逆变器范文10篇

时间:2023-03-15 19:48:36

逆变器范文篇1

关键词:电能质量;不平衡负载;三相逆变器;动态特性

电力系统主要由两部分组成:一部分是对称电路,另外一部分是不对称电路。普通的对称三相交流电指的是系统会产生三相幅值相等,相位互差120°的三相正弦交流波形。但是电力系统在实际运行过程中,因为各种原因,例如电线杆倒塌、线路断路等,都会造成系统输出的三相交流电不再对称,整个系统的所有过程,例如电力发电、输送电能、分配电能等,都会受到严重的影响,形成严重的后果[1]。普通的三相电路会产生不对称三相交流电的原因主要包括两个方面:第一种情况,系统所给定的三相电源本身就是不对称的。这种情况指的是电力系统中的A,B,C各相电动势处于不对称状态,此时,无论系统承接的三相负载阻抗值相等或者不相等,此时产生的电压波形都是不对称的三相正弦波。第二种情况,电力系统所连接的三相负载处于不对称状态。这种情况主要是由以下原因造成的[2-4]:第一,三相负载的阻抗值不相等。第二,电力系统处于比较恶劣的环境(整个线路产生短路或者断路等故障)下,造成三相负载不再相等。三相负载处于不平衡状态时,电力系统就会形成负序以及零序分量。此时,如果三相电源的阻抗值恒等于零,电力系统的功能就不会受到影响。然而,电力系统中的电源内部都会存在实际的电抗,必定会引起输出电压不再对称。三相电压处于不平衡状态体现在:1)A,B,C三相电压的幅值不相等;2)三者的相位不再对称,产生了一定的偏移;3)上述两种情况都存在。电力网络在实际运行中,经常会出现三相负载处于不平衡的情况,有时甚至会产生非线性负载。普通的三相电压型逆变器产生的三相电压耦合十分紧密,所以,没有办法产生对称的三相交流波形,如果需要解决非线性负载的问题,必须将高次谐波产生的严重影响考虑其中。为了解决这些问题,查阅大量资料,解决方案是改变普通逆变器的拓扑结构,主要包括以下几种。

1带分裂电容的三相逆变器拓扑结构

带分裂电容的三相逆变器拓扑结构见图1.这个逆变器的结构特点是:中间包含两个串联在一起的电容,电源Udc与两个电容行成的电路进行并联,在两个串联的电容之间有一条连接线,这样的结构使得带分裂电容的三相逆变器能够进行三相四线输出。由于带分裂电容的三相逆变器在结构上相当于将3个相同的半桥电路相互串联,因此,当它连接三相不对称负载时仍然能够产生对称的三相电压波形[5]。这个逆变器的优点主要是:第一,这个逆变器的拓扑结构相对比较简单;第二,这个逆变器中包含比较少的电子元器件。由于在两个相互串联的电容之间引出了一根连接线,相当于第四条连接线,系统中产生的中性电流就会从第四条连接线中通过,这就要求电力系统中电容的数值必须准确,才能确保系统产生更高的电能质量,电容器的存在相应地会增加整个逆变器的体积。这个逆变器也存在一定的缺点,通过计算可以得到,它对直流母线电压的使用率是比较低的,基本上只能达到50%的利用率,因此,这个拓扑结构基本上被应用在中型或者小型功率的设备中。

2带NFT的三相逆变器拓扑结构带

NFT的三相逆变器拓扑结构见图2。这个逆变器的结构特点为:与普通三相电压型逆变器进行对比,这个逆变器在三相滤波电容的后面多了一个结构NFT,NFT是中点行成变压器的简称。带NFT的三相逆变器具备连接三相不平衡负载和非线性负载的能力,原因在于如果系统中产生中性电流,NFT结构中的三个电感行成了一个完整的星形回路,中性电流就会在这个星形回路中不断流动,导致中性电流不会对其他电路产生影响,即其他电路中流过的中性电流相当于零。但是,带NFT的三相逆变器也存在一定的缺点:随着电力系统所输出三相电压波形不平衡度的数值变大,NFT的体积随之慢慢变大,当然,其重量也就随之增大。同时,为了提高整个逆变器的工作效率和电能输出质量,就会使得NFT中变压器绕组以特别复杂的方式缠绕在一起,增加了其与外部电路连接的复杂程度[6]。这个逆变器由于自身的拓扑结构变得复杂,使得其消耗的电能也会增加,因此,整个系统输出的电能效率就会有所下降。

3带D/yn变压器的三相逆变器拓扑结构带

D/yn变压器的三相逆变器拓扑结构见图3。图3带D/yn变压器的三相逆变器UdcbacSapSbpScpiciaibLLLiCiAiBABC三相负载CGScnSbnSanpNn这个逆变器的特点在于:与普通三相电压型逆变器相比,这个逆变器是在输出端的后面连接逆变器,最后连接所需要的负载,其中变压器的联结方式主要是三角形/星形连接,星形接法可以有中性线,也可以不连接中性线。如果所连接的负载处于不平衡的状态时,此种拓扑结构的优点是在中性线中会有电流通过,因为变压器左侧的结构采用三角形联结,所产生的中性电流就会在三角形中不断的往复循环,最终所产生的不平衡电流和不平衡电压就会被减小一部分,形成较好的输出波形。但是这个结构也存在一定的缺点,由于这个逆变器中明显地添加了一部分结构,就是由一次侧为三角形,二次侧为星形而组成的变压器结构,这种情况就会造成这个逆变器无论从体积还是重量方面都会明显增加。同时,逆变器由于自身结构的影响也会产生一定值的漏电电抗,因此,当这个逆变器所接的负载处于不平衡的状态时,最终所输出的三相电压有可能也会处于不对称的状态[7-8]。

4组合式三相逆变器的拓扑结构

组合式三相逆变器的拓扑结构如图4所示。从图4能够得到,此拓扑结构的特点是左侧三个完全相同的单相的逆变器,它们通过LC电路的耦合,最终形成了一个新的组合式三相逆变器。基于这个三相逆变器的结构特点,它的优点是左侧三个单相逆变器之间是独立的,因此,可以考虑将A相电路通过第一个逆变器进行控制,B相电路通过第二个逆变器进行控制,C相电路通过第三个逆变器进行控制。如果电路中所接的负载呈现不平衡的状态,这种拓扑结构可以起到良好的效果,使所产生的电压波形尽可能呈现三相对称的状态。当所使用的电器属于大功率电器时,大部分都会应用这种拓扑结构。但是这个组合式三相逆变器也有它的缺陷,在这个拓扑结构中,明显可以看出其中包括了12个开关,相比其他逆变器而言,它的数量明显偏多,导致这个逆变器自身的体积也会相应增加,因此,在真正应用的阶段,性价比较低。

5三相四桥臂逆变器的拓扑结构

三相四桥臂逆变器的拓扑结构主要呈现形式如图5,图6所示。将图5,图6进行对比,就可以发现图6是在图5的基础上添加了一个电感Ln,它的作用主要是滤除杂波。其他部分都是相同的,因此,将两种拓扑结构统一进行介绍。将它们与普通的三相电压型逆变器进行比较,可以发现,普通的三相电压型逆变器仅仅包含三个相同的桥臂,而这两个拓扑结构在原有桥臂的基础上增加了一个桥臂,形成了4个桥臂,构成了三相四线制输出方式,使其具备解决由于不平衡负载产生的三相不对称输出电压的能力。从它本身的结构能够看出,在第四个桥臂之间引出了一条中性线,中线和第四桥臂的交叉点被称为中性点,通过中性点的电压值大小主要是由第四个桥臂决定的。普通的三相三桥臂逆变器仅仅包含2个自由度,而三相四桥臂逆变器却拥有3个自由度。如果采用这个结构进行控制,需要把第1,2,3个桥臂进行解耦,这种情况下就可以对A,B,C三相电压进行分别控制,即使该拓扑结构所接的负载处于不平衡状态,甚至非线性状态,该逆变器依然能良好的解决这个问题,产生三相对称输出波形。三相四桥臂逆变器具备很多优点:1)相比其他的逆变器结构,它的拓扑结构比较简单,不需要增加其他的装置,体积和重量比较小;2)这种拓扑结构的电压利用率比较高;3)实际应用时,它的性价比较高。

6结语

当系统中所接的三相负载相等时,即负载处于三相平衡状态时,普通的三相电压型逆变器就可以满足需求,能够输出三相对称的输出波形,A,B,C三相电压之间角度相差120°,它们的幅值也是相等的。但是当电力系统由于电杆倒塌、短路、开路等故障时,通过逆变器产生的波形就会出现很大的偏负,不符合电力设备的需求,因此就要对这种现象进行解决。文中所提出的6种拓扑结构可以不同程度的解决这个问题,同时也对各自的优缺点进行了阐述。近年来,采用三相四桥臂逆变器拓扑结构解决这类问题比较多,因为此结构本身具备三相四线制输出,不但能解决不平衡负载的问题,还能一定程度上解决非线性负载的问题。当然,其他拓扑结构也都被应用到不同场合,大家可以根据自己的需求进行解决,使电力系统能够达到更高的利用率,造福万民。

参考文献:

[1]李江,周铁军,杨润冰,等.三相负荷不平衡自动调节装置在低压配电网中的应用研究[J].自动化技术与应用,2022,41(1):30-33,152.

[2]肖丽平,吕超,田紫君.统一电能质量调节器的结构及控制策略综述[J].智慧电力,2021,49(12):1-10.

[3]孔祖荫,张志,王泺涵,等.三相四桥臂逆变器的空间矢量调制研究[J].电子世界,2021(22):22-23.

[4]刘德华.配电网三相不平衡治理装置对比分析[J].大众用电,2021,36(11):32-33.

[5]邱梓霖.三相不平衡对配电网的影响分析[J].大众用电,2021,36(10):27-28.

[6]孙国文,赵徐成,刘章龙.基于组合式拓扑的三相逆变电路设计与仿真[J].装备制造技术,2017(16):194-196.

[7]吴斌,杨旭红.基于改进遗传PI和重复控制的三相逆变器并网研究[J].电力科学与技术学报,2021,36(6):151-156.

逆变器范文篇2

关键词:逆变器;双环;无差拍;重复控制

引言

随着闭环调节PWM逆变器在中小功率场合中的大量使用,对其输出电压波形的要求也越来越高。高质量的输出波形不仅要求稳态精度高而且要求动态响应快。

传统的单闭环系统无法充分利用系统的状态信息,因此,将输出反馈改为状态反馈,在状态空间上通过合理选择反馈增益矩阵来改变逆变器一对太接近s域虚轴的极点,增加其阻尼,能达到较好的动态效果[1]。单闭环在抵抗负载扰动方面与直流电机类似,只有当负载扰动的影响最终在输出端表现出来以后,才能出现相应的误差信号激励调节器,增设一个电流环限制启动电流和构成电流随动系统也可以大大加快抵御扰动的动态过程[2]。瞬时值反馈采取提高系统动态响应的方法消除跟踪误差,但静态特性不佳,而基于周期的控制是通过对误差的周期性补偿,实现稳态无静差的效果,它主要分为重复控制[3]和谐波反馈控制[4]。

本文提出了一种基于双环控制和重复控制的逆变器控制方案,兼顾逆变器动静态效应,另外使用状态观测器提高数字控制系统性能。

1逆变器数学模型

单相半桥逆变器如图1所示,L是输出滤波电感,C是输出滤波电容,负载任意,r是输出电感等效电阻和死区等各种阻尼因素的综和。U是逆变桥输出的PWM电压。

选择电感电流iL和电容电压vc作为状态变量,id看作扰动输入,得到半桥逆变器的连续状态平均空间模型为

根据式(1),很容易得到逆变器在频域下的方框图,如图2所示。PWM逆变器的动态模型和直流电机相似,转速伺服系统的设计方法在这里也适用。本文借鉴直流电机双环控制技术,并改造成为多环控制系统,在逆变器波形控制上取得了很好的效果。

2控制方案分析

本控制方案包括双环控制系统和位居外层的重复控制系统。在瞬时波形控制场合,控制算法的执行时间和A/D转换延时相对于采样周期通常不可忽略,有必要采用状态观测器,利用其预测功能将控制算法提前一拍进行。本方案采用无差拍观测器对输出电压和电感电流进行预测。

2.1双环控制

双环控制系统框图如图3所示,Z(s)是未知的负载。需要检测和反馈的信号有三个,即电感电流iL,输出电压vc,负载电流id。电感电流检测为电流环而设。与直流电机相似,检测输出电压不仅用于电压瞬时波形控制而且实现输出电压解耦,消除输出电压对电流环的扰动,减轻电流环控制器的负担。同样,负载电流对瞬时电压环来说也是一个外部扰动,补偿负载电流能有效抑制其对输出波形的影响,提高稳态精度。正是由于对负载电流进行了补偿,电流环无须对负载电流的扰动进行抑制,所以,本方案没有反馈电容电流,而将扰动包含在反馈环路的前向通道内。若采用电容电流反馈,要得到良好的扰动抑制效果,必将导致电流环的增益过大。这不仅对稳定性不利,而且造成超调增大,电流跟踪的快速性受影响。

模拟控制系统的闭环极点离虚轴越远则动态响应越快,但无法将其配置到s平面的负无穷处,而s平面的负无穷被映射到z平面原点,若将数字控制系统的闭环极点全部配置到平面原点,则可以达到极快的动态响应速度,这就是所谓的无差拍技术。

由于本方案实现了输出电压解耦和负载电流补偿,电流环和电压环的结构大大简化,控制器的设计可以简单到仅仅采用P环节。这里采用无差拍原理确定电流环控制器KC和瞬时电压环控制器KV。

2.1.1电流环设计

图4(a)所示为电流环框图,为了实现输出电压交叉反馈解耦,控制算法由式(2)给出。

vcom(k)=KC〔iL*(k)-iL(k)〕+vc(k)(2)

式中:iL*是电感电流指令;

vcom是电流环计算出的控制量。

图4(b)是解耦后简化的电流环框图,ZOH是零阶保持器。采用零阶保持器法将控制对象离散化。

Gc(z)=Z[(1-e-ts)/s)(1/L)/(s+a)=1/r(1-e-aT)/(z-e-aT)(3)

式中:T是采样周期;

a=r/L。

闭环系统的特征方程是

根据无差拍原理,将其特征根全部配置在原点,于是有

2.1.2瞬时电压环设计

由于电流环的截止频率高于瞬时电压环,对电流指令的跟踪速度要远快于瞬时电压环对波形的跟踪,在设计瞬时电压环时可认为内环是一个常数增益环节。图5(a)是瞬时电压环框图。对负载电流进行补偿后,相应的控制算法由式(6)给出。

icom(k)=KV〔vref(k)-vc(k)〕+id(k)(6)

式中:vref是正弦参考电压;

icom是电压环算出的电流环指令。

图5(b)是补偿负载电流后且忽略电流环动态过程的简化电压环。同样用无差拍原理确定电压环控制器KV。

用零阶保持器法得到离散的控制对象的传递函数为

其闭环特征方程是

z-[1-(KvT/C)]=0(8)

将闭环特征根全部配置在原点,得到

KV=C/T(9)

图6是逆变器对数频率特性曲线,虚线为开环频率特性,实线为经过解耦和补偿后双环无差拍系统的闭环频率特性。很明显,逆变器开环谐振峰被削掉了,原来的欠阻尼性质得到了极大的改善,对于稳定性也有利。闭环带宽增加到2kHz,动态响应速度大大加快。

瞬时电压环对负载电流进行的补偿在一定程度上抑制了由负载引起的波形畸变。但这种补偿只有在电流环的传递函数为1时才能进行完全,否则,给出的补偿信号总存在相位误差。在设计瞬时电压环时只能近似认为电流环传递函数为1,所以,双环系统虽然能达到很快的动态响应速度,但对抑制整流性负载造成的波形畸变效果有限。为了得到更好的稳态波形,势必采用一种能完全补偿扰动的方案,重复控制就是一种成熟有效的手段。本控制方案在电流电压双环的基础上加入一个重复控制环构成复合控制系统。它位于双环的外层,对稳态波形质量进行控制。

2.2重复控制器设计

如图7所示,PB(z)是设计好的双环系统,负载及其他因素的影响由扰动量d等效。重复控制器的输出叠加于原有的参考输入之上,以产生矫正作用。重复控制器由周期延迟正反馈环节和补偿器KrzkS(z)组成,N是数字控制器每周期的采样次数,Q(z)用以增强系统的稳定性,常取为0.95。周期延迟正反馈环节对逆变器输出误差进行逐基波周期的累加。补偿器的作用是与逆变器对象实现中、低频对消和高频衰减,这样重复内模(即周期延迟正反馈环节)给出的补偿信号才能幅值和相位均正确地与扰动对消,实现稳态波形的无差。PB(z)是加双环之后的等效逆变器对象,从图6可以看出其谐振峰已经被抵消,因此,补偿器的设计大大简化,只须完成高频衰减和相位补偿的功能。Kr是重复控制器增益,S(z)取为一个截止频率与PB(z)近似的二阶滤波器以实现高频衰减,超前环节Zk实现S(z)PB(z)的相位补偿。由于超前环节的存在,所以引入周期延迟环节z-N,否则,重复控制器无法物理实现。

因为z-N的引入,重复控制器对扰动的矫正要延迟一个基波周期,但是位于内层的双环无差拍控制器则对扰动有着极快的抑制作用。相反地,双环无差拍控制器对扰动的补偿是有限的,而重复控制的引入可将扰动近乎完全补偿,稳态效果极佳。此外,如图6所示,双环控制使逆变器对象的截止频率加大到2kHz,重复控制器的补偿范围也得以扩大。

3系统设计与实验

本控制方案在一台基于DSPTMS320F240控制系统的IGBT单相半桥逆变器实验装置上得到了验证。实验装置参数为:滤波电感1.14mH;滤波电容20μF;输入直流电压250V;输出交流电压幅值100V。

图9

开关和采样频率均为10kHz,根据上述分析,计算出KV=0.2,KC=11.1。

加双环后的等效逆变器控制对象是

PB(z)=(10)

据此选择二阶滤波器

S(z)=(11)

超前环节是z4,取Kr=1,N=200。

图10

图8是双环系统带非线性负载时的波形,THD达4.84%,可见瞬时电压环对电流扰动的补偿效果有限。图9是复合控制系统负载突加过程,在突加阻性负载时,经0.5ms波形便恢复正常,在最恶劣的情况下即突加整流负载时,经5个基波周期波形也能完全恢复正常。图10是复合控制系统稳态工作波形,带阻性负载时的THD是1.71%,带整流性负载时的THD是1.54%。

逆变器范文篇3

关键词:谐波补偿;逆变器;波形控制

引言

逆变器是一种重要的DC/AC变换装置。衡量其性能的一个重要指标是输出电压波形质量,一个好的逆变器,它的输出电压波形应该尽量接近正弦,总谐波畸变率(THD)应该尽量小。在实际应用中逆变器经常需要接整流型负载,在这种情况下仅仅采用SPWM调制技术的逆变器,其输出电压波形就会产生很大的畸变。

为了得到THD小的输出电压,波形控制技术近年来得到了极大的发展。重复控制[1]是近年来研究得比较多的一种控制方案。本文从谐波补偿的角度出发,采用改进型FFT算法对输出电压误差信号进行实时频谱分析,把由软件算法产生的经过预畸变的谐波信号注入逆变器,由此达到抑制非线性扰动从而校正输出电压波形的目的。

1控制系统结构及工作原理分析

图1为控制系统结构框图[2]。G1(s)表示控制对象,在这里就是输出LC滤波器的传递函数,其离散化形式由G1(z)表示。G2(z)表示内部模型,它与G1(z)相等。

1.1扰动抑制原理

考虑扰动信号d(z)在输出点的响应。由图1可以很容易得到扰动信号的传函

Hd(z)=1-{[Gc(z)G1(z)]/1+[G1(z)-G2(z)]Gc(z)}(1)

由于G1(z)=G2(z),故Hd(z)可简化为

Hd(z)=1-Gc(z)G1(z)(2)

显然,只要Gc(z)=G1-1(z),则Hd(z)=0,即扰动可以得到完全的抑制。

不幸的是,实际逆变器的z域传递函数含有一个纯延时环节,这就意味着谐波补偿器Gc(z)必须含有一个超前环节,这在物理上是无法实现的。但在实际应用中我们只须抑制低次谐波就可以获得较好的输出电压波形,所以,只需要使谐波补偿器低频段频率特性是控制对象G1(s)低频段频率特性的逆就可以了。而这是很容易做到的,本文把这种低频段频率特性意义上的逆称为“等效逆”。

1.2内部模型

内部模型G2(z)就等于G1(s)的离散化形式G1(z),它的作用就是模拟控制对象的特性,作为参考信号源。在实际系统中,内部模型作为整个数字控制系统的一部分,由DSP软件算法实现。

1.3谐波补偿器

谐波补偿器由FFT和谐波发生器组成。FFT算法对输出电压误差进行实时频谱分析,因为,逆变器接整流型负载,其输出电压畸变主要是由于在输出端叠加了次数较低的奇次谐波,所以,只须分析出1,3,5,7,9次谐波的幅值和初相位就可以满足要求。

设x(n)为N点有限长序列,其FFT为

式中:k=0,1,…,N-1;

显然,常规的FFT算法,其输出点数和输入点

数是相等的,但在本系统中只须求出X(1),X(3),

X(5),X(7),X(9)等5个输出点,其他输出点是不须计算的。根据基于FFT的蝶形计算流程图[3]可以知道,在只须计算指定的若干个输出点的情况下,可以大大减少计算量,节省大量的DSP时钟,这就使得在计算能力并不强大的F240定点DSP上,实现基于FFT算法的实时频谱分析成为了可能。本文把这种经过化简的算法称为改进型FFT算法。

谐波发生器的作用是把FFT分析出的谐波进行预畸变,然后把预畸变的谐波信号作为补偿指令送给控制对象。之所以要对谐波进行预畸变,是因为控制对象对谐波的跟踪是有差的,这就导致谐波信号通过被控对象到达扰动注入点时,并不与扰动信号形状相同,而是相位正好相差180°的信号,这样就无法很好地抵消扰动。谐波发生器的预畸变算法表达式如下:

式中:|X(n)|为谐波幅值;

pha(n)为谐波的初相位,它们由FFT算法计算得到;

modcoeff(n)为幅值补偿系数;

phacoeff(n)为相位补偿系数。

式(4)为单次谐波的补偿指令计算式,式(5)为系统需要补偿的所有谐波的总补偿指令计算式,它是各单次谐波补偿指令的简单累加。

幅值补偿系数modcoeff(n)和相位补偿系数phacoeff(n)可以通过控制对象的幅频、相频特性根据“等效逆”的原则简单地确定。具体来说,modcoeff(n)就是幅频特性频率对应点读数的倒数,phacoeff(n)就是相频特性频率对应点读数的负数。可以看出,谐波补偿器补偿系数的确定是非常简单的,这是本文所用控制方案的一大优点。

2控制系统参数设计

2.1FFT采样频率fs和分析窗长度L的确定[4]

采用FFT算法进行实时频谱分析,采样频率fs和分析窗长度L的确定是非常重要的。假设所需要分析信号的最高频率为fmax。根据香农采样定律,只须满足

fs≥2fmax(6)

就可以使被分析信号在频域中不产生混叠。在这里,基波是50Hz,最高只需要分析到9次谐波,所以fmax=450Hz。为了留有一定的裕量,在实际系统中fs取1.6kHz。

分析窗长度L对于周期信号的频谱分析也是极其重要的,一般都把L取为被分析信号周期的整数倍,否则,会造成严重的频谱泄漏,大大降低频谱分析精度。显然,实际系统中被分析的误差电压信号周期就是基波周期,即为0.02s。所以就把L取为0.02s(即为周期的一倍)。

根据FFT的输入数据点数N的计算式:N=fs×L,以及采样频率fs和分析窗长度L的取值,

可以得到N=32。这就是说,本控制系统须做32点的FFT。

2.2幅值补偿系数和相位补偿系数的确定

在图2中,电压源U代表来自逆变桥的输出电压,电感L和电容C构成输出LC滤波器,电流源I代表负载汲取的电流,与滤波电感L串联的电阻r是滤波电感的等效串联电阻。由图2可知,在把逆变桥看作一个比例环节的情况下,逆变器的数学模型就是由输出LC滤波器构成的二阶系统。在本系统中,L=0.552mH,r=0.3Ω,C=135μF,所以逆变器数学模型为

G1(s)=36632/(s2+2×0.074×3663s+36632)(7)

它的离散化表达式为

G1(z)=(0.1007z+0.09845)/(z2-1.735z+0.9343)(8)

根据图3,可以很方便地得到幅值补偿系数modcoeff(n)和相位补偿系数phacoeff(n)。表1给出了最终的取值。

表1补偿系数的取值

波次

幅值补偿系数(放大倍数)

相位补偿系数(角度)

基波

0.993

0.7

3次谐波

0.934

2.3

5次谐波

0.818

4.5

7次谐波

0.643

7.9

9次谐波

0.417

15.7

3实验结果

对本文所用的控制方案进行了实验,逆变器参数为L=0.552mH,r=0.3Ω,C=135μF,开关频率f=8kHz,输出频率50Hz,幅值110V的交流电压。采用一片TI的TMS320F240定点DSP实现所有的控制功能。阻性负载参数为R=11Ω。整流型负载参数为L=0.8mH,C=2460μF,R=27Ω。

实验波形如图4,图5和图6所示。

图4给出了逆变器接阻性负载的稳态输出电压和电流波形。图5及图6分别给出了逆变器在接整流型负载情况下开环稳态、闭环稳态的实验波形。可以看出开环情况下输出电压波形畸变严重,闭环以后输出电压波形有了极大的改善。

逆变器范文篇4

关键词:负载串联谐振;频率跟踪;延时补偿

1概述

逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。

串联谐振逆变器在感应加热领域应用非常广泛,图1是它的基本原理图。它包括直流电压源,开关S1~S4和RLC串联谐振负载。

由于设计的是电压型负载高频逆变器,而达到高频,则要减小开关损耗。减小开关损耗的方法之一就是采用零电流开关。对于串联RLC电路,只有在LC串联谐振时,使得流过电阻R的电流iR和加在RLC两端的电压URLC同步,才能达到零电流开关要求。为此在全桥电路控制方式中,我们选取双极性控制方式。即开关管Sl和S3,S2和S4同时开通和关断,其开通时间不超过半个开关周期,即它们的开通角小于180°。

2逆变控制电路的设计

控制电路原理框图如图2所示。从图2可以看出,逆变电路可以工作在他激和自激两种状态。当逆变电路工作在他激状态时,控制信号从他激信号发生器发出,电路工作频率固定,由他激信号发生器控制。当逆变电路工作在自激状态时,电路的输出电流信号经过电流互感器采样,通过波形变换把正弦波变成方波,然后方波信号经单稳态电路防止干扰,接着送到频率跟踪电路,使得开关管的工作频率能够跟踪电流反馈信号。工作在自激状态时,逆变电路的工作频率由负载本身的固有频率决定。本电路中逆变电路的工作频率由放电负载和变压器漏感组成的串联谐振电路的自然频率决定。

2.1限幅、整形和单稳态电路

如图3所示,从电流互感器CT取出的反馈信号,通过电阻R6引入控制电路。引入控制电路的信号跟负载电流的大小,电流互感器的变比以及取样电阻R6的大小有关。在实际应用中,这个引入控制电路的信号可能会超过CMOS的最大工作电压而导致器件的损坏,因而有必要在这个信号后面加一个限幅电路。二极管D1及D2就起到这个作用。电流反馈信号近似正弦波,经过D1及D2和比较器以后,就变成了有正负的方波信号,经过D4把负的部分去掉,整形成占空比为50%的方波信号。

图4

电路在工作过程中不可避免地受到各种各样的外部干扰,加上其本身元器件的分布参数,使得电流反馈信号并不是理想的波形。由于后级电路的锁相环用的是边沿触发,如果前面的方波信号不好,会导致后级频率跟踪电路跟踪失败,从而导致了电路无法正常工作。所以,在电路中必须加入一个具有特定功能的电路,将有干扰的波形重新整形,然后输入后一级电路。单稳态触发器就实现这种功能,它在外部脉冲的作用下,输出具有特定宽度和幅值的矩形脉冲,经过一定时间,又自动回复到初始状态。

2.2频率跟踪电路

由电路的负载特性分析可知,电路的负载不是固定的负载。当电压升高,功率增大以后,负载固有的自然谐振频率会发生改变。这个时候如果逆变电路工作在开环状态下,由于电路的工作频率偏离了负载的自然谐振点,这就使得电路的输出功率不能随着直流母线电压的升高而同步升高,输出功率达不到要求。因此,必须使得逆变电路工作在闭环状态,实现频率的自动跟踪。

频率跟踪电路如图4所示。电路启动的时候,先开控制电路,此时电流反馈信号没有建立,逆变电路不能工作在自激状态。在图4中,控制电路开机后,电流反馈信号为0,比较器U1B输出为高电平,电子开关4066导通,Vcc通过R8与RP1分压以后供给4046的压控振荡器输入端,这个电压用来控制压控振荡器的频率,调节RP1,就可以得到他激电路所需要的频率。一般都把他激信号发生器的输出频率调得跟负载的自然谐振频率相差不大,这样有利于电流反馈快速建立,让逆变电路尽快进入自激工作状态。

在主电路开机时,可控整流电路输出电压调得比较低,这时候电流反馈信号比较小,随着直流母线电压慢慢升高,电流反馈信号逐步增大。在这个信号经过半波整流以后得到的直流电平(C2上的电压)没有超过R6两端电压以前,电路还是工作在他激状态。当电流反馈信号达到一定的值使得C2上的电压超过了R6两端电压以后,比较器U1B输出为低电平,把4066关断,RP1分压为0,没有办法通过二极管影响压控振荡器,这样压控振荡器的电压就由低通滤波器提供,逆变器工作在自激状态。由于电容C3的存在,使得电路在他激转自激的过程中,能够平稳地过渡,不至于出现压控振荡器输入为0的情况。

当逆变器工作在自激状态,其工作频率随着负载自然谐振频率的变化而变化。此时从前面的单稳态电路引入电流反馈信号,让锁相环输出的方波频率跟踪输出电流的频率。在这种状态下,锁相环的控制框图如图5所示。相位比较器PC2输出为两个信号的相位差,经过低通滤波器(LPF)以后,得到了反映两个输入信号上升时间差的直流电压,然后送入压控振荡器(VCO),将VCO的输出信号分频以后(信号的1/2分频是为了使得信号的占空比能严格达到50%),延迟td时刻送到PC2中,与电流反馈信号进行相位比较。PC2进入锁相工作以后,电流反馈信号和延迟电压驱动信号的上升沿就被锁相至同步。

2.3延迟补偿电路

在自激信号发生器的设计过程中,没有考虑电路信号传输中的延时。实际上控制电路、驱动电路以及芯片都有延时,因此,电路的延时不能忽略。延时导致负载的输出电压滞后于输出电流δ角度,负载工作于容性状态,如图6所示。由于存在延时,工作在容性状态时的开关管软开关条件就被破坏了,导致开通损耗大大增加。图7是控制信号的补偿电路。

当输入到R,L,C上的电压与电阻R上的电流波形有相位差时,通过调节Rp,使iR与输入电压同步。

3实验结果和波形分析

3.1频率跟踪电路的输入输出波形

频率跟踪电路的输入、输出波形如图8所示。

3.2延时补偿电路的波形

延时补偿电路的波形如图9所示。图中3个波形自上而下分别是图7延时补偿电路中结点2,3,4的波形。其中的t为放电时间,通过改变变阻器Rp可以调节放电时间t的快慢。

3.3开关管S4两端与负载R两端的电压波形

图10波形中,上面的波形是S4两端的电压,下面的是电阻两端的电压,S4与电阻两端的电压同相,此时电感电容串联谐振。但是,仔细观察两个波形可以发现,两个波形之间在过零点有些毛刺。其原因可以从图11得到说明。

图11中下面两个波形是S1及S2的驱动波形,可以发现他们之间存在死区。理论上,如果S1,S3与S2,S4的驱动波形为互补的话,则电阻R的电压与输入RLC两端的电压在LC发生串联谐振时应该是没有相位差的。由于驱动波形并非理想,所以造成电阻R的电压与输入RLC两端的电压并非完全没有相位差。

从图12中可以看出4046芯片跟踪,但是由于芯片和电路存在延时等原因,uRLC与4046的脚14波形之间存在相位差,而且很明显是滞后的。

逆变器范文篇5

关键词:辅助控制单元;硬件电路设计;轻量化;小型化

1引言

随着国内经济的快速发展,机动车数量增加造成的交通拥堵已变成日益严峻的社会问题,各式各样的公共交通和出行方式也应运而生,其中地下铁道(简称地铁)以其运输量大、准时、速度快、无污染等特点备受政府部门和上班族的喜爱。辅助逆变器作为地铁车辆的重要核心部件之一,其主要功能是将弓网的直流1500V高压转换为三相交流电,给地铁上的空调、照明、空气压缩机、电加热器及监控系统等设备供电。但早期由于技术受限,该设备只能从国外引进。国际上从事相关系统设计制造的公司主要集中在欧洲和日本,在欧洲主要以法国的阿尔斯通、加拿大的庞巴迪、德国的西门子为代表,日本则是以日立、三菱、东芝等著名企业为代表。阿尔斯通在世界轨道交通行业拥有超过18%的市场份额,其在技术创新和环保方面已成为全球轨道交通行业的领头羊。法国的巴黎地铁14号线,被誉为“21世纪地铁”,它的列车控制系统是当今世界最先进的列车运行控制系统之一。日本具有完备的轨道交通装备制造体系,其中,日立公司在轨道车辆和电气设备生产和设计方面居于世界领先地位。我国在购买这些企业设备的同时也进行了技术引进,经过不断实验和优化升级,逐步走上了辅助逆变器国产化自主研发的道路,并已经大量应用于地铁上。随着应用环境、控制方式、轻量化、小型化、电磁兼容等各方面的要求,辅助逆变器及其内部部件,都在不断的优化升级。从轻量化、小型化方面去优化辅助控制单元的硬件设计,在保证各功能模块和接口不变的情况下,尽量多预留多兼容适用于其它控制模式的平台。同时拟采用底板加小板的架构完成相应功能的设计,将模拟采样、数字信号输入输出、门极驱动以及相应的保护和检测电路集成在底板上,将通讯板、核心控制板通过板间插针与底板连接,并通过螺柱、螺母与底板固定。该方案无需通过背板进行板间通信,有效防止了信号之间的串扰,简化了电路设计,提高了模拟采样的精度和电路的稳定性。同时省去了各电路板的面板设计和制造,使得控制箱的体积和成本也得到一定程度的缩减。

2硬件电路系统设计

该控制单元以DSP+FPGA的架构完成模拟信号、数字信号的采集、门极驱动的脉冲输出、数字信号的输出、通讯、故障存储、保护等功能。FPGA和DSP共用双向RAM,通过总线的形式对RAM进行操作,SPANTAN6上电后可自己从外部程序存储FLASH引导程序,也可通过DSP进行串行引导。RS232通讯主要给日常软件调试和连接上位机时使用。CAN通讯主要用于车上调试预留。系统外部输入电源为DC110V,经过EMC滤波以及浪涌抑制管等保护装置,通过DC-DC电源模块转换为板内所需的各种电压类型。

3各功能模块技术方案

3.1模拟信号输入

模拟信号输入主要采集主电路上的交流测电压、交流测电流、中间直流电压、逆变器输出三相电流、接地电压等信号。从外部传感器采集到的电压、电流等模拟量通过差分运算放大器进行信号调理之后,送至模数转换电路,最后将该数字信号送至FPGA进行数据采集。由于该电路对采样精度有较高要求,采样电阻精度选择1%,模数转换器选择12bit精度的ADC。

3.2数字信号输入

数字信号主要为主回路开关状态反馈的输入,包括熔断器触点、主断反馈触点、放电接触反馈触点、工作接触器反馈触点、预充电接触器反馈等。对于控制单元来说,外界触点反馈输入的电压为DC77-DC137.5V,该电压较高,需要在电路中做降压和限幅处理,同时采用光耦进行隔离,以防不测,烧毁后级电路。最后经过光耦和后级电路处理得到的3V3信号送至FPGA。

3.3数字信号输出

数字信号输出主要对主回路中的开关进行动作命令,包括工作接触器、预充电接触器、放电接触器等。首先由FPGA发出动作指令,通过光耦隔离,使得继电器线圈得电,开关闭合,发出开关动作指令,输出电压范围DC77-DC137.5,电流1A-3A。

3.4门极驱动输出

由FPGA来控制缓冲器的发脉冲和封脉冲的使能端,当检测到内部电源异常或者外电路故障时,FPGA会立刻发出封脉冲的指令,通过驱动板立刻停止对IGBT的驱动。正常情况下,会通过MOSFET驱动器产生一个15V的电压型PWM脉冲。

3.5门极驱动反馈

当IGBT接收到PWM脉冲后,驱动板会给辅助控制单元一个门极驱动反馈,输入的反馈电压仍然为15V,通过稳压管、光耦隔离,最终将3v3的反馈信号送给FPGA。

3.6RS-232通信

RS-232是目前应用最广泛的串行通信接口,其结构和传输过程较为简单,适用于短距离低速率的通信模式。本文所搭建的RS-232通信模块电路,主要是为了完成实验室调试和连接上位机用,采用SP232EET芯片搭建成熟电路,最后通过D-SUB9连接器完成DSP与外界的通信。

3.7CAN通讯

CAN(ControllerAreaNetwork,控制器局域网)通讯具有传输距离远,传输速率快,抗干扰能力强等特点。本文采用包含物理层和数据链路层协议的CAN通讯控制芯片,用于完成软件升级、故障下载、车上调试等功能。

3.8供电单元

该控制箱外部供电DC110V,浮动范围DC77V-DC137.5V,为了保证电路板内元器件的正常工作,需要采用稳压直流电源模块进行DC-DC变换,首先将外部输入的DC110V转换为DC±15V,再由DC+15V通过板内的电源模块衍生出电路板内所需的其它各类型电压。该供电单元模块电路需要配置滤波器、过压抑制管、保险丝等电路,在保证将外界干扰降到最小的同时保证电路的安全可靠。

4语结

本项目不同于传统的3U、6U或9U的电路板卡分模块设计好后装入控制箱,各功能板卡之间的信号传输通过背板完成。采用底板加小板的架构完成相应功能的设计,将模拟采样、数字信号输入输出、门极驱动以及相应的保护和检测电路集成在底板上,将通讯板、核心控制板通过板间插针与底板连接,并通过螺柱、螺母与底板固定。该方案无需通过背板进行板间通信,有效防止了信号之间的串扰,简化了电路设计,提高了模拟采样的精度和电路的稳定性,具有小型化、低成本、集成度高等特点。

参考文献

[1]王明,李志杰.一种地铁辅助变流器设计与应用[J].工业设计,2018(04):135-136.

[2]张兴宝.西安地铁一号线和二号线车辆辅助供电系统分析[J].轨道交通装备与技术,2015(02):19-21.

逆变器范文篇6

关键词:Bode定理;Bode图;回路增益

1控制理论基础

1.1回路增益

对于一般负反馈控制系统,其闭环系统方框图如图1所示。闭环传递函数C(s)/R(s)=G(s)/[1+G(s)H(s)],其特征方程式为F(s)=1+G(s)H(s)=0,特征方程式的根即为系统的闭环极点。由此方程式可以看出G(s)H(s)项,其包含了所有关于闭环极点的信息,一般称G(s)H(s)为回路增益。实际应用中,可通过对回路增益Bode图的分析来设计系统的补偿网络,以达到闭环系统稳定性要求。

1.2Bode定理

Bode定理对于判定所谓最小相位系统的稳定性以及求取稳定裕量是十分有用的。其内容如下:

1)线性最小相位系统的幅相特性是一一对应的,具体地说,当给定整个频率区间上的对数幅频特性(精确特性)的斜率时,同一区间上的对数相频特性也就被唯一地确定了;同样地,当给定整个频率区间上的相频特性时,同一区间上的对数幅频特性也被唯一地确定了;

2)在某一频率(例如剪切频率ωc)上的相位移,主要决定于同一频率上的对数幅频特性的斜率;离该斜率越远,斜率对相位移的影响越小;某一频率上的相位移与同一频率上的对数幅频特性的斜率的大致对应关系是,±20ndB/dec的斜率对应于大约±n90°的相位移,n=0,1,2,…。

例如,如果在剪切频率ωc上的对数幅频特性的渐进线的斜率是-20dB/dec,那么ωc上的相位移就大约接近-90°;如果ωc上的幅频渐近线的斜率是-40dB/dec,那么该点上的相位移就接近-180°。在后一种情况下,闭环系统或者是不稳定的,或者只具有不大的稳定裕量。

在实际工程中,为了使系统具有相当的相位裕量,往往这样设计开环传递函数,即使幅频渐近线以-20dB/dec的斜率通过剪切点,并且至少在剪切频率的左右,从ωc/4到2ωc的这段频率范围内保持上述渐近线斜率不变。

2逆变器电压环传递函数(建模)

一个逆变器的直流输入电压24V,交流输出电压110V,频率400Hz,电路开关频率40kHz,功率500W。其控制至输出整个电压环的电路结构如图2所示。现求其回路增益。

2.1驱动信号d(s)至输出Vo?s)的传递函数

1)驱动信号d为SPWM脉冲调制波,加在IGBT管的栅极(G)上,而输入母线电压Vin加在管子的集电极(C)和发射极(E)两端,根据图2所示结构,输出电压Vd与驱动d之间相差一个比例系数,设为K1,则K1=。在具体的逆变器电路中,母线电压Vin为±200V,驱动信号为12V,代入可得K1=400/12=33.33。2)LC低通滤波网络传递函数推导可得=Vo(s)/Vo''''(s)=1/(s2LC+1),其中L=3mH,C=2μF。

综上,驱动信号d(s)至输出Vo(s)的传递函数为Vo(s)/d(s)=G1(s)=K1/(s2LC+1);

2.2输出Vo(s)至反馈信号B(s)的传递函数H(s)

1)输出电压采样变压器的传递函数为一个比例系数,即其变比,设为K2,即V''''o(s)/Vo(s)=K2,具体电路中,K2=18/110=0.164。

2)电阻电容分压网络如图2虚线框所示,其传递函数为=B(s)/V''''o(s)=1/(sR1C2+R1/R2+1),其中R1=820Ω,R2=5.1kΩ,C2=10nF。

综上,Vo(s)至B(s)的传递函数H(s)=B(s)/Vo(s)=K2/(sR1C2+R1/R2+1);

2.3脉宽调制器(PWM)传递函数Gd(s)

一般PWM调制器的传递函数为Gd(s)==,其中Vm为三角波最大振幅。在具体电路中,反馈信号与基准正弦波信号送入差动放大器,输出误差信号再与标准三角波比较,生成SPWM驱动信号。此处所用三角波的振幅为Vm=3V。

综上,在未加入补偿网络之前,整个回路增益为

G(s)=G1(s)H(s)Gd(s)

=K1/(s2LC+1)[K2/(sR1C2+R1/R2+1)(1/Vm)

=1.569/[(6×10-9s2+1)(7×10-6s+1)

绘制其幅频Bode图,如图3所示。

3补偿网络设计

由前述Bode定理,补偿网络加入后的回路增益应满足,幅频渐近线以-20dB/dec的斜率穿过剪切点(ωc点),并且至少在剪切频率左右从到2ωc的范围内保持此斜率不变。

由此要求,首先选择剪切频率。实际应用中,选fc=fs/5为宜,其中fs为逆变器工作频率或开关管开关频率。具体逆变器中,开关频率为40kHz,则fc=40/5=8kHz。

在未加补偿网络之前的回路增益Bode图如图3所示,在fc=8kHz处的增益为-20.17dB,由此,补偿网络应满足如下条件,即在fc=8kHz处的增益为+20.17dB,斜率为+20dB/dec,而且,此斜率在fc/4=2kHz与2fc=16kHz(取15kHz)的范围内保持不变。补偿网络的Bode图如图4所示(幅频)。

由图4可得:f1=2kHz处,G(ω)=20lg(2πf1)=8.129dB或者2.55(倍数)=AV1,f2=15kHz处,G(ω)=20lg(2πf2)=25.63dB或者19.12(倍数)=AV2,两个零值对应频率为fz1=fz2=2kHz,一个极值在fp1=15kHz处,另一个极值在fp2=20kHz处。考虑选用如图5所示补偿放大器时,其电阻电容参数值可计算如下:

取R3=5.1kΩ,R0=39kΩ,则R2=R3AV2=97.5kΩ,C2=1/(2πfp2R2)=81.6pF,C1==816pF,R1=1/(2πfp1R3)=39kΩ,C3=π=2040pF。

实际电路中,取R2=100kΩ,C2=100pF,C1=800pF,R1=39kΩ,C3=2200pF。

4实验结果

将上面补偿网络加入后,逆变器可带满载并稳定工作,其IGBT管两端电压vCE及输出电压vo的波形如图6所示,电路工作条件为:功率P=500W(满载),母线电压Vin=±180V。

逆变器范文篇7

关键词:逆变器开关函数实时仿真

在交通和某些工业领域中的电力驱动系统的研制过程中,直接使用实际电机系统对新的控制器进行测试,实现起来比较困难,而且费用较高。因此,需要介于离线仿真和实机试验之间的逆变器-交流电机实时仿真器,与实际控制器硬件相连,在闭环条件下对实际控制器进行实时测试。由于这种实时仿真系统回路中有实际控制器硬件介入,因此被称为硬件在回路仿真(Hardware-in-the-LoopSimulation)。

尽管在真实系统上进行试验是必不可少的,但是由于采用实机难以进行极限与失效测试,而采用实时仿真器可以自由地给定各种测试条件,测试被测控制器的性能,因此实时仿真器可作为快速控制原型(RapidControlPrototyping)的虚拟试验台,在电机、逆变器、电源和控制器需要同时工作的并行工程中必不可少。

图1电源-滤波-逆变器-交流电机系统

由于目前数字计算机处理速度的限制,不能实现亚微秒级物理模型实时仿真,需要对逆变器开关过程进行理想化处理,因此引入了离散事件系统。离散事件逆变器子系统与连续时间电机子系统耦合,使变流器-电机实时仿真器成为变因果和变结构系统。变因果是指离散开关事件发生前后,描述连续时间电机子系统的动态方程的输入变量与输出变量会变换位置;变结构是指在仿真进程中,离散开关事件引发状态转换,使连续系统结构发生变化。因而需要对动态方程不断地进行调整和初始化[1]。

框图建模工具Simulink是控制工程仿真的工业标准,但Simulink本质上是一种赋值运算,由其方框图描述的系统是因果的。为了能应用Simulink建模工具,应该使变流器-电机实时仿真系统解耦为两个独立子系统,以消除变因果、变结构问题。

作为功能性建模方法之一的开关函数,可用于确定变流器开关器件电压与电流波形计算,以便进行系统优化设计。它在变流器的离线仿真中已得到成功的应用[2~3]。本文应用文献[2]

的开关函数描述法,采用实际控制器输出的PWM开关逻辑信号定义正、负半桥开关函数,建立逆变器的Simulink模型。该模型既可实现实时仿真系统中逆变器与电机模型的解耦,又可以确定逆变器设置的开关死区时间,防止同一桥臂开关管直通。文中还将给出基于dSPACE实时环境的逆变器-异步电机开控制系统实时仿真的实现方法和结果。

图2逆变器系统Simulink框图

1逆变器Simulink模型

双电平三相电压源型逆变器由6个开关管和6个与开关管反向并接的续流二极管组成,见图1。采用实际控制器输出的6个PWM开关逻辑信号a+,b+,c+;a-,b-,c-定义逆变器a,b,c三相正半桥开关函数:

Sfap=1·×a+,SFbp=1×b+,SFcp=1×c+

和负半桥开关函数:

SFan=1×a-,SFbn=1×b-,SFcn=1×c-。

则全桥开关函数为:

SFa=Sfap-SFan,SFb=SFbp-SFbn,SFc=SFcp-SFcn。

逆变器输出端a,b,c与直流电流中点o之间的电压为:uao=0.5VDC×Sfab,ubo=0.5VDC×SFb,uco=0.5VDC×SFc,

其中,VDC为直流环路电压。由此得到线电压为:

uab=uao-ubo,ubc=ubo-uco,uca=uco-uao

相电压为:

uan=uao-uno,ubn=ubo-uno,ucn=uco-uno。

式中,uno=(1/3)(uao+ubo+uco)为电机三相绕组中点n与直流电流中点o之间的电压。

正半桥a,b,c相开关器件电流为:

is1=ia×Sfap,is3=ib×SFbp,is5=ic×SFcp

负半桥a,b,c相开关器件电流为:

is4=ia×SFan,is6=ib×SFbn,is2=ic×SFcn

三相电流为:

ia=is1+is4,ib=is3+is6,ic=is5+is2

另外开关电流为:

is1=is1_s-is1_D,iS4=is4_D-is4_s

直流电流为:

iDC=is1+is3+is5

其中,is1_s,is1_D,is4_s,is4_D分别为a相正、负半桥开关管和续流二极管电流。据此,可建立逆变器的Simulink框图模型。图2(a)~(d)分别是逆变器模型顶层和底层的Simulink框图。

2实时仿真系统实现

著名的机电控制系统开发平台较是基于MATLAB/Simulink/Real-TimeWorkshop[4~5]开发的dSPACE实时系统。本文的相关课题选用单板dSPACE系统DS1103。

图3宿主计算机/目标计算机结构

DS1103采用32位精简指令集处理器PowerPC604e进行浮点运算。精简指令集处理器采用小指令集、多寄存器结构,指令执行简单快速;统一用单周期指令,克服了复杂指令集处理器周期指令有长有短,造成运行中偶发不确定性,致使运行失常的弊端。

DS1103板插入PC机主板的ISA扩展槽中,由PC机提供电源,所有的实时计算都是由DS1103独立执行,而dSAPCE的试验工具软件则并行运行于PC主机上。宿主计算机/目标计算机结构如图3所示。

Real-TimeInterface(RTI)是dSPACE系统的实时实现软件,它对实时代码生成软件Real-TimeWorkshop进行扩展,集成了dSPACE系统I/O硬件实时模型,可实现从Simulink模型到dSPACE系统实时C代码的自动生成同,生成的实时代码包括实时内核和应用代码[6]。RTI还根据信号和参数产生一个变量文件,可以用dSPACE的试验工具软件ControlDesk进行访问[7]。

在功能强大的实时代码实现软件RTI与界面友好的试验软件ControlDesk支持下,可以很快地实现电力驱动系统快速控制原型与硬件在回路仿真测试。图4是采上述的逆变器模型与dSPACE系统I/O硬件模型组建的逆变器-交流电机系统Simulink框图。图中下部是逆变器-异步电机系统模型,作为实时任务T1,模型具有实际控制器的硬件接口,可输入6路实际的PWM开关信号,输出电流、电压等模拟信号;上部是PWM控制器模型,作为实时任务T2,模型由DSP控制器F240硬件产生实时PWM信号。T1与T2以异步采样模式工作,构成两定时器任务系统。为减少采样控制器输出引发的可变延时造成抖动的影响,设置T1的采样速率远高于T2的采样速率。

3实时仿真结果

系统仿真是针对某电动汽车电力驱动系统的,其中逆变器参数为:PWM开关频率fPWM=1kHz,开关死区时间=7μs;直流电源与滤波参数为:电池开路电压Ebo=288V,电源内阻Rb=0.03Ω,滤波电容C=10000μF;异步电机参数为:132V,182A,50Hz,45kW,2900rpm;负载转矩=50Nm;交流电源参数为:相电压幅值=100V,频率=50Hz。实时仿真采用Euler数值积分方法(ODE1),T1采样周期=11μs,T2采样周期=PWM周期=1ms。

图4逆变器-交流电机Simulink框图

图5是相电压uan、相电流ia、a相上半桥开关电流is1、S1开关管电流is1_s、S1续流二极管电流is1_D、直流环路电压VDC、直流环路电流iDC、任务总执行时间T1/tTT和T2/tTT的实时仿真波形。图中还显示出逆变器的输出电压空间矢量的矢端轨迹为正六边形,并内含从零电压矢量至六边形顶点的连线;而电机的转子磁链空间矢量的矢端轨为圆形。实时仿真系统经长时间连续运行,没有出现数值不稳定问题。

作为比较,对相同系统参数的逆变器-交流电机系统进行步长为100ns的离线仿真,并采用与实时仿真相同的Simulink模型(无硬件接口)和数值积分方法。结果是更小的步长并没有对仿真精度有明显的改进,这表明步长为11μs的实时仿真已经具有较高的仿真精度。

逆变器范文篇8

近年来,随着我国城市人口的膨胀、国民经济的发展和环保节能理念的推进,轨道交通升温已成为不争的事实。轨道车辆按照其供给电压有DC750V、DC1500V、AC25000V等等。在电力电子技术和微电子技术的强力支持下,交流传动系统以其固有的优越性,在轨道牵引领域、尤其是在地铁等原来由直流电网供电的电动车组中的应用得到迅猛发展。本文以阿尔斯通公司的车辆为例,介绍用于地铁、轻轨等的DC1500V供电的中压牵引变频器。

2系统构成

阿尔斯通ONIXTM驱动系统是一种标准化的驱动产品,主要包括ONIXTMIGBT变频器、AGATE控制电子装置和ONIXTM牵引电动机。如运行于上海明珠线的是阿尔斯通MetropolisTM列车。列车采用4动2拖编组方式,每辆动车装备一套牵引变频器。包括ONIXTM1500逆变器模块、ONIXTM交流电机和AGATE控制电子装置。系统结构如图1所示。

高压供电开关(HVSS):

三档位置:位置P—牵引变频器由接触网供电;

位置E—牵引变频器完全接地;

位置W—辅助变流器由车间电源供电。

高速断路器(HSCB):故障情况下,将牵引变频器与供电电源快速隔离。断开速度约15ms。断开可以由控制回路控制或当电流超过设定值时自动跳闸。当AGATEControl检测到HSCB断开时,它将断开LC和CCC,并且触发撬棒回路使滤波器放电。

●进线电抗器(LFL):与充电电容器组成一个低通滤波器,减少电流谐波,减小供电电压波动对变频器的影响。

●电容充电接触器(CCC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合,CCC断开。

●电容充电电阻(CCZ):对滤波电容软充电,防止大电流冲击;当HVSS置于接地位置时,用于对电容器放电。

●进线接触器(LC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合;当牵引变频器故障时断开。

●硬撬棒回路晶闸管(TH1):对电容器快速放电;瞬间过压时对IGBT和滤波电容提供保护;当滤波电压超过2500V时,导通保护。

●高频滤波电容(HFK):减少高频电磁干扰;为高频交流电流提供一个低阻抗回路。

2.1ONIXTM牵引变频器的优点

较高的开关频率。使交流波形平滑,降低谐波电流,减少体积及重量;更好的电机波形;降低电机损耗;更易于与信号系统兼容。

●简化了功率电路。减少了器件数量,降低了成本;增加了可靠性;易于维护。

●简化了驱动电路,易于控制。

●无需吸收回路。

●易于安装在散热器上。IGBT器件包含内部绝缘介质;散热器直接接地,对冷却空气无过滤要求;每一个IGBT器件直接安装于散热器上;器件易于替换,无需特殊工具和方法。

●节约能量。ONIX牵引所产生的近乎完美的正弦波电流输出减少了电机热量,通过改进的叠片封装提供了优良的磁性能,降低了涡流损耗。

2.2驱动控制装置—AGATEControl

AGATEControl是一种先进的电子控制装置,专门用于控制四象限变流器及电压源变频器。大规模集成电路和双32位微处理器的使用使ALSTOM牵引变频器在可靠性及性能方面获得改进。处理器提供信号处理、快速计算和功率监视功能。其中,Inteli960CA微处理器用于总体监控,TexasIMS320C31信号处理器用于快速计算和精确的功率控制。如图2所示。

主要控制功能:异步电机的实施牵引及制动控制,采用了专利的矢量控制算法;先进的防空转、防滑行控制;用于电力电子控制的信号监测。

通讯功能:通过与Windows相兼容软件实现友好的用户界面;通过用于增强监视能力的各种网络与所有的AGATE产品通讯;在同功率车辆之间或不同功率车辆之间进行通讯。

维护功能:用于诊断和参数设置的人机界面;高等级的自测能力;使用微机与之通讯,下载事件及错误记录及以前的维护数据。

2.3牵引系统控制策略

由电压源变频器供电电机运行在脉宽调制模式(PWM),PWM使它可能施加一个平衡的三相电压给电机,其幅值和频率可调。如图3所示。

使用专利技术的矢量控制策略,输出力矩常接近力矩指令,且改进了低速运行性能。速度在10公里/小时以上力矩精度为±5%。在10公里/小时以下力矩精度为±10%。这些精度是假设所有相互之间轮径差在1%(即8mm)以内。

带有电机电流最佳控制的矢量控制给出了快速磁通和力矩响应(对非激励电机<1秒),矢量控制使力能能够跟随逆变器短时关断时重新建立。无需等待电机磁通消失,这是因为逆变器是按电机反电势调节输出电压的。力矩控制用宽通带(0至36Hz)调节器完成磁通建立,而不管电机的旋转速度。力矩由电流环控制,减少当电源系统不规则时用常规控制技术可能发生的过流可能性。矢量控制原理如图4所示。

2.4控制参数的测量

电机并联连接的策略基于:

在逆变器输出端公用的电流和电压测量取代电机各自的测量;对每个电机单独进行速度测量;在说明的容差范围内,总的力矩调节与轮径差无关;设计电机参数时,允许1%轮径差,通过对所引起的电机电流差等补偿来实现的。

矢量控制在测量方面对电机而言本质上是外部的,它不要求测量电机内部,如电机定子和转子的温度测量、电机内部的磁通测量。

关于加速度变化率/负载补偿:主令控制器产生的牵引力(或制动力)指令连接到AGATE单元并由其分析。为了控制车辆加速度,按照车辆重量作出校正。车辆载重量是由控制单元使用来自转向架上的传感器上的信号进行计算的。在电动或制动时,产生一个加/减速度变化率限止指令,内部保证车辆的平滑行驶。

2.5ONIX交流牵引电机

ALSTOM研制的独特的轻质、紧凑的、型号为4LCA2138的交流牵引电机为全封闭结构,其特点是:

●高可靠性。200级绝缘系统及真空加压浸渍技术为定子绕组提供了高等级温升裕量,这意味着功率的提高及体积和重量的降低。

●低维护性。转子和定子绕组与外部完全隔离,无需定期拆卸清洁。

●低噪音。特别设计的冷却风扇使噪音降低至IEC60349-2标准。

3主要性能

3.1变频器的额定参数

额定工作电压:1500V

最大工作电压:1800V

最小工作电压:1000V

持续有效输出功率:800kW

峰值输出视在功率:1850kVA

持续线电流有效值:520A

IGBT开关频率:600Hz(最大值)

逆变器输出频率:106Hz(额定值)

逆变器IGBT器件额定值:3300V,1200A

3.2列车性能

上海明珠线地铁车辆采用四动两拖六节编组,每个动车装配一个ONIX1500牵引变频器,驱动四个并联的ONIX交流牵引电机,变频器强迫风冷,采用再生和电阻混合制动方式,当架空电网不能接受再生能量时,进行全功率电阻制动。列车主要数据如下:

最大运营速度:80km/h

最大设计速度:90km/h

最大瞬间加速度:0.9m/s2

最大运营减速度:1.0m/s2

冲击限制:0.7-1.0m/s3

额定工作电压:1500V

最大牵引力:21.3kN/电机

牵引转矩:1273Nm/电机

最大制动力:23.5kN/电机

制动转矩:1322kN/电机

采用矢量控制的IGBT的变频器和交流异步牵引电动机,配以完善的监控和自诊断系统,是我国地铁、轻轨等车辆开发、制造和使用交流传动系统的正确方向。发达国家在电动机车组中应用交流传动技术已进入实用化阶段。这是轨道牵引技术的革命,它结束了直流传动的统治,具有划时代的意义。

4参考文献

逆变器范文篇9

近年来,随着我国城市人口的膨胀、国民经济的发展和环保节能理念的推进,轨道交通升温已成为不争的事实。轨道车辆按照其供给电压有DC750V、DC1500V、AC25000V等等。在电力电子技术和微电子技术的强力支持下,交流传动系统以其固有的优越性,在轨道牵引领域、尤其是在地铁等原来由直流电网供电的电动车组中的应用得到迅猛发展。本文以阿尔斯通公司的车辆为例,介绍用于地铁、轻轨等的DC1500V供电的中压牵引变频器。

2系统构成

阿尔斯通ONIXTM驱动系统是一种标准化的驱动产品,主要包括ONIXTMIGBT变频器、AGATE控制电子装置和ONIXTM牵引电动机。如运行于上海明珠线的是阿尔斯通MetropolisTM列车。列车采用4动2拖编组方式,每辆动车装备一套牵引变频器。包括ONIXTM1500逆变器模块、ONIXTM交流电机和AGATE控制电子装置。系统结构如图1所示。

高压供电开关(HVSS):

三档位置:位置P—牵引变频器由接触网供电;

位置E—牵引变频器完全接地;

位置W—辅助变流器由车间电源供电。

高速断路器(HSCB):故障情况下,将牵引变频器与供电电源快速隔离。断开速度约15ms。断开可以由控制回路控制或当电流超过设定值时自动跳闸。当AGATEControl检测到HSCB断开时,它将断开LC和CCC,并且触发撬棒回路使滤波器放电。

●进线电抗器(LFL):与充电电容器组成一个低通滤波器,减少电流谐波,减小供电电压波动对变频器的影响。

●电容充电接触器(CCC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合,CCC断开。

●电容充电电阻(CCZ):对滤波电容软充电,防止大电流冲击;当HVSS置于接地位置时,用于对电容器放电。

●进线接触器(LC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合;当牵引变频器故障时断开。

●硬撬棒回路晶闸管(TH1):对电容器快速放电;瞬间过压时对IGBT和滤波电容提供保护;当滤波电压超过2500V时,导通保护。

●高频滤波电容(HFK):减少高频电磁干扰;为高频交流电流提供一个低阻抗回路。

2.1ONIXTM牵引变频器的优点

较高的开关频率。使交流波形平滑,降低谐波电流,减少体积及重量;更好的电机波形;降低电机损耗;更易于与信号系统兼容。

●简化了功率电路。减少了器件数量,降低了成本;增加了可靠性;易于维护。

●简化了驱动电路,易于控制。

●无需吸收回路。

●易于安装在散热器上。IGBT器件包含内部绝缘介质;散热器直接接地,对冷却空气无过滤要求;每一个IGBT器件直接安装于散热器上;器件易于替换,无需特殊工具和方法。

●节约能量。ONIX牵引所产生的近乎完美的正弦波电流输出减少了电机热量,通过改进的叠片封装提供了优良的磁性能,降低了涡流损耗。

2.2驱动控制装置—AGATEControl

AGATEControl是一种先进的电子控制装置,专门用于控制四象限变流器及电压源变频器。大规模集成电路和双32位微处理器的使用使ALSTOM牵引变频器在可靠性及性能方面获得改进。处理器提供信号处理、快速计算和功率监视功能。其中,Inteli960CA微处理器用于总体监控,TexasIMS320C31信号处理器用于快速计算和精确的功率控制。

主要控制功能:异步电机的实施牵引及制动控制,采用了专利的矢量控制算法;先进的防空转、防滑行控制;用于电力电子控制的信号监测。

通讯功能:通过与Windows相兼容软件实现友好的用户界面;通过用于增强监视能力的各种网络与所有的AGATE产品通讯;在同功率车辆之间或不同功率车辆之间进行通讯。

维护功能:用于诊断和参数设置的人机界面;高等级的自测能力;使用微机与之通讯,下载事件及错误记录及以前的维护数据。

2.3牵引系统控制策略

由电压源变频器供电电机运行在脉宽调制模式(PWM),PWM使它可能施加一个平衡的三相电压给电机,其幅值和频率可调。

使用专利技术的矢量控制策略,输出力矩常接近力矩指令,且改进了低速运行性能。速度在10公里/小时以上力矩精度为±5%。在10公里/小时以下力矩精度为±10%。这些精度是假设所有相互之间轮径差在1%(即8mm)以内。

带有电机电流最佳控制的矢量控制给出了快速磁通和力矩响应(对非激励电机<1秒),矢量控制使力能能够跟随逆变器短时关断时重新建立。无需等待电机磁通消失,这是因为逆变器是按电机反电势调节输出电压的。力矩控制用宽通带(0至36Hz)调节器完成磁通建立,而不管电机的旋转速度。力矩由电流环控制,减少当电源系统不规则时用常规控制技术可能发生的过流可能性。矢量控制原理如图4所示。

2.4控制参数的测量

电机并联连接的策略基于:

在逆变器输出端公用的电流和电压测量取代电机各自的测量;对每个电机单独进行速度测量;在说明的容差范围内,总的力矩调节与轮径差无关;设计电机参数时,允许1%轮径差,通过对所引起的电机电流差等补偿来实现的。

矢量控制在测量方面对电机而言本质上是外部的,它不要求测量电机内部,如电机定子和转子的温度测量、电机内部的磁通测量。

关于加速度变化率/负载补偿:主令控制器产生的牵引力(或制动力)指令连接到AGATE单元并由其分析。为了控制车辆加速度,按照车辆重量作出校正。车辆载重量是由控制单元使用来自转向架上的传感器上的信号进行计算的。在电动或制动时,产生一个加/减速度变化率限止指令,内部保证车辆的平滑行驶。

2.5ONIX交流牵引电机

ALSTOM研制的独特的轻质、紧凑的、型号为4LCA2138的交流牵引电机为全封闭结构,其特点是:

●高可靠性。200级绝缘系统及真空加压浸渍技术为定子绕组提供了高等级温升裕量,这意味着功率的提高及体积和重量的降低。

●低维护性。转子和定子绕组与外部完全隔离,无需定期拆卸清洁。

●低噪音。特别设计的冷却风扇使噪音降低至IEC60349-2标准。

3主要性能

3.1变频器的额定参数

额定工作电压:1500V

最大工作电压:1800V

最小工作电压:1000V

持续有效输出功率:800kW

峰值输出视在功率:1850kVA

持续线电流有效值:520A

IGBT开关频率:600Hz(最大值)

逆变器输出频率:106Hz(额定值)

逆变器IGBT器件额定值:3300V,1200A

3.2列车性能

上海明珠线地铁车辆采用四动两拖六节编组,每个动车装配一个ONIX1500牵引变频器,驱动四个并联的ONIX交流牵引电机,变频器强迫风冷,采用再生和电阻混合制动方式,当架空电网不能接受再生能量时,进行全功率电阻制动。列车主要数据如下:

最大运营速度:80km/h

最大设计速度:90km/h

最大瞬间加速度:0.9m/s2

最大运营减速度:1.0m/s2

冲击限制:0.7-1.0m/s3

额定工作电压:1500V

最大牵引力:21.3kN/电机

牵引转矩:1273Nm/电机

最大制动力:23.5kN/电机

制动转矩:1322kN/电机

采用矢量控制的IGBT的变频器和交流异步牵引电动机,配以完善的监控和自诊断系统,是我国地铁、轻轨等车辆开发、制造和使用交流传动系统的正确方向。发达国家在电动机车组中应用交流传动技术已进入实用化阶段。这是轨道牵引技术的革命,它结束了直流传动的统治,具有划时代的意义。

4参考文献

逆变器范文篇10

近年来,随着我国城市人口的膨胀、国民经济的发展和环保节能理念的推进,轨道交通升温已成为不争的事实。轨道车辆按照其供给电压有DC750V、DC1500V、AC25000V等等。在电力电子技术和微电子技术的强力支持下,交流传动系统以其固有的优越性,在轨道牵引领域、尤其是在地铁等原来由直流电网供电的电动车组中的应用得到迅猛发展。本文以阿尔斯通公司的车辆为例,介绍用于地铁、轻轨等的DC1500V供电的中压牵引变频器。

2系统构成

阿尔斯通ONIXTM驱动系统是一种标准化的驱动产品,主要包括ONIXTMIGBT变频器、AGATE控制电子装置和ONIXTM牵引电动机。如运行于上海明珠线的是阿尔斯通MetropolisTM列车。列车采用4动2拖编组方式,每辆动车装备一套牵引变频器。包括ONIXTM1500逆变器模块、ONIXTM交流电机和AGATE控制电子装置。系统结构如图1所示。

高压供电开关(HVSS):

三档位置:位置P—牵引变频器由接触网供电;

位置E—牵引变频器完全接地;

位置W—辅助变流器由车间电源供电。

高速断路器(HSCB):故障情况下,将牵引变频器与供电电源快速隔离。断开速度约15ms。断开可以由控制回路控制或当电流超过设定值时自动跳闸。当AGATEControl检测到HSCB断开时,它将断开LC和CCC,并且触发撬棒回路使滤波器放电。

●进线电抗器(LFL):与充电电容器组成一个低通滤波器,减少电流谐波,减小供电电压波动对变频器的影响。

●电容充电接触器(CCC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合,CCC断开。

●电容充电电阻(CCZ):对滤波电容软充电,防止大电流冲击;当HVSS置于接地位置时,用于对电容器放电。

●进线接触器(LC):对滤波电容软充电,防止大电流冲击;当滤波电压达到950V时,LC闭合;当牵引变频器故障时断开。

●硬撬棒回路晶闸管(TH1):对电容器快速放电;瞬间过压时对IGBT和滤波电容提供保护;当滤波电压超过2500V时,导通保护。

●高频滤波电容(HFK):减少高频电磁干扰;为高频交流电流提供一个低阻抗回路。

2.1ONIXTM牵引变频器的优点

较高的开关频率。使交流波形平滑,降低谐波电流,减少体积及重量;更好的电机波形;降低电机损耗;更易于与信号系统兼容。

●简化了功率电路。减少了器件数量,降低了成本;增加了可靠性;易于维护。

●简化了驱动电路,易于控制。

●无需吸收回路。

●易于安装在散热器上。IGBT器件包含内部绝缘介质;散热器直接接地,对冷却空气无过滤要求;每一个IGBT器件直接安装于散热器上;器件易于替换,无需特殊工具和方法。

●节约能量。ONIX牵引所产生的近乎完美的正弦波电流输出减少了电机热量,通过改进的叠片封装提供了优良的磁性能,降低了涡流损耗。

2.2驱动控制装置—AGATEControl

AGATEControl是一种先进的电子控制装置,专门用于控制四象限变流器及电压源变频器。大规模集成电路和双32位微处理器的使用使ALSTOM牵引变频器在可靠性及性能方面获得改进。处理器提供信号处理、快速计算和功率监视功能。其中,Inteli960CA微处理器用于总体监控,TexasIMS320C31信号处理器用于快速计算和精确的功率控制。如图2所示。

主要控制功能:异步电机的实施牵引及制动控制,采用了专利的矢量控制算法;先进的防空转、防滑行控制;用于电力电子控制的信号监测。

通讯功能:通过与Windows相兼容软件实现友好的用户界面;通过用于增强监视能力的各种网络与所有的AGATE产品通讯;在同功率车辆之间或不同功率车辆之间进行通讯。

维护功能:用于诊断和参数设置的人机界面;高等级的自测能力;使用微机与之通讯,下载事件及错误记录及以前的维护数据。

2.3牵引系统控制策略

由电压源变频器供电电机运行在脉宽调制模式(PWM),PWM使它可能施加一个平衡的三相电压给电机,其幅值和频率可调。如图3所示。

使用专利技术的矢量控制策略,输出力矩常接近力矩指令,且改进了低速运行性能。速度在10公里/小时以上力矩精度为±5%。在10公里/小时以下力矩精度为±10%。这些精度是假设所有相互之间轮径差在1%(即8mm)以内。

带有电机电流最佳控制的矢量控制给出了快速磁通和力矩响应(对非激励电机<1秒),矢量控制使力能能够跟随逆变器短时关断时重新建立。无需等待电机磁通消失,这是因为逆变器是按电机反电势调节输出电压的。力矩控制用宽通带(0至36Hz)调节器完成磁通建立,而不管电机的旋转速度。力矩由电流环控制,减少当电源系统不规则时用常规控制技术可能发生的过流可能性。矢量控制原理如图4所示。

2.4控制参数的测量

电机并联连接的策略基于:

在逆变器输出端公用的电流和电压测量取代电机各自的测量;对每个电机单独进行速度测量;在说明的容差范围内,总的力矩调节与轮径差无关;设计电机参数时,允许1%轮径差,通过对所引起的电机电流差等补偿来实现的。

矢量控制在测量方面对电机而言本质上是外部的,它不要求测量电机内部,如电机定子和转子的温度测量、电机内部的磁通测量。

关于加速度变化率/负载补偿:主令控制器产生的牵引力(或制动力)指令连接到AGATE单元并由其分析。为了控制车辆加速度,按照车辆重量作出校正。车辆载重量是由控制单元使用来自转向架上的传感器上的信号进行计算的。在电动或制动时,产生一个加/减速度变化率限止指令,内部保证车辆的平滑行驶。

.5ONIX交流牵引电机

ALSTOM研制的独特的轻质、紧凑的、型号为4LCA2138的交流牵引电机为全封闭结构,其特点是:

●高可靠性。200级绝缘系统及真空加压浸渍技术为定子绕组提供了高等级温升裕量,这意味着功率的提高及体积和重量的降低。

●低维护性。转子和定子绕组与外部完全隔离,无需定期拆卸清洁。

●低噪音。特别设计的冷却风扇使噪音降低至IEC60349-2标准。

3主要性能

3.1变频器的额定参数

额定工作电压:1500V

最大工作电压:1800V

最小工作电压:1000V

持续有效输出功率:800kW

峰值输出视在功率:1850kVA

持续线电流有效值:520A

IGBT开关频率:600Hz(最大值)

逆变器输出频率:106Hz(额定值)

逆变器IGBT器件额定值:3300V,1200A

3.2列车性能

上海明珠线地铁车辆采用四动两拖六节编组,每个动车装配一个ONIX1500牵引变频器,驱动四个并联的ONIX交流牵引电机,变频器强迫风冷,采用再生和电阻混合制动方式,当架空电网不能接受再生能量时,进行全功率电阻制动。列车主要数据如下:

最大运营速度:80km/h

最大设计速度:90km/h

最大瞬间加速度:0.9m/s2

最大运营减速度:1.0m/s2

冲击限制:0.7-1.0m/s3

额定工作电压:1500V

最大牵引力:21.3kN/电机

牵引转矩:1273Nm/电机

最大制动力:23.5kN/电机

制动转矩:1322kN/电机

3.3性能曲线

图5和图6分别为驱动和制动特性曲线。

采用矢量控制的IGBT的变频器和交流异步牵引电动机,配以完善的监控和自诊断系统,是我国地铁、轻轨等车辆开发、制造和使用交流传动系统的正确方向。发达国家在电动机车组中应用交流传动技术已进入实用化阶段。这是轨道牵引技术的革命,它结束了直流传动的统治,具有划时代的意义。

4参考文献