

练习:实验室制备氢气并使氢气跟灼热的氧化铜反应有以下主要步骤,请按正确的操作顺序排列序号___________________。

A检验氢气发生装置的气密性;B给试管中的氧化铜加热;

C向氢气发生装置里添加药品;D停止加热;

E向装有氧化铜试管中通入氢气;F停止通入氢气;

G检验氢气的纯度。

复习提问:什么是氧化反应?氢气与氧化铜反应是否是氧化反应?

分析:在氢气与氧化铜反应中,氢气夺取了氧化铜中的氧,发生了氧化反应。而氧化铜失去了氧变成了单质铜,则氧化铜发生了还原反应。

在反应中,氢气夺取了氧化铜中的氧,发生了氧化反应。使铜被还原出来,说明氢气有还原能力,我们称之为还原性,而把氢气称之为还原剂。

氧化铜失去了氧,发生了还原反应。使氢气发生了氧化反应,说明它具有氧化能力,我们称之为氧化性,而把氧化铜称之为氧化剂。

氢气:得氧~有还原性~是还原剂~发生了氧化反应。

氧化铜:失氧~有氧化性~是氧化剂~发生了还原反应。

练习:在高温下,三氧化二铁与一氧化碳反应生成单质铁和二氧化碳。此反应中氧化剂是_______,还原剂是_______,_______,发生了氧化反应,________发生了还原反应。

氢气的用途:阅读课本57页图3-14。

物质的用途是由其性能决定的。

密度小——氢气球;

可燃性——氢氧焰、高能燃料等;

还原性——冶炼金属、制备硅等;

另外还可用于合成氨气、制备盐酸。

探究活动

1.家庭小实验在如教材第53页所示的实验3-4中,可以用蜡烛不断点燃产生、上升的氢气泡。想办法使氢气泡中含有少量空气,一来可减慢氢气上升的速度,二来又可产生强烈的爆鸣声。

氢气范文篇4

知识目标

使学生掌握实验室用金属和酸反应制取氢气的化学反应原理,初步了解实验室制备实验的一般思路和方法;

了解置换反应的概念,对给定反应物、生成物的化学反应,能初步判断反应类型;

根据气体的性质,学会判断气体收集的方法。

能力目标

培养学生的观察能力,通过观察了解启普发生器的工作原理,并根据其原理,用易得廉价的简单实验仪器,自行设计制备氢气的简易装置。

情感目标

通过对氢气纯度的检验,使学生了解点燃可燃性气体之前,需要进行验纯的必要性,加强对学生进行安全教育。

教学建议

本节课是元素化合物的基础知识课,难度虽不大,但知识面广,这些知识是后续教学的基础。

1.准确恰当地抓住教学目标,本节课要抓住置换反应的概念和氢气的实验室制取装置等主要内容,紧紧围绕这些知识的形成过程进行教学活动。因此教学目标应具体、明确,教材处理详略得当,紧紧围绕教学大纲的规定和教材内容的要求,重视能力培养和养成教育。

2.教学内容应有序、合理

教学过程从水的电解产物和氧气的有关知识开始,可以用计算机等媒体放映氢气的用途资料片,导出新课。再通过实验,师生共同讨论,建立置换反应的概念,同时简介原子团的知识。在此基础上,结合实物展示,巧设问题,由简到繁,从易到难,根据仪器药品,让学生在课堂上设计出一套制氢气的合适装置,通过设计实验,一可培养学生的动手、动脑的能力,二可增强他们学习兴趣,三可巩固已学知识。

3.优选教学方法,教学手段多样化

本节教学方法是实验探究法,以实验为前提,通过实验观察,实物展示和录像、计算机、投影等电化教学手段,集实验、讨论、讲述、讲解、归纳、练习为一体,这种方法既充分体现了以实验为基础的学科特点,又体现了教为主导,学为主体二者统一的教学原则。

4.重视能力培养,注意养成教育

本节教学应灵活运用多媒体教学手段,通过实验或启发性、探究性的问题,激发学生的学习兴趣,增加学生动眼、动手、动口、动脑的机会,培养和发展学生观察、操作、思维与自学等多种技能和多种能力。同时,教学中每一个知识点都是以已有知识或化学事实、探究性问题开始,通过实验观察、引导思考、讨论、自学等多种方式,突出对学生学习过程的指导,教给学生学习方法和思维方式,这样有利于逐步建立有效的学习方法,养成良好的学习习惯。此外,教学中还可结合氢气的发现史和制氢发生装置的分析讨论,以及知识的迁移过程,同时向学生进行辩证唯物主义认识论和科学态度、科学方法的教育,这些都有利于对学生进行素质教育。

教学设计方案

早在十六、七世纪的时候,有好几位科学家都发现了金属跟酸反应能产生一种可燃性的气体——氢气。直到现在,氢气的实验室制法仍然选用金属跟酸反应。那么用哪种金属,用哪种酸为最好呢?

一、验室制取氢气的原理:

(实验)取四支试管,分别向其中加入镁条、锌粒、铁钉、铜片,然后向试管中加入等量的同种稀硫酸,观察产生气体的速率。

(现象)稀硫酸同时与Mg、Zn、Fe、Cu接触,实验现象是:Mg与稀硫酸反应剧烈,锌与酸反应,产生氢气的速率较快,Fe与稀硫酸反应很慢,铜与稀硫酸接触,没有明显现象。

实验室制取气体,要求便于操作和收集,而Mg反应速率过快,不方便收集;Fe反应速率过慢,因此常选用锌为最合适。

二、实验室制取氢气的装置和收集方法

1.制备装置:

完整的气体制取装置包括发生装置(即发生反应生成该气体的装置)和收集装置两部分。

气体发生装置的确定,要依据反应原理,特别是反应物的状态和反应条件。实验室制取氢气所用的锌是颗粒状固体,所用的稀硫酸呈液体,常温下两种药品接触即可发生反应。由此可见,只需用容器将锌和稀硫酸盛放在一起,并将产生的氢气通过导管导出即可。因此组装发生装置应包括盛装药品的反应容器(大试管、广口瓶、锥形瓶、烧瓶等均可),用于封闭反应容器口的胶塞,穿过胶塞用于导出氢气的玻璃导管(用试管或烧瓶作反应容器时还需用铁架台固定)。这种装置是最简单的氢气发生装置,如下图(A)、(B)所示。

(A)(B)

(讨论)但这种发生装置的缺点是必须当锌和稀硫酸中至少有一种完全反应后该反应才能停止,如何使制取气体的过程连续呢?

实验中常加一长颈漏斗,通过长颈漏斗分次加酸来控制反应,如下图所示。

长颈漏斗下部必须浸泡在酸液中,为什么呢?

此时将导气管一端堵死,观察实验现象。如学生看不清楚,可重复几次,并提示学生应注意的问题。

(请同学简述现象,分析原因)

展示启普发生器,介绍部件名称,作用,介绍使用方法。

2.气体的收集:

气体的收集装置要依据该气体的收集方法而定。氢气的收集方法有两种:向下排空气法(因为氢气密度最小)和排水法(因为氢气难溶于水且不和水反应),如图(E)、(F)所示。

(E)(F)

如果用向下排空气法收集氢气,难于验满,因此收集氢气的最佳方法是排水法。

注意事项:仪器连接好以后应先检查装置的气密性,然后再装入药品制取氢气;将锌粒装入试管时,应将试管倾斜,使锌粒滑入试管底部,以免直接投入时砸破试管底;对产生的氢气经验纯后再收集或直接应用;收集满氢气的集气瓶应倒置在桌上,防止氢气很快逸散。

三、氢气纯度的检验方法

实验操作:用排水法或向下排气法收集一试管氢气,用拇指堵住,移近火焰,如果听到尖锐的爆鸣声,表明氢气不纯。然后按上述方法再收集、再检验,至点燃时发出的响声很小时,表明氢气已经纯净。实验操作过程如下图:

注意事项:当开始收集的氢气经检验不纯,这时需要再收集、再检验。若下一步要采用向下排空气法收集氢气,应先用拇指把试管口堵住一会儿,再去收集、检验氢气。否则刚用于检验氢气的试管内的火焰可能没有熄灭,立即用这个试管去再收集氢气时,可能会点燃导管口不纯的氢气,引起装置爆炸,发生危险。

置换反应是化学基本反应类型之一。

表达式:单质+化合物=新单质+新化合物

A+BCAC+B

锌+稀硫酸==硫酸锌+氢气

Zn+H2SO4==ZnSO4+H2

单质化合物化合物单质

置换反应的特点是:参加反应的物质只有两种,且一定是一种单质和一种化合物。生成物也只有两种,一种一定是单质,另一种一定是化合物。掌握了这些特点,就能够正确地判断置换反应。

(讨论)置换反应与化合反应,分解反应有哪些区别?

Zn+H2SO4==ZnSO4+H2

2SO4和ZnSO4中的画线部分。在许多化学反应中,作为一个整体参加反应,就好像一个原子一样,这样的原子集团叫做原子团。

ClO3氯酸根

MnO4高锰酸根

OH氢氧根

氢气范文篇5

关键词:联合电解催化交换;冷凝器;氢气排放

联合电解催化交换工艺在水-氢同位素分离领域的应用越来越受到重视[1-2],因其操作温度较低,工艺条件容易控制等特点,被国际热核聚变实验堆(InternationalThermonuclearExperimentalReactor,ITER)选为水冷却剂中除氚的重要技术路线[3],同样自日本福岛核事故后,日本东京电力公司也把联合电解催化交换工艺作为其大量含废水除氚的备选重要技术路线。在联合电解催化交换工艺中,含氚废水处理后仅有很少一部分经过富集浓缩后再进行下一步的处理处置,而大部分则转化成气态氢气排放。排放的氢气中含有饱和水蒸气,氚以氧化形态HTO形式存在饱和水蒸气中,其生物毒性比元素态气体强10000倍[4]。因此在氢气排放前,必须对水蒸气进行深度处理。一般采用冷凝的方式将蒸气中的水冷凝,并将冷凝液输送回工艺系统。本文针对氢气中的含氚水蒸气进行研究,优化确定氢气排放工艺。

1联合电解催化交换工艺

该工艺主要有液相催化交换塔单元和电解制氢单元两部分构成[1],如图1所示。液相催化交换塔中填装有贵金属疏水性催化剂和亲水性填料,电解制氢单元产生的氢气与催化交换塔内向下流动的水进行氢同位素的交换,氚在液相水中富集,在气态氢气相中贫化。含氚水进料位置将催化交换塔分为两段,上段为贫化段,下段为富集段。天然水在贫化段顶部流下,洗脱上升的氢气,贫氚后的氢气在顶部排放;在富集段,含氚的进料水与从贫化段流下来的水混合在富集段与氢气进行同位素交换,这样使富集的氚水在液相催化交换塔底部浓集。

2工艺方案及分析

贫氚的氢气从催化交换塔顶部排出。因催化交换塔的最优反应温度一般维持在60~70℃,从顶部排出的氢气中含有饱和的含氚水蒸气,在氢气安全排放前,需要脱除其中的水蒸气,冷却后的氢气温度为10~15℃。如果采用吸附剂吸附,将会产生大量的放射性废物,一般在催化交换塔顶布置冷凝器,冷凝器采用循环冷却水为冷却介质,通过冷凝使饱和水蒸气冷凝,降低氢气中的氚含量。为了减少对环境的排放,冷却下来的含氚水需要回流进入催化交换塔。2.1常用工艺方案常用的回流方式有两种(图2所示),图2(A)所示为垂直回流方式,将冷凝器垂直布置在催化交换塔的上方,冷却的含氚水直接回流进入催化交换塔顶。图2(B)方式为泵回流方式,冷凝器在其他合适区域布置,冷凝的含氚水收集到储液罐中,再通过泵输送至催化交换塔。第一种方式布置简单,只需要增加单一冷凝器设备即可。该布置方式的不足主要体现在两方面:(1)由于冷凝的水直接流入塔顶,水中含有一定的氚,与塔顶的天然水相混合,因此直接影响最上面一段催化交换塔的交换效果;(2)在工艺系统运行启动到达平衡稳定期间,在这一段时间内,催化交换塔顶氢气中氚浓度可能会具有较高的水平,该较高浓度的氚一旦附着在冷却器换热管管壁上,难以清除,这将会导致系统平衡时间延长。第二种方式除了增加冷凝器设备外,增加储液罐和液态输送泵设备。该种布置方式增加了液体输送泵来输送含氚水。泵作为动设备,如果长期连续运行,这样就对泵的稳定性和密封性能带来较大挑战。由于泵设备故障率大且含氚水的放射性危害,经常更换易损部件和维修将会对维修人员的健康带来一定影响。该种方式的优势在于可以使回流的水在催化交换塔的对应浓度处回流至催化交换塔2.2优化工艺方案综合分析比较上述两种方案,本文提出了“双冷凝器”的工艺布置方案,工艺流程图如图3所示。在该工艺方案中,A冷凝器垂直布置在催化交换塔顶部,B冷凝器布置在工艺合适位置,A冷凝器和B冷凝器既可以独立运行,也可以串联运行。除此之外,B冷凝器设置了清洗口(阀门V112和V113),在B冷凝器附着较多氚的情况下,可以对B冷凝器进行清洗,同时若采用串联运行可以优化调节工艺系统中的氢气处理量。2.3工艺运行方式针对双冷凝器的工艺方案,探讨其具体的运行模式:(1)系统开始运行至平衡状态期间,采用B冷凝系统(开启阀门V104、V107、V108、V110和V111,关闭阀门V102和V103),冷凝后液体储存在储液罐中,后经回流泵输送至催化交换塔。(2)系统稳定后切换至A冷凝器运行(开启阀门V104、V103、V102、V109和V111,关闭阀门V107、V108和V110)。B冷凝器进行清洗后备用(开启阀门V112和V113进行清洗)。(3)若A冷凝器出现故障或进行维修,可以切换至B冷凝器运行。(4)系统若需要增大工艺系统的氢气的处理量,A冷凝器和B冷凝器可以串联运行(关闭阀门V107和V109阀门,开启相应阀门即可)。

3结论

针对联合电解催化交换工艺氢气中的含氚水蒸气安全排放,本文提出的双冷凝器的方案设计可以避免系统启动至平衡运行期间导致的高放射性水平的氚污染冷凝器的问题,同时采用双冷凝器,可以提高系统运行的操作弹性,并可以优化调节工艺系统中氢气的处理量。

参考文献

[1]康艺,阮皓,刁义荣,等.101重水研究堆含氚轻水脱氚方案研究[J].原子能科学技,2015,49(12):2124-2129.

[2]钟正坤,张莉,孙颖,等.氢-水同位素交换分离因子理论计算[J].原子能科学与技术,2004,38(2):148-151.

[3]IWAIY,YAMANISHIT,OKUNOK,etal.DesignstudyoffeasiblewaterdetritiationsystemsforfusionreactorofITERscale[J].JournalofNuclearScienceandTechnology,1996,33(12):981-992.

氢气范文篇6

1氢能源调车机车结构

试验氢能源调车机车与普通铁路机车一样,由机械和电气两部分组成。具体组成部分见表1。根据表1所示,整个系统包括供氢系统(储氢罐、PEMFC电板、管道)和动力系统(电池组、牵引逆变器、永磁同步电动机)。列车启动时,9个35MPa碳纤维钢瓶中的氢通过管道和压力调节阀供给燃料电池氢气(ChenW.,2013)。质子交换膜燃料电池将氢转化为水,产生电能,从而为牵引式逆变器发电。运行状态下的PEMFC和电池组的温度高达80°C(ChenW.,2013)。牵引逆变器将直流电(DC)转换为三相交流电(AC),以供给牵引电机。该机车的驱动系统由四个主要的子系统组成,即质子交换膜燃料电池(PEMFC)、冷却子系统、氢气瓶列阵和牵引电机,如图1所示。从图1可以看出,燃料电池动力调车机车最大的部件是氢气瓶列阵。储氢装置由9个35兆帕的碳纤维钢瓶组成,能够储存约23千克压缩氢气(ChenW.,2013)。Chen(2013)还提到,每个氢气瓶工作压力为50MPa。当压力超过80MPa时,高压安全阀(HPSV)会释放氢气以避免氢气爆炸(ChenW.,2013)。因此,如果HPSV无法工作,氢气的超压可能会导致氢气瓶破裂,增加氢气泄漏的可能性。车辆顶部有两个通风机和一个通风口PEMFC模块顶部安装了氢探测器,主要用于检测机车内部的氢气泄漏。笔者对目前元器件布置的安全性进行了评估,如表2所示。

2氢气储存方式与风险

众所周知,氢可以以不同的方式储存,如气态氢、液氢和金属氢化物,大多数氢燃料铁路车辆使用在储存在氢气瓶中的压缩氢,例如BNSF的燃料电池调车机车(HessKS,2008)和NE的实验轨道车(TaketoF,2006)。在XQG45-600P中,35MPa高压氢气瓶中有9个安装在机车本体内,氢气瓶阵列安装在机车中部。同时,PEMFC、电池组和逆变器安装在氢气瓶阵列旁边。根据笔者的理解,上述XQG45-600P的布置是为了减小对机车重心的影响。然而,在安全方面,XQG45-600P氢气瓶阵列布局可能会导致严重的事故,这是因为氢气可能会聚集主隔间等限制区域,从而增加爆炸的可能,尤其是当泄漏的氢气接近电气设备时。同时,氢气燃烧会形成向上的火焰,燃烧机车的内部设施,如氢气瓶列阵上方的通风机或安装在PEMFC上的锂离子电池。由于目前氢气瓶安装位置在车辆中部,可能会导致发生这种事故的风险增加。例如,在储存装置中,如果氢气瓶阵列底部氢气着火,火焰会向上燃烧所有的氢气瓶。此外,持续的大火可能会损坏周围的设施,比如PEMFC和电池组。由于PEMFC在工作阶段需要使用氢来发电,所以,如果火焰蔓延到PEMFC,可能会导致另一次爆炸或更大的火灾事故。因此,作者建议采用车顶线性存储方式,比如使用摆放在车辆顶部的1X9列阵,而不是使用当前XQG45-600P采用的3×3列阵。氢气瓶的顶部线性储存是比较理想的,因为它允许泄漏的氢气向上扩散。此外,沿着车顶线性摆放氢气瓶可以使脱轨和碰撞等事故造成损害的可能性降到最低(Hess,2010)。XQG45-600P采用35mpa氢气瓶。如Rodionov(2010)所述,储氢供应系统由氢气瓶、管道、高压安全阀(HPSV)、减压阀和压力调节阀组成。每个组件的功能如表3所示。根据Kesheng(2014)所说,如果火灾发生在氢气瓶上,热量会传到消防设备,消防设备会在温度过高时(600°C)释放氢气。Kesheng(2014)提到,如果火灾发生在图2中的红色区域,热量将缓慢传递到消防设备处。在这种情况下,消防设备可能会达不到足够的热量,从而不能及时释放氢气。同时,氢燃料箱表面可能因过热而破裂(800°C)(Kesheng,2014)。泄漏的高压氢气和瓶内发生的火灾会引起严重的爆炸(损坏探测面积为30米)。通过对上述对氢气储存系统的研究,笔者对储氢系统的潜在风险评估如表4所示。

3事故分析

如果释放的氢气在一个开放的区域被点燃,氢气会形成向上的火焰,不会对机车造成任何可见的损坏。这是好的,因为燃烧时机车附近的温度不会过热,机车的部件也不会损坏。如果受影响区域的氢浓度相对较低,即使在开放环境中发生火灾,氢气也不会爆炸。然而,如果在短时间内发生大量的氢气溢散,则会由于氢气浓度高而引起爆炸。特别是在封闭的空间,例如在隧道中,氢气的密度可以超过18.3%,由于氢气不能自由逃逸,所以会在封闭空间的顶部聚集。如果发生火灾,这可能会导致严重的爆炸。

4结论

氢气范文篇7

由于每次装置检修、消缺项目不尽相同,每次装置检修的深度和广度也有所区别。加氢裂化装置一次开停车的能耗、物耗与装置检修项目、需要倒空的塔罐以及上下游装置的运行状态直接相关。对加氢裂化装置2013年装置消缺开停车物耗、能耗进行了统计。此外,做好装置开停车前的计划准备工作,加强精细管理,制定相应的节能减排方案和考核措施,提高员工操作技能,避免操作不当造成的不必要浪费等,都有利于降低装置开停车中的物耗和能耗。

2停车过程中主要节能减排措施

2.1合理设定流程回收氢气

加氢裂化装置停车过程中反应系统恒温气提结束后,系统降压过程约有100000m3纯度为85%的氢气需要排放至火炬烧掉,浪费严重。为降低向火炬系统排放量,本次装置停车降压时通过供氢系统回流压控阀(PV1018/1028)将氢气返回缓冲罐(FA105),再通过阀PV1027A后,至950#脱硫单元流程,将氢气经过高压干气脱硫塔(DA956)至干气回收氢气装置PSA500回收其中氢气;当系统压力低于1.0MPa后将PV1027A阀后流程改至燃料气系统,停去PSA500;压力降至0.42MPa后,再将排放流程通过PV1027B阀改至BF系统。

2.2通过单向阀调向将富余氢气并入管网

以往停车过程中,加氢裂化装置供氢系统停运后,催化重整装置300单元会有大量氢气富余,无法通过正常流程并入管网,造成极大浪费。

2.3塔罐设备密闭蒸煮以降低现场异味

以往检修过程中,塔罐设备的蒸煮都是先加插盲板隔离,在盲板处留排放口,再通入蒸汽进行蒸煮。但在盲板隔离时会有部分物料泄漏,蒸煮时又有部分油气排入大气,导致现场异味较重。本次检修所有塔罐设备统一采用密闭蒸煮。以航煤塔(DA104)为例,塔倒空后向火炬系统蒸煮12h,利用塔顶水冷器(EA125)进行冷却,凝液进入罐(FA126)后排至重污油系统DHH系统,送罐区切水后回收物料2t。

2.4最大化回收高压分离器物料

加氢裂化装置冷高压分离器FA103的主要作用就是将气、油、水进行三相分离。在以往的倒空过程中,油相抽出口下部油料无法倒入低压分离器FA104,混入酸水排至FA111酸水罐,造成了一定浪费。本次停车过程中反应系统停止注水前将高压分离器界面设高,在系统降至安全压力后将高压分离器液面全部压至低压分离器FA104(物料中夹带部分水可通过FA104排除),压空后再将界面(水)全部压至酸水罐,确保最大化回收高压分离器中的物料,减少物料损失8t。

3开车过程中的主要节能减排措施

3.1利用开工蒸汽喷射泵以减少氮气用量

因为装置在检修后,系统均存有空气,所以在开工引入氢气之前,必须先送入高纯度的氮气进行置换。在氮气置换前先抽真空可节省氮气用量。加氢裂化装置本次检修中在氮气气密结束后将反应系统压力降至常压,投用开工蒸汽喷射泵GE101将系统抽至负压后再引入氮气升泄压置换,通过升泄压和抽真空置换减少氮气升泄压置换2次,减少氮气消耗15000m3。

3.2利用重整氢对高压系统进行高等级氢气气密

装置检修后,要检查设备及管线法兰联系处有无泄漏,故需要进行气密检验。在以往开车氢气气密过程中,都是使用1000单元制氢装置的2.0MPa等级氢气,用压缩机逐级升压进行气密,而催化重整装置300单元有大量氢气(5.2MPa)富余需要排放至火炬,造成了极大的浪费。本次装置开车过程中引300单元氢气,通过压控阀PV1018/1028减压进行气密,推迟1000单元氢气引入时间,高等级氢气气密通过后再启动氢气增压压缩机GB104。通过引入300单元氢气开车,减少重整氢气排放约320000m3;推迟1000单元提负荷时间50h,节约天然气约94500m3;推迟GB104开机42h,节电约103320kW•h。

4存在的问题

为了降低开车过程中高压干气排放量,装置开停车方案中规定当低压分离器(FA104)、脱戊烷塔(DA101)压力大于0.8MPa后,将干气改至高压干气脱硫塔(DA956)处理,脱硫后干气并入燃料气管网,最大化回收干气。然而由于950单元胺液循环泵GA953腐蚀较严重,造成胺液循环量不足,影响了加氢裂化高压干气的并入,造成加氢裂化高压干气长时间排放,比正常开车向火炬多排放152.1t干气。这也提醒我们在今后装置开停车前,一定要加强设备检查,发现问题及时处理,防止因设备原因影响装置开停车计划进度。

5结论

氢气范文篇8

硝基苯铁粉还原法采用间歇式生产,将反应物料投入还原锅中,在盐酸介质和约100℃温度下,硝基苯用铁粉还原生成苯胺和氧化铁,产品经蒸馏得粗苯胺,再经精馏得成品,所得苯胺收率为95%~98%,铁粉质量的好坏直接影响苯胺的产率。此方法因存在设备庞大、反应热难以回收、铁粉耗用量大、环境污染严重、设备腐蚀严重、操作维修费用高、难以连续化生产、反应速度慢、产品分离困难等缺点,目前正逐渐被其他方法所取代。

二、苯酚氨化法

基本工艺过程为:苯酚与过量的氨(摩尔比为1:20)经混合,汽化、预热后,进入装有氧化铝-硅胶催化剂的固

定床反应器中,在370℃、1.7MPa条件下,苯酚与氨进行氨化反应制得苯胺,同时联产二苯胺,苯胺的转化率和选择性均在98%左右。该法工艺简单,催化剂价格低廉,寿命长,所得产品质量好,“三废”污染少,适合于大规模连续生产并可根据需要联产二苯胺,不足之处是基建投资大,能耗和生产成本要比硝基苯催化加氢法高。

三、固定床气相催化加氢

固定床气相催化加氢工艺是经预热的硝基苯与大过量的预热后的氢气混合,在触媒固定的反应器中发生加氢反应生成粗苯胺,粗苯胺经脱水、精馏后得成品,苯胺的选择性大于99%。

固定床气相催化加氢工艺具有技术成熟,反应温度较低,设备及操作简单,维修费用低,建设投资少,不需分离催化剂,产品质量好等优点;不足之处是单台反应器能力低,反应压力较高,易发生局部过热而引起副反应和催化剂失活,必须定期更换催化剂。

(一)工艺特点

硝基苯用合成气预热,氢气气混合后进入列管反应器;使用列管式等温反应器+堆床绝热反应器复合操作,反应放出的热量通过产生17bar蒸汽带出;使用铜催化剂,消耗为0.6kg/t;单套反应系统最大生产能力5万吨/年;需要大型氢气循环压缩机;带有脱水塔+轻组份处理塔、精馏塔+重组份处理塔、苯胺回收塔;精馏塔塔顶产3bar蒸汽;重组份的回收处理,轻重组份7kg/t。

(二)优劣势分析

1.相对优势。固定床反应器操作稳定;原料硝基苯、氢气消耗较低。

2.劣势。单条反应线最大能力5万吨/年;催化剂消耗高;需要大量的氢气进行循环,消耗蒸汽、循环水和电;蒸馏系统处理过于复杂;需要去除硝基苯中的二硝基苯,二硝基苯过高会引起催化剂中毒;催化剂更换时比较繁琐。

四、流化床气相催化加氢

流化床气相催化加氢法是原料硝基苯加热汽化后,与约理论量3倍的氢气混合,进入装有铜-硅胶催化剂的流化床

反应器中,在催化剂流化的条件下进行加氢还原反应生成苯胺和水蒸气,再经冷凝、分离、脱水、精馏得到苯胺产品。该法较好地改善了传热状况,控制了反应温度,避免了局部过热,减少了副反应的生成,延长了催化剂的使用寿命,不足之处是操作较复杂,催化剂磨损大,装置建设费用大,操作和维修费用较高。

(一)工艺简述

氢气同合成气换热后,同硝基苯一起汽化升温,进入流化床反应,生成苯胺和水,经冷却、静止分离后为粗苯胺、苯胺水。苯胺水进入苯胺回收塔处理;粗苯胺经过脱水塔、精馏塔处理为合格苯胺。

(二)工艺特点

循环氢气同合成气换热;液-液静止分离;具有废水塔、脱水塔、精馏塔;单线能力大;反应器中安装有热交换束,该热交换束浸在流化床内。用水作冷媒,反应热用来生产蒸汽;催化剂需要再生,1-2月再生一次,再生时间月24-72hr;有废渣产生。

(三)优劣势分析

1.相对优势。国内技术成熟,投资费用低;触媒运行成本低。

2.劣势。硝基苯、氢气单耗高,生产成本高;单条反应线最大能力7万吨/年;催化剂需要每1-2月再生一次,耗

时1-3天;生产产品质量随催化剂周期性变化。

五、液相催化加氢

硝基苯液相催化加氢工艺是在150~250℃、0.15~1.0MPa压力下,采用贵金属催化剂,在无水条件下硝基苯进行加氢反应生成苯胺,再经精馏后得成品,苯胺的收率为99%。液相催化加氢工艺的优点是反应温度较低,副反应少,催化剂负荷高,寿命长,设备生产能力大,不足之处是反应物与催化剂以及溶剂必须进行分离,设备操作以及维修费用高。

(一)工艺简述

硝基苯先被用作萃取剂从苯胺水中回收苯胺,然后经预热后进入反应器。苯胺料浆(含催化剂)、循环水、循环苯胺和氢气从底部进入,氢溶解在液体混合物中,和硝基苯反应生成苯胺和水。反应生成的少量焦油及催化剂从反应器侧线流出经催化剂稠厚器过滤后,催化剂回到反应系统。反应物以蒸汽形式从顶部带出,进入二级废锅、空冷器、水冷器冷却后,气液分离,合成液静止分离,粗苯胺通过脱水塔脱水后,进入席夫碱反应器处理低沸物,进入精馏塔处理高沸物。

(二)工艺特点

对氢气纯度要求较高,必须增加甲烷化反应器;使用精硝基苯萃取苯胺水中的苯胺;反应塔为立式、多级、柱塞流反应器,液相加氢;使用以碳为载体的钯、铂贵金属催化剂;反应生成的热量由反应物以蒸汽的形式从顶部带出;具有一套催化剂循环系统,需采购德国设备催化剂增稠器;可产中压和低压蒸汽;氢气、硝基苯投料摩尔比为小,过量氢气用小型氢气循环机循环;催化剂连续添加,不需要停车;脱水塔真空脱水;具有席夫碱反应器处理反应生成的低沸物;有废液产生。

(三)优劣势分析

1.相对优势:(1)原料硝基苯、氢气消耗低,单位生产成本低;(2)单套装置生产能力大,反应器可设计最大能力为30万吨/年;(3)反应器内部不需要机械搅拌,不需要大的氢气循环系统,氢油比低,排放时可减少氢气的消耗;(4)三废产生已达到了最低,接近了理论值;(5)省去了触媒再生时间,只需要较少的主要设备维修时间,运转率可高达98%。

2.劣势:必须增加一套甲烷化装置,增加投;使用贵金属催化剂,价格昂贵;贵金属处理系统复杂,设备较多。

六、结束语

综上,苯胺的制造技术各具特点,目前主要以硝基苯的加氢技术为主,早期国内以硝基苯固定床加氢和气相流化床为主,但随着国外硝基苯液相加氢技术的工业化生产,以其单套装置产能大,生产成本低,连续运转时间长等优势日益得到制造商的青睐。苯胺制造技术也将向着高产能、低成本的方向前进。

氢气范文篇9

关键词:燃料电池;轮胎吊;混合动力

1引言

轮胎式龙门起重机(以下简称轮胎吊)广泛应用于集装箱码头堆场,其动力通常以柴油发电机组供电为主,存在能源消耗大、排放严重等问题。目前市场上小柴油机组结合大锂电混动轮胎吊是最节能的轮胎吊之一,柴电机组输出综合功率一般为50kW,锂电池容量一般在100kWh左右。与传统使用大型柴油机组轮胎吊相比,可节能约60%[1-2]。但该类轮胎吊的动力来源仍是柴油,虽然相比大柴油机组已经降低了能耗,但仍存在较大的排放。为了减少排放,也可以采用天然气LNG燃气机组代替小功率柴电机组,构成LNG混动轮胎吊,CO2排放可降低20%,NOX排放可降低40%[3-4]。氢气是当今世界公认的最清洁的燃料,燃烧排放物只有纯水,具有环保、零排放、无污染等优点。因此提出用燃料电池系统代替小功率柴电机组,设计零排放氢燃料混动轮胎吊。

2轮胎吊负载特性分析

据统计,常规集装箱码头上的轮胎吊1h可以完成约20个操作循环,每操作循环由带箱起升、小车带箱平移、下降放箱、空吊具起升、小车平移、空吊具下降6个步骤组成。额载40t重箱起升时,轮胎吊峰值功率需求约为350kW;40t重箱下降时,峰值再生回馈功率约为260kW,1h内轮胎吊的平均功率仅为30~35kW。由此分析得出,轮胎吊在突加载荷时峰值功率大,而平均功率小,且重物下降及机构制动时电机处于发电状态,属于位能性负载。而传统大柴油机为了满足轮胎吊的负载特性,通常配备一定冗余量的柴油发电机组,满足轮胎吊峰值功率的需求,而重物下降和机构制动时产生的再生回馈能量,通常利用能耗电阻消耗掉了,得不到有效重复利用,造成了轮胎吊燃油消耗大、污染严重等问题。从轮胎吊负载特性可以看出,峰值功率与平均功率的比值接近10∶1,所以其动力系统非常适合采用混合动力方案。

3燃料电池轮胎吊动力系统

3.1系统组成

燃料电池混动轮胎吊动力系统结构见图1,其系统配置与小柴油机大锂电混动轮胎吊类似,不同之处在于采用燃料电池与DCDC直流变换器取代原有的小型柴油发电机组和AFE(ActiveFrontEnd,整流/回馈)驱动器。大容量锂电池组主要通过燃料电池来补充电能。

3.2系统工作模式

燃料电池主要有3种运行模式。(1)当燃料电池工作时,如果轮胎吊在进行起升操作或能量需求较大的作业,燃料电池和锂电池共同提供能源,驱动运行机构,减小锂电池的放电电流(见图2)。(2)当燃料电池工作时,如果轮胎吊在进行下降操作或机构制动时,则燃料电池和运行机构的再生回馈势能一起给锂电池充电,增大锂电池的充电电流(见图3)。(3)当燃料电池停止工作时,锂电池是唯一能量源,承担所有轮胎吊的能源需求。设定锂电池组的SOC(StateofCharge,荷电状态)使用区间范围,通过整车控制器来控制燃料电池的运行状态,适时地给锂电池组进行充电。

3.3硬件参数

目前的燃料电池,由于受技术限制,组成系统后的各个装置损耗,总转换效率区间在45%~60%范围内,如果考虑其排热利用,则效率可达80%或以上。燃料电池系统选用石墨系质子交换膜燃料电池电堆,额定功率为75kW,发电效率≥50%。氢气瓶选择6个165L压力罐,工作压力为35MPa。锂电池选择具有高倍率充放电能力的三元锂电池,额定电压622VDC,额定容量128Ah,额定能量79.6kWh。氢气瓶组携带了约23.1kg氢气,氢气的热值为39.54kWh/kg,燃料电池系统的转换效率≥50%,取燃料电池的转换效率50%为20kWh/kg,则轮胎吊携带了约462kWh的电量。以轮胎吊平均功率30kW为例,每小时耗电量为30kWh,所配备的氢气瓶组可以满足轮胎吊15.4h的连续工作。设定锂电池的SOC变化使用范围为50%~90%,即锂电池能量有31.8kWh的可用范围,燃料电池系统运行25min即可补充该能量,该能量可满足轮胎吊超过1h的持续工作需求。氢气瓶组安装于电气房鞍梁下方,便于加氢及整组更换;燃料电池系统安装于电气房上方,通过氢气管路及相关通讯线路与氢气瓶组相连接;锂电池组安装于电气房内,形成轮胎吊供电系统(见图4)。

4经济性分析

4.1初期投资分析

燃料电池轮胎吊其燃料电池系统初期投资为:75kW燃料电池系统50万元,氢气瓶组15万元。小柴电大锂电轮胎吊电气系统的初期投资为:50kW的柴油发电机组15万元,60kW的AFE整流器4万元。目前燃料电池轮胎吊电气系统初期投资是小柴电系统的3.4倍,不具备经济性。据预测,在2030年,燃料电池系统的成本将会下降80%以上。在2030年,燃料电池轮胎吊电气系统的初期投资将变为13万元,假设小柴电系统的价格维持在15万元,燃料电池系统的价格就具备了一定优势。

4.2使用成本分析

小柴油机大锂电轮胎吊目前每标箱消耗柴油约为0.45L,柴油每升6.6元,每标箱花费2.97元。50kW小柴油发电机组的燃油发电转换效率为3.47kWh/L,每标箱消耗电能1.56kWh。取燃料电池的氢气发电转换效率为20kWh/kg,则每标箱消耗氢气0.078kg,当前氢气价格约为50元/kg,每标箱花费3.9元。燃料电池的使用成本是小柴油机组系统的1.31倍。据行业分析,氢气价格下探至35元/kg时,燃料电池和柴油机组的使用成本可持平,随着整个燃料电池产业链的发展,预计至2025年,硬件采购和使用成本可与柴油机组持平。据相关行业机构预测,在2030年,氢气价格将下降至20元/kg,假设柴油价格维持不变,则每标箱操作可节约1.41元,以每台轮胎吊年操作12万标箱计算,每年节约燃料费用16.92万元,大约9个月即可收回初期的投资成本28万元(燃料电池13万元、氢气瓶组15万元,氢气瓶组价格未作变化)。考虑到国家在双碳目标下可能征收的碳排放税,燃料电池轮胎吊在2025年投资和使用成本上将与小柴油机大锂电轮胎吊持平,而到2030年时更具有竞争力。

5结语

随着政府对环境保护要求的日益严格,各行业都在寻求和制定减少碳排放的方法措施。针对集装箱码头轮胎吊,提出一种零排放的燃料电池混动轮胎吊技术,通过运用氢燃料电池发电技术,替代传统柴油发电机组,促使轮胎吊达到零碳排放的目标,在未来具有更大的经济性优势。

参考文献

[1]黄婷,徐磊,黄细霞,等.三种典型混合动力RTG的比较分析[J].电源技术,2016,40(7):1399-1402.

[2]袁峰.锂电池动力系统在轮胎吊产品中的应用[J].交通节能与环保,2012,8(2):49-50.

[3]金毅,黄婷,黄细霞.港口节能减排新技术研究实践及展望[J].港口科技,2015(3):34-38.

氢气范文篇10

1.了解中和热的概念,了解使用化石燃料的利弊及新能源开发的意义;

2.掌握利用中和热计算中和反应中所放出的热量。

学习过程

一、自学探究

1.什么叫中和反应?中和反应的实质是什么?中和反应过程是吸热反应还是放热反应?

2.听老师解释,中和热的定义。根据中和反应的实质,利用中和热数据有什么意义?

3.阅读探究:怎样测定酸碱中和反应的中和热?

4.阅读下表:几种常见燃料的热值

燃料主要成分热值(kJ/mol)

酒精1367

焦炭(C)300

天然气(主要是CH4)896

氢气286

汽油(C8H18为例)5472

回答:

(1)由表分析,是一种理想的燃料。

(2)试简述这种理想能源的主要优点。

①;②;③。

二、总结与评价

【总结】

1.在稀溶液中,酸与碱发生中和反应生成1molH2O,这时的反应热就是中和热。

2.中和反应的实质是:H++OH-=H2O,当强酸与强碱在稀溶液中发生中和反应时,都有:H+(aq)+OH-(aq)=H2O(l);△H=-57.3kJ

3.研究使用化石燃料的利弊及新能源开发具有现实的、深远的意义。

【评价】

1.计算50mL0.5mol/LH2SO4溶液与100mL0.5mol/LKOH溶液完全反应放出多少热量。

2.把下列14种能源按要求填入下表,并指出哪些是不可再生能源。

煤、石油、水力、汽油、铀、薪柴、酒精、天然气、液化气、热水、煤气、蒸汽、风力、电。

一级能源二级能源

燃料能源

非燃料能源

针对性测试题(三)

1.下列燃料中,不属于化石燃料的是()。

A.煤B.石油C.天然气D.水煤气

2.1克氢气燃烧生成液态水放出142.9kJ热,表示该反应的热化学方程式正确的

是()。

A.2H2(g)+O2(g)=2H2O(l);△H=-142.9kJ

B.H2(g)+1/2O2(g)=H2O(l);△H=-285.8kJ

C.2H2+O2=2H2O;△H=-571.6kJ

D.H2(g)+1/2O2(g)=H2O(g);△H=-285.8kJ

3.已知下列两个热化学方程式

2H2(g)+O2(g)=2H2O(l);△H=-571.6kJ

C3H8(g)+5O2(g)=3CO2(g)+4H2O(l);△H=-2220.0kJ

实验测得氢气和丙烷的混和气体共5mol完全燃烧时放热3847kJ,则混和气体中氢气与丙烷的体积比是()。

A.1:3B.3:1C.1:4D.1:1

4.下列各图中,表示正反应是吸热反应的图是()。

根据以下叙述,回答第5—7题

能源可划分为一级能源和二级能源。自然界中以现成形式提供的能源称为一级能源;需依靠其它能源的能量间接制取的能源称为二级能源。氢气是一种高效而没有污染的二级能源,它可以由自然界中大量存在的水来制取:

2H2O(l)=2H2(g)+O2(g);△H=+571.6kJ

5.下列叙述正确的是()。

A.电能是二级能源B.水力是二级能源

C.天然气是一级能源D.焦炉气是一级能源

6.已知:CH4(g)+2O2(g)=2H2O(l)+CO2(g);△H=-890.3kJ,1克氢气和1克甲烷分别燃烧后,放出的热量之比约是()。

A.1:3.4B.1:1.7C.2.3:1D.4.6:1

7.关于用水制取二级能源氢气,以下研究方向不正确的是()。

A.构成水的氢和氧都是可以燃烧的物质,因此可研究在水不分解的情况下,使氢成为二级能源

B.设法将太阳光聚集,产生高温,使水分解产生氢气

C.寻找高效催化剂,使水分解产生氢气,同时释放能量

D.寻找特殊化学物质,用于开发廉价能源,以分解水制取氢气

二、填空与简答题

1.阅读材料,回答问题:

(1)某无色液体A,通电时生成无色气体B和C,B能使带火星的木条着火,C能在空气中燃烧,发出淡蓝色火焰且只生成A。则B、C的化学式分别为。

(2)若已知每摩气体C燃烧后生成A液体时放出285.8kJ的热量,试写出其燃烧的热化学方程式:。

(3)能源可分为一级能源和二级能源。自然界以现存形式提供的能源称为一级能源;需要依靠其他能源的能量间接制取的能源称为二级能源。有人认为,气体C是一种优质能源,你认为气体C作为能源的最突出的优点是

(4)也有人认为气体C作为能源是不现实的,你的意见呢?你如果认为现实,答出现实的理由。如果认为不现实,则答出不现实的理由。(不少于20字)

2.50mL1.0mol/L盐酸跟50mL1.1mol/L氢氧化钠溶液在下图装置中进行中和反应。通过测定反应过程中所放出的热量可计算中和热。试回答下列问题。

(1)大小烧杯间填满碎纸条的作用是什么?

(2)大烧杯上如不盖硬纸板,对求得中和热的数值有何影响?

(3)改用60mL1.0mol/L盐酸跟50mL1.1mol/L氢氧化钠溶液进行反应,与上述实验相比,所放热量是否相等?所求中和热数值是否相等?简述理由。

(4)用相同浓度和体积的氨水代替氢氧化钠溶液进行上述实验,为什么测得中和热的数值偏低?

三、计算题

火箭的主要燃料是“偏二甲肼”,已知该化合物由C.H、N三种元素组成,WC=40%,WH=13.33%,其分子量为60。通过结构分析可知,该物质分子中有一个氮原子以存在,且不与H原子直接相连。燃料的氧化剂是N2O4,燃烧产物只有CO2、H2O、N2,5.00g“偏二甲胼”完全燃烧时可放出212.5kJ热量。