灭火系统范文10篇

时间:2023-03-31 19:23:04

灭火系统

灭火系统范文篇1

依据JGJ25—2010档案馆建筑设计规范规定,乙级档案馆中的档案库房可采用洁净气体灭火系统或高压细水雾灭火系统。近年来随着临汾等地市档案库房均采用了高压细水雾灭火系统设计,再加上高压细水雾灭火系统后期维护简单,安全可靠,可消除烟雾、比起气体灭火更加节能环保等优点,沁水县档案局要求参考山西临汾等地市档案库房采用高压细水雾灭火系统。根据GB50898—2013细水雾灭火系统技术规范(以下《细水规》)3.4.5条全淹没应用开式系统防护区数量不应大于3个、泵组式单个防护区容积不超过3000m3的要求,结合图1及表1将本工程的5个档案库房划分为5个防护区,设计采用两套泵组式全淹没开式系统。设计中将档案库房1,2,4三个防护区共用一套高压细水雾泵组,档案库房3,5两个防护区共用一套高压细水雾泵组,设计详细参数见表2。档案库房高压细水雾开式系统流量按照防护区内同时动作喷头数的流量之和进行计算。系统1最大流量防护区为档案库房1,按共喷放60只喷头的流量之和的1.05倍进行计算,经计算Q=630L/min,采用XSW-BZ765/13-5×1型号供水装置(五用一备),六台高压柱塞泵,单泵流量153L/min,压力13MPa,功率37kW,稳压泵两台(一用一备)。系统2最大流量防护区为档案库房5,按共喷放28只喷头的流量之和的1.05倍进行计算,经计算Q=294L/min,采用XSW-BZ306/13-1×1型号供水装置(两用一备),三台高压柱塞泵,单泵流量153L/min,压力13MPa,功率37kW,稳压泵两台(一用一备)。系统共用有效容积18.90m3的不锈钢水箱,高压细水雾泵组及水箱设置在地下消防水泵房内。

2系统设计存在问题分析

2.1防护区选择防护区。一直是《细水规》实施以来争议的热点问题之一。《细水规》第3.4.5条采用全淹没应用开式系统防护区数量不应大于3个,对沁水档案馆档案库房来说,如果按每个档案库房为一个防护区,5个档案库房需要5个防护区,则需要两套系统来保护,对昂贵的高压泵组来说增加一套需增加不少投资。《细水规》对防护区的术语解释实在有限,条文说明也只说是参考现行GB50370气体灭火系统设计规范防护区的定义且适当放宽。因此在实际的工程设计中对同层相似功能的小房间进行了防护区的合并,满足《细水规》第3.4.5条泵组式单个防护区不大于3000m3的规定,更有甚者将不同楼层相似功能的房间合并为一个防护区,只要一栋建筑细水雾灭火系统总体积不超过9000m3都可以采用一套高压细水雾泵组,当然这都需要当地消防主管部门的同意。如果将沁水县档案馆5个档案库房(总体积4752.48m3)合并为三个防护区,则可以减少一套高压细水雾泵组,详细参数见表3。档案库房高压细水雾开式系统流量按照防护区内同时动作喷头数的流量之和进行计算。系统3最大流量防护区为防护区2,同时民用建筑同一时间内的火灾起数按1起确定,则档案库房2,4,3三个房间按最大档案库房2计算流量,防护区2的三个房间,可通过自动阀门控制只对需要消防的库房喷洒。防护区2消防按共喷放60只喷头的流量之和的1.05倍进行计算,经计算Q=630L/min,系统3采用XSW-BZ765/13-5×1型号供水装置(五用一备),六台高压柱塞泵,单泵流量153L/min,压力13MPa,功率37kW,稳压泵两台(一用一备)。表2细水雾供水装置系统1报价133万元,系统2报价71万元,系统3与系统1相同,可省下系统2费用,则可减少投资约34%(71万元)。在消防设计审查相对保守的山西来说,本次档案馆设计最终还是按照档案库房数量划分为5个防护区。2.2喷头安装高度的确定及系统最小喷雾的选择。《细水规》第3.4.4条当喷头安装高度不大于3m以下时系统最小喷雾强度为1.0L/(min•m2),当喷头安装高度大于3m且不大于5m时,系统最小喷雾强度为2.0L/(min•m2),此时安装喷头的流量要比不大于3m增加1倍,高压细水雾泵组系统流量就会增加1倍。本次档案馆设计一层层高5.1m,吊顶高度大于3m,以档案库房1计算高压细水雾消防流量为630L/min,高压细水雾泵组造价约130万元;如果档案馆使用方同意将吊顶控制在3m以下,则以档案库房1计算高压细水雾消防流量为315L/min,高压细水雾泵组造价约80万元;可减少38%投资约50万元。2.3开式系统分区控制阀设置。根据公安部消防局组织编写的《消防安全技术实务》描述,开式系统应按防护区设置分区控制阀且宜靠近防护区设置,并应设置在防护区外便于操作检修维护的位置。《细水规》对开式系统分区控制阀条文控制也不够详细,比如沁水档案馆二层档案库房2,4,3三个独立房间作为一个防护区时是否可以设置三个分区控制阀分别控制三个库房的细水雾灭火系统;还是一个分区控制阀对应一个防护区,在防护区内的档案库房2,4,3三个独立房间内增设电动控制阀门来控制每个库房的细水雾喷头喷水灭火。本次档案馆保守设计按每个防护区安装独立的分区控制阀来控制每个档案库房内的高压细水雾灭火系统。

3结语

从沁水县档案馆高压细水雾灭火系统设计中存在的争议来看,《细水规》还有很长的路要走,比如全淹没应用开式系统防护区数量3个明显少于气体灭火系统的8个,而这将导致高压细水雾系统泵组成倍增加,进一步增加工程投资;还有喷头安装高度对应系统最小喷雾强度表格不够详细,安装高度大于3m的档案库房高压细水雾系统泵组流量增大一倍;分区控制阀等控制系统规范不详细将导致设计施工随意性增大、不规范,控制不合理等。因此建议《细水规》规范以后修编时结合现有工程实例,适当增加系统规模,明确防护区概念等,同时与行业标准国家档案局DA/T45—2009档案馆高压细水雾灭火系统技术规范相适应,使两本规范相辅相成结合成一个整体,使高压细水雾灭火系统更加合理经济实用。

参考文献:

[1]公安部消防局.消防安全技术实务[M].北京:机械工业出版社,2017.

[2]DA/T45—2009,档案馆高压细水雾灭火系统技术规范[S].

[3]GB50898—2013,细水雾灭火系统技术规范[S].

[4]吴平,栗心国.细水雾灭火系统在档案馆中的设计优化探讨[J].给水排水,2016,42(10):100-103.

灭火系统范文篇2

关键词:自动喷水灭火系统;消防给水;设计施工;注意的问题

自动喷水灭火系统是目前最有效的灭火手段,自动喷水灭火系统将逐渐成为建筑防火体系中的主体。在自动喷水灭火系统不能成功灭火的案例中,供水中断占35.4%,供水量不足占9.9%,两者合计占45.3%。由此可见,供水不可靠是自动喷水灭火系统不能成功灭火的主要因素。因此,提高自动喷水灭火系统供水的可靠性就显得十分重要。笔者结合工作实际,主要就自动喷水灭火系统的消防给水设计与施工中需要注意的有关问题进行了探究。

一、设计

1.1要有可靠的供水源

自动喷水灭火系统的用水与消火栓给水系统用水一样,其供水来源:一是室外给水管网;二是消防水池;三是江、河、湖、海、水库等天然水源。当采用天然水源作为消防用水时,因其水位和水量变化较大,必须确保枯水期最低水位的消防用水量,当采用河、塘等地表水作为水源时,应在吸水管上加装滤水器等设施,以阻止河、塘水中的杂物吸入系统,保证系统内水流的畅通。

1.2设计施工中需要注意的几个问题

1.2.1合理选择喷水灭火系统的类型。目前,国内外采用湿式喷水灭火系统最为广泛。为了防止出现因冻结等原因而中断供水的情况,在室内温度不低于4℃且不高于70℃的建、构筑物,均可采用这种喷水灭火系统。在室内温度低于4℃或高于70℃的建、构筑物,应采用干式喷水灭火系统。

1.2.2设置有严密的监测装置。对系统的控制开启状态、消防水泵供应和工作情况、水池、水箱水位情况、干式喷水灭火系统的最高和最低气温、预作用喷水灭火系统的最低气压以及报警阀、水流指示器的动作情况等,均能较准确地进行监测。发现问题,及时处理,确保系统设备齐全、性能完好。

1.2.3设置水泵接合器。为了防止自动喷水灭火系统和室内消火栓给水系统的用水相互影响,两个系统的管网及其水泵接合器应分别设置。若分开设置有困难,应将自动喷水灭火系统报警阀后的管网与消火栓给水系统管网分开设置,两个系统的水泵接合器则可合用。每个水泵接合器的流量宜按10~15升/秒计算,并应设在便于消防车连接的地点,其周围15~40m内应设室外消火栓或消防水池。

1.3按要求设置消防水池或消防水箱

1.3.1为了保障自动喷水灭火系统的正常供水,提高扑救火灾的成功率,具有下列情况之一的建筑物应设消防水池:一是室外给水管道包括(进水管)或天然水源不能满足消防用水量;二是室外管道为枝状或只有一条进水管。

1.3.2消防水池容量原则上应能满足火灾延续时间内消防用水量的要求。从自动喷水灭火实际效果看,在一小时内灭火效果为最佳,一小时以后灭火效果显著下降,而且还可能影响消火栓给水系统灭火效率。因此,仅供自动喷水用水的消防水池容量按一小时火灾延续时间计算即可,如与其它消防用水合用水池时,应按不同火灾连续时间内消防用水量之和计算。为了既保证在火灾延续时间内的消防用水,又能贯彻节约基建投资的目的,如在发生火灾时能保证连续送水,则水池的容量可减去火灾延续时间内的补充水量。如某建筑物水池容量需要消防水量400吨,而在火灾延续时间内能补充200吨,则仅需建200吨储量的消防水池即可。

1.3.3凡自动喷水灭火系统采用独立的临时高压给水系统供水时,应设消防水箱。为了既保障安全,又能达到节约投资的目的,水箱容量原则上按10分钟消防用水量考虑,可不超过18m3。

除此之外,还应指出的是,具备下列条件之一者,可不设水箱:(1)水源能保证系统的水量和水压要求;(2)轻危险级和中危险级建筑物的自动喷水灭火系统,如设有稳压泵(小流量、高扬程的水泵)或气压给水装置,可不设。但严重危险级建筑,因发生火灾时可燃物多,燃烧迅速,发热量大,蔓延快,必须设置消防水箱。1.4合理设置消防水泵。

消防水泵是保证自动喷水灭火系统有足够的水量和水压的关键设备,在设计中必须注意满足以下要求:

1.4.1非高压给水系统的一组消防水泵的吸水管不应少于两条,当其中一条检修或损坏时,另一条吸水管应仍能通过全部用水量。生产、生活和消防用水合用的泵房,当生活、生产用水量达到最大时,仍应能保证的消防用水量。

1.4.2宜采用自灌式引水方式。因为这种引水方式能保证及时启动,及时供水。

1.4.3自动喷水灭火系统的临时高压给水系统的消防水泵,每台应有独立的吸水管从消防水池或室外给水管网直接取水,以保证系统灭火用水。

1.4.4消防水泵一般应设有备用泵,备用泵的工作能力不应小于工作消防泵的最大泵。例如,某建筑物需设两台工作消防水泵,其中一台流量为30升/秒,另一台流量为20升/秒,则备用消防泵应选用30升/秒的消防水泵。

二、施工

自动喷水灭火系统的供水管网分支较多,施工安装要求严格。同时管网安装也是整个系统安装工程中工作量最大,也较容易出问题的重要环节。因此,在安装时应采用行之有效的技术措施,确保安装质量。

2.1管网材质

根据国家标准《自动喷水灭火系统设计规范》要求,自动喷水灭火系统报警阀后的管道,应采用热镀锌钢管或镀锌无缝钢管。这是为了防止因管网锈蚀堵塞喷头的现象发生。禁止使用非镀锌碳素钢管、无缝钢管或只有外镀锌层的冷镀钢管。

2.2管道连接

严格按照《自动喷水灭火系统施工及验收规范》进行管网安装。当管径小于100mm时,应采用螺纹连接;当管径大于100mm时,可采用焊接或法兰连接。无论采用何种连接方式,连接后,均不可减少管道的通水横断面。施工中应坚决避免以下错误做法:一是不论大小管道一律采用焊接。这样可能会使管内焊渣、焊瘤影响过水断面,严重破坏内外镀锌层,加速管网的锈蚀,使其抗腐蚀能力比普通钢管还差。二是施工人员严重不负责任,插入管内焊制三通、四通,大大缩小了过水断面。

2.3管网冲洗

严格按照《自动喷水灭火系统施工及验收规范》的要求进行管网冲洗。冲洗应在试压合格后分段进行,冲洗管道的水流速度不宜小于3m/s。应注意在管网的地上管道与地下管道连接前,在配水干管底部加设堵头后,对地下管道进行冲洗。冲洗时,消防人员应在场观察,直至出口处水的颜色、透明度与入口水一致时,方可判为合格,终止冲洗。

通常,冲洗采用水压气动冲洗法,用压缩空气驱动一定量的水,使水从配水支管末端反向流动,经配水管将管道内的杂物从配水干管下端开口处冲洗出去的方法冲洗应在系统调试之前,且冲洗前应拆除止回阀、报警阀和水流指示器,以避免损伤机件,影响功能,冲洗结束后方可复位。冲洗是自动喷水灭火系统施工中的重要程序,是防止系统投入使用后,发生堵塞的重要技术措施之一,是保证系统调试成功的关键。公务员之家

灭火系统范文篇3

关键词:喷水选择应用

Abstract:Thetechnologyoftheautomaticfiresprinklerisgettingdeveloped.Butsomeofthenozzlesofthesprinklerarenotselectedandinstalledaccordingtothebuildingstructurefeatures,eitherthepositions.Thesesituationsaffectthefunctionsofthesprinkler.So,thechoiceandtheapplicationofthenozzlesforautomaticfiresprinklerneedtobediscussed.

KeyWords:Sprinkle,Choice,Application

自动喷水灭火系统作为一种扑灭早期火灾的消防设备。已在社会上得到广泛应用。其对于提高建筑抗拒火灾的能力有着极好的效果。武汉市依靠自动喷水灭火系统成功扑灭火灾。防止火灾蔓延的案例有不少.如徐东平价广场三楼、桥东商厦发生的火灾.自动喷水灭火系统均发挥了极大的作用。该系统的应用已有近两百年的历史,系统发展已相当成熟,效能越来越高。要充分发挥自动喷水灭火系统的作用,必须正确地设计及安装。但笔者在工作过程中却发现。不少单位自动喷水灭火系统的安装存在问题。尤其是在喷头的选择上。没有根据建筑本身构造的特点及部位进行合理的选择,甚至在设计中,根本就未考虑喷头类型的选择。这极大地影响了自动喷水灭火系统的使用性能。因为在自动喷水灭火系统中。喷头的作用是最重要的。系统使用的喷头不正确。会大大降低系统的灭火效能。自动喷水灭火系统发展的历史就是喷头发展的历史。喷头的发展可使水均匀分布,并能有效到达或穿过火焰到达燃烧表面,淋湿燃烧物或预淋湿燃烧物周围的可燃物。有效吸收热量。从而扑灭火灾。笔者就自动喷水灭火系统喷头的选择和应用做如下阐述。

1喷头的分类

根据国内外的不同文献。喷头大体上可分为6类。设计中应根据火灾危险性、保护空间的建筑构造、自动喷水灭火系统本身的特点来选择喷头。具体类型划分如下:

1)根据喷头是否封堵,可把喷头分为开式喷头和闭式喷头。所有闭式喷头去掉热媒元件和封堵元件就是开式喷头。只有水幕喷头是开式喷头的特例;

2)根据喷头的安装方式可分为直立、下垂和侧墙式。既能直立又能下垂安装的喷头称为普通型喷头;

3)根据喷头的洒水水滴大小可分为传统型和洒水型喷头。洒水型喷头因溅水盘直径较大,有着更大的布水面积:和传统型喷头相比很少淋湿天花板,喷头的间距可适当加大。洒水型喷头的另一个显著特点是水滴直径大,水滴重值粒径为0.8mm,频率为1.05;而传统型喷头,重值粒径为0.35mm,频率为0.58;

4)按照布水曲线,即喷头的最大保护面积,可分为标准喷头和扩展覆盖面喷头。对于中I危险级l级而言,标准喷头的最大保护面积为12.5m2,而扩展覆盖面喷头的最大保护面积可达37.1m2;

5)按照喷头热媒元件反应快慢,可把喷头分为快速反应喷头、特殊喷头和标准喷头。快速反应喷头首先于20世纪70年代应用于住宅。进入20世纪80年代又用于仓库。继而开发了ESFR早期抑制快速反应喷头。快速反应喷头的RTI小于50(m·s)1,2,特殊喷头的RTI为50-80(m·8)l,2,标准喷头的RTI为80-350(m·8)1/2;

6)根据喷头出水流量系数或出水口径,分为小口径喷头、标准喷头(K=80,12.5mm)和大口径喷头,流量系数K高达360。

从上述分类可以看出。我国规范规定的流量系数K=80的洒水喷头作为标准喷头有一定的局限性。标准喷头应从三方面进行描述:一是喷头的流量系数K=80:二是喷头的热敏指数Rrll,为80-350(m·s)l,2:三是喷头的布水曲线即喷头的最大保护面积。

2喷头的选择和应用

喷头的选择和应用应根据保护场所的火灾危险性、保护空间的建筑构造、自动喷水灭火系统本身的特点。以及喷头的流量系数、热敏指数RTI和最大保护面积来确定。在实际工程设计中,应考虑下列问题:

1)在无吊顶的场所,应采用直立型喷头。只有这样。才能使热气流尽早接触和加热喷头热敏元件。在有吊顶的场所。喷头应采用下垂型喷头或吊顶型喷头。否则。吊顶将阻挡洒水分布;轻危险等级、中危险级居住(住宅和宾馆)和办公场所可采用边墙型喷头;

2)中、轻危险等级场所和保护生命场所宜采用快速反应喷头。如。公共娱乐场所、住宅、中庭环廊、医院、疗养院的病房及治疗区域,老年、少儿、残疾人的集体活动场所等。而严重危险场所在发生火灾时燃烧加速度快,快速释放大量的热量。由于快速反应喷头对热更敏感,有可能造成大面积的喷头开启。从而使开启喷头数量超过设计水平。导致喷水强度不足。即实际喷水强度小于所需喷水强度。而无法实现灭火。另外,对于设置在不宜捕捉热量之处的喷头。可采用快速反应喷头与货架内置喷头等等。快速反应喷头与热源的距离见下表:

快速反应喷头与热源的量小距膏(mm)

热源

普通温度等级喷头

中温度级喷头

开口或封闭火源的边缘

914

305

封闭火源的前面

1524

914

煤气或木材炉

1067

305

厨具范围、壁炉、热的空气流

457

229

未绝缘的热水管

305

152

热空气扩散器墙壁或吊顶安装的边缘

607

305

热空气扩散器墙壁安装的前面

914

457

热水加热器或炉

152

76

灯具0-250W

152

76

灯具250-499W

305

152

3)仓库等危险场所可采用经过专门认证的快速反应喷头。如早期抑制快速反应(ESFR)喷头。ESFR喷头仅是仓库专用喷头.不应用于大空间等非仓库场所。但货架内置喷头宜采用快速反应喷头。大水滴喷头是标准型喷头与ESFR喷头的过渡产品。通常用于仓库,目前在工程中一般不再采用;

4)当保护场所的喷水强度不小于12L/min·m2,或者经计算,喷头的工作压力大于0.15MPa时。宜采用流量系数较大的标准喷头,目的是降低消防泵的供水压力。节省投资;

5)扩展覆盖面喷头仅用于天花板,或吊顶平滑无障碍物的轻危险等级或中危险I级的场所,其喷水强度不应低于<自动喷水灭火系统设计规范>(GB50084-2001)表5.1.1中的要求,且保护面积和间距应是经过特殊认证的:

6)干式、预作用系统应采用直立型喷头或干式下垂型喷头。目的是预防系统管道内积水,减少管道局部腐蚀等不利于系统动作的因素;

7)防火分隔水幕应采用开式洒水喷头、水幕喷头,或同时采用以上两种喷头;防护冷却水幕可采用水幕喷头或专用喷头(如玻璃幕墙专用喷头)、闭式喷头;

8)同一隔间内应采用热敏性能、流量系数相同的喷头。但是,当局部有热源时,允许采用温度等级高的喷头。而在宾馆客房的小走廊,允许采用流量系数小的喷头;

9)闭式喷头的公称动作温度宜高于环境最高温度30℃。在有些不宜接受热量的部位,可采用温度等级较低的喷头,如57℃喷头。在局部温度较高的部位,可采用温度等级较高的喷头;

10)用于保护钢屋架的闭式喷头宜采用公称动作温度141℃的喷洒头。ESFR喷头和扩展覆盖面喷头应安装在平滑的屋面或吊顶。当屋面有坡度时,屋面坡度不宜大于16.7%;雨淋系统的防护区内,应采用相同的喷头;易受碰撞的部位,应采用带保护罩的喷头或吊顶型喷头。

灭火系统范文篇4

合理布置喷头是自动喷水灭火系统设计平安和经济的关键。《喷规》比较强调的是功能面积内的喷水强度和喷水的均匀性及喷头的适时开放。对于每个喷头的半径,一是和生产厂家的产品及其技术参数有关,二是和喷头所在位置的水压有关,三是和喷砂的布置位置有关(结构柱网和各种障碍物的影响)。《喷规》规定的喷头间距只是一个"限",目的是为了更好地保证喷水强度和喷水的均匀性及适时开放。

1.1喷头布置原则和要求

(1)满足功能面积内的喷水强度、喷水的均匀性及喷头的适时开放(喷头的受热条件和开放时间);

(2)喷头在喷水半径内灵活布置,不出现未被覆盖的空白,也不出现过多的重要覆盖面积;

(3)保证喷湿墙根及一定范围内的墙面;

(4)喷间之间不应互相影响;

(5)按规范和实际处理障碍物的遮挡,并积极和相关专业协调;

(6)应满足其它相关规范对喷头布置的要求;

(7)考虑火灾时烟羽流对喷头动作的影响;

(8)结合实际,全面分析相关规范,吃准吃深规范中的字眼,综合考虑。

1.2喷水半径和喷头布置

喷水半径是喷头布置的主要依据,它代表一个经济数值,在喷头工作时不致出现未被覆盖的空白,也不出现过多的重要覆盖面积。它和危险等级的喷水强度、喷头特性和工作压力有关。工程设计中喷头布置视建筑平面,在喷水半径范围内,可灵活采用正方形、矩形或平形四边形。喷水半径不同于喷头的计算半径,它是在计算半径的基础上,考虑喷水强度、喷水均匀性、喷头受热条件和适时开放,根据规范的规定而得出的数值。具体见表1摘要:由于喷头的布置受其它因素影响较大,实际上经常出现喷头不能按一个固定的距离来布置,别说同一建筑中往往不会按一个间距布,就是同一层、同一防火分区也经常如此。此外,作为土建设计,不同于装修设计,需要给二次装修留下有余地,喷头间距不宜按规范规定的最大距离要求设置,而且实际上这么做也不易达到规范要求的喷水强度和喷水的均匀性。

设计时必须根据工程实际情况,按设计选定的喷水强度、喷头的流量系数、工作压力确定,并考虑喷头的受热条件和开放时间,在满足规范要求的喷头强度条件下,按喷头的实际工作压力,结合建筑分隔和结构柱网灵活布置。在布置中,喷头间距不应是个定数,应根据所在位置的条件来定,最终目的还是保证喷水强度和喷水的均匀性及适时开放。

1.3不宜演绎集热板

《喷规》对集热板的要求,见7.1.7条,它是针对货架喷头布置而提出的,《喷规称为集热档水板。当喷头上方有孔洞、缝隙,为防止喷头因热气流不停留或上部喷头淋水降温而不能启动时,规定应在喷头的上方设置集热板。另外,《汽车库、修车库、停车场设计防火规范》[2]中的7.2.3.2条规定,对机械立体汽车库,复式汽车库按停车的托板位置分层布置的喷头,应在其上方设置集热板。而在工程实践中,集热板的使用场合远不止于此,已在较多场合得到了演绎,但这一种做法不但没有规范依据,而且也往往和设置的初衷背着而驰。根据美国FM公司的一项探究结果表明,喷头动作所需80%以上的热量都来自热对流,而传递给喷头的对流热量需要热空气流经喷头才能完成。若起火点不是正对着喷头,那么上升的热对流就不会在集像一个倒扣的盒子,遮挡了热气流铁水平流动,火灾时在喷头处形成空气流动死角,而延误喷头响应时间。因而,对集热板的设置及其演,应慎重考虑,并应依据现行规范,结合实际情况,分析论证后确定。

2、水力计算

水力计算将决定系统投入灭火的水量及对灭火水量的分配,是关系系统可靠性、合理性和经济性的一项重要设计内容。根据对《喷规》的理解和大量相关资料及部分工程实例的分析,觉得水力计算应采用"矩形面积-逐点法",也就是首先确定最不利功能面积在管网中的位置(必要时可由水力计算确定),功能面积的外形宜为矩形,仅在功能面积内所包含的喷头计算其喷头量;之后选定最不利计算路线,采用节点流量法将最不利功能面积内的每个喷头的压力值和出流是一一求出,当两个分支交汇时,根据两分支的压力差对压力较高的分支进行流量修正,然后将功能面积内经过流量修正之后的所有喷头出流量的总和作为整个自动喷水灭火系统的设计流量,在此以后的管段流量不再增加,仅计算沿程和局部水头损失,一直算到管网起点。

实际火灾发生时,一般都是火源点呈辐射状向四面扩大蔓延,而只有失火区上方的喷头才会开启喷水。[3]。因此采用功能面积保护方法及仅在功能面积内的喷头才计算喷水量是合理的。同时由于火灾时对流及风的影响,功能面积的外形以呈矩更为合理,且矩形面积在管道水力计算时也是最不利的。因而这种"矩形面积-逐点法"符合火场实际,科学严谨,并和欧美等国接轨,是合理的、平安的,也是《喷规》的推荐作法。

(1)矩形面积的确定摘要:功能面积的外形宜为矩形,其长边平行于配水支管,其长度不小于功能面积平方根的1.2倍,喷头数若有小数就进位成整数。当配水支管的实际长度小于边长的计算值时,功能面积要扩展到该配水管邻近支管上的喷头。

(2)经济流速和最不利点处水压

①经济流速摘要:

自动喷水灭火系统最主要的组成部分是配水管道,而配水管道管径的确定,不仅影响到整个系统的造价,更关系到系统消防的平安性。在流量确定的条件下,流速是确定管径的重要参数。采用经济流速是给水系统设计的基础要素,生产、生活给水管道的流速一般采用经济流速,以使管道的基建投资和经常性的运行能耗得到优化匹配。所谓经济流速是一次投资和经常费用之和最小时的流速为经济流速,而相应的管径即为经济管径。所以选择输配水管管径的大小涉及投资和耗电的大小,管径大基建费用高,电费却省,管径小一次投资省,但水头损失大,水泵扬程高,电费高。

《喷规》在管道水力计算9.2.1条也规定"管道内的水流速度宜采用经济流速,必要时可超过5m/s,但不应大于10m/s".然而,自喷给水管道只是在火灾时短时间运行,不同于生产、生活给水管道始终处支运行状态,故可以提高流速,减小管径以降低基建投资,这同样是经济的。但同时假如自喷系统管内水流速度较高,水头损失就较大,配水管支管管径往往就会偏小,造成在设计流量下,喷头实际保护面积可能满足不了规范有关功能面积的要求。此时尽管功能面积内喷头动作时,其平均喷水强度符合规范,但上下游喷头因压力不同而流量有差异,此外,由于管径小,管网水头损失大,消防水泵扬程高,喷头喷水极不均匀,其出水量必然过大,将过早地用完消防贮水。因而管道流速宜采用较低值,管径小时尤宜采用低值。

同时,从上述分析中也不难看出,《喷规》中提到的经济流速应是经济性、合理性、可靠性和平安性的统一,并非能常意义上的经济流速(但其条文及其说明中均未涉及!)。结合工程算例分析有关手册和文献介绍[3-6],配水干管和配水支管设计流速一般不宜超过3.5m/s,常用1.8-2.8m/s.这种做法能够较好地满足《喷规》表5.0.1、表5.0.5及9.1.4条的有关功能面积和喷水强度的规定,且配水管网水头损失较小,消防水泵的扬程较小,喷头出水不均匀性较小,消防贮水量可得到合理使用,是比较平安、经济、合理的。②最不利点处水压摘要:最不利点水压一般为0.1MPa,最小不应小于0.05MPa.过去大家习惯认为0.05MPa是针对屋顶水箱高度往往难以满足最不利喷头压力值而提出的,在消防泵、增压设施扬程计算时,不存在这个新问题,都得取0.1MPa,但实际上情况并非如此,甚至可以说对于某种类型的自动喷水灭火系统,按现行规范,一般应取0.05MPa,而非0.1MPa.大家都知道,由于地下车库喷头布置,一是要按《喷规》中危险Ⅱ级,二是应在停车位上方设置,三是受结构柱网限制和其它遮挡及其处理的影响,使其喷头一般都得布置较密,此时而再按0.1MPa来计算,一是设计流量偏大,可达40L/s(不包括防护冷却水幕用水量),二是损失过大,水泵扬程过大,相应的水箱高度也就越大。因此个人认为对于诸如地下车库这类喷头不得不布置过密的系统或场合,宜取0.05MPa,且这样做能较好的满足现行规范的要求。

(3)系统设计流量计算及支管流量修正

①系统的设计流量,应按最不利点处作面积内喷头同时喷水的总流量确定,其计算公式见《喷规》9.1.3条。不同的喷淋管网因喷头间距、管网规模、管道布置等不同,喷淋系统的总用水量和喷水不均匀性可能有较大差别,且喷淋管网中实际存在的喷水不均匀性,喷淋系统的总用水量应当通过认真的水力计算确定,否则,所确定的喷淋泵型号很可能是不合适的,系统可靠性、合理性和经济性也不好保证。

系统设计流量计算中有关情况处理及要求,见《喷规》9.1.4-9.1.9条。

②两管段交点处的计算水压不同时,应按式(1)对交汇点处低水压的一侧的管段总流量进行修正[7]。

式中,q1——低水压侧管段的修正流量(L/s);

q2——低水压侧管段的修正流量(L/s);

h1——低水压侧管段的水压(KPa);

h2——高水压侧管段的水压(KPa)。

(4)管道沿程和局部水头损失每米管道的水头损失计算式见《喷规》9.2.2条,管道局部水头损失,宜采用当量长度法计算,也就是将水流经过弯管、丁字管的局部压力损耗相似于一定长度的直管。实际计算中,常采用管道比阻和流速系数的概念,将相应的局部当量加入相应管段的管段长度,利用EXCEL来完成支管的计算,或系统的计算(因系统的计算涉及到流量修正,要编制相应的"宏"才能自动完成和输出,开始可采取手工进行调整修正工作)。

(5)水泵扬程或系统入口的供水压力

水泵扬程或系统入口的供水压力计算式见《喷规》9.2.4条,这和原规范有所变化,且规定湿式报警阀、水流指示器取值为0.02MPa(这比实际计算值大!)。

(6)减压和减压办法

《喷规》第8.0.5条规定"……配水管道的布置,应使配水管入口的压力均衡。轻危险级、中危险级场所所各配水管入口的压力均不宜大于0.4MPa"而自动喷水灭火系统中,不但存在着低层管道系统中水压不平衡,即使在同层中,当保护面积较大时,由于设计是按最不利工作面积计算,同层中有利工作面积内喷头的水压也有剩余,所以习惯是对连接有利工作面积的配水管或配水干管予以减压,减压的方法可以采用设置减压阀、减压孔板、节流管以及缩小有利工作面配水支管的管径等方法增加沿途水头员失达到减压目的。

有关规定和计算见《喷规》9.3.1-9.3.5条。

3、消防水箱和水泵接合器

3.1消防水箱

供水矛盾主要在动力源的可靠性,矛盾的暴露表现在水系统,但涉及面较宽。相关规范?quot;按建筑分类分别采用一级供电或二级供电加柴油机",临时高压给不系统应设消防水箱等规定。我国现行水防技术规范对消防水箱的规定,存在顶层、远端等不利部位欠压的新问题,使消防水箱对这些不利部位不能发挥应有的功能,而按《高规》[8]规定设置的增压设施,由于水量偏小同样未能妥善解决这个新问题。自动喷水灭火系统用于扑救初期火灾,在喷头动作的时间段,火势将以每秒几千瓦至十几千瓦的速率增长,此时开放喷头如不能按规定强度连续喷水,系统效能将显著降低,甚至给火灾入迅猛燃烧阶段以可乘之机,其结果将导致灭火的难度增大使火灾超出系统的控灭火能力[9]。为保证喷头开放后连续喷水,并保证对不利部位火灾的及时有效扑救,《喷规》第10.3.1、10.3.2规定摘要:"采用临时高压给水系统的自动喷水灭火系统,就设高位消防水箱,其储水量应符合现行有关国家标准的规定。消防水箱的供水,应满足系统最不利点处喷头的最低工作压力和喷水强度。"、"建筑高度不超过24m、并按轻危险级或中危险级场所设置温式系统、干式系统或预功能系统时,如设置高位水箱确有困难,应采用5L/s流量的气压给水设备供给10min初期水量".

对此可作如下考虑摘要:

(1)设置消防水箱(气压给水设备)的目的在于摘要:一是利用位差为系统提供准工作状态下所需要的水压,达到使管道内的充水保持一定压力的目的;二是提供系统启动初期的用水量和水压,在供水泵因动力或机械故障不能正常投入运行的紧急情况下应急供水,确保喷头开放后立即喷水,并为首批开放的喷头扑救初期火灾,提供维持10min喷水的用水量,控制初期火军和为消防队支援灭火争取时间。

(2)采用临时高压给水系统的自动喷水灭火系统,凡超过24m的高层建筑或其它严重危险级和仓库危险级的建筑均应设高位水箱,且不可用气压给水设备替代。由于位差的水箱供水期间,系统的喷水强度不足,因此将削弱系统的控灭火能力。为此,要求消防水箱满足供水不利楼层和部位喷头的最低工作压力和喷头强度。

但单独设置稳压泵,仅能为系统稳压而不能提供灭火初期的用水量。《高规》在条文说明里指出,设置增压设施的目的主要是在火灾初起时,消防水泵启动前、满足自动喷水灭火系统的水压要求。对增压水泵,其出水量应满足一个自动喷水灭火系统喷头的用水量。对气压罐其调节水容量为5个喷头30s的用水量,即5×1×30=150L.现行国标图集-消防增压稳压设备选用和安装(98S176)是按《高规》编制的,其功能只是解决火灾初期时,即消防主泵启动前,确保具有足够消防压力的30s储水量进行初期火灾扑救,直至消防主泵全负荷启动运行。对于合用消防水箱的增压设施,450L容量也仅能在紧急情况下向3只喷头供给不足2min水量(3×1.33×120=479L)。

可见以前的屋顶水箱和稳压设备联合工作方式已不能满足《喷规》的要求,而架高水箱在建筑设计中由于多种因素的影响又很难实现。

为此《喷规》规定了最低工作压力0.05MPa的要求。但到底是动压还是静压,规范没有强制限定,这就给设计带来了难度的同进也有了一定的灵活性。

实际上,0.05Mpa应是动压而非静压。0.05Mpa是指系统最不利点处喷头最低工作压力,同时规范在条文说明中指?quot;假如顶层最不利点处喷头的水压要求为0.1Mpa,则屋顶水箱必须比顶层喷头高出10m以上,将会给建筑造型和结构处理带来很大困难。根据上述情况和参考国外有关规范,将最不利喷头的工作压力确定为0.05Mpa".

(3)高位水箱的高度,《建规》[10]规定设在建筑物的最高处(《建规》送稿也有静压0.07Mpa的要求),《高规》要求保证顶层消火栓0.07Mpa的静水压力。若按建筑层高3m考虑,最不利消火栓上0.07Mpa,对自喷静水压刚好在0.05Mpa左右。为和相关规范达到协调一致,实际工程设计中,当水箱难以满足0.05Mpa动压要求,在动力可靠、管理到位的情况下,以0.05Mpa静压考虑也是可行的。

(4)高位水箱的设置保证0.05Mpa动压,在不宜采用增压稳压装置的情况下,就得将水箱架高。由于水箱中的水要经报警阀、水流指示器后才到达最不利喷头,加上管钱较长,即使火灾初期,自喷用水量很小,也是有一定的水头损失的,具体可具体计算后确定。但一般在高出7m(这个高度在建筑上稍微处理一下是能满足的摘要:跃层+电梯机房+水箱垫高)以上的话,可以满足规范的要求。(《喷规》按照相关的现行标准,规定湿式报警阀、水流指示吕局部水头损失取值为0.02MPa,明显偏高,至少在校核水箱高度时要比这小得多!)。

另外,可通过采用缩小喷头间距、增大管径减少损失等其它办法来满足最不利点喷头在最低工作压力(0.05Mpa)下的喷水强度。

(5)《喷规》10.3.2规定的5L/s、10min的消防贮量的气压给水设备,若采用隔膜式气压罐,由一般需2个立式或1个卧式。立式的可选用91SB3-132中SBQL1600×1.5的两个就可以了。系统占地约35m2,价格约3.2万元左右。部分人对此规定有此争议,但考虑到新规范比较强调火灾的初期灭火,强调系统能在尽量快的时间里出水,和火灾发生后人们习惯于断电的思维,为增加平安性,减少部分使用面积,增加一些造价是合理的、值得的,相信随着经济条件的不断提高平安新问题会越来越得到重视,同时,随着经济条件的不断提高,设施也会越来越有利于工程。此外,考虑到《建规》第8.8.5条"消防水泵应在火警后5min内启动,并在火场断电时仍能正常运转。"及"建规"送审稿等8.7.9条"消防水泵应保下在火警后自动启泵,并在火场断电时仍能正常运转"的规定,水罐的贮水是否可以根据《建规》按5min考虑,也值探索。但个人认为,尽管水泵的启支时间可以很快,考虑到和相关规范的协调一致,以及喷水的不均匀性和其它因素,作为保障办法,气压罐还是应贮存10min用水。

3.2水泵接合器

水泵接合器的主要用途是当室内消防泵发生故障或遇大火室内消防用水不足时,供消防车从室外消火栓取水,通过水泵接合器将水送到室内消防给水管网用于灭火。

(1)在自喷灭火系统中,因报警阀组均有止回阀,水泵拼命器设在阀后(沿水流向)水不会倒流,加上因水消防车到达现场通过水泵拼命器向室内自喷消防管网输水时,火灾为已知情况,不需再次启动压力继电器及水力警铃报警,也不必再次启以消防水泵等设施,水泵接合器可直接接在湿式报警阀后[11]。但对于系统有两个或两个以上报警阀组,还设在阀后那么其他阀将不能再公用此水泵接合器了,那就得每个报警阀后至少设一个水泵结合器。同时考虑到《喷规》10.1.4条的规定"当自动喷水灭火系统中设有2个及以上报警阀组时,报警阀组前宜设环供水管道",对于2个及以上报警阀组的系统还是设在阀前为好,可以互为备用。另外水泵接合器位置应考虑连接消防车水泵的方便,且离水源不宜过远。(2)《喷规》10.4.2条规定,当水泵接合器的供水能力不能满足最不利点处功能面积的流量和压力要求时,应采取增压办法。这一规定和《高规》7.4.5.2的规定"消防给水为竖向分区供水时,在消防车供水压力范围内的分区,应分别设置水泵接合器"相比,提高了水泵接合器的要求,已不再局限于"一步到位",这一规定是经验的总结,也是实际的需要,有利于提高系统的可靠性。

(3)《喷规》规定水泵接合器的流量"宜接"10-15L/s,《高规》是"应按",《建规》是"按".这种措辞应是有其原因的摘要:10-15L/s是消防车长期正常运转和发挥较大效能的流量范围,且消防系统的流速可以比给水流速稍大,加之,按现行《喷规》的流量计算法,对于中危险级不再局限于26-30L/s范围内,而是可大可小,一个"宜"字给设计者带来了更大的选择余地,也更符合实际需要。如笔者最近设计的一个四层综合楼,地下室为地下车库,自动喷炎流量为33L/s,是设3个还是设2个,我想还是宜设2个。

参考文献摘要:

[1]GB50084-2001自动喷水灭火系统设计规范[S]。北京摘要:中国计划出版社,2001.

[2]GB500067-97《汽车库、修车库、停车场设计防火规范》[S]。北京摘要:中国计划出版社,1998.

[3]聂海生,姜文源,周虎城等水工业设计手册——建筑和小区给水排水[M]。北京摘要:中国建筑工业出版社,2000.12

[4]刘文滨,赵文田,孙玉林,等给水排水工程快速设计手册——建筑给水排水工程[M]。北京摘要:中国建筑工业出版社,1998.6

[5]陈秀生主编,给水排水设计手册——建筑给水排水(第二版)[M]。北京摘要:中国建筑工业出版社,2001.5

[6]陈方肃,高层建筑给水排水设计手册[M]。长沙摘要:湖南科学技术出版社,2001.5

[7]刘振印,傅文华,张国柱,等。民用建筑给水排水设计技术办法[M]。北京摘要:中国建筑工业出版社,1997.9

[8]GB50045-95《高层民用建筑设计防火规范》(2001年版)[S]。北京摘要:中国计划出版社,2001

[9]何以申,国家规范《自动喷水灭火系统设计规范》修订情况简介[A],保定摘要:水消防分会第一届年会论文集,2000.5

灭火系统范文篇5

关键词:沉井式;地下立体式;机械停车库;高压细水雾灭火系统

在土地资源日益匮乏的当下,汽车数量日益增加,而能够提供的车位数增长速度相对缓慢,造成汽车与车位比例失调。特别是一些大、中城市的居住小区,开放商未按用户需求配置足够数量的停车位,造成小区乱停车现象严重,占用小区内部道路,甚至堵塞小区消防通道,存在严重安全隐患[1]。在城市用地紧张和车位需求量大的双重制约下,大、中城市很难开发建造大量汽车库或地面停车场来满足用户需求。沉井式地下立体智能停车库将是一种新兴的垂直竖井沉降掘进技术与机械立体智能停车技术相结合,具有施工占地面积小、对周边建筑影响小、机械智能化、集约紧凑、无需设地下车库出入口坡道和疏散楼梯等优点,能够有效提高城市土地利用率,实现城市智慧化停车管理。以某沉井式地下立体智能停车库为例,进行消防设计,根据自动灭火系统的工程特点选用高压细水雾灭火系统。

1项目概况

本项目用地范围内新建2座沉井,井筒内径12m。每座沉井内设100个机械车位,1梯4位,地下共25层,其中1~8层为SUV车位,层高2.5m;9~25层为普通小型车位,层高2m。井筒深约59m(不含封底混凝土),主要结构为地下沉井结构,设计使用年限50a,Ⅱ类机械立体停车库,耐火等级地下一级。为配合地下车库管理、功能需求,地上新建3层,主要为车库出入口、车库升降机设备管理用房、设备用房、工作人员办公及生活用房等。2座圆形车库的井道中心设置有旋转升降机,每层停放4辆汽车,沿井壁环向排列,具备三维运动控制、旋转、出入口对中功能。沉井式地下立体智能停车库示意图见图1。

2火灾分析

消防工程设计应做到安全可靠、经济合理、技术先进。其中,消防给水系统以初期火灾的灭火、控火为主,本着高效、快速、自防自救、安全第一的原则,以国家设计规范、行业标准、地方设计规范为依据,通过对建筑物的重要性、火灾种类、火灾危险性、所处的地理位置综合分析,科学合理地从建筑构造、安全疏散和避难、灭火救援设施、消防灭火设施等方面综合考虑。2.1车库火灾主要起因。沉井式地下立体智能停车库采用无人值守智能化控制与运营模式,停、取车辆均通过地上1层车厅内载车平台上、下机械运动将车辆运送到指定位置,人员无需进入地下车库,整个过程在车辆熄火状态下完成。根据工程实际工作状况,引起车库内火灾原因可能有汽车漏油、汽车内部未熄灭的烟头复燃[2]、新能源汽车电池自燃、车库内电气线路短路、载车平台上与下运动摩擦引起火花。2.2车库火灾特点及危险性。目前,大部分汽车以汽油为燃料,汽油易燃易爆且闪电低,在行驶过程中或停车一段时间后时常发生漏油现象,遇明火存在燃烧爆炸风险。随着国家对新能源汽车行业的重点扶持,新能源汽车日益成为众多购车者首选。但新能源汽车电池在过热条件下易自燃、爆炸,配套的充电桩产业技术发展也不够完善,时常因充电桩内部线路故障引发火灾造成重大经济损失。本工程选址新建于市中心繁华地区,周边有医院、办公楼等高层公共建筑,建筑密度大、人员停留密集。一旦发生火灾,火焰可能通过车库一层井筒出入口很快蔓延至周围毗邻建筑,危及周边市民财产安全和生命安全。同时,地下25层停车设施以钢结构搭建为主,持续燃烧可能造成内部立体框架坍塌,停放的所有车辆将受钢结构和上层车辆挤压淹埋于地下。为满足停车位数量、停车位高度和停车设备安装要求,沉井井筒深约59m,每个车位上、下贯通,无法进行防火划分,整个车库为一个防火分区。因车库纵向深度大,受风速影响的车库只要一辆汽车着火,整个车库很快将被火焰吞噬,后果不堪设想。火灾时,车库载车平台停止运行,车辆无法从车库内取出,车库内所有车辆可能受火灾影响,造成重大经济损失。由于此类车库平时无人停留,所以火灾时对人的伤害较小。

3消防灭火系统设计

目前,国内现行的GB50067—2014《汽车库、修车库、停车场设计防火规范》对Ⅱ类汽车库消防给水和灭火设施规定,设置室内外消火栓灭火系统,室内还设有自动灭火系统,并配置灭火器。本工程是1座地下室内无车道、无检修通道、无疏散楼梯、无人员停留的全地下立体机械停车库。为满足功能需求,地上建筑3层,地上1层为停车库出入口、车辆控制室和消防泵房等;地上2层为设备层;地上3层为管理用房。故仅在地上建筑物室内设临时高压制消火栓给水系统,按多层办公建筑室内设计流量10L/s、市政自来供水水压0.2MPa;室外消防采用低压制消防给水系统,设计流量20L/s,共设2个室外消火栓进行保护。针对地下汽车库自动灭火系统规范推荐的泡沫-水喷淋系统、高倍数泡沫灭火系统和CO2气体灭火系统,进行分析比较。3.1自动灭火系统技术概述。目前国内尚无正式颁布专门的机械式立体汽车库消防设计规范和标准,在消防给水和灭火设施设计时,火灾种类、火灾特点、环境条件和建筑特征作为选择灭火方式和灭火系统的重要依据。由于本工程各停车层之间没有楼板分割,采用CO2局部保护的安全性非常低,而且若只保护某个停车层,如果火灾蔓延,CO2将无法再次启动灭火;如果采用CO2全淹没系统,将远超出常规保护的最大体积2000m3(本项目保护区总体积>7000m3);即便规范允许突破,众多的钢瓶数量将挤占宝贵的停车空间,得不偿失。同时CO2灭火系统需要设置泄压口,地下车库也不具备设置泄压口的条件;CO2气体仅有10a的使用有效期,也使运营维护成本大大增加。目前,大多数地上立体汽车库工程采用泡沫-自动喷水灭火系统,根据载车板分层布置洒水喷头,并在其上方设置集热板,一次性火灾消防用水量大,通常条件下室内消防用水量需储存于消防水池内,造成资源浪费。本项目为现有公交停车场改造为地下车库,地面用地紧凑,根据现有技术指标,平面布置无法满足建设消防水池及消防泵房面积需求。3.2推荐方案。参考尚未正式颁布实施的《机械式立体停车库技术规范》(征求意见稿),停车库可采用高压细水雾灭火系统和高倍数泡沫灭火系统。1)高压细水雾灭火系统。它是一种新型灭火系统,以高度物化的水实现火灾控制、火灾抑制、火灾扑灭,可用于扑救可燃固体、可燃液体、电气设备火灾。水通过九柱塞泵超高压形成一种介于液体和气体之间的细水雾,以高效冷却和快速窒息作为灭火机理,用水量是传统灭火方式的1%,灭火效率是传统灭火方式的200~300倍[3]。细水雾已广泛应用于轨道交通、电力、图书/档案馆、地下综合管廊、工业制造、综合建筑、医院、数据中心、古建筑、机场等众多行业及领域。2)高倍数泡沫灭火系统。国家规范GB50151—2010《泡沫灭火系统设计规范》中,高倍数泡沫灭火系统分为移动式、全淹没式、局部应用式。它主要以窒息、冷却方式达到控火、灭火,通过在泡沫产生装置中摄入大量空气,将一定混合比的水和泡沫液发泡成超过200倍的泡沫,通过导炮筒将泡沫均匀覆盖于保护对象表面或充满整个防护区。火灾时,该灭火系统必须贮存系统所需的全部用水量,并贮存在单独的贮水设备内,如水箱等,也可以贮存在消防水池内。3.3自动灭火系统选择。本工程火灾时,地上1层升降机平台间卷帘门关闭,地下车库25层与地上1层升降机平台间形成密闭空间,窒息灭火。沉井式地下智能停车库按20%预留充电桩,火灾种类:可燃固体(A类火灾)、可燃液体(B类火灾)及电体火灾(E类火灾),根据保护对象及火灾特点,该项目自动灭火系统选用高压细水雾开式局部系统。根据建筑专业布置形式,沉井式地下智能停车库地下25层每4层停车区域设耐火3h防火隔板分隔,共分为7个区。地上一层车库出入口及-1F(地下一层)为一区,-2F~-5F为二区,-6F~-9F为三区,……;以此类推,防护区共9个。另外,2个区分别为底部升降机基坑区域即升降基坑区,井筒升降机平台即核心筒区。当某一层的某一辆车着火时,启动着火车辆所在区四层内所有车辆上方喷头以及升降基坑区中的喷头、核心筒区的喷头进行保护。车库停车区域采用喷头全保护,每个井筒每层停车位上方布置21个K=0.7的开式高压细水雾喷头,安装间距≤3.0m,且≥1.5m,距墙≤1.5m,见图2。设计喷雾强度2.07[L/(min•m2)],系统持续喷雾时间20min,系统响应时间≤30s,不利点喷头工作压力≥10MPa,细水雾粒径Dv0.5小于65μm、Dv0.99小于100μm。

4结语

灭火系统范文篇6

关键词:七氟丙烷无管网工作流程使用与操作

1.简介

太浦河泵站中央控制室、计算机室各布置一套七氟丙烷无管网自动灭火装置。七氟丙烷无管网自动灭火装置是以“洁净气体”七氟丙烷作为灭火剂,七氟丙烷是五色无味的气体,具有清洁、不导电、度性低、灭火效率高、不污染保护对象的特点,特别是对大气臭氧层无破坏作用,符合环保的要求。该装置是一种无管网、轻便、可移动、自动灭火的消防设备,具有安装灵活方便、外形美观,灭火剂无管网损失,灭火效率高、速度快、无污染的特点。火灾发生时,可直接向保护区内自动喷洒灭火剂,方便快捷。该装置不设储瓶间,储气瓶及整个系统均设置在保护区。

七氟丙烷无管网自动灭火装系统由火灾探测器、自动报警控制器、灭火控制器、固定灭火装置、灭火剂、输送软管道和喷嘴组成。

2.系统工作流程图

3.灭火系统组成

ZQW2-120型七氟丙烷无管网自动灭火系统为独立式的全淹没灭火系统,由一套或几套无管网装置对应保护一个区域,可以在规定的时间内向防护区喷射一定浓度的灭火剂并使其均匀地充满整个防护区。太浦河泵站中央控制室设置两套ZQW2-120型七氟丙烷无管网自动灭火系统,计算室设置一套ZQW2-120型七氟丙烷无管网自动灭火系统见图1

3.1系统技术参数

充装压力2.5Mpa

灭火剂喷放时间≤10s

系统工作电源主电源AC220V、辅电源DC24V

系统工作环境温度-10~50℃

系统启动方式自动、手动、机械应急手动

储瓶容积120L

3.2七氟丙烷储存瓶组

由储存瓶、容器阀、压力信号发生器、电磁启动阀、高压软管组成,平时储存瓶用来储存七氟丙烷灭火剂,火灾发生时将灭火剂释放出去进行灭火。

七氟丙烷储存瓶的储存压力检查方法:检查压力表开关是否关闭,即压紧螺母是否旋紧;卸下压力表,泄放压力表密封腔内的压力;此时压力表应归零,否则更换压力表;装上压力表,打开开关,显示正常压力。

电磁启动阀安装在容器阀上,以电动或手动打开容器阀,释放灭火剂。紧急情况下,可以用手指拉住保险扣拉手,把保险扣拉出,拍击手动按钮,即可驱动电磁阀动作。

压力信号发生器安装在出口部位,当释放七氟丙烷时,压力信号发生器动作送出工作信号给灭火控制系统。

高压软管用于容器阀和喷嘴之间的连接。

4.灭火系统安装与调试

4.1将ZQW2-120型七氟丙烷无管网自动灭火系统箱体平稳的放置在预先设置的基础上,并用地脚螺栓固定。

4.2将电磁启动器、压力信号发生器接至灭火控制器,并检查线路是否正确,按接线图与报警控制器进行接线。

4.3因电磁启动器检验合格后,动作机构的弹簧已处在压缩状态,为了防止在安装、调试及运输中产生误动作,动作机构是由保险定位轴锁定的,待整个系统安装、调试完毕后,即投入使用时,必须将电磁启动器保险定位轴旋出后调头旋紧安装,否则电磁启动器动作机构将无法动作。

5.灭火系统使用与操作

5.1自动控制

在保护区无人时,将灭火控制箱内控制方式转换开关拨到“自动”位置,灭火系统处于自动控制状态。当保护区发生火情,火灾探测器发出火灾信号,报警器即发出声光报警信号,同时发出联动指令,关闭联动设备,经过约30秒延迟时间(此时保护区内的人员必须全部撤离),发出灭火指令,电磁启动阀动作打开储存瓶容器阀,释放出灭火剂进行灭火。

5.2电气手动控制

在防护区有人工作或值班时,将灭火控制箱内控制方式转换开关拨到“手动”位置,灭火系统处于手动控制状态。当保护区发生火情,可按下控制器上生动启动按钮,或打开设在防护区门外的手动控制盒,按下盒内启动按钮,即可启动灭火系统进行灭火。在自动控制状态,仍可实现电气手动控制,电气手动控制实施前保护区内的人员必须全部撤离。

5.3机械应急手动控制

当保护区发生火情,但由于电源发生故障或自动探测系统、控制系统失灵,不能执行灭火指令时,打开箱体门,按下储存瓶上电磁启动器的紧急按钮,即可释放灭火剂进行灭火。应急手动控制时,必须关闭影响灭火效果的设备(如通风机、门窗等),通知并确认防护区内人员已全部撤离后方可进行。

5.4当发生火灾警报,在延时时间内发现不需要启动灭火系统进行灭火的情况时,可按下控制器上或手动控制盒内的红色紧急停止按钮,即可阻止灭火指令的发出,停止系统灭火程序。

5.5实行灭火前,人员必须撤离防护区;喷放七氟丙烷后应保持必需的灭火时间才可给保护区通风换气,开放门窗;保护区未完成通风换气前人员不得进入,必须进入时应戴防毒面具。

5.6在不释放灭火剂而需检测系统时,可按下运行测试转换开关测试按钮,即可进行系统的测试。

(1)灭火控制器复位。

(2)压力信号发生器活塞复位。

(3)电磁启动器装置复位。

(4)容器阀重新更换密封膜片。

(5)按设计要求重新充装灭火剂。

(6)箱体喷头接头、容器阀、连接软管的连接处必须安装正确,保持密封。

6.灭火系统维护与保养

6.1灭火系统安装完毕后,应遵照设计内容及要求,按国家消防标准进行检查、试验和调试,并经验收合格后才可交付使用。

6.2气体灭火系统的运行使用应由经过培训的专人负责;使用人员应熟悉该系统的结构、工作原理、性能和动作程序,以及各阀件的结构与工作状态;了解各保护区灭火时所投入设备种类、数量、位置和动作状态;熟悉灭火系统的应急操作及灭火后系统恢复工作的内容和操作。

6.3每月至少对系统进行一次外观检查,符合下列要求:

(1)设备就位正确,无碰创、固定牢靠。

(2)设备工作状态正常,无泄露现象。

(3)线路、仪表指示正常,标牌、安全指示正常。

6.4每年进行一次年检:

(1)检查七氟丙烷的储存压力,如压力表指针不在绿色正常区域内,或在储存温度下压力指示的数值与压力表盘对应的数值不相符时,应卸下储存瓶,进行称重检查,查明原因及时排除,按设计要求重新补充灭火剂。

(2)从储存瓶上卸下的电磁启动器,应用系统自身的灭火控制线路进行通电检查,应启动正常,检查完毕后电磁启动器装置必须复位。

(3)对橡胶密封件进行抽检,是否出现老化现象。

6.5每5年对系统进行一次全检:

(1)卸下七氟丙烷储存瓶,进行称重检查

(2)对阀件进行拆洗、重新试验,并对全系统重新调试。

灭火系统范文篇7

尽管在新修改的《建筑设计防火规范》中增加了对自动喷水灭火系统的设置范围,但我国多层建筑室内灭火系统仍以设置室内消火栓为主。实践证明,室内消火栓系统能有效使用的机率不高。火灾时,消防人员采用消防车水带接龙的方式将消防车内的水送入室内使用,或者利用消防车在室外对着火部位进行灌救的情况较多。这样,室内消火栓设置的意义无法得到体现。主要原因:一是在当前全民消防意识普遍不高,灭火技能和基本的灭火器材操作知识缺乏的现实条件下,火灾时一般民众不可能有效使用室内消火栓系统来灭火。所以室内消火栓系统最终还需要有严格训练的消防队员来使用。但火灾时起火单位熟悉本单位室内消火栓系统的人员不一定在现场,消防人员又对内部系统情况一般都不熟悉,很难快速有效利用室内消火栓来灭火;二是调查发现,室内消火栓系统多数得不到良好的维护保养,或是阀门锈蚀不能开启,或是水带水枪缺失,导致关键时候无法使用。三是从安全角度上讲,在可以利用外来水源灭火,特别是又没有人员被困火场的情况下,消防队员没必要冒险进入建筑内取用室内消火栓来灭火。

还有,众所周知多层建筑室内消火栓给水系统,主要目的就是为了扑救初期10分种内的火灾。但随着时间的推移,《建规》制定时的许多历史条件已经发生了变化。随着经济的发展,人民生活条件的改善已使得住宅、办公场所、消费场所的装修标准大幅度提高,增加了建筑的火荷载,相应的火灾危险性和大火蔓延速度也大幅提高;灭火程度极低的室内消火栓系统极易耽误火灾初期极为宝贵的扑救时间,造成火灾的蔓延。

二、自动喷水灭火系统的优点及设置必要性

自动喷水灭火系统的优点是:不需人员到起火点操作,值班人员只要在消防控制室就可以完全监控整栋楼的情况,做到早发现、早报告、早扑救。灭火成功率高,特别是对控制初起火灾极为有效、可靠。据国外的资料介绍,自动喷水灭火系统的灭火成功率高达90%以上。以美国为例,从1925年到1969年的45年中,安装这一系统的建筑物共发生火灾81425次,灭火、控火成功率达96.2%。又如澳大利亚和新西兰,从1886年到1968年的几十年中,安装这一系统的建筑物共发生火灾5734次,灭火成功率达99.8%。国内也有许多成功的实例,如1958年建的厦门纺织厂,曾发生过四次火灾,均由喷水头自动启动将火扑灭。自动喷水灭火系统以其目的性强,直接面对着火点,效率高,水渍少等诸多优点,已经成为国际公认的可以普及使用的主动固定消防设施。在美国,自动喷水灭火系统不仅在高层建筑、公共建筑、工厂和仓库中普遍使用,而且已经发展到在家庭住宅中安装这一系统。

从经济的角度考虑。我国的自动喷水灭火系统已经有40多年的实践经验,经过几十年的研究、实践,现在在技术、产品配套、全自动化程度、操作等方面都已经有了较丰富的经验;自动喷水灭火装置的大量生产和使用,以及国产化程度的提高,已经使得自动喷水灭火系统的相对价格大幅下降。据统计,国内安装该灭火系统的费用一般占工程总投资的1~3%。与室内消火栓系统相比,费用并没有升高多少,而灭火成功率却增长了数倍。完全符合经济利益的要求。

结论:

纵上所述,多层建筑建立以自动喷水灭火系统为主体的灭火体系是非常必要的,并且在经济上和技术上也是可行的。但受《建规》中以消火栓为主进行室内消防系统设计的规定以及消防设计人员多年来形成的习惯影响,要实现以自动喷水为主的目标,势必要在以下几个方面寻求突破。

灭火系统范文篇8

关键词:玩具厂消防给水设计流量报警阀压力开关喷头

OnDesignofFireSystemforToyManufactory

Abstract:Byapracticalcase,thefiresystemofatoymanufactory,thedesignofautomaticsprinklingfiresystem(ASF)forindustrialbuildingsaccordingtoforeigndesignnormarepresented.SomeguidelinesdifferingfromthedomesticnormsuchasthedecisionofwaterdischargeofASFsystem;thesetupofalarmandpressurevalves,thelayoutofpipelinenetworkandthedistributionofsprinklersaredescribed.

1情况概述

南海市美泰玩具厂(简称玩具厂)始建于80年代初期,是一间大型的中外合资企业。主要产品是塑料玩具,且全部外销。全厂主要车间有:配料车间、注塑车间、喷漆车间、组装车间、维修车间和模具车间等,此外还有写字楼、高架仓库等用房。

建筑高度超过24m的高层工业建筑A、B、C、D厂房4座。在消防设施方面,部分厂房有简单的室内消火栓灭火系统和电力报警系统。

该厂向境外火灾保险公司购买了火灾保险,因此必须重新设置安装消防给水系统。由于境外保险公司的参与,玩具厂消防给水系统的设计与我国国内现有的常规设计有很大的不同。具体的说,具有以下几个特点:一是要符合中华人民共和国的消防规范;二是要满足火灾保险公司的要求;三是所采用的设备和材料要有FM/UL认证。

笔者作为玩具厂消防给水工程的设计者,在此对其进行分析介绍,与大家共同探讨。

2消防给水系统设计水量的确定

经过与消防部门、保险公司协商,消防给水系统水量作如下规定。

2.1室内消火栓用水量的确定

室内消火栓用水量按照《建筑设计防火规范》的标准执行,由于厂房高度介于24m至50m之间,所以消火栓用水量选用25L/s。同时使用水枪5支,每支水枪最小流量5L/s,每根竖管最小流量15L/s,火灾延续时间为2h。

2.2自动喷水灭火系统设计水量的确定

自动喷水灭火系统设计水量按照美国NFPA13和NFPA231C标准确定。由于玩具厂各厂房、车间的生产性质不同,火灾危险性等级也不相同,所以各车间自动喷水灭火系统的喷水强度和作用面积也不同,具体情况见表1。

表1玩具厂喷淋系统设置基本数据

喷淋系统

设置地点喷水强度

/L/(min.m2)

(GPM.ft2)作用面积

/m2(ft2)每只喷头最

大保护面积

/m2(ft2)设计流量

/L/s(GPS)

组装、维修、模

具车间,写字楼6.91(0.17)279(3000)12.05(130)32.13(8.5)

配料、注塑车间11.4(0.28)279(3000)9.3(100)53.01(14)

喷漆车间16.3(0.4)233(2500)9.3(100)63.30(16.7)

高架仓库18.32(0.45)186(2000)9.3(100)56.79(15)

在表1的4组数据当中,两组是中危险级,两组是严重危险级。与我国自动喷水灭火系统常规设计相比有较大差别:一是分类较细,每一等级的喷水量不是固定值,而是根据不同的建筑划分成一个范围;二是喷水量较大;三是严重危险级的喷淋系统仍可采用湿式报警系统。其中,仓库的喷水量是按照NFPA231C标准确定的,其特点是:喷水强度大,作用面积小。

至于系统设计流量的确定,应选择最不利情况时所需的消防流量(即可能发生最大的消防流量)作为自动喷水灭火系统的设计流量。从表1中可以看出,喷漆车间所需的消防喷水量最大,可作为自动喷水灭火系统设计流量。经采用NFPA13规定的计算机方法计算,水量约为68L/s。该车间位于A、B座厂房4楼。火灾延续时间按照NFPA13标准为2h。

3消防给水系统的布置

3.1系统设置

玩具厂的消火栓给水系统和自动喷水灭火系统采用分开设置,消火栓给水系统采用临时高压给水系统,自动喷水灭火系统采用稳压装置。

根据玩具厂的厂区分布特点,全厂设有两座消防泵房和水池。消防水池储量分别为500m3和600m3。消防给水也是两套系统,各自独立(见图1)。分别供应全厂南半区和北半区的消防用水。两个泵房各设2台消火栓泵和自动喷水泵,均为1用1备,稳压泵只设1台。消火栓泵流量28L/s(445GPS),扬程86m(280ft),功率37kW。自动喷水泵流量70L/s(1100GPS),扬程70m(235ft),功率75kW。稳压泵流量1.6L/s(25GPS),扬程86m(280ft),功率4kW。上述所有设备均为国外成套产品,即主泵、稳压泵、启动柜都是成组配套的。

图1玩具厂总平面图

3.2湿式报警阀的设置

按照我国常规作法,严重危险级的建筑物,自动喷水灭火系统的设置应采用雨淋系统。而玩具厂的建筑物危险等级,既有中危险级,又有严重危险级。但自动喷水灭火系统全部采用的是湿式报警系统。

《自动喷水灭火系统设计规范》规定,湿式报警阀的控制范围是采用控制喷头数目来确定的。但玩具厂如果采用此规定,湿式报警阀的布置将比较困难。所以,在玩具厂自动喷水灭火系统设计中,湿式报警阀的控制范围是采用控制面积来确定的。每组湿式报警阀的控制面积不超过4833m2(52000ft2)。全厂共设置8组湿式报警阀,全都布置在厂区内厂房外墙边醒目的地方。

3.3压力开关的设置

消防给水系统中,凡是采用稳压装置的,自动启泵都是靠压力开关来控制。一般常规作法是设置两个压力开关,一个控制稳压泵的启、停,一个控制消防主泵的启动。而在玩具厂消防给水设计中,选择的是另外一种方法。即玩具厂两套系统各设置3个压力开关,一个控制稳压泵启、停,其余两个分别控制两台自动喷水主泵启动。具体作法是:当压力低于0.8MPa时,稳压泵启动,当压力高于0.89MPa时,稳压泵停泵;当压力低于0.75MPa时,启动第一台自动喷水主泵;当压力低于0.7MPa时,启动第二台自动喷水主泵。在这里,第二台自动喷水泵不只是作为备用泵,而是第一台泵水量的补充。

4消防给水管网及喷头的布置

4.1室内消火栓管网的布置

室内消火栓管网呈立体环网布置。消防箱设有普通消火栓和消防软管卷盘,布置间距30m,消防门为玻璃门,按钮开启。4座主厂房屋顶,除了设有试验用的消火栓外还配有压力表。报警警铃及远程启泵信号线全部用镀锌线管保护。

4.2自动喷水给水管网的布置

由于玩具厂目前正在生产,厂房内风槽、线槽、工业管道交叉纵横。使自动喷水给水管道布置十分不便。设计时,多次到现场查看,测量管道的位置,确定管道的走向。施工时,基本上避免了自动喷水管道与其他管道的碰撞及管道走向上的竖向起伏。

根据现场的实际情况,玩具厂自动喷水管网布置成枝状管,属于一种不等压系统。这种系统容易造成喷水不均匀。在管径的选择上,由于玩具厂采用NFPA标准,与《自动喷水灭火系统设计规范》的标准不同,各个厂房、车间的喷水强度也不统一。所以,只能按照NFPA规定的方法,对各车间、分区的自动喷水管网逐段计算。配管时,一要满足喷头的工作压力,二要考虑作用面积内的平均喷水强度。从验算结果看,两条要求都得到满足。

玩具厂自动喷水灭火系统的分布是很广的,各个建筑都布置了自动喷水系统。为了解决距离泵房比较近、楼层比较低的喷淋管网压力过高,流量过大的问题,在低层各分区水流指示器前,设置了减压阀。

4.3放空管的布置

自动喷水给水管网的冲洗和放空措施是非常必要的。对玩具厂来说,自动喷水灭火系统分布广,如何考虑系统放空,这是消防给水设计中面临的一个具体问题。一般的自动喷水设计,是将每层楼自动喷水管网的末端设置一个检验放空阀,然后管网坡向放空阀以利整个系统放空。但是,玩具厂现场情况复杂多变,各种风槽、工艺管道早已安装就位,而且纵横交错。为了避免系统放水不完全,在玩具厂设计中采用了多处放空的方法。除了末端设置检验放空阀外,还在每层喷淋管网配水管的末端设置了放空阀、放空管(见图2)。放空管管径DN100且层层连通,到底层排入雨水井,同时解决了系统管网冲洗放空的问题。

图2喷淋系统放空管示意图

此外,为了使喷淋系统更加安全、保险。除了按规定设置的水泵结合器外,在放空管的底部也设置了水泵结合器。

4.4泵房管道的布置

喷淋系统设计流量的校核,是每个设计者都关心的问题。用末端试水装置检验,只能检验出系统正常与否。因水量太小,不能确定系统设计流量是否符合设计要求。烧爆几只喷头检验也是如此,又不可能让整个作用面积内的喷头一齐喷水来检验。在玩具厂设计中,采用了如下方法来检验。在泵房自动喷水系统总出水管处,设回流试水管至消防水池。在回流试水管上设置了流量计和泄压阀(见图3)。泄压阀是用来防止管道超压,泄压用的。而流量计则是用来检验系统流量大小的。用控制系统压力的方法,检验系统流量是否符合设计要求。流量计带液晶显示和远传功能,不仅现场能看得到,消防中心也能观察到。同时,在泵房内消火栓系统管网和自动喷水系统管网之间,设一连通管。平时用阀门关闭,必要时可打开阀门,互为补充。这也是一种出于安全保险的考虑。

图3消防泵房示意图

4.5喷头的布置

由于玩具厂各厂房、车间的喷水量各不相同。要根据其特点选择不同种类的喷头应用于不同的场合,做到各类喷头各尽所能、各尽其责。喷水量小的选择12.7mm口径的喷头,喷水量大的选择13.5mm口径的喷头。个别地方,如调色间、调漆间,上空布满抽风口,则选择了13.5mm口径的侧向喷头。根据玩具厂生产现场腐蚀性较大、生产操作容易发生碰撞的特点,选择了快速反应、易熔合金喷头,动作温度74℃。具体情况见表2。

在喷头的布置上,根据场合不同,选择不同的喷头布置方式。对所有建筑(厂房)均采用建筑喷淋的方式来布置喷头。建筑喷淋采用了全方位保护方式布置,喷头间距为3.0m×3.0m和2.5m×2.2m,这当中考虑了建筑的开间布局和横梁的位置因素。在设备比较高大和密集的车间,以及高架仓库除了采用常规建筑喷淋外,还采用了加密建筑喷淋和设备喷淋双重保护的方法来布置喷头。设备喷淋采用分层布置。在中、下层喷淋,为防止碰撞,造成喷头误喷,喷头上都加了保护罩,个别地方则采用边墙型喷头。

5完善的消防管理措施

要确保玩具厂消防万无一失,完善的消防硬件设施是十分必要的。但如何做到硬件好用、管用,随时发挥作用,消防的软件设施就显得十分重要了。在这方面外资厂的一些作法值得我们借鉴,笔者在这里简单介绍一下。

5.1施工材料的保证

为保证消防设施的安全、可靠,玩具厂所有设备、材料都必须有FM/UL认证。所以,所有喷头、水流指示器、湿式报警阀、阀门、水泵等设备、材料均为国外产品。消火栓、管道采用国内产品。小于等于DN100的管道采用国标加厚镀锌管,大于DN100的管道采用镀锌无缝钢管。

5.2管理制度的保证

玩具厂的防火制度是非常严格的,除了平时的防火宣传、防火教育外,生产过程中的日常操作都有严格的规定。同时规定了厂房内严禁吸烟,严禁动用电气焊。厂房内这一类的警告牌随处可见,而且防火巡视员经常巡视检查。在消防工程施工中,也不允许在厂房内动用电气焊,镀锌无缝钢管的连接都是在厂外焊好法兰,现场装配。施工中,配带手提灭火器的防火巡视员现场监视。

关于消防设施的保养,在消防工程的招标文件中,就明确提出了施工单位要负责以后的日常维护保养工作。而且要有详细的维修保养计划。要求一个季度检查维护一次,一年对设备检查维修一次。施工计划中,要有防火制度,否则算废标。

至于消防设施的管理,玩具厂明确规定:保安部负责消防设施的管理和巡视。保安值班室挂有消防系统图和巡视路线图。为防止无关人员随便操作消防设施上的阀门,各处阀门平常都上锁,钥匙就挂在消防系统图上阀门的位置上,以免搞错。需要操作时,必须经过保安值班人员。

6有关问题的思考

6.1自动喷水灭火系统设计流量的商榷

自动喷水灭火系统的设计流量关系到对建筑物火灾的控制程度,也关系到灭火的效果。针对火灾危险性等级不同的建筑物制定出不同的设计流量标准十分重要。

我国《自动喷水灭火系统设计规范》将建筑物和构筑物的火灾危险性等级分为三个等级,即严重危险级、中危险级和轻危险级。但规范并没有一个明确标准来划分这三个等级。因此,在设计时只能将所设计的建筑物与规范附录二中所列举的各种建筑进行比较来确定其危险性等级。而且,对各危险性等级的建筑物,设计流量标准只有一个固定值。尤其是工业建筑,生产类别各不相同,应该针对不同的生产类别,制定出一个比较详细的设计流量分类标准。

笔者在玩具厂消防给水设计过程中,接触了一些国外规范,像英国的FOC标准。其中,对于工业建筑,也是根据不同的生产类别,制定出不同的设计流量分类标准。

我国应根据国内长期实践的经验,同时参照国外的先进经验,尽快制定出既安全又经济合理的设计流量数据。

在玩具厂消防工程设计过程中,有一点感受就是规范、标准要定期修订。事物是在飞速发展的,新技术、新方法、新概念不断出现。一种标准长期不进行修订,就跟不上事物的发展,就是落后的标准。

6.2报警阀的控制范围

湿式报警阀是自动喷水灭火系统的重要部件。《自动喷水灭火系统设计规范》中将湿式报警阀的控制范围确定为不超过800个喷头。这是从系统检修停用的角度来考虑的,是非常对的。不能允许喷淋系统停用的范围过大,影响到建筑物安全,控制范围应有所限制。但是,这样规定在设计过程中实行起来问题较多。实际上控制喷头数目也就是确定湿式系统的控制面积。由于喷头布置的疏密不同,同样多的喷头,保护面积是不相同的。相反,同样的面积,喷头数目也是不相同的。例如:1万m2的面积,喷头按3.6m×3.6m布置,喷头数目就少于800个,用1个湿式报警阀就行了。而按3.0m×3.6m布置,喷头数目就超过了800个,要用2个湿式报警阀。尤其是需要布置上、下喷头的地方,上、下喷头按1个喷头计算,还是按2个喷头计算,就有不同的意见。所以,湿式报警阀的控制范围用面积来控制较为合适。像玩具厂这样大范围布置自动喷水灭火系统的地方,采用控制面积的方式布置湿式报警阀,基本上做到了报警阀分布均匀,报警时不仅告诉人们有火灾发生,同时知道发生在何处。

6.3消防器材的问题

玩具厂消防给水工程上的主要设备、材料,基本上都是国外产品。设计时,曾提出采用国内产品,对方表示同意,但是提出必须要有FM/UL认证。我们在市场上调查了一下国内产品,几乎没有FM/UL认证的,因此只好放弃。所以,希望中国的消防设备生产厂家,能够尽快填补这块空白。

6.4消防标准的衔接

目前,越来越多的外资企业到中国办厂,他们的到来必然也带来了国外的消防标准,这些标准如何与国内标准衔接呢?目前,没有明确规定。像玩具厂这种作法就是设计者、火灾保险公司、消防部门3家协商的结果。

灭火系统范文篇9

电站的消防分为建筑消防及机电消防两大部分。建筑消防主要采用消火栓,并在相应生产场所配置磷酸铵盐干粉灭火器。地下厂房消防主水源取自全厂低压供水系统,建筑消防与机电消防管网均从该系统接至水轮机层、发电机层、安装场、地下副厂房及主变副厂房各层,每层均布置不等数量的消火栓,保证同时有两股水流能到达任意着火点。另在地面副厂房设置一个容积为250m3的消防水箱作为地下厂房消防的备用水源及低压技术供水管路检修时消防水源。消防水箱的水源来自下水库,通过补水管路补水。地面副厂房消火栓的主水源取自消防水箱,通过消防水泵与消防管网连接,并在顶层设置一个容积为12m3的高位水箱及一个消防稳压设备作为备用水源;并在厂房两侧设有消火栓接头,用于连接水罐消防车该消防车主要用于地下厂房主厂房安装场、主变运输洞、上水库和下水库范围内的救援工作,随时听候消防指挥中心的调遣。机电消防的主要对象为中控室、发电电动机、主变压器、SFC变压器、低压电缆洞、电缆层等,按照可能出现的火灾类别,机电消防对象中严重危险的有:中控室、计算机室、电缆层、电压电缆洞及出线场等;中危险级的有:主变压器室、400kV厂用变压器、SFC变压器室、发电电动机等。因此,消防设计中在中控室、计算机房、继电保护室、线路保护盘室及柴油发电机房等设置了七氟丙烷气体灭火系统;在电缆层、低压电缆洞及出线洞等设置了超细干粉灭火系统;在发电电动机、主变压器、SFC变压器等设置水喷雾自动灭火系统。以上三大灭火系统与火灾自动报警及联动控制系统、通风排烟系统共同组成了电站的消防系统。

1.1火灾自动报警及联动控制系统

电站共分为4个报警及联动分区,如图所示,分别为:地下厂房分区、上水库分区、下水库分区及地面副厂房分区。地下厂房分区设置1台报警控制器及联动控制柜,主要监测范围为主厂房、副厂房、主变开关室、主变副厂房及出线洞等,联动控制布置在该区各处的通风空调系统、自动灭火设备、地面排风楼及消防电梯等;地面副厂房分区设置1台报警控制器及联动控制柜,主要监测范围为地面副厂房各电气设备室,联动控制布置在该区通风空调系统、自动灭火设备、消防供水泵等;上水库及下水库分区各设置1台报警控制器,主要监测各自区域内的闸门启闭机室、值班室等。图1火灾自动报警及联动控制系统分区地面副厂房分区、上水库分区、下水库分区分别与地下厂房的火灾报警控制中心通过光纤相连组成网络化系统,中控室值班人员可以通过设置在地下副厂房中控室内的消防报警控制中心实现对各个分区的火情监视,发生火灾时统一指挥和集中控制。在地面副厂房中控室内也设置了一套消防控制中心,可复显全厂火灾报警系统信息,联动地面副厂房分区内消防设备,通过模块控制启动地下副厂房消防设备。

1.2气体自动灭火系统

电站设有4套气体自动灭火系统,防护的区域分别为:①地下副厂房中控室、计算机室、继电保护盘室;②主变副厂房线路保护室;③地面副厂房中控室、计算机室;④地面副厂房柴油发电机房。①~③区域采用固定管网式全淹没组合分配系统,由灭火管网系统和控制系统组成。管网系统主要包括气体储存钢瓶、启动器、减压装置、选择阀、喷嘴及气体输送管道等;控制系统主要包括灭火控制器、继电器模块、保护感温感烟火灾探测器等,系统的控制方式有自动、手动和紧急机械手动操作方式。如图2所示,在自动工作状态下,气体灭火系统可自动完成防护区内的火灾探测、报警、联动控制及喷气灭火整个过程。即:某一防护区发生火灾时,当一类探测器报警后,防护区的警铃动作,通知保护区内无关人员撤离事故现场;当两类探测器都同时报警后,防护区内外的蜂鸣器及闪灯动作,系统进入延时状态,并关闭通风空调等相关设备;延时结束后,在8s内向防护区喷射浓度为8%的七氟丙烷灭火气体,并使其均匀布满整个保护区进行灭火。柴油机房采用无管网气体灭火系统,起火时,在10s内向柴油发电机房喷射浓度为8%的七氟丙烷灭火气体进行灭火。

1.3超细干粉灭火系统

超细干粉灭火系统主要应用于地下副厂房电缆夹层、主变副厂房电缆夹层、低压电缆洞、出线洞,沿缆桥架的走向进行配置。系统采用热引发启动方式,当防护区内环境温度达到灭火装置设定的温度(68℃左右)时,自动启动灭火装置进行灭火;或当连接在灭火装置喷头间的热敏线遇明火后,连锁启动多台超细干粉灭火装置实施灭火,并将喷放动作信号反馈至全厂火灾自动报警主机。

1.4水喷雾自动灭火系统

水喷雾自动灭火系统主要用于发电电动机消防、主变压器消防、SFC变压器消防。消防水源均取自机组低压供水管网沿1号、4号机尾水洞取自下水库。发电电动机消防环管布置在定子线圈上、下端部,在环管上均匀布置40个喷头,每台发电电动机总的消防用水量约为80m3/h;主变压器及SFC变压器均采用固定式水喷雾灭火装置,在消防供水管路中设置雨淋阀组;每台主变分别采用100个喷头,消防水量约为404m2/h;每台SFC变压器设置31个喷头,两台SFC变压器消防用水量约为125.3m2/h。在这3个部位相应位置均设置有火灾探测报警装置,当火灾时,可自动、远方手动或现场手动操作进行水喷雾灭火。

1.5通风排烟系统

电站为封闭式地下厂房,通风防火和事故排烟设计非常的重要。电站设有三大排风排烟系统:

1.5.1主/副厂房排风排烟系统

排风系统在母线洞夹层,设置2台混流风机;主厂房排烟系统设在副厂房顶层,设置2台排烟风机;排烟系统的补风引自交通洞的自然风,在主厂房发电机层吊顶上设置两排排烟口,排烟口间距为15m左右。副厂房的排风排烟系统设置在主厂房顶层。当主/副厂房发生火灾时,主副厂房通风系统停止运行,启动主厂房排烟系统经设在主厂房吊顶上的排烟口进行消防排烟,同时启动副厂房楼梯间及消防电梯前设置的正压送风系统。烟气经过排烟/风平洞至排风竖井,再经上部排风平洞至全厂总排风机房排出厂外。而当母线层、水轮机层发生火灾时,通风系统停止运行,实施灭火措施后,通风系统重新启动转为事故后排烟。排烟时,烟气经过母线洞,由母线洞管道层内设置的排风及排烟风机进行排烟,经上排水廊道至排风竖井,再经上部排风平洞至全厂总排风机房排出厂外。

1.5.2主变洞排风、排烟系统

排风系统设在主变洞右端与通风洞相连位置的通风机室,安装有2台箱式离心风机;主变副厂房顶层安装有1台排烟风机作为主变搬运道的事故排烟,以利于火灾时人员疏散。主变洞内主变室、GIS层、电缆及管道层、SFC变压器室、主变副厂房等均为事故后排烟,排风排烟共用一套系统,当主变洞内发生火灾时,通风系统停止运行,实施灭火措施后,通风系统重新启动转为事故后排烟。排烟时,先排入主变洞排烟机房,汇总后经排风竖井、上排风平洞、全厂总排风风机房排出厂外。

1.5.3出线洞排风排烟系统

该系统设在出线洞末端风机室内,设置2台轴流风机作为出线洞排风兼事故排烟。出线洞采用自然进风、机械排风的通风方式,从主变运输道进风,从地面排风机房排出。当出线洞内发生火灾时,通风系统停止运行,同时关闭进风口及防火阀,实施灭火措施后,通风系统重新启动进行事故后排烟。蓄电池采用免维护密闭式铅酸蓄电池,发生火灾时会产生有害气体。因此蓄电池室设置单独的送、排风系统,排风直接排至主厂房排风道内,同时设置测氢监测装置,当室内氢气浓度超标时,自动启动送、排风系统进行通风。

2讨论分析

电站的消防系统根据国家有关的标准规范进行设计,整个消防系统基本能满足电站的消防要求,但在电站的消防设计中使用高压细水雾灭火系统,优化逃生通道及救援通道,关注桥式起重机消防,有助于完善消防系统,降低电站建设及运行维护成本。

2.1高压细水雾灭火系统

电站有丰富的水资源,而高压细水雾灭火系统所使用的灭火介质正是水。在10MPa以上压力形成的细水雾遇火后迅速汽化,可吸收大量的热,降低燃烧表面的温度,同时,汽化后形成的水蒸气将整体覆盖燃烧区域,使燃烧因缺氧而窒息,具有高效冷却、快速窒息的双重灭火机理。由于细水雾的直径相当的小(约为10μm~100μm),喷放后可长时间悬浮在空中,需长时间才能汇聚、凝结,很难在电极表面形成导电的连续水流或表面水域,具有良好的电绝缘性,可有效扑救带电设备火灾,如:柴油发电机房、变压器室、中控室、计算机室、电缆隧道等。高压细水雾灭火系统安装时费用会高一些,以本电站为例,大概需要人民币300×104元,但高压细水雾灭火系统用水量仅为水喷淋灭火系统的1%,可极大的减少地下厂房的开挖量及消防水箱、高位水箱的容积;此外,高压细水雾灭火系统采用不锈钢材质,寿命长,可靠性高,几乎不存在设备更换问题,且在备用状态下为常压,可极大的降低日常维护工作量及维修费用。从长远来看,使用高压细水雾灭火系统可提高灭火效率,减少土建开挖费用,降低电站运行维护成本。

2.2逃生通道与救援通道

发火火灾时,电站逃生通道有两条:一是交通洞,为城门洞形,宽8m,高7.50m长1116m,靠近地下厂房安装场的洞口设有防火卷帘门;另外一条是通风洞,宽7.50m,高6m,长1012m。救援通道主要是交通洞,由交通洞进入安装场,从安装场连接消火栓对主厂房及地下副厂房各层进行灭火。呼蓄电站地下厂房中控室设在地面副厂房5楼,即发电机层上一层。当中控室起火时,现场人员可以跑下发电机层,经过1号~4号发电机组,从安装场进入交通洞到达安全区域。与此同时,接到救援命令后,消防车从交通洞进入安装场进行灭火;消防车上的水用完后,在主变运输洞调头,再从交通洞返回。由此可见,当地下厂房中控室发生火灾时,逃生通道与救援通道都为交通洞,在紧急情况下,有可能造成交通洞出入混乱,使消防车及消防队员不能迅速接近火灾点并实施灭火,错过有效控制和扑救火灾的最佳时期,以致造成更大的损失。因此,在后续电站设计中应保证交通洞具有较高的可靠性和安全性,并采取一些新的方案,如:将中层排水廊道设计为另一逃生通道,或在交通洞相应区域设置汇车道等,保证人员安全撤离与消防车、救护车等进场救援两不误;此外,在电站运行过程中,应加强应急疏散通道的管理,注重人员逃生技能的训练。

2.3桥式起重机消防问题

电站主厂房装有两台QD250/50t—21.5A3型桥式起重机。其中一台桥机由于变频器出现故障,导致电阻器异常发热,桥机电气房内部温度升高,烧坏电气柜风扇、电气房内空调外壳等塑胶制品,幸好发现及时,才没引起火灾事故的发生。此外,桥机电源电缆绝缘损坏及电缆接头松动或进潮气等都会导致绝缘击穿产生电弧,而“电气装置故障产生的危险温度、电火花、电弧等可能构成引燃源、引起火灾和爆炸。”因此,必须对桥式起重机的消防有足够的重视!除了在桥机上按照要求配备足够数量的干粉灭火器外,在电站消防设计中,发电机层及安装场相应位置消火栓喷出的水柱应能到达桥机最高点进行灭火。在电站运行中,当桥机停止作业时,应关闭桥机电源,将桥机停放在安装场上方,并在安装场上方设置感温感烟探测器及监控设备。

3结语

灭火系统范文篇10

关键词:七氟丙烷灭火系统火灾自动报警系统安全疏散设计预算设计图纸

1.前言

哈龙灭火系统自问世以来,由于在灭火方面具有浓度低、灭火效率高、不导电等优异性能,在世界各地获得了广泛的应用。其主要应用于大型电子计算机房、通讯机房、高低压配电室、档案馆等重要场所。然而,大量的科学实验证明哈龙对大气臭氧层有破坏作用,有碍人类的生存环境。为保护人类健康及赖以生存的地球环境,联合国制定了《关于消耗臭氧层物质的蒙特利尔议定书》,发达国家自1994年1月1日,停止生产和使用哈龙灭火剂,发展中国家则可延长到2010年。于是寻找新的灭火剂替代哈龙成为必然。目前哈龙灭火剂的替代物主要有两大方向:一是以其他灭火系统替代哈龙灭火系统,如二氧化碳、细水雾等灭火系统。二是新型的“洁净气体”灭火剂和相应的灭火系统,如卤代烃灭火系统、惰性气体灭火系统。在各种洁净灭火剂中,具有实际应用价值的是七氟丙烷和烟烙尽。

下面就二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统,对其灭火效率、系统投资、保护生命等方面进行比较分析。并说明XXX片区枢纽楼的最佳气体灭火系统的选择是七氟丙烷灭火系统。

二氧化碳灭火系统和烟烙尽灭火系统都是使氧气浓度下降,对燃烧产生窒息作用,从而扑灭火灾的。七氟丙烷在火灾中有抑制燃烧过程基本化学反应的能力,其分解物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强,灭火速度快。由此可见,二氧化碳灭火系统、烟烙尽灭火系统和七氟丙烷灭火系统是两种不同的灭火机理,这两种不同的灭火机理决定了七氟丙烷灭火系统在设计浓度上要远远低于二氧化碳灭火系统和烟烙尽灭火系统。三种灭火系统的最小设计浓度7%、34%、37.5%。所以七氟丙烷的灭火效率是最高的,市场上经常使用的气体灭火剂综合性能如表1.1所示。

气体灭火剂综合性能对照表表1.1

灭火剂名称

FM-200

(七氟丙烷)

CO2

(高压)

INERGEN

(烟烙尽)

HALON

(哈龙)

生产厂家

美国大湖公司

国产

美国安素

国产

适用范围

同1301,但由于惰性大,高度和气瓶间距离均受一定限制

与`1301同,适用于无人区域

与1301同,但保护面积不可超过1000米2

A、B、C类及电气火灾,通常适用于无人区域

灭火方式

化学与物理

物理

物理

化学

设计浓度

8-10%

34-75%

37.5-42.8%

5-9.4%

灭火速度

最慢

最快

贮存压力

2.5/4.2Mpa

5.8MPa

15Mpa

2.5/4.2Mpa

工作压力

2.5/4.2Mpa

15Mpa

15Mpa

2.5/4.2Mpa

喷嘴压力

≥0.8Mpa

≥1.4Mpa

≥0.8Mpa

酸性值

中等

最低

毒性值

中等(含氢氟酸)

LOAEL

10.5

浓度大于20%人员死亡

52

7.5

NOAEL

9.0

43

5.0

气体产物

HF

CO2

N2、CO2、Ar2

HF、HBr

启动产物

N2

N2

N2

N2

气体与空气重量比

5.8

1.51

1.22

5.05

影响系统投资的主要因素是系统设备投资、系统瓶站建筑投资及系统的维护保养费用等。目前市场上二氧化碳、烟烙尽与七氟丙烷的单价比为1:13:110。但二氧化碳灭火系统和烟烙尽灭火系统需要的灭火浓度高,自然灭火剂的用量就大。值得注意的是,烟烙尽灭火系统其气体是以高压气态储存的,其输送距离可长达150米,大大超过了其它以液态储存的灭火剂的输送距离。所以它一套组合分配的装置可以保护的防护区数量可以很多,这样烟烙尽灭火系统的经济性是显而易见的。瓶站的建筑面积与灭火剂的用量是联系在一起的,所以七氟丙烷灭火系统需要的瓶站的建筑面积要大大小于二氧化碳灭火系统和烟烙尽灭火系统。但由于烟烙尽灭火系统保护的距离长,所以需要的瓶站的数量也少。二氧化碳灭火系统需要的储存容器,系统体积大、重量高,需要瓶站的建筑面积大,瓶站的建筑投资大。关于系统的维护保养费用,10年时间二氧化碳、烟烙尽与七氟丙烷系统灭火剂的再充填的费用比约为1:4:85,所以二氧化碳和烟烙尽的再填充费用是相对低的。通过上述各方面比较烟烙尽灭火系统的系统投资是最低的。

在保护人身安全方面,七氟丙烷人未观察到不良反应的浓度为9%,系统最小设计浓度为7%,烟烙尽人未观察到不良反应的浓度为43%,系统最小设计浓度为37.5%,所以七氟丙烷和烟烙尽在防护区喷放对人体是相对安全的。但七氟丙烷在高温条件下会产生对人体有害的HF,所以它使用时的浓度必须低于NOAEL值,而且灭火时的拖放时间不能过长。而二氧化碳在34%以上会使人窒息死亡。据统计,近几年世界上由于火灾中被二氧化碳窒息而死的人每年多达80余人。所以二氧化碳系统不适合人员出入较多的场所。

XXX片区枢纽楼需要气体保护的区域多为通信机房、寻呼机房、交换机房等,工作人员和值班人员较多。六层以下多为商务中心等公共场所,人流量也较大。该建筑需要气体保护的防护区多,空间也较大,组合分配的系统也多。综合考虑以上各方面,虽然二氧化碳灭火系统具有来源广泛、价格低廉、无腐蚀性、不污染环境等优点,但瓶组占地面积大、泄露点多,给以后的维修会带来一系列的难度。而且气体容易从液压站的开口处流失,保证其灭火浓度也较难。灭火剂的沉降也较快,特别是在高度和空间较大的情况下,高处火灾就难以扑灭。烟烙尽灭火系统虽然系统投资低,对人体安全等许多优点,但目前在国内还没有完整的设计规范。所以该建筑采用的最适合的气体灭火系统为七氟丙烷灭火系统。它的灭火效率高,对大气臭氧层的损耗潜能值ODP值为零,对人体相对安全,瓶组占地面积小,但它只适用于扑灭固体表面火灾,不适宜扑救固体深位火灾。

2.七氟丙烷灭火系统设计

2.1工程概况

XXX片区枢纽楼地上十七层,地下两层,裙房三层,辅房三层。建筑面积23000平米,建筑高度为67.7米。四层到十六层层高3.9米,其中七至十六层的通信机房、电力室、电池室、传输机房、LS机房、ATM机房、网管中心、软件中心、计费中心和新技术发展用房,需要用气体灭火系统进行保护,采用七氟丙烷灭火系统对其进行保护。

根据《高层民用建筑防火设计规范》该建筑为一类建筑,耐火等级为一级,危险等级为中危险等级Ⅰ级。七层到十六层需要气体保护的区域,设有防静电地板,地板高0.5米,净空高为3.4米(比例为5:34)。

2.2七氟丙烷(FM—200)灭火系统

2.2.1七氟丙烷气体灭火剂性能及灭火机理

七氟丙烷灭火剂HFC-227ea(美国商标名称为FM-200)是一种无色无味、低毒性、电绝缘性好,无二次污染的气体,对大气臭氧层的耗损潜能值(ODP)为零。其化学结构式为CF3-CHF-CF3。在一定压强下呈液态储存。在火灾中具有抑制燃烧过程基本化学反应的能力,其分解产物能够中断燃烧过程中化学连锁反应的链传递,因而灭火能力强、灭火速度快。

2.2.2七氟丙烷灭火系统工作程序及原理

当防护区发生火灾时,灭火系统有三种启动方式:

自动启动:此时感温探测器、感烟探测器发出火灾信号报警,经甄别后由报警和灭火控制装置发出声光报警,下达联动指令,关闭联锁设备,发出灭火指令,延迟0-30秒电磁阀动作,启动启动容器和分区选择阀,释放启动气体,开启各储气瓶容器阀,从而释放灭火剂,实施灭火。

手动启动:将灭火控制盘的控制方式选择键拨到“手动”位置。此时自动控制无从执行。操作灭火控制盘上的灭火手动按钮,仍将按上述即定程序实施灭火。一般情况,保护区门外设有手动控制盒。盒内设紧急启动按钮和紧急停止按钮。在延迟时间终了前可执行紧急停止。

应急启动:在灭火控制装置不能发出灭火指令时,可进行应急启动。此时,人为启动联动设备,拔下电磁启动器上的保险盖,压下电磁铁芯轴。释放启动气体,开启整个灭火系统,释放灭火剂,实施灭火。

2.3系统设计

2.3.1灭火方式

按防护区的特征和灭火方式采用全淹没灭火系统,管网输送方式为组合分配系统。

全淹没灭火系统是在规定的时间内,向防护区喷放设计规定用量的七氟丙烷,并使其均匀的充满整个防护区的灭火系统。组合分配系统是用一套七氟丙烷的储存装置通过管网的选择分配,保护两个或两个以上防护区的灭火系统。优点是减少灭火剂的用量,大大节省系统投资。因为本建筑需要气体保护的机房较多多,所以采用组合分配系统最为经济可行。

2.3.2防护区的划分

《规范》中规定:防护区宜以固定的单个封闭空间划分;当同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;当采用管网灭火系统时,一个防护区的面积不宜大于500m2,容积不宜大于2000m3。

根据《规范》规定,把该组合分配系统四个系统中各个防护区的划分归纳于下表,其中最大保护区的面积为310.25m2,容积为1210m3。

系统划分表表2.1

系统(一)

系统(二)

编号

保护区名称

楼层

编号

保护区名称

楼层

1

左LS机房

7F

1

左传输机房

9F

2

右LS机房

7F

2

右传输机房

9F

3

电池室

8F

3

左ATM机房

10F

4

小电力室

8F

4

右ATM机房

10F

5

大电力室

8F

5

左同步网监控中心

11F

6

主机房

11F

7

右同步网监控中心

11F

注:防护区的工作区和地板下均设置喷头和探测器,防护区设有弹簧门不需单设泄压口。

2.3.3管网系统

本系统的管网布置为非均衡管网,但工作区和地板下的管网布置都为均衡管网。《规范》中规定,均衡管网要符合下列要求:

①管网中各个喷头的流量相等;

②在管网上,从第一分流点至各喷头的管道阻力损失,其相互间的最大差值不应大于20%。

管网设计布置为均衡系统有利于灭火剂在防护区喷放均匀,利于灭火。可不考虑管网中的剩余量,做到节省。可只选用一种规格的喷头,只计算“最不利点”的阻力损失就可以了。虽然对整个系统来说是非均衡管网,但因把工作区和地板下都尽量布置为均衡,所以该系统工作区中的喷头型号相同,地板下的喷头型号相同,工作区和地板下为不同型号的喷头。在管网设计时,考虑到经济性,应尽量减少管段长度,减少弯头数量。做到管网布置合理、经济。

2.3.4增压方式

根据《规范》规定:七氟丙烷灭火系统应采用氮气增压输送。氮气的含水量不应大于0.006%。额定增压压力选用4.2±0.125MPa级别。

2.3.5系统组件

系统主要组件有:启动钢瓶组、储气钢瓶组以及单向阀、压力继电器、选择阀、泄气卸压阀、金属软管、集流管、喷头及管路附件、灭火剂输送管网、储气钢瓶架、启动钢瓶架等。

启动钢瓶组由电动启动阀、电磁阀、压力表组成。储气钢瓶组由容器阀、导管、钢瓶组成。单向阀包括气控单向阀和液流单向阀。

2.4系统设计与管网计算2.4.1系统设计计算

系统(一):

(一)确定灭火设计浓度

依据《七氟丙烷洁净气体灭火系统设计规范》(以下简称规范)

取C%=8%

(二)计算保护空间实际容积

1区、2区、3区、5区容积相同:

V5区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3

4区容积:

V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3

(三)计算灭火剂设计用量

依据《规范》中规定W=K×(V/S)×C/(100-C)

其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)

1区、2区、3区、5区灭火剂设计用量相同:

W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)

其中地板下:104.7kg工作区:714.99kg

根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)

需要14只储瓶,所以W取826kg

工作区W1=720(kg)地板下W2=106(kg)

4区灭火剂设计用量:

W=1×(611/0.13716)×8/(100-8)=387.4(kg)

根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)

需要7只储瓶,所以W取413kg

工作区W1=360(kg)地板下W2=53(kg)

(四)设定灭火喷放时间

依据《规范》规定,取t=7s

(五)设定喷头布置与数量

选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区平面均匀喷洒布置喷头。地板下与工作区的布置形式相同。

(六)选定灭火剂储存瓶规格及数量

1区、2区、3区、5区相同

根据W=819.69kg,选用JR-100/59储存瓶14只。

4区:

根据W=387.4kg,选用JR-100/59储存瓶7只。

(七)绘制管网设计图,见附图

(八)计算管道平均设计流量

(1)1区、2区、3区、5区相同:

主干管:QW=W/t=819.69/7=117.1(kg/s)

支管:工作区:Q1-2=714.99/7=102.14(kg/s)

Q2-3=51.07(kg/s)

Q3-4=25.535(kg/s)

Q4-5=12.7677(kg/s)

地板下:Q1-2′=104.7/7=14.96(kg/s)

Q2′-3′=7.48(kg/s)

Q3′-4′=3.739(kg/s)

Q4′-5′=1.8696(kg/s)

储瓶出流管:QP=819.69/14/7=8.36(kg/s)

4区:

主干管:QW=W/t=413/7=59(kg/s)

支管:工作区:Q1-2=360/7=51.43(kg/s)

Q2-3=25.714(kg/s)

Q3-4=12.857(kg/s)

Q4-5=6.4286(kg/s)

地板下:Q1-2′=53/7=7.57(kg/s)

Q2′-3′=3.7857(kg/s)

Q3′-4′=1.8929(kg/s)

Q4′-5′=0.9464(kg/s)

储瓶出流管:QP=413/7/7=8.43(kg/s)

(九)选择管网管道通径,标于图上

(十)计算充装率

系统设置用量:WS=W+△W1+△W2

储瓶内剩余量:△W1=n×3.5=14×3.5=49(kg)

管网内剩余量:△W2=8×2.9×0.49×1.04=16.55(kg)

WS=819.69+49+16.55=885.24(kg)

充装率η=885.24/(14×0.1)=632.31(kg/m3)

(十一)计算管网管道内容积

依据管网计算图。

1区VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.489(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅠ=VP1′+VP2′=0.546(m3)

2区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅡ=VP1′+VP2′=0.467(m3)

3区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅢ=VP1′+VP2′=0.491(m3)

4区:VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)

VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)

VPⅣ=VP1′+VP2′=0.4265(m3)

5区:VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅤ=VP1′+VP2′=0.4455(m3)

(十二)选用储瓶增压压力

依据《规范》中规定,选用P。=4.3MPa(绝压)

(十三)计算全部储瓶气相总容积

1区、2区、3区、5区相同

依据《规范》中公式:V。=n×Vb×(1—η/γ)

=14×0.1×(1—632.31/1407)=0.77(m3)

4区:

依据《规范》中公式:V。=n×Vb×(1—η/γ)

=7×0.1×(1—632.31/1407)=0.385(m3)

(十四)计算“过程中点”储瓶内压力(喷放七氟丙烷设计用量50%时的“过程中点”)

1区:Pm1=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)

2区:Pm2=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.175MPa(绝压)

3区:Pm3=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)

4区:Pm4=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.723MPa(绝压)

5区:Pm5=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.2MPa(绝压)

(十五)计算管路阻力损失

⑴a-b管段

1区、2区、3区、4区、5区:

(△P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)

△Pa-b=0.02204(MPa)

工作区:

⑵b-1管段

1区:(△P/L)b-1=0.011(MPa/m)

Lb-1=24.807+10+5×6.4+1.9=68.707(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×68.707=0.756(MPa)

2区:(△P/L)b-1=0.011(MPa/m)

Lb-1=19.507+10+4×6.4+2.1=57.2(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)

3区:(△P/L)b-1=0.011(MPa/m)

Lb-1=22.307+10+3×6.4+2.1=53.407(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)

4区:(△P/L)b-1=0.0031(MPa/m)

Lb-1=32.45+10+4×5.2+2.1=65.15(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)

5区:(△P/L)b-1=0.011(MPa/m)

Lb-1=16.807+10+3×6.4+2.1=48.107(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)

⑶1-2管段

1区、2区、3区、5区:

(△P/L)1-2=0.009(MPa/m)

L1-2=7.4+2.1=9.5(m)

△P1-2=0.009×9.5=0.0855(MPa)

4区:

(△P/L)1-2=0.0085(MPa/m)

L1-2=3.53+5.2+0.6=9.33(m)

△P1-2=0.0085×9.33=0.0793(MPa)

⑷2-3管段

1区2区3区5区:

(△P/L)2-3=0.007(MPa/m)

L2-3=5.6+7.3+0.6=13.5(m)

△P2-3=0.007×13.5=0.0945(MPa)

4区:

(△P/L)2-3=0.006(MPa/m)

L2-3=5.35+5.8+0.5=11.65(m)

△P2-3=0.006×11.65=0.0699(MPa)

⑸3-4管段

1区2区3区5区:

(△P/L)3-4=0.005(MPa/m)

L3-4=3.675+5.8+0.5=9.975(m)

△P3-4=0.005×9.975=0.0499(MPa)

4区:

(△P/L)3-4=0.0058(MPa/m)

L3-4=1.85+5+0.4=7.25(m)

△P3-4=0.0058×7.25=0.042(MPa)

⑹4-5管段

1区:

(△P/L)4-5=0.0005(MPa/m)

L4-5=2.8+0.2+5+3.5=11.5(m)

△P4-5=0.0005×11.5=0.006(MPa)

2区、3区、5区:

(△P/L)4-5=0.0045(MPa/m)

L4-5=2.8+0.2+5+0.4+3.5=11.9(m)

△P4-5=0.0045×11.9=0.05355(MPa)

4区:

(△P/L)4-5=0.0049(MPa/m)

L4-5=2.675+4+0.3+0.2+2.8=9.975(m)

△P4-5=0.0049×9.975=0.049(MPa)

工作区管道阻力损失:

1区:∑△P1=1.014(MPa)

2区:∑△P1=0.9355(MPa)

3区:∑△P1=0.9(MPa)

4区:∑△P1=0.462(MPa)

5区:∑△P1=0.84(MPa)

地板下:

1区、2区、3区、5区:

⑴1-2′管段

(△P/L)1-2′=0.007(MPa/m)

L1-2′=10.3+3.5+2.1=15.9(m)

△P1-2′=0.007×15.9=0.1113(MPa)

⑵2′-3′管段

(△P/L)2′-3′=0.006(MPa/m)

L2′-3′=5.6+4+0.3=9.9(m)

△P2′-3′=0.006×9.9=0.594(MPa)

⑶3′-4′管段

(△P/L)3′-4′=0.0046(MPa/m)

L3′-4′=3.675+3.2+0.3=7.175(m)

△P3′-4′=0.0046×7.175=0.033(MPa)

⑷4′-5′管段

(△P/L)4′-5′=0.004(MPa/m)

L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)

△P4′-5′=0.004×7.5=0.03(MPa)

4区:

⑴1-2′管段

(△P/L)1-2′=0.0065(MPa/m)

L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)

△P1-2′=0.0065×11.83=0.0769(MPa)

⑵2′-3′管段

(△P/L)2′-3′=0.0055(MPa/m)

L2′-3′=5.35+3.2+0.3=8.85(m)

△P2′-3′=0.0055×8.85=0.0487(MPa)

⑶3′-4′管段

(△P/L)3′-4′=0.005(MPa/m)

L3′-4′=1.85+2.5+0.2=4.55(m)

△P3′-4′=0.005×4.55=0.0227(MPa)

⑷4′-5′管段

(△P/L)4′-5′=0.0041(MPa/m)

L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)

△P4′-5′=0.0041×6.575=0.027(MPa)

地板下管道阻力损失:

1区:∑△P2=1.012(MPa)

2区:∑△P2=0.8857(MPa)

3区:∑△P2=0.85(MPa)

4区:∑△P2=0.4(MPa)

5区:∑△P2=0.786(MPa)

(十六)计算高程压头

依据《规范》中公式:Ph=10-6Hγg

(H为喷头高度相对“过程中点”储瓶液面的位差)

1区、2区相同:

工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)

地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)

3区、4区、5区相同:

工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)

地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)

(十七)计算喷头工作压力

依据《规范》中公式:Pc=Pm—(∑△P±Ph)

1区:工作区:Pc1=2.06—1.014+0.0138=1.06(MPa)

地板下:Pc2=2.06—1.012+0.055=1.103(MPa)

2区:工作区:Pc1=2.175—0.9355+0.0138=1.25(MPa)

地板下:Pc2=2.175—0.8857+0.055=1.34(MPa)

3区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)

地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)

4区::工作区:Pc1=1.723—0.4622—0.0386=1.22(MPa)

地板下:Pc2=1.723—0.4+0.00138=1.32(MPa)

5区::工作区:Pc1=2.2—0.84—0.0386=1.32(MPa)

地板下:Pc2=2.2—0.786+0.00138=1.415(MPa)

(十八)验算设计计算结果

依据《规范》规定,应满足下列条件:

⑴Pc≥0.8MPa(绝压)

⑵Pc≥Pm/2

1区:Pm1/2=1.03MPa2区:Pm2/2=1.0875MPa

3区:Pm3/2=1.0665MPa4区:Pm4/2=0.8615MPa

5区:Pm5/2=1.1MPa

各防护区均满足,所以合格。

(十九)计算喷头计算面积及确定喷头规格

根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。

1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=6.08(cm2)喷头规格为JP-36型

地板下:qc2=2.15(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.87(cm2)喷头规格为JP-13型

2区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.32(cm2)喷头规格为JP-34型

地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.748(cm2)喷头规格为JP-13型

3区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.68(cm2)喷头规格为JP-36型

地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.763(cm2)喷头规格为JP-13型

4区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)

Fc1=2.679(cm2)喷头规格为JP-24型

地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)

Fc2=0.379(cm2)喷头规格为JP-9型

5区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.11(cm2)喷头规格为JP-32型

地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.733(cm2)喷头规格为JP-13型

(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号

1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)

喷头流量Q=6.413×2.1=13.467(kg/s)

支管流量为13.467×8=107.738(kg/s)

实际喷放时间为t=714.99/107.738=6.64(s)

校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)

喷头流量为15.78/8=1.97(kg/s)

Fc=1.97/2.15=0.917(cm2)

喷头校核为规格为JP-14型

2区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.4=13.728(kg/s)

支管流量为13.728×8=109.824(kg/s)

实际喷放时间为t=714.99/109.824=6.51(s)

校核地板下喷头型号:支管流量为104.7/6.51=16.08(kg/s)

喷头流量为16.08/8=2.01(kg/s)

Fc=2.01/2.5=0.8(cm2)

喷头规格为JP-13型

3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.25=12.87(kg/s)

支管流量为12.87×8=102.96(kg/s)

实际喷放时间为t=714.99/102.96=6.944(s)

校核地板下喷头型号:支管流量为104.7/6.944=15.077(kg/s)

喷头流量为15.077/8=1.885(kg/s)

Fc=1.885/2.45=0.769(cm2)

喷头规格为JP-13型

4区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)

喷头流量Q=2.85×2.4=6.84(kg/s)

支管流量为6.84×8=54.72(kg/s)

实际喷放时间为t=360/54.72=6.58(s)

校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)

喷头流量为8.056/8=1.007(kg/s)

Fc=1.007/2.5=0.403(cm2)

喷头规格校核为JP-10型

5区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.5=14.3(kg/s)

支管流量为14.3×8=114.4(kg/s)

实际喷放时间为t=714.99/114.4=6.25(s)

校核地板下喷头型号:支管流量为104.7/6.25=16.75(kg/s)

喷头流量为16.75/8=2.094(kg/s)

Fc=2.094/2.55=0.8212(cm2)

喷头规格为JP-14型

系统(二):

(一)确定灭火设计浓度

依据《七氟丙烷洁净气体灭火系统设计规范》取C=8%

(二)计算保护空间实际容积

1区、2区、3区、4区、5区、7区容积相同:

V1区=14.8×22.4×3.9=1292.93(m3)其中地板下:165.76m3工作区:1127.17m3

6区容积:

V4区=(7.6×21.6-8.2×0.9)×3.9=611(m3)其中地板下:78.33m3工作区:532.67m3

(三)计算灭火剂设计用量

依据《规范》中规定W=K×(V/S)×C/(100-C)

其中K=1,S=0.1269+0.000513×20℃=0.13716(m3/kg)

1区、2区、3区、4区、5区、7区灭火剂设计用量相同:

W=1×(1292.93/0.13716)×8/(100-8)=819.69(kg)

其中地板下:W2=104.7kg工作区:W1=714.99kg

根据单瓶设计储量为819.69Kg/59Kg/瓶=13.89(瓶)

需要14只储瓶,所以W取826kg

工作区W1=720(kg)地板下W2=106(kg)

6区灭火剂设计用量:

W=1×(611/0.13716)×8/(100-8)=387.4(kg)

根据单瓶设计储量为387.4Kg/59Kg/瓶=6.57(瓶)

需要7只储瓶,所以W取413kg

工作区W1=360(kg)地板下W2=53(kg)

(四)设定灭火喷放时间

依据《规范》规定,取t=7s

(五)设定喷头布置与数量

选用JP型喷头,其保护半径为7.5m,最大保护高度为5m。工作区布置8只喷头,按保护区均匀喷洒布置喷头。地板下与工作区的布置形式相同。

(六)选定灭火剂储存瓶规格及数量

1区、2区、3区、4区、5区、7区相同:

根据W=819.69kg,选用JR-100/59储存瓶14只。

6区:

根据W=387.4kg,选用JR-100/59储存瓶7只。

(七)绘出管网计算图,见附图

(八)计算管道平均设计流量

(1)1区、2区、3区、4区、5区、7区相同:

主干管:QW=W/t=819.69/7=117.1(kg/s)

支管:工作区:Q1-2=714.99/7=102.14(kg/s)

Q2-3=51.07(kg/s)

Q3-4=25.535(kg/s)

Q4-5=12.7677(kg/s)

地板下:Q1-2′=104.7/7=14.96(kg/s)

Q2′-3′=7.48(kg/s)

Q3′-4′=3.739(kg/s)

Q4′-5′=1.8696(kg/s)

储瓶出流管:QP=819.69/14/7=8.36(kg/s)

6区:

主干管:QW=W/t=413/7=59(kg/s)

支管:工作区:Q1-2=360/7=51.43(kg/s)

Q2-3=25.714(kg/s)

Q3-4=12.857(kg/s)

Q4-5=6.4286(kg/s)

地板下:Q1-2′=53/7=7.57(kg/s)

Q2′-3′=3.7857(kg/s)

Q3′-4′=1.8929(kg/s)

Q4′-5′=0.9464(kg/s)

储瓶出流管:QP=413/7/7=8.43(kg/s)

(九)选择管网管道通径,标于图上

(十)计算充装率

系统设置用量:WS=W+△W1+△W2

储瓶内剩余量:△W1=n×3.5=14×3.5=49(kg)

管网内剩余量:△W2=8×2.9×0.49×1.04=16.55(kg)

WS=819.69+49+16.55=885.24(kg)

充装率η=885.24/(14×0.1)=632.31(kg/m3)

(十一)计算管网管道内容积

依据管网计算图。

1区:VP1′=32.107×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×3.42=0.508(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅠ=VP1′+VP2′=0.565(m3)

2区:VP1′=29.607×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.443(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅡ=VP1′+VP2′=0.5(m3)

3区:VP1′=29.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.489(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅢ=VP1′+VP2′=0.546(m3)

4区:VP1′=24.507×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.41(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅣ=VP1′+VP2′=0.467(m3)

5区:VP1′=27.307×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.434(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅤ=VP1′+VP2′=0.491(m3)

6区VP1′=37.45×8.33+3.53×4.7+5.35×2×3.42+1.85×4×1.96+2.675×8×1.19=0.4(m3)

VP2′=6.43×1.19+5.35×2×0.8+1.85×4×0.49+2.675×8×0.31=0.0265(m3)

VP6=VP1′+VP2′=0.4265(m3)

7区VP1′=21.807×8.33+7.4×8.33+5.6×2×4.7+3.675×4×3.42+2.8×8×1.96=0.3885(m3)

VP2′=10.3×1.96+5.6×2×1.19+3.675×4×0.8+2.8×8×0.49=0.057(m3)

VPⅦ=VP1′+VP2′=0.4455(m3)

(十二)选用储瓶增压压力

依据《规范》中规定,选用P。=4.3MPa(绝压)

(十三)计算全部储瓶气相总容积

1区、2区、3区、4区、5区、7区相同:

依据《规范》中公式:V。=n×Vb×(1—η/γ)

=14×0.1×(1—632.31/1407)=0.77(m3)

6区:

依据《规范》中公式:V。=n×Vb×(1—η/γ)

=7×0.1×(1—632.31/1407)=0.385(m3)

(十四)计算“过程中点”储瓶内压力

Pm=P。V。/[V。+W/(2×γ)+VP]

1区:Pm1=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.565]=2.036MPa(绝压)

2区:Pm2=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.5]=2.121MPa(绝压)

3区:Pm3=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.546]=2.06MPa(绝压)

4区:Pm4=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.467]=2.166MPa(绝压)

5区:Pm5=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.491]=2.133MPa(绝压)

6区Pm6=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.385/[0.385+413/(2×1407)+0.4265]=1.7276MPa(绝压)

7区PmⅦ=P。V。/[V。+W/(2×γ)+VP]

=4.3×0.77/[0.77+819.69/(2×1407)+0.4455]=2.197MPa(绝压)

(十五)计算管路阻力损失

⑴a-b管段

1区、2区、3区、4区、5区、6区、7区:

(△P/L)a-b=0.0029(MPa/m)La-b=3.6+3.5+0.5=7.6(m)

△Pa-b=0.02204(MPa)

工作区:

⑵b-1管段

1区:(△P/L)b-1=0.011(MPa/m)

Lb-1=27.107+10+5×6.4+1.9=71.007(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×71.007=0.78(MPa)

2区:(△P/L)b-1=0.011(MPa/m)

Lb-1=24.607+10+4×6.4+2.1=62.307(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×62.307=0.685(MPa)

3区:(△P/L)b-1=0.011(MPa/m)

Lb-1=24.807+10+4×6.4+2.1=62.307(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×68.707=0.685(MPa)

4区:(△P/L)b-1=0.011(MPa/m)

Lb-1=19.507+10+4×6.4+2.1=57.2(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×57.2=0.63(MPa)

5区:(△P/L)b-1=0.011(MPa/m)

Lb-1=22.307+10+3×6.4+2.1=53.407(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×53.407=0.59(MPa)

6区:(△P/L)b-1=0.0031(MPa/m)

Lb-1=32.45+10+4×5.2+2.1=65.15(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×65.15=0.2(MPa)

7区:(△P/L)b-1=0.011(MPa/m)

Lb-1=16.807+10+3×6.4+2.1=48.107(m)

△Pb-1=(△P/L)b-1×Lb-1=0.011×48.107=0.53(MPa)

⑶1-2管段

1区、2区、3区、4区、5区、7区:

(△P/L)1-2=0.009(MPa/m)

L1-2=7.4+2.1=9.5(m)

△P1-2=0.009×9.5=0.0855(MPa)

6区:

(△P/L)1-2=0.0085(MPa/m)

L1-2=3.53+5.2+0.6=9.33(m)

△P1-2=0.0085×9.33=0.0793(MPa)

⑷2-3管段

1区、2区、3区、4区、5区、7区:

(△P/L)2-3=0.007(MPa/m)

L2-3=5.6+7.3+0.6=13.5(m)

△P2-3=0.007×13.5=0.0945(MPa)

6区:

(△P/L)2-3=0.006(MPa/m)

L2-3=5.35+5.8+0.5=11.65(m)

△P2-3=0.006×11.65=0.0699(MPa)

⑸3-4管段

1区、2区、3区、4区、5区、7区:

(△P/L)3-4=0.005(MPa/m)

L3-4=3.675+5.8+0.5=9.975(m)

△P3-4=0.005×9.975=0.0499(MPa)

6区:

(△P/L)3-4=0.0058(MPa/m)

L3-4=1.85+5+0.4=7.25(m)

△P3-4=0.0058×7.25=0.042(MPa)

⑹4-5管段

1区、3区:

(△P/L)4-5=0.0005(MPa/m)

L4-5=2.8+0.2+5+3.5=11.5(m)

△P4-5=0.0005×11.5=0.006(MPa)

2区、4区、5区、7区:

(△P/L)4-5=0.0045(MPa/m)

L4-5=2.8+0.2+5+0.4+3.5=11.9(m)

△P4-5=0.0045×11.9=0.05355(MPa)

6区:

(△P/L)4-5=0.0049(MPa/m)

L4-5=2.675+4+0.3+0.2+2.8=9.975(m)

△P4-5=0.0049×9.975=0.049(MPa)

工作区管道阻力损失:

1区:∑△P1=1.04(MPa)

2区:∑△P1=0.99(MPa)

3区:∑△P1=0.92(MPa)

4区:∑△P1=0.9355(MPa)

5区:∑△P1=0.9(MPa)

6区:∑△P1=0.462(MPa)

7区:∑△P1=0.84(MPa)

地板下:

1区、2区、3区、4区、5区、7区:

⑴1-2′管段

(△P/L)1-2′=0.007(MPa/m)

L1-2′=10.3+3.5+2.1=15.9(m)

△P1-2′=0.007×15.9=0.1113(MPa)

⑵2′-3′管段

(△P/L)2′-3′=0.006(MPa/m)

L2′-3′=5.6+4+0.3=9.9(m)

△P2′-3′=0.006×9.9=0.594(MPa)

⑶3′-4′管段

(△P/L)3′-4′=0.0046(MPa/m)

L3′-4′=3.675+3.2+0.3=7.175(m)

△P3′-4′=0.0046×7.175=0.033(MPa)

⑷4′-5′管段

(△P/L)4′-5′=0.004(MPa/m)

L4′-5′=2.8+0.2+1.8+2.5+0.2=7.5(m)

△P4′-5′=0.004×7.5=0.03(MPa)

6区:

⑴1-2′管段

(△P/L)1-2′=0.0065(MPa/m)

L1-2′=3.53+2.9+1.7+0.9+2.8=11.83(m)

△P1-2′=0.0065×11.83=0.0769(MPa)

⑵2′-3′管段

(△P/L)2′-3′=0.0055(MPa/m)

L2′-3′=5.35+3.2+0.3=8.85(m)

△P2′-3′=0.0055×8.85=0.0487(MPa)

⑶3′-4′管段

(△P/L)3′-4′=0.005(MPa/m)

L3′-4′=1.85+2.5+0.2=4.55(m)

△P3′-4′=0.005×4.55=0.0227(MPa)

⑷4′-5′管段

(△P/L)4′-5′=0.0041(MPa/m)

L4′-5′=2.675+0.2+1.5+2+0.2=6.575(m)

△P4′-5′=0.0041×6.575=0.027(MPa)

地板下管道阻力损失:

1区:∑△P2=1.036(MPa)

2区:∑△P2=1.009(MPa)

3区:∑△P2=1.012(MPa)

4区:∑△P2=0.8857(MPa)

5区:∑△P2=0.85(MPa)

6区:∑△P2=0.4(MPa)

7区:∑△P2=0.786(MPa)

(十六)计算高程压头

依据《规范》中公式:Ph=10-6Hγg

(H为喷头高度相对“过程中点”储瓶液面的位差)

1区、2区:

工作区:Ph1=10-6×(—4.9)×1407×9.81=—0.069(MPa)

地板下:Ph2=10-6×(—7.9)×1407×9.81=—0.11(MPa)

3区、4区:

工作区:Ph1=10-6×(—1)×1407×9.81=—0.0138(MPa)

地板下:Ph2=10-6×(—4)×1407×9.81=—0.055(MPa)

5区、6区、7区:

工作区:Ph1=10-6×(2.8)×1407×9.81=0.0386(MPa)

地板下:Ph2=10-6×(—0.1)×1407×9.81=—0.00138(MPa)

(十七)计算喷头工作压力

依据《规范》中公式:Pc=Pm—(∑△P±Ph)

1区:工作区:Pc1=2.036—1.04+0.069=1.065(MPa)

地板下:Pc2=2.036—1.036+0.11=1.11(MPa)

2区:工作区:Pc1=2.121—0.99+0.069=1.2(MPa)

地板下:Pc2=2.121—1.009+0.11=1.222(MPa)

3区:工作区:Pc1=2.06—0.92+0.0138=1.154(MPa)

地板下:Pc2=2.06—1.012+0.055=1.103(MPa)

4区:工作区:Pc1=2.166—0.9355+0.0138=1.244(MPa)

地板下:Pc2=2.166—0.8857+0.055=1.335(MPa)

5区:工作区:Pc1=2.133—0.9—0.0386=1.193(MPa)

地板下:Pc2=2.133—0.85+0.00138=1.283(MPa)

6区:工作区:Pc1=1.73—0.4622—0.0386=1.23(MPa)

地板下:Pc2=1.73—0.4+0.00138=1.33(MPa)

7区:工作区:Pc1=2.197—0.84—0.0386=1.317(MPa)

地板下:Pc2=2.197—0.786+0.00138=1.412(MPa)

(十八)验算设计计算结果

依据《规范》规定,应满足下列条件:

⑴Pc≥0.8MPa(绝压)

⑵Pc≥Pm/2

1区:PmⅠ/2=1.018MPa2区:PmⅡ/2=1.0605MPa

3区:PmⅢ/2=1.03MPa4区:PmⅣ/2=1.083MPa

5区:PmⅤ/2=1.0665MPa6区:Pm6/2=0.864MPa

7区:PmⅦ/2=1.0985MPa

各防护区均满足,所以合格。

(十九)计算喷头计算面积及确定喷头规格

根据《规范》规定:依据Pc查“七氟丙烷JP-6—36型喷头流量曲线”确定喷头计算单位面积流量q(kg/s·cm2)。然后通过F=Q/q得出喷头计算面积,从而确定喷头规格。Q为喷头平均设计流量。

1区:工作区:qc1=2.1(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=6.08(cm2)喷头规格为JP-36型

地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.85(cm2)喷头规格为JP-13型

2区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.675(cm2)喷头规格为JP-36型

地板下:qc2=2.4(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.779(cm2)喷头规格为JP-13型

3区:工作区:qc1=2.3(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.55(cm2)喷头规格为JP-34型

地板下:qc2=2.2(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.85(cm2)喷头规格为JP-13型

4区:工作区:qc1=2.4(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.32(cm2)喷头规格为JP-34型

地板下:qc2=2.5(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.748(cm2)喷头规格为JP-13型

5区:工作区:qc1=2.25(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.67(cm2)喷头规格为JP-36型

地板下:qc2=2.45(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.763(cm2)喷头规格为JP-13型

6区:工作区:qc1=2.4(kg/s·cm2)Qc1=6.4286(kg/s)

Fc1=2.679(cm2)喷头规格为JP-24型

地板下:qc2=2.5(kg/s·cm2)Qc2=0.9464(kg/s)

Fc2=0.379(cm2)喷头规格为JP-9型

7区:工作区:qc1=2.5(kg/s·cm2)Qc1=12.7677(kg/s)

Fc1=5.11(cm2)喷头规格为JP-34型

地板下:qc2=2.55(kg/s·cm2)Qc2=1.8696(kg/s)

Fc2=0.733(cm2)喷头规格为JP-13型

(二十)计算达到设计浓度实际喷放时间及校核地板下喷头型号

1区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)

喷头流量Q=6.413×2.1=13.467(kg/s)

支管流量为13.467×8=107.738(kg/s)

实际喷放时间为t=714.99/107.738=6.64(s)

校核地板下喷头型号:支管流量为104.7/6.64=15.78(kg/s)

喷头流量为15.78/8=1.97(kg/s)

Fc=1.97/2.2=0.895(cm2)

喷头校核为规格为JP-14型

2区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)

喷头流量Q=6.413×2.25=14.429(kg/s)

支管流量为14.429×8=115.434(kg/s)

实际喷放时间为t=714.99/115.434=6.194(s)

校核地板下喷头型号:支管流量为104.7/6.194=16.903(kg/s)

喷头流量为16.903/8=2.11(kg/s)

Fc=2.11/2.4=0.88(cm2)

喷头规格为JP-13型

3区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.3=13.156(kg/s)

支管流量为13.156×8=105.248(kg/s)

实际喷放时间为t=714.99/105.248=6.793(s)

校核地板下喷头型号:支管流量为104.7/6.793=15.412(kg/s)

喷头流量为15.412/8=1.9265(kg/s)

Fc=1.9265/2.2=0.876(cm2)

喷头校核为规格为JP-14型

4区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.4=13.728(kg/s)

支管流量为13.728×8=109.824(kg/s)

实际喷放时间为t=714.99/109.824=6.51(s)

校核地板下喷头型号:支管流量为104.7/6.51=16.082(kg/s)

喷头流量为16.082/8=2.01(kg/s)

Fc=2.01/2.5=0.804(cm2)

喷头规格为JP-13型

5区:工作区喷头型号为JP-36型,喷口计算面积6.413(cm2)

喷头流量Q=6.413×2.25=14.429(kg/s)

支管流量为14.429×8=115.434(kg/s)

实际喷放时间为t=714.99/115.434=6.194(s)

校核地板下喷头型号:支管流量为104.7/6.194=16.9(kg/s)

喷头流量为16.9/8=2.11(kg/s)

Fc=2.11/2.45=0.8624(cm2)

喷头规格为JP-14型

6区:工作区喷头型号为JP-24型,喷口计算面积2.85(cm2)

喷头流量Q=2.85×2.4=6.84(kg/s)

支管流量为6.84×8=54.72(kg/s)

实际喷放时间为t=360/54.72=6.58(s)

校核地板下喷头型号:支管流量为53/6.58=8.056(kg/s)

喷头流量为8.056/8=1.007(kg/s)

Fc=1.007/2.5=0.403(cm2)

喷头规格校核为JP-10型

7区:工作区喷头型号为JP-34型,喷口计算面积5.72(cm2)

喷头流量Q=5.72×2.5=14.3(kg/s)

支管流量为14.3×8=114.4(kg/s)

实际喷放时间为t=714.99/114.4=6.25(s)

校核地板下喷头型号:支管流量为104.7/6.25=16.752(kg/s)

喷头流量为16.752/8=2.094(kg/s)

Fc=2.094/2.55=0.821(cm2)

喷头规格为JP-13型

2.4.2系统主要组件和设备型号

七氟丙烷储瓶型号:JR-100/59;瓶头阀:JVF-40/59;

电磁启动器:EIC4/24;释放阀:JS-100/4;

七氟丙烷单向阀:JD-50/59;高压软管:J-50/59;

安全阀:JA-12/4;压力讯号器:EIX4/12;

3.火灾自动报警及联动控制系统系统设计3.1火灾自动报警系统设计3.1.1报警区域和探测区域的划分

根据《火灾自动报警系统设计规范》中规定,报警区域应根据防火分区或楼层划分,可将一防火分区划为一个报警区域,也可将同层的相邻几个防火分区划为一个报警区域,但这种情况下不得跨越楼层。按防火分区的划分原则中“高层建筑在垂直方向应以每个楼层为单元划分防火分区”把该建筑一层划为一个防火分区。则一个楼层为一报警区域。

根据《火灾自动报警系统设计规范》中规定,探测区域应按独立房间划分。一个探测区域的面积不宜超过500平方米;从主要入口能看清其内部,且面积不超过1000平方米的房间,也可划为一个探测区域。该建筑把每个防护区划为一个探测区域。

3.1.2自动报警系统的设计

本设计采用集中报警控制系统。根据《电子计算机房设计规范》,设有固定灭火系统的区域,要设感温探测器和感烟探测器的组合。探测器的灵敏度采用一级。感烟探测器和感温探测器两种探测器交差布置,这样可以提高报警的准确性,感烟探测器进行火灾初期报警,感温探测器进行火灾中期报警,可以减少误报。

3.1.3探测器布置计算

⑴与七层LS机房相同大小的区域:

该探测区域净空面积为S=22.4×14.8=331.52(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。

N≥S/(KA)=331.52/(0.8×60)=7个

感温探测器的保护面积为20m2,保护半径为3.6m。

N≥S/(KA)=331.52/(0.8×20)=21个

因为采用两种探测器的组合,所以探测器的数量应该在7~21个之间,综合考虑在此防护区中布置8个。

设计布局合理,布置情况详见设计图纸。

地板下布置形式与此相同。

⑵与八层小电力室相同大小的区域:

该探测区域净空面积为S=21.6×7.6=164.16(m2)查“各类探测器的保护面积和保护半径表”得感烟探测器的保护面积为60m2,保护半径为5.8m。

N≥S/(KA)=164.16/(0.8×60)=4个

感温探测器的保护面积为20m2,保护半径为3.6m。

N≥S/(KA)=164.16/(0.8×20)=11个

因为采用两种探测器的组合,所以探测器的数量应该在4~11个之间,在此防护区中布置5个。

设计布局合理。地板下只布置感烟探测器。布置情况详见设计图纸。

走廊内按间距小于15米进行布置感烟探测器。

3.1.4手动报警按钮

《火灾自动报警系统设计规范》中规定:每个防火分区应至少设置一个手动火灾报警按钮,从一个防火分区内的任何位置到最邻近的一个手动按钮的距离不应大于30米,设在公共活动场所的主要出入口处。手动报警按钮、消火栓按钮等处宜设置电话塞孔,其底边距地面高度宜为1.3-1.5米。

该建筑八层、十一层每个防护区的出口处设1个手动按钮,每层共有6个。七、九、十层每层设4个手动按钮。

机械应急操作装置设在储瓶间内。

3.2联动控制系统设计3.2.1联动控制

联动控制系统的报警系统的执行机构,使气体灭火功能在手动或电气控制状态下得以实现。联动控制的功能主要实现自动报警、气体灭火、控制风机等相关设备的启停等功能。

3.2.2控制系统设计计算

各型报警控制设备参数如下表所示,设备数量如前一节计算数量。

设备参数表表3.2.2

设备名称

工作电压

监视电流Ip

报警电流Ij

功耗

感烟探测器

DC24V

≤0.6mA

≤2.0mA

感温探测器

DC24V

≤0.8mA

≤1.4mA

手动报警按钮

DC24V

≤0.8mA

≤2.0mA

单输入/输出模块

DC24V

≤1.0mA

≤5.0mA

双输入/输出模块

DC24V

≤1.0mA

≤8.0mA

声光报警器

DC24V

≤0.8mA

≤160mA

总线隔离器

DC24V

动作电流170mA/270mA

多线控制盘14

DC24V

<4W

气体灭火控制盘6区

DC24V

<10W

放气指示灯

DC24V

≤100mA

启/停按钮

DC24V

0mA

≤20mA

报警联动控制器

≤50W

一、平面线缆线径计算:

⑴与七层相同的楼层(七、九、十层):

LS机房相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。

其它区域:感烟探测器14个、感温探测器1个、手动报警按钮5个、放气指示灯4个、紧急启/停按钮4个、声光报警器2个、双输入/出控制模块6个。

取每层所有总线设备动作电流作为总线最大电流:

Imaxj1=24*Ij+5*Ij+5*Ij+6*Ij=24*2.0+5*1.4+5*2.0+6*8.0

=113.0(mA)

根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。

非总线设备最大电流为:

Imaxj=4*Ij+4*Ij+2*Ij=4*100+4*20+2*160

=800.0(mA)

根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.0。

⑵与八层相同的楼层(八、十一层):

与电力室相同大小的区域:净空感烟探测器4个、感温探测器4个,地板下感烟探测器6个。

与小电力室相同大小的区域:净空感烟探测器2个、感温探测器2个,地板下感烟探测器3个。

其它区域:感烟探测器11个、感温探测器1个、手动报警按钮5个、放气指示灯6个、紧急启/停按钮6个、声光报警器3个、双输入/出控制模块10个。

取每层所有总线设备动作电流作为总线最大电流:

Imaxj1=26*Ij+7*Ij+5*Ij+10*Ij=26*2.0+7*1.4+5*2.0+10*8.0

=151.8(mA)

根据以上计算并查电线电缆选用手册,总线选择导线为ZR-RVS-2X1.5。

非总线设备最大电流为:

Imaxj=6*Ij+6*Ij+3*Ij=6*100+6*20+3*160

=1200.0(mA)

根据以上计算并查电线电缆选用手册,非总线选择导线为ZR-BV-2.5。

二、系统容量计算:

1.报警系统容量:

报警系统的容量可简便地计算为报警联动控制器的功率损耗与折算系数(取1.2)的积:

Pjz’=Pj*1.15=50W*1.2=60W

2.联动控制系统容量:

⑴气体灭火控制系统容量:

整个系统有6区气体灭火控制盘3个,由表3.2.2知每个气体灭火控制盘的功耗为10W,气体灭火盘动作因素为0.75,折算系数取1.5,则气体灭火控制系统容量为:

Pfz’=3Pf*0.75*1.5=3*10*0.75*1.5=33.75W

⑵其它控制系统容量:

非总线系统容量:

Pe1’=U*∑Imaxj*1.2=24V*(1.2A+0.8A)*1.2=57.6W

风机等控制系统容量:

风机等设备的控制由多线联动控制盘控制,每个灭火区域设1台多线联动控制盘(共12个),表3.2.2知每个多线联动控制盘的功耗为4W,动作因素取0.75,折算系数取1.5,则风机等控制系统容量为:

Pe2’=12*Pe2*0.75*1.5=12*4*0.75*1.5=54W

联动控制系统总容量为:

Ptz=Pfz’+Pe1’+Pe2’=33.75W+57.6W+54W=145.35W

系统总容量:

Pz=Pjz’+Ptz=60W+145.35W=205.35W

查手册得,该系统的工作电源选取DC24V/38Ah。主电源采用AC220V市电经DC24V/38Ah浮充稳压电源变换后提供DC24V电源。直流备用电源采用火灾报警控制器的专用蓄电池组提供DC24V/38Ah电源。

3.3布线

该系统采用树状布线,传输线路采用穿金属管保护方式布线。消防控制线路采用金属管顶板内暗敷管保护,且保护层厚度不小于30mm。火灾探测器的传输线路,选择不同颜色的绝缘导线,相同用途的导线的颜色一致。接线端子有标号。火灾自动报警系统的传输网络不与其他系统的传输网络合用。

3.4系统组件

感温探测器;感烟探测器;灭火控制箱;声光报警器;紧急启动停止按钮;放气指示灯;警铃;应急照明灯等。

4.安全疏散设计

防护区应有足够宽的疏散通道和出口,保证人员在30秒内能撤出防护区。七氟丙烷在火场的高温条件下会产生HF,对人员和设备都有轻度危害。在发生火灾时,为了避免建筑物内人员因火烧、烟气中毒、建筑构件倒塌破坏、灭火剂喷放后中毒而造成的伤害,也为了能及时启动灭火剂,扑灭火灾,尽可能减少损失。人员安全撤离防护区的允许疏散时间为30秒。所以要求人员在30秒内撤离防护区,否则是不安全的。

安全疏散计算:

在防护区内离门最远的距离为L=16.1m

人走到房门所需时间T1=L/V(V取1.2m/s)

T1=L/V=16.1/1.2=13.42s

检验是否有人员滞留现象T2=Q/(NB)

Q为室内人数,取15人

B为房门宽度为1米

N为房门通行系数,平地取1.3人/m·s

T2=15/(1×1.3)=11.54s<T1

所以疏散时不会发生人员滞留现象。

为了更好的进行安全疏散,保护人员安全,对防护区有下列安全要求:防护区的疏散通道和出口应设置应急照明与疏散指示标志。防护区内设置声光报警器,防护区的入口处设置放气指示灯。防护区的门应向外开启,并能自行关闭;疏散出口的门必须能从防护区内打开。

5.经济预算

根据国家政策,进行工程建设应遵守的基本原则是“安全可靠、技术先进、经济合理”。“安全可靠”以安全为本,要求必须达到预期目的;“技术先进”则要求火灾报警、灭火控制及灭火系统设计科学,采用设备先进、成熟;“经济合理”则是在保证安全可靠、技术先进的前提下,做到节省工程投资费用。

本设计在设计计算时已验算了达到设计灭火浓度所需要的时间都小于7秒,而且自动报警系统采用感烟探测器和感温探测器两种探测器的组合进行布置,这样报警准确,所以该系统基本可以达到预期目的。在进行管网布置时,尽量布置成均衡管网,尽量减少弯头数量和管道长度,节省了工程投资费用。

经济预算采用《全国统一安装工程预算定额四川省估价表》SGD-5-2000。

依据我公司长期经验,其中气压试验、吹扫试验的数量按管径100毫米内的管道长度计算,主材数量按管道内表面积除以3m2/瓶来确定氮气瓶数量。支架制作安装、支架除锈、支架刷红丹、支架刷银粉的数量按支架长度乘以1.7kg/m来确定。系统组件水压试验和系统组件严密试验的数量按选择阀、气液单向阀、高压软管、汇集管的数量之和来确定。

6.结束语

通过紧张的毕业设计,我的收获很大。我已经很好的熟悉了《七氟丙烷灭火系统设计规范》。对《火灾自动报警系统设计规范》和安全疏散等方面的知识也有了比原来更深的认识和理解。加深了七氟丙烷灭火系统的设计计算和设计方法。而且还强化了消防工程的预算编制技术。尤其重要的是毕业设计培养了我仔细认真,坚韧严谨的科学态度和虚心求教的精神。更加深了我对工程设计工作的热爱。

在毕业设计期间,得到了张银龙教授的悉心指导,张老师的指导使我的毕业设计更加完善。王智慧同志对我的初进行了详细的审核,并进行了部分稿件的文字录入和定稿后的核稿工作。在此对他们深表感谢!

7.参考文献

⒈国家技术监督局、中华人民共和国建设部《电子计算机房设计规范》(GB50174-93)1993

⒉深圳市消防局、天津消防科学研究所《七氟丙烷(HFC-227ea)洁净气体灭火系统设计规范》

⒊中华人民共和国公安部《火灾自动报警系统设计规范》(GB50116-98)1998

⒋蒋彦、雷志明《新型气体灭火系统(卤代烷替代物)设计手册》中国环境科学出版社1999.8

⒌《消防科学与技术》

⒍《消防产品与信息》

⒎中华人民共和国公安部《建筑设计防火规范》(GBJ16-87)1988.5.1

⒏中华人民共和国公安部