开关范文10篇

时间:2023-03-21 10:47:01

开关

开关范文篇1

1.1用途GGD型交流低压配电柜适用于变电站、发电厂、厂矿企业等电力用户的交流50Hz,额定工作电压380V,额定工作电流1000-3150A的配电系统,作为动力、照明及发配电设备的电能转换、分配与控制之用。

GGD型交流低压配电柜是根据能源部,广大电力用户及设计部门的要求,按照安全、经济、合理、可靠的原则设计的新型低压配电柜。产品具有分断能力高,动热稳定性好,电气方案灵活、组合方便,系列性,实用性强、结构新颖,防护等级高等特点。可作为低压成套开关设备的更新换代产品使用。

1.2结构特点①GGD型交流低压配电柜的柜体采用通用柜形式,构架用8MF冷弯型钢局部焊接组装而成,并有20模的安装孔,通用系数高。②GGD柜充分考虑散热问题。在柜体上下两端均有不同数量的散热槽孔,当柜内电器元件发热后,热量上升,通过上端槽孔排出,而冷风不断地由下端槽孔补充进柜,使密封的柜体自下而上形成一个自然通风道,达到散热的目的。③GGD柜按照现代化工业产品造型设计的要求,采用黄金分割比的方法设计柜体外形和各部分的分割尺寸,使整柜美观大方,面目一新。④柜体的顶盖在需要时可拆除,便于现场主母线的装配和调整,柜顶的四角装有吊环,用于起吊和装运。⑤柜体的防护等级为IP30,用户也可根据环境的要求在IP20—IP40之间选择。

2GCK系列开关柜

2.1用途GCK低压抽出式开关柜(以下简称开关柜)由动力配电中心(PC)柜和电动机控制中心(MCC)两部分组成。该装置适用于交流50(60)HZ、额定工作电压小于等于660V、额定电流4000A及以下的控配电系统,作为动力配电、电动机控制及照明等配电设备。

GCK开关柜符合IEC60439-1《低压成套开关设备和控制设备》、GB7251.1-1997《低压成套开关设备和控制设备》、GB/T14048.1-93《低压开关设备和控制设备总则》等标准。且具有分断能力高、动热稳定性好、结构先进合理、电气方案灵活、系列性、通用性强、各种方案单元任意组合、一台柜体。所容纳的回路数较多、节省占地面积、防护等级高、安全可靠、维修方便等优点。

2.2结构特点①整柜采用拼装式组合结构,模数孔安装,零部件通用性强,适用性好,标准化程度高。②柜体上部为母线室、前部为电器室、后部为电缆进出线室,各室间有钢板或绝缘板作隔离,以保证安全。③MCC柜抽屉小室的门与断路器或隔离开关的操作手柄设有机械联锁,只有手柄在分断位置时门才能开启。④受电开关、联络开关及MCC柜的抽屉具有三个位置:接通位置、试验位置、断开位置。⑤开关柜的顶部根据受电需要可装母线桥。

3GCS系列开关柜

3.1用途GCS型低压抽出式开关柜使用于三相交流频率为50Hz,额定工作电压为400V(690V),额定电流为4000A及以下的发、供电系统中的作为动力、配电和电动机集中控制、电容补偿之用。广泛应用于发电厂、石油、化工、冶金、纺织、高层建筑等场所,也可用在大型发电厂,石化系统等自动化程度高,要求与计算机接口的场所。执行标准:本产品符合GB7251.1-1997《低压成套开关设备和控制设备》和JB/T9661-1999《低压抽出式成套开关设备》的要求。

3.2结构特点①框架采用8MF型开口型钢,主构架上安装模数为E=20mm和100mm的Φ9.2mm的安装孔,使得框架组装灵活方便。②开关柜的各功能室相互隔离,其隔室分为功能单元室、母线室和电缆室。各室的作用相对独立。③水平母线采用柜后平置式排列方式,以增强母线抗电动力的能力,是使主电路具备高短路强度能力的基本措施。④电缆隔室的设计使电缆上、下进出均十分方便。⑤抽屉高度的模数为160mm。抽屉改变仅在高度尺寸上变化,其宽度、深度尺寸不变。相同功能单元的抽屉具有良好的互换性。单元回路额定电流400A及以下。⑥抽屉面板具有分、合、试验、抽出等位置的明显标志。抽屉单元设有机械联锁装置。1抽屉单元为主体,同时具有抽出式和固定性,可以混合组合,任意使用。⑦柜体的防护等级为IP30IP40,还可以按用户需要选用。

4MNS系列开关柜

4.1用途MNS型低压抽出式成套开关设备(以下简称开关柜)为适应电力工业发展的需求,参考国外MNS系列低压开关柜设计并加以改进开发的高级型低压开关柜,该产品符合国家标准GB7251、VDE660和ZBK36001-89《低压抽出式成套开关设备》、国际标准IEC439规定MNS型低压开关柜适应各种供电、配电的需要,能广泛用于发电厂、变电站、工矿企业、大楼宾馆、市政建设等各种低压配电系统。

4.2结构特点①MNS型低压开关柜框架为组合式结构,基本骨架由C型钢材组装而成。柜架的全部结构件经过镀锌处理,通过自攻锁紧螺钉或8.8级六角螺栓坚固连接成基本柜架,加上对应于方案变化的门、隔板、安装支架以及母线功能单元等部件组装成完整的开关柜。开关柜内部尺寸、零部件尺寸、隔室尺寸均按照模数化(E=25mm)变化。②MNS型组合式低压开关柜的每一个柜体分隔为三个室,即水平母线室(在柜后部),抽屉小室(在柜前部),电缆室(在柜下部或柜前右边)。室与室之间用钢板或高强度阻燃塑料功能板相互隔开,上下层抽屉之间有带通风孔的金属板隔离,以有效防止开关元件因故障引起的飞弧或母线与其它线路短路造成的事故。③MNS型低压开关柜的结构设计可满足各种进出线方案要求:上进上出、上进下出、下进上出、下进下出。④设计紧凑:以较小的空间容纳较多的功能单元。⑤结构件通用性强、组装灵活,以E=25mm为模数,结构及抽出式单元可以任意组合,以满足系统设计的需要。⑥母线用高强度阻燃型、高绝缘强度的塑料功能板保护,具有抗故障电弧性能,使运行维修安全可靠。⑦各种大小抽屉的机械联锁机构符合标准规定,有连接、试验、分离三个明显的位置,安全可靠。⑧采用标准模块设计:分别可组成保护、操作、转换、控制、调节、测定、指示等标准单元,可以根据要求任意组装。⑨采用高强度阻燃型工程塑料,有效加强了防护安全性能。⑩通用化、标准化程度高,装配方便。具有可靠的质量保证。柜体可按工作环境的不同要求选用相诮的防护等级。设备保护连续性和可靠性。

5MCS系列开关柜

5.1用途MCS智能型低压抽出式开关柜是一种融合了其它低压产品的优点而开发的高级型产品,适用于电厂、石油化工、冶金、电信、轻工、纺织、高层建筑和其它民用、工矿企业的三相交流50HZ,60HZ,额定电压380V,额定电流4000A及以下的三相四(五)线制电力系统配电系统,在大型发电厂、石化、电信系统等自动化程度高,要求与计算机接口的场所,作为发、供电系统中的配电、电动机集中控制、无功功率补偿的低压配电装置。

5.2结构特点①开关柜的基本框架采用C型(或8MF型)开口型钢组装而成,外型统一、精度高、抽屉互换性好。②MCC柜宽度只有600mm,使用空间大,可容纳更多的功能单元,节约建设用地。③柜内元件可根据用户不同需求,配置各种型号的开关,更好的保证产品高的可靠性。④装置可预留自动化接口,也可把智能模块安装在开关柜上,实现遥信、遥测、遥控等三遥功能。⑤操作机构:每个抽屉上均装有一专门设计的操作机构,用于分断和闭合开关,并具备机械联锁等多种防误操作功能。

参考文献:

[1]屈仕亮.总线型低压开关柜的元器件选择[J].低压电器.2009.(09):51-53.

[2]新一代低压开关柜技术——MNSiS一体化智能低压配电系统[J].中国设备工程.2009.(02):31.

[3]汪志鹏.MNS低压开关柜用于现场总线的智能化研究[J].科技资讯.2007.(25).

开关范文篇2

图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。Re为滤波电容C的等效串联电阻,Ro为负载电阻。各状态变量的正方向定义如图1中所示。

S导通时,对电感列状态方程有

L(dil/dt)=Uin-Uo(1)

S断开,D1续流导通时,状态方程变为

L(dil/dt)=-Uo(2)

占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DTs和(1-D)Ts的时间(Ts为开关周期),因此,一个周期内电感的平均状态方程为

L(dil/dt)=D(Uin-Uo)+(1-D)(-Uo)=DUin-Uo(3)

稳态时,=0,则DUin=Uo。这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压Uin成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得

L[d(il+il'''')/dt]=(D+d)(Uin+Uin'''')-(Uo+Uo'''')(4)

式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d为D的波动量。式(4)减式(3)并略去了两个波动量的乘积项得

L(dil''''/dt)=DUin''''+dUin-Uo''''(5)

由图1,又有

iL=C(duc/dt)+Uo/R0(6)

Uo=Uc+ReC(duc/dt)(7)

式(6)及式(7)不论电路工作在哪种状态均成立。由式(6)及式(7)可得

iL+ReC(dil/dt)=1/Ro(Uo+CRo(duo/dt))(8)

式(8)的推导中假设Re<<Ro。由于稳态时dil/dt=0,dUo/dt=0,由式(8)得稳态方程为iL=Uo/Ro。这说明稳态时电感电流平均值全部流过负载。对式(8)中各变量附加小信号波动量得

式(9)减式(8)得

iL+ReC(dil/dt)=1/Ro(Uo+CRo(dUo/dt))(10)

将式(10)进行拉氏变换得

iL(s)=(Uo(s)/Ro)·[(1+sCRo)/(1+sCRe)](11)

(s)=(11)一般认为在开关频率的频带范围内输入电压是恒定的,即可假设=0并将其代入式(5),将式(5)进行拉氏变换得

sLiL''''(s)=d(s)Uin-Uo''''(s)(12)

由式(11),式(12)得

Uo''''(s)/d(s)=Uin[(1+sCRe)/(s2LC+s(ReC+L/Ro)+1](13)

iL''''(s)/d(s)=[(1+sCRo)/s2LC+s(ReC+L/Ro)+1]·Uin/Ro(14)

式(13),式(14)便为Buck电路在电感电流连续时的控制-输出小信号传递函数。

2电压模式控制(VMC)

电压模式控制方法仅采用单电压环进行校正,比较简单,容易实现,可以满足大多数情况下的性能要求,如图2所示。

图2中,当电压误差放大器(E/A)增益较低、带宽很窄时,Vc波形近似直流电平,并有

D=Vc/Vs(15)

d=Vc''''/Vs(16)

式(16)为式(15)的小信号波动方程。整个电路的环路结构如图3所示。图3没有考虑输入电压的变化,即假设Uin=0。图3中,(一般为0)及分别为电压给定与电压输出的小信号波动;KFB=UREF/Uo,为反馈系数;误差e为输出采样值偏离稳态点的波动值,经电压误差放大器KEA放大后,得;KMOD为脉冲宽度调制器增益,KMOD=d/=1/Vs;KPWR为主电路增益,KPWR=/d=Uin;KLC为输出滤波器传递函数,KLC=(1+sCRe)/[S2LC+s(ReC+L/Ro)+1]。

在已知环路其他部分的传递函数表达式后,即可设计电压误差放大器了。由于KLC提供了一个零点和两个谐振极点,因此,一般将E/A设计成PI调节器即可,KEA=KP(1+ωz/s)。其中ωz用于消除稳态误差,一般取为KLC零极点的1/10以下;KP用于使剪切频率处的开环增益以-20dB/十倍频穿越0dB线,相角裕量略小于90°。

VMC方法有以下缺点:

1)没有可预测输入电压影响的电压前馈机制,对瞬变的输入电压响应较慢,需要很高的环路增益;

2)对由L和C产生的二阶极点(产生180°的相移)没有构成补偿,动态响应较慢。

VMC的缺点可用下面将要介绍的CMC方法克服。

3平均电流模式控制(AverageCMC)

平均电流模式控制含有电压外环和电流内环两个环路,如图4所示。电压环提供电感电流的给定,电流环采用误差放大器对送入的电感电流给定(Vcv)和反馈信号(iLRs)之差进行比较、放大,得到的误差放大器输出Vc再和三角波Vs进行比较,最后即得控制占空比的开关信号。图4中Rs为采样电阻。对于一个设计良好的电流误差放大器,Vc不会是一个直流量,当开关导通时,电感电流上升,会导致Vc下降;开关关断,电感电流下降时,会导致Vc上升。电流环的设计原则是,不能使Vc上升斜率超过三角波的上升斜率,两者斜率相等时就是最优。原因是:如果Vc上升斜率超过三角波的上升斜率,会导致Vc峰值超过Vs的峰值,在下个周波时Vc和Vs就可能不会相交,造成次谐波振荡。

采用斜坡匹配的方法进行最优设计后,PWM控制器的增益会随占空比D的变化而变,如图5所示。

当D很大时,较小的Vc会引起D较大的改变,而D较小时,即使Vc变化很大,D的改变也不大,即增益下降。所以有

d=DV''''/Vs(17)

不妨设电压环带宽远低于电流环,则在分析电流环时Vcv为常数。当Vc的上升斜率等于三角波斜率时,在开关频率fs处,电流误差放大器的增益GCA为

GCA[d(iLRs)/dt]=GCA(Vo/L)Rs=Vsfs(18)

GCA=Vc''''/(iL''''Rs)=VsfsL/(UoRs)(19)

高频下,将式(14)分子中的“1”和分母中的低阶项忽略,并化简,得

iL''''(s)=[d(s)Uin]/sL(20)

由式(17)及式(20)有

(iL''''Rs)/Vc''''=[Rsd(s)Uin/(sL)]/[d(s)Vs/D]=(RsUinD)/(sLVs)(21)

将式(19)与式(21)相乘,得整个电流环的开环传递函数为

(RsUinD/sLVs)·(VsfsL)/(UoRs)=fs/s(22)

图7

将s=2πfc代入上式,并令上式等于1时,可得环路的剪切频率fc=fs/(2π)。因此,可将电流环等效为延时时间常数为一个开关周期的纯惯性环节,如图6所示。显然,当电流误差放大器的增益GCA小于最优值时,电流响应的延时将会更长。

GCA中一般要在fs处或更高频处形成一个高频极点,以使fs以后的电流环开环增益以-40dB/dec的斜率下降,这样虽然使相角裕量稍变小,但可以消除电流反馈波形上的高频毛刺的影响,提高电流环的抗干扰能力。低频下一般要加一个零点,使电流环开环增益变大,减小稳态误差。

整个环路的结构如图7所示。其中KEA,KFB定义如前。可见相对VMC而言(参见图3),平均CMC消除了原来由滤波电感引起的极点(新增极点fs很大,对电压环影响很小),将环路校正成了一阶系统,电压环增益可以保持恒定,不随输入电压Vin而变,外环设计变得更加容易。

4峰值电流模式控制(PeakCMC)

平均CMC由于要采样滤波电感的电流,有时显得不太方便,因此,实践中经常采用一种变通的电流模式控制方法,即峰值CMC,如图8所示。电压外环输出控制量(Vc)和由电感电流上升沿形成的斜坡波形(Vs)通过电压比较器进行比较后,直接得到开关管的关断信号(开通信号由时钟自动给出),因此,电压环的输出控制量是电感电流的峰值给定量,由电感电流峰值控制占空比。

峰值CMC控制的是电感电流的峰值,而不是电感电流(经滤波后即负载电流),而峰值电流和平均电流之间存在误差,因此,峰值CMC性能不如平均CMC。一般满载时电感电流在导通期间的电流增量设计为额定电流的10%左右,因此,最好情况下峰值电感电流和平均值之间的误差也有5%,负载越轻误差越大,特别是进入不连续电流(DCM)工作区后误差

将超过100%,系统有时可能会出现振荡现象。在剪切频率fc以下,由图6可知平均CMC的电流环开环增益可升到很高(可以>1000),电流可完全得到控制,但峰值CMC的电流环开环增益只能保持在10以内不变(峰值电流和平均值之间的误差引起),因此,峰值CMC更适用于满载场合。

峰值CMC的缺点还包括对噪音敏感,需要进行斜坡补偿解决次谐波振荡等问题。但由于峰值CMC存在逐周波限流等特有的优点,且容易通过脉冲电流互感器等简单办法复现电感电流峰值,因此,它在Buck电路中仍然得到了广泛应用。

开关范文篇3

(1)井下分注工具。压控开关中的井下分注工具主要是由电池、软件转换芯片、可调式进水口、压力传感接收器、电动机以及电池筒等所组成,其主要如图一所示。其中可调节式进水口的主要主要功能就是通过调节孔径的大小来控制进水量,以此达到分层配注的目的,在进水筒的外壁上有4个对称的可调节式的进水口,调节进水口孔径主要是由电动机来完成的,其孔径的调节范围在1—5mm,每调节一次以后要变动0.3mm。而压力传感器主要采用的是硅叠硅隔离膜片技术,这种技术是一种比较复杂的三层半导体工艺相结合的结构,其复杂的物理结构具有很高的可靠性,压力传感器的主要功能是用于接受地面压力的波动,通过井筒中的水将地面压力波动传递到井底中,相对于传统的工艺而言,其地面信息传递到井底不需要电缆。

(2)地面电脑设置装置。其软件系统主要由数据处理和工具设置两大功能模块所组成,切换工具在标定工作的模式上可以进行运行,其软件流程主要如图2所示。图2软件流程1.3该技术的实际应用以及效果分析在2007年,长庆陇东油田引进了该技术,并在现场进行了实施。在该油田中,有一口一封二级的偏心分层注水井,全井的配注为35m3/d,其上层的配注为25m3/d,下层的配注为10m3/d。在注水井实行检串作业的时候,在地面应该把压控开关设置为关闭的状态,再将其放入到井底,同时井下2层的可调水嘴孔设置为0,便于坐封,检串结束以后,其坐封正常,方可进行现场的调试,通过调试可以发现分层配注的合格率达到了100%,其调配的过程主要如下:(1)在地面上把压控开关临界的压力设置为3.0MPa,当注水井油压表的压力值大于3.0MPa的时候,其压控开关应该默认为高压;如果油压表的压力值小于3.0MPa的时候,压力孔开关应该默认为低压。(2)在调配分注井的时候,应该从最下层依次地往最上层进行调配,避免打开封隔器的洗井通道。根据以往的调配经验,把第二层可调水嘴的直径设置到第8档,其孔径值为φ3.0mm,确保其在可调范围内的中间值。此外,在调配分层注水量的时候,不需要进行动力测试,由技术人员通过流量表、注水阀门以及压力表一次性完成调配。

(3)具体打码操作流程主要如下:第一,明确注水井的井口油管和套管的进出口阀是否完好,压力表和阀组间的水表是否完好;第二,把高压放空水龙袋接到放空管处,以此确保在进行卸压的时候,水流能够及时地排进排污池中,不会污染井场;第三,把阀组之间该单井的注水阀开到最大,并记录该井在正注的时候油压表值从0上升到3.0MPa这一过程所需的时间,再记录井口压力从7.0MPa卸压到3.0MPa时所需的时间,井筒在加压和卸压的时候,其井口的操作流程主要图三所示和图四所示;第四,在井口的第二层中孔径的初设值为φ3.0mm,处于第8档位,接着进行井口打压,以此类推促使井口的压力波动值符合压力码的标准值。打开第二层水嘴,其孔径的大小为φ3.0mm,同时该注水井下层水嘴也已经打开,且注水稳定以后,套压为0,油压为18MPa,则说明该封隔器坐封完好。第五,调节下层注水量,其下层的配注为10m3/d,即为0.42m3/h,在阀组之间对来水闸阀实行调节,通过其调节结果,可以发现水表流量一般稳定在0.45m3/h,即为10.8m3/d,同时井口的油压值稳定为17.5MPa;第六,在进行打码的时候,由于上层的吸水性较好,其配注较高,因此,在设置水嘴孔径的时候,其孔径初设值为φ3.0mm,接着在井口依次进行打码,并向井底传输压力波动,待上层的水嘴打开以后,其套压就会迅速的上升,油压则会相应地有所下降,其流量比较大;第七,在调节上层水量的时候,在阀组之间进行闸阀调节的时候,把油压控制在17.5MPa的范围内,若流量表的水量在稳定后其值为1.7m3/h,即为41m3/d的时候,说明上层的可调水嘴的直径过大。第七,把上层的可调水嘴的直径设置为φ2.7mm的时候,在完成好水嘴直径调节后,应进行闸阀的调节,把油压控制在17.5MPa的范围以内,待流量表水量稳定后为1.5m3/h.即为36.2m3/d,则全井的调配工作完毕。

压控开关工作是一种机电一体化的产品,其压力传感器主要是利用介质水来接受地面的信息,完全取代了以往传统的用电缆进行井下和地面之间信息的联系方式,达到了在正常生产状态下,可以对高含水油进行堵水或者找水等工艺,其操作具有可靠性和安全性,使用起来也比较方便。同时设定压力码和现场施工的科学、合理匹配,将地面的一些有关命令传递到井下的压控开关上,能够随时地进行生产层的调整,对于油田的开发生产有着非常重要的作用。此外,压控开关能在正常的泵抽状态下获取任意层段的含水数据及其产量,在一定程度上能够解决潜泵井和斜井不能测试等相关问题。相对于传统、常规的分注工艺而言,这种及时有效地降低了投捞水嘴的相关工作量以及其调试费用,解决了在常规调配中所遇到的仪器“捞不上来、下不去”等各项问题,具有安全可靠、施工周期短、成本低一级操控方便等特点,通过一次管柱来完成井下关井测压以及分层注水等功能,其调配的范围较为广泛,能够随意且频繁地进行操控。油田井下压控开关智能配水技术在传统温度(450℃左右)工艺的基础上进行补充、发展以及创新,逐渐扩大了其使用的范围,推动了油田分注工艺的发展。

本文作者:艾尔肯·艾拜工作单位:新疆阜康准东准油股份公司研究所

开关范文篇4

关键词:水利枢纽;GIS开关;设备选型

时下,在水利枢纽工程持续发展的利好背景下,其数量和规模不断增加与扩张,这对GIS开关设备选型提出了更加严格的要求。GIS开关指的是在GIS的基础上,将母线设置于金属外壳内,减少外界环境对GIS开关的影响,其具有占地小、可靠性高、防污好、安装周期短以及工作量小等显著特点,因而在水利枢纽工程中得到了广泛应用[1]。

1案例概况

某水利枢纽工程位于新疆维吾尔自治区喀什地区,其是一座集防洪、发电和灌溉功能于一体的大型水利枢纽工程项目,总装机容量700MW,年利用小时数2540h,多年平均风速16m/s,污秽等级Ⅳ级,地震烈度Ⅷ度。本工程升高压侧电压等级为220kV,双母线分段。

2升高压侧开关设备选型方案

对于本工程项目升高压侧设备选型可采用SF6全封闭组合电器和220kV普通中型敞开式开关设备两种方案。2.1SF6全封闭组合电器选型方案本工程项目GIS开关设备装配位置在副厂房地上第三层内,下层为GIS电缆夹层,主变位于副厂房地上第一层内,出线平台位于副厂房屋顶。GIS开关设备与主变使用SF6气体管道相互连接在一起,GIS开关设备至出线平台之间使用SF6气体管道相连,整个GIS开关设备占地面积约为960m2(80m×12m),主要技术参数如下:额定电压/电流为220kV/3150A;最高额定电压为245kV;额定频率为50Hz;额定雷电冲击电压(峰值)为1050kV(相对值)/1250kV(断口间);1min额定工频率(有效值)为44kV。GIS开关设备结构示意图如图1所示。2.2220kV普通中型敞开式开关设备选型方案根据现场勘察,本工程项目所处区域为山区,地形较陡,坡度很大,如在厂房上游侧布置户外开关站,需开挖100多米高的山体,工程造价巨大。对此,可选择在厂房下游河床边布置户外开关站,土方回填需约2.3×105m3,开挖需约4×104m3。采用220kV普通中型敞开式开关设备,占地面积约为15000m2(150m×100m),敞开式开关设备至主变装置通过钢芯铝绞线连接,主要技术参数如下:断路器型号为LW23-252,In=2000A、Ib=50kA;隔离开关型号为GW7-252,In=2000A、Is=50kA/3s;220kV普通中型敞开式开关母线型号为LGJQ-2X240。

3水利枢纽开关设备方案比选

3.1GIS开关设备特点

(1)占地空间和面积较小。经过推算,220kVGIS开关设备与普通中型敞开式开关设备相比较而言,面积占比uA=1/15.6。占地面积的缩小,将大大减少土地的征用和场地费用,相应也简化了设施设备,缩减了土建工程量,可为中标单位节约大量安装成本。(2)不受环境和气候影响。GIS开关设备运行安全可靠。根据调查分析,GIS开关设备内、外绝缘事故发生比例为10:1,GIS开关设备很少或基本不会暴露在空气中,其绝缘的可靠性和安全性大幅提高。另外,对于近期投入运营的GIS开关设备的统计数据表明,其可靠性、安全性与普通中型敞开式开关电器相比近似为10:1,能有效避免污秽、大风、降雨、冰雪、潮湿、海拔高度及气压变化引起的绝缘事故。(3)抗震能力优。GIS开关设备重心低,脆性和瓷套元件较少,抗震能力优。(4)GIS开关设备被绝缘物体所包围,发生人为触电事故的概率较低。(5)GIS开关设备的动、热稳定性较普通中型敞开式开关设备好。(6)GIS开关设备安装周期短、检修周期长,这主要是因为GIS开关在出厂前已经是合格产品,且各个分部位已经组装好,运抵施工现场后工作人员对其进行整装和调试即可,因此安装周期较短[2]。同时,国内外相关数据表明,GIS设备的检修周期为10~15年,但每一次检修时间较长且要求极高。(7)GIS开关设备主要布置在厂房外,可通过监控系统实现可视化和自动化管理。(8)GIS开关设备投资高,是普通中型敞开式开关设备的2~2.5倍。

3.2普通中型敞开式开关设备特点

(1)将该设备放置在一定的高度,让带电部件与高度保持距离,这样施工人员能安全地进行各项作业操作。(2)布置清晰明了,检修方便,工程量小,工期较短。(3)防污秽性能差,但抗震性能较好。(4)占地面积较大。

3.3GIS开关设备与普通中型敞开式开关设备比较

对于本工程项目的开关配电设备,可选择220kVGIS开关设备和普通中型敞开式开关设备两种方案。以下就GIS开关设备和普通中型敞开式开关设备的投资费用、土建开挖费用、高压线缆及避雷针费用、运行费用、故障损失费用等进行比较分析。(1)设备投资总额。在本工程项目中,若采用GIS开关设备投资额约为2040万元;普通中型敞开式开关设备投资额为1259万元(主要包括高压设施设备、开关设备的保护与控制、辅助设施设备、电缆钢构架与搭架、GIS开关设备护栏与接地网等方面的费用)。(2)土建开挖费用。在本工程项目中,GIS开关设备安装于副厂房中,占地面积约为960m2(80m×12m),土建开挖费用大约为380万元。普通中型敞开式开关只能安装于户外,其占地面积约为15000m2(150m×100m),土建开挖费用大约为410万元。(3)高压线缆及避雷针费用。本工程项目GIS开关设备安装于副厂房中,与户外出线平台之间使用SF6气体管道相连,没有高压线缆费用,设备为户内布置,也不需要设置避雷针。普通中型敞开式开关设备高压电缆费用约为40万元,户外设备需设置3座避雷针,费用约为79万元。(4)运行费用。GIS开关设备运行费用主要包括设备维护费、工具费、人工费用、培训费用以及安保费用等。假如该设备的运行年限为30年,GIS开关设备的运行费用占总投资额的3%,普通中型敞开式开关设备为12.8%,即:GIS开关设备运行费用为2040×3%=61.2万元;普通中型敞开式开关设备运行费用为1259×12.8%≈161.2万元。(5)故障损失费用。已投入使用的GIS开关设备统计数据表明,其安全性、可靠性与普通中型敞开式开关比较为10:1,但目前尚无具体且详细的数据信息可供比较。(6)GIS开关设备与普通中型敞开式开关设备经济性比较如表1所示。

4GIS开关设备安装事项说明

(1)GIS开关设备上不得施加外力,不得重击设备的套管、管路以及箱体等部位;(2)具体安装过程中,应当特别注意避免灰尘、杂物等进入GIS开关设备内部;(3)开展GIS开关清理和安装工作时,应当身穿防护衣物,手戴塑料薄膜手套;(4)为防止灰尘、杂物等进入GIS开关设备内部,应立即对清理后的导体和壳体进行安装,连接部位应用专门的塑料布包裹,对于暂时不能安装的部位,应将保护盖板部位取下;(5)抽真空工作开始之前,要迅速更换干燥剂,减少和缩短GIS设备开关在空气中的暴露时间,不得直接通过气瓶向气室注入SF6气体,必须经过减压阀减压;(6)电缆终端装配作业开始之前,需要确定SF6气体已回收,且表压为0,此时才能松开盖板和法兰处的连接螺栓,螺栓必须沿着GIS开关设备的圆周方向均匀松动,严禁直接拆卸;(7)气体回收之后,进行GIS开关设备壳体安装,此时必须检查氧气的浓度,必要时应当采取相应的换气措施,否则工作人员不得进入内部作业,同时,进入壳体内部时应当委派专业人员监护。

5结语

基于对以上两种方案的全面比较和安装事项说明,GIS开关设备具有占地面积小、抗震性能优、安装周期短、检测周期长以及可实现自动化和可视化控制等特点,尽管该设备投资合计比普通中型敞开式开关设备多532万元,但考虑到本工程项目所在地区风沙较大、设备工作环境较差、敞开式设备距离厂房较远导致母线以及出线断路器故障概率较高、运行维护工作不方便、地震烈度较高、使用寿命等问题,GIS开关设备的技术性、经济性、安全性和可靠性依然优于普通中型敞开式开关设备。故此,本工程项目采用GIS开关设备选型方案。

[参考文献]

[1]周逸萍.邕宁水利枢纽电气优化设计研究[D].南宁:广西大学,2018.

开关范文篇5

从交流电网输入、直流输出的全过程,包括:

1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。

2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。

3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。

4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

二、控制电路

一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。

三、检测电路

除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。

四、辅助电源

提供所有单一电路的不同要求电源。

第二节开关控制稳压原理

开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示:

EAB=TON/T*E

式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。

由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(TimeRatioControl,缩写为TRC)。

按TRC控制原理,有三种方式:

一、脉冲宽度调制(PulseWidthModulation,缩写为PWM)

开关周期恒定,通过改变脉冲宽度来改变占空比的方式。

二、脉冲频率调制(PulseFrequencyModulation,缩写为PFM)

导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

三、混合调制

导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

第三节开关电源的发展和趋势

开关范文篇6

关键词开关电源电磁干扰抑制措施耦合

目前,许多大学及科研单位都进行了开关电源EMI(ElectromagneticInterference)的研究,他们中有些从EMI产生的机理出发,有些从EMI产生的影响出发,都提出了许多实用有价值的方案。这里分析与比较了几种有效的方案,并为开关电源EMI的抑制措施提出新的参考建议。

一、开关电源电磁干扰的产生机理

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明:

1、二极管的反向恢复时间引起的干扰

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰

功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰

无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因

元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。

二、开关电源EMI的特点

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度.

三、EMI测试技术

目前诊断差模共模干扰的三种方法:射频电流探头、差模抑制网络、噪声分离网络。用射频电流探头是测量差模共模干扰最简单的方法,但测量结果与标准限值比较要经过较复杂的换算。差模抑制网络结构简单(见图1),测量结果可直接与标准限值比较,但只能测量共模干扰。噪声分离网络是最理想的方法,但其关键部件变压器的制造要求很高。

四、目前抑制干扰的几种措施

形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰也应该从这三方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径(见图2);第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。

采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连.

在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。

滤波是抑制传导干扰的一种很好的办法。例如,在电源输入端接上滤波器,可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。

EMI滤波技术是一种抑制尖脉冲干扰的有效措施,可以滤除多种原因产生的传导干扰。图3是一种由电容、电感组成的EMI滤波器,接在开关电源的输入端。电路中,C1、C5是高频旁路电容,用于滤除两输入电源线间的差模干扰;L1与C2、C4;L2与C3、C4组成共模干扰滤波环节,用于滤除电源线与地之间非对称的共模干扰;L3、L4的初次级匝数相等、极性相反,交流电流在磁芯中产生的磁通相反,因而可有效地抑制共模干扰。测试表明,只要适当选择元器件的参数,便可较好地抑制开关电源产生的传导干扰。

五、目前开关电源EMI抑制措施的不足之处

现有的抑制措施大多从消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径出发,这确是抑制干扰的一种行之有效的办法,但很少有人涉及直接控制干扰源,消除干扰,或提高受扰设备的抗扰能力,殊不知后者还有许多发展的空间。

六、改进措施的建议

我认为目前从电磁干扰的传播途径出发来抑制干扰,已渐进成熟。我们的视点要回到开关电源器件本身来。从多年的工作实践来看,在电路方面要注意以下几点:

(1)印制板布局时,要将模拟电路区和数字电路区合理地分开,电源和地线单独引出,电源供给处汇集到一点;PCB布线时,高频数字信号线要用短线,主要信号线最好集中在PCB板中心,同时电源线尽可能远离高频数字信号线或用地线隔开。其次,可以根据耦合系数来布线,尽量减少干扰耦合。(见表1)

(2)印制板的电源线和地线印制条尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。

(3)器件多选用贴片元件和尽可能缩短元件的引脚长度,以减小元件分布电感的影响。

开关范文篇7

[摘要]光通信就是以光波为载波的通信,是将光信号先转换成为电信号,经传输后再还原成光信号。随着近年来全光网络及光开关技术的应用,光通信网络技术得到飞速发展。

一、全光网络技术及发展趋势

全光通信网络是指信息流在网络中的传输及交换时始终以光的形式存在,而不需要经过光/电、电/光变换。因此,全光网络具有对信号的透明性。它通过波长选择器件实现路由选择。全光网络还应具有扩展性,可重构性和可操作性。

(一)密集波分复用设备(DWDM)

光波分复用是用多个信源的电信号调制各自的光载波,经复用后。在一根光纤上传输,在接收端实现信道的选择,DWDM技术实质上是在频域对高速信号复用,从而达到提高网络容量的目的。

WDM系统除了波长数和传输总容量不断突破以外,全光传输距离(即无电中继传输距离)也在大幅度扩展。而随着技术的进展和业务的发展,WDM技术正在从长途传输领域向本地网领域扩展。首先,低成本是本地网WDM系统的最重要的特点,特别是按每波长成本必须明显低于长途网用的WDM系统。本地网WDM系统能提供透明的以波长为基础的业务,这样用户可以灵活的传送任何格式的信号而不必受限于SDH的结构和格式。包括SDH、ATM、IP、FDDI、千兆比以太网和光纤通路等。而对于应用在本地网核心的系统,可能要求支持10Gb/s的SDH信号和10Gb/s的以太网信号。

(二)光分插复用设备(OADM)

除了使用WDM系统之外,另一个能提高网络效率的选择是在网络中使用OADM,其优势在于:更加经济,对通过在线光放大器的业务可灵活地分插。可提供通道光层的保护。光分插复用(OADM)设备的基本功能是在波数为4、8、16或32渡的复用波长中插入或从其中取出单个或多个作为信道的波长。根据OADM设备上下波长的方式,OADM设备可分为信道固定型(POQDM)和信道灵活型(DOADM)。信道固定型OADM设备能够上下一个或N个固定信道,而信道灵活型OADM设备能够灵活地选择上下指定的一个或N个信道。目前具有固定波长上下的POADM已经商用,具有软件可配置的DOADM也即将商用。

(三)光交叉连接设备(OXC)

光交叉连接设备(OXC)是提供端到端光连接及在全光层提高网络效率的最关键急需的设备之一。光交叉连接(OXC)设备的基本功能是以波长为信道的基本单位完成信道的交叉连接;当网络话务量的变化或者网络失效需要恢复时,依靠OXC设备能够根据需要对光传送网进行网络重组。

建立交叉连接是为了提供比特率及规程的透明,并无阻塞,在光网络中使用的交叉连接设备的关键要求包括:模块化结构的扩容能力;高速连接切换;低插人损耗(与通道无关);集成式OAM功能如光故障检测,光通道跟踪及Q值监视;高速光通道恢复。

二、光开关技术及发展趋势

光开关和光开关阵列是OADM和OXC的关键器件,也是影响光网络性能的主要因素之一。光开关作为新一代全光网络的关键器件,主要用来实现光层面上的路由波长选择等功能。与电开关相比,光开关省去了光/电、电/光的转换过程,设备相应简化,能够提高网络的可靠性和提供灵活的信号路由平台。尽管目前通信系统中均采用光电交换,但未来的光网络却需要纯光开关消除光电转换,完成信号路由功能,以实现网络的高速率和协议的透明性。因此光开关技术对于通信网络来说就变得日益重要了。

光开关采用的主要技术有机械式、MEMS、铁电液晶、气泡、热光、全息、声光、热毛细管等。在光开关的性能上,主要指标有插损、隔离度、消光比、偏振敏感性、开关时间、开关规模及开关尺寸等。

(一)光模式检测

光模式检测是光信号处理的关键功能,适用于光信息包辨认、错误控制、波长分配和路由。同步或异步的数据帧根据一定的标准进行格式化,比如互联网协议(IP)等。帧由帧头和数据体组成。帧头非常重要,它包括同步模式、路由信息字段、维护、保护、错误控制、补偿,还包括了目标地址、数据长度、生存时间。帧头中的一个或多个这样的字节/字必须被实时的检测和解码,现在的实现方法需要OEO转换。以下是一种光模式检测器(OPD)在光的形式下通过一步简单的操作对8位字节或字进行识别。OPD检测器不只适用于信息包或帧头检测、错误控制和保护还适用于直接数模信号转换。

(二)0PD

二进制编码信息通过光的形式在固定比特速率和一定比特周期T下以帧/信息包的形式传输。假设帧模式如下:...01010|11111111|O0001111|000...这里的分隔符“|”表示按时间顺序从左到右的二进制或八进制字节的分界。模式11111111(全1)定义了帧开始的八位字节,它后面跟着八位字节00001111(非全1),这种模式每一帧重复(在SONET/SDH下帧模式每隔125us重复)。模式检测器由N个分流器排成一串组成。假设输入的串行信号在第一个分流器上的光功率是Pin。在第一个分流器上,两个输出是PO1和P1,其中P1是PO1的一部分。第二个分流器和其他后面的分流器一样由短的光波导相互连接,对于穿过它的每一位有延时T。第二个分流器把输入的功率PO1分离为功率P02和P2,其中P2又是P02的一部分,以此类推,第j个分流器的输出就是POJ和PJ。这样,通过八个光分流器队列,每8T的时间读出一个完整的八比特字节。公务员之家

开关范文篇8

从80年代开始,广州电力工业局在10kV电网和一些用户开关房中,陆续使用了不同厂家的进口开关柜和环网柜。本文拟对几个技术问题谈谈我们的经验和看法。

1绝缘水平的要求

广州电力工业局初期是按IEC12kV等级选取此类设备,工频/冲击耐压为28kV/75kV,在实际运行中曾发生过2次绝缘事故:

一次是由于用户专线电缆接头击穿,其击穿过程可能是断续性的,从而诱发母联柜电流互感器(下称TA)外绝缘闪络,再引发相对地和相间短路。加上柜间母线小室无分隔,且母线裸露,电弧一扫到底,除母联柜烧坏要更换外,其它柜也需清扫,第二天才恢复送电。

另一次是由于电压互感器柜外绝缘爬闪,引发对地和相间故障,烧坏两面柜。

可见,对于南方湿热带气候,按上述绝缘水平选用的新柜,虽然能顺利通过交接验收试验,但其后由于种种外界因素对绝缘的影响,已不能满足长期安全运行的要求。我们从三方面着手,提高对进口设备的要求:

a)不再选用IEC12kV档,改用IEC17.5kV档,其工频/冲击耐压为38kV/75kV或95kV。为了和国内订货的要求(42kV/75kV)大致持平,要求在现场验收试验时仍按38kV(100%)取值。

b)要求母线室使用全绝缘母线(包裹层不允许用PVC材料),各柜一次导电体对地和相间的空气净距要求达到125mm及以上。

c)要求有机绝缘材料爬距达到230mm,瓷件达到210mm,而且明确提出应符合要求的重点部位,即母线支持绝缘子,灭弧室动触头拉杆绝缘子,电压互感器出线套管,静隔离插头支持套管,断路器极支座绝缘子和出线绝缘子,接地刀静触头支座绝缘子等7处,会谈中和厂家逐处落实。

2注意环网柜的绝缘薄弱环节

供货商往往介绍其环网开关是按24kV电压等级的绝缘要求去设计的,理应绝缘方面裕度较大,但仍有要注意的地方。

2.1电缆头联接部位的爬距

S公司此处的结构是用“烟斗式”电缆头。在实际施工中,有个别班组改用瑞侃公司的通用型热缩头,造成出线套管的圆锥部没有“烟斗”套住,带电后,此处出现放电现象。改用回该厂的“烟斗式”电缆头后,一切正常。

2.2故障指示器感知TA的绝缘

由于欧洲多使用单芯电缆,故障指示器感知TA就套在电缆护皮之外,与缆芯之间有完整的电缆绝缘层,所以,此TA的绝缘十分简单薄弱,一般只在铁芯上缠几层绝缘带。可是国内多使用三芯电缆,故障指示器感知TA是随意套放在三叉头之后已剥掉护皮/铠装层和接地屏蔽层而仅剩下主绝缘的缆芯上,以热缩绝缘套分隔,可能会出现如下问题:

a)在热缩绝缘套上有游离电荷的积聚,到一定程度后,会对该TA的铁芯放电;

b)长时间运行后,铁芯的锐利边缘可能会割破热缩绝缘套和主绝缘层,造成高压对地短路。

这是对设备和人身安全(特别是在使用微机实现配电网自动化的场合)的潜在威胁。一般可改用外皮接地的可触摸式电缆头,并用绝缘支架将此TA妥善固定。在实施配网自动化的场合,措施更要完善,例如,可要求感知TA改为套装在柜的出线套管上。

2.3均压罩的素质

M公司使用均压罩去解决电缆头联接处相间距离不够的问题,按其提供的计算机模拟电场分布情况,此做法应该是合理的。但是,1998年2月在广州市某大厦的1台M公司的环网柜中发生了该处烧爆的故障,一相均压罩跌落,两相的表面有放电痕迹。至今还未见到厂家对此事故的分析结论。所以,有人怀疑,由于制造、装配等方面的分散性,均压罩的效果未必能达到预期效果,从而提出,为了稳妥,最好在它外面再包上一个绝缘套。有一种钮扣式绝缘套适合此用途。

3SF6开关电器在零表压下的性能

乍一看来,这是电压等级在110kV及以上时所关心的问题。但是,从安全运行的角度去看,对10kV一样重要,其理由如下:

a)无论是断路器还是负荷开关,这一电压等级的结构都十分简单,对SF6压力不设压力表或压力开关监视(或只有一个简易压力表指示,此表时有失灵)。而实际运行情况表明,进口设备虽然具有良好的密封性能,但也有漏气发生。由于没有气体监视装置,漏了气用户也不知道,容易成为事故隐患。

b)这类产品的型式试验,即使是大公司的产品,往往也没做齐,特别是在零表压下的性能(绝缘、投切等)和耐内部电弧故障性能方面几乎都没做过试验。

c)这类产品往往多用手动机构,运行人员与设备是面对面地操作。

开关范文篇9

关键词:开关柜结构;设计工作;制造工作

如今,开关柜在生活中的应用较为频繁,往往应用于电力系统、金属冶炼以及高层建筑物当中。通常情况下,外线直接同开关柜相接,之后再通过各个分控开关。故而,开关柜结构设计是否合理直接影响了电力系统能够良性运转,同时也可以确保电力能源合理分配。

1.开关柜操作重点

送电时,工作人员需先安设开关柜后封板,确认安装完毕之后,把前下门关停之后,同时对接地开关主轴进行分闸处理。工作人员运用运转车把手车放置在开关柜当中,同时接通电源。此刻,静电插座中的显示灯便会呈现亮起状态,之后关闭开关柜前门以及中门,并将手车从实验位置推动至工作位置,随后令断路器手车处于分闸状态。上述工作完成后,工作人员通过手柄对位于工作位置的手车进行处理,将其转变为实验位置。此时,工作显示灯便会关闭,而实验显示灯亮起。工作人员将中门开启,与此同时,拔出二次插头,实验显示灯均关闭。工作人员将手车自开关柜撤除,使接地开关处于合闸状态,并打开封板与前下门。

2.开关柜加工方式分析

第一,焊接方式。焊接方式的主要优势在于加工更为方便,且焊接所构建的开关柜结构较为牢固以及可靠。但是缺点也较为明显,即容易形成误差以及变形,且由于焊接之后的开关柜牢固,焊接完成之后,工作人员难以对其进行调整。而且工作人员通过焊接方法对开关柜进行焊接,对开关柜的外观也造成负面影响。此外,由于开关柜整体面积相对较大,所以喷漆难度相对较大,需要企业提高工作人员的焊接工艺以及基础技能。第二,组装方式。由该方式构成的开关柜,往往用于工件一般加工,工作人员可先实施喷涂作业,调节工作与外观处理工作难度均有所下降,构架外部尺寸不容易产生误差,开关柜占地面积小。而该组装方式,焊接牢固度不足,对零部件精度的要求相对较高,需要企业在加工方面投入大量加工成本。第三,焊接同组装联合使用。该方式集合了上述两种方式的所有优势,更为适合开关柜结构的构建。通常情况下,工作人员在柜体的连接部分使用电焊这一焊接方式,而部分可以变化或是可以调节的部件则通过紧固件相连。

3.开关柜结构设计与制造方式

3.1结构形式方面的考虑

若企业已经指定了型号,设计人员必须按照国家与行业相关规范完成设计工作。工作人员在设计工作中,需将用户维护纳入考虑范围当中,尽可能扩大维修所需的空间,抽屉柜内大式抽屉、灯、按钮以及表等仪器应安设于相对较低的位置,方便值班维修人员应用部分构件,同时也便于维修人员对仪器进行监测。当开关柜内部分构件发生问题需要更换时,维修人员的维修工作也更为容易、方便,确保元件的更换具有可操作性、接线端子所处区域的合理性。为了使电缆的连接更为便捷,工作人员应思考进线孔以及出线孔的规格,且需要考虑进、出线孔所处位置,同时考虑进、出现位置的封闭性是否良好。此外,企业还需在不影响开关柜整体结构分布的前提下,尽可能提高开关柜整体性能与质量,以提升用户的用电体验。为了保证开关柜的可操作性,设计人员需对仪表面板高度进行调整,按钮以及转换开关所在位置也应偏向于下方,方便相关工作人员对其进行操作,调节回路,确保所有承载元器件分布均匀,同时也保证了电流的分布更为平衡,且能够存留一部分余量。若企业并没有指定开关柜的型号或是结构,则企业需按照用户提供的实际需求以及元件本身结构特征等内容,选用更为合适的开关柜类型。

3.2结构制作形式方面的考虑

不同规格的开关柜型由其自身规范进行确定,针对部分尚未指定的柜型,工作人员应按照柜内元器件本身所具有的特征以及电器设计的基础原则完成确认。针对体积相对较大,且自重较重的元器件,建议设计人员优先选用焊接的方式对其进行处理,而针对部分元件或是场地更换较为频繁的开关柜,则应选用组装式开关柜。若对开关柜整体精度要求较低、元件数量相对较少,建议设计人员选用焊接结构。若元件数量较多,且种类难以确定,而且工作人员在设计过程中可能存在较大的变动性,针对上述情况,建议设计人员优先使用组装式开关柜。此外,企业还需结合用户提出的要求制造开关柜。而且随着近年来,人们对环保的提倡,焊接工艺的应用范围不断缩减,组装时开关柜应用范围扩大。但该焊接方式更为经济实惠。所以企业需灵活运用两种方式,既满足业主要求,也符合环保的要求,同时也保证企业经济效益的提高。如用户明确要求希望开关柜外观美观、高档,且拆装便捷,则建议企业使用组装式开关柜。除此以外,工作人员也可选用设计工艺焊接孔的方法作为开关柜制作的主要方法。该方法可有效提高焊接式开关柜的美观度,同时也提高了焊接的精准度,使得焊点分布更为均匀。且工作人员在使用该方法之后,再对表面进行抛光与喷漆处理,基本可以将焊点遮掩。工作人员完成开关柜体框架的焊接工作后,实施磨平处理,并对其表面进行喷塑处理,所得开关柜不仅稳固,且极为美观。而企业在开关柜结构设计与制造过程中,必须将企业当前施工水平纳入考虑范围当中,在不影响开关柜稳定性的前提下,对开关柜制造的经济性进行考量,将材料的利用率发挥至最大化。以面板显示灯安设孔的设计工作为例,元器件样本开孔的规格为φ25,但大部分企业的冲床模具规格仅有φ25.5。针对该情况,工作人员可直接将开孔规格设计为φ25.5,不仅不会对开关柜的安装与使用构成影响,同时也无须添加模具以及安装工位。

3.3安全性能设计方面的考虑

在电气设备运行当中,电弧是一种一定会发生的现象,会对电气设备运行造成较为严重的影响。因此为了提升开关柜的抗电弧能力,可以通过在开关柜内部当中增加金属隔板的方式进行处理,通过隔离的形式提升开关柜的抗电弧水平。同时可以为开关柜增加电弧的相关检测设备来对开关柜的电弧情况进行监督检测,这二者的设计来实现对于开关柜内导电体的电弧绝缘设计,从而提升开关柜的电气安全性能。另外可以通过泄压通道来实现对于开关柜内的安全性能的提升,这种设计主要是要求必须提升开关柜的人身防护等级,同时要防止外来物的单元置换,采用相应的隔离设施处理。通过这3个方面的设计,提升开关柜的整体质量和安全性能水平。

3.4开关柜结构辅助设计方面的考虑

为了提升开关柜的整体质量水平,可以在传统开关柜设计的基础上为其增加一些辅助性的设计,从而提升开关柜的质量与性能水平。对于开关柜的操作方面可以采用对于仪表板的重新设计,从而优化开关柜的操作效果;对于开关柜的外观设计可以通过在完成焊接以后对相关焊接点以及表面进行抛光,使开关柜的外观效果更加美化;对于钣金加工可以采用一些现代化的高精度仪器进行处理,从而实现对于开关柜的夹具、模具的改良设计。

4结语

开关柜结构设计与制造的合理性对开关柜整体性能有极为深刻的影响。故而,作为开关柜而的制造商,必须注重对产品自身性能以及品质的提高,以便扩大开关柜的应用范围,促进企业经济的发展。

作者:黄海燕 单位:施耐德电气(厦门)开关设备有限公司

参考文献:

[1]张永峰.开关柜结构设计与制造的分析与实践[J].机电工程,2014(1):108-110.

[2]陈金舰.开关柜结构设计与制造的分析与实践探讨[J].现代制造技术与装备,2014(4):33-34.

开关范文篇10

关键词:零电压开关;电流反向;有源箝位

引言

Flyback变换器由于其电路简单,在小功率场合被普遍采用。但是,由于变压器漏感的存在,引起开关管上过高的电压应力。普通的RCD嵌位Flyback变换器其漏感能量消耗在嵌位电阻R上,开关管上电压应力的大小取决于消耗在嵌位电阻上能量的大小。消耗在嵌位电阻上的能量越多,开关管的电压应力就越低,但也影响了整个变换器的效率,因此,普通的RCD嵌位Flyback变换器总存在着开关管电压应力与整个变换器效率之间的矛盾。

轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是开关器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。

本文介绍的一种有源嵌位Flyback软开关电路,不但能实现ZVS,而且也解决了前述的普通RCD嵌位Flyback变换器中存在的问题。

1工作原理

电路如图1所示,其两个开关S1及S2互补导通,中间有一定的死区以防止共态导通。变压器激磁电感Lm设计得较大,使电路工作在电流连续模式(CCM),如图2的iLm波形所示。而电感Lr设计得较小(LrLm),使流过Lr的电流在一个周期内可以反向,如图2的iLr波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为8个阶段,各个阶段的等效电路如图3所示。其工作原理如下。

1)阶段1〔t0,t1〕该阶段S1导通,Lm与Lr串联承受输入电压,流过Lm及Lr的电流线性上升。

V2=Vin(Lin/Lm+Lr)(1)

由于LrLm,所以式(1)可简化为

V2≈Vin(2)

2)阶段2〔t1,t2〕t1时刻S1关断,Lm及Lr上的电流给S1的输出结电容Cr1充电,同时使S2的输出结电容Cr2放电。t2时刻S2的漏源电压下降到零,该阶段结束。

图2

3)阶段3〔t2,t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝位在零电压状态。Lr和Lm串联与嵌位电容Cclamp谐振,Cclamp上电压vc缓慢上升,v2上电压也缓慢上升。

v2=(Lm/Lm+Lr)vc(3)

4)阶段4〔t3,t4〕t3时刻S2的门极变为高电平,S2零电压开通。流过寄生二极管的电流流经S2。此时间段依然维持Lr和Lm串联与嵌位电容Cclamp谐振,v2缓慢上升。

5)阶段5〔t4,t5〕t4时刻v2上升到一定的电压使副边二极管D导通,v2被嵌位在-NVo。Lr与Cclamp谐振。在保证t5时刻Lr电流反向的情况下,其谐振周期应该满足

式中:toff为主开关管S1一个周期内的关断时间。

图3

t5时刻S2关断,该阶段结束。

6)阶段6〔t5,t6〕t5时刻Lr上的电流方向为负,此电流一部分使S1的输出结电容Cr1放电,另一部分对S2的输出结电容Cr2充电。t6时刻S1的漏源电压下降到零,该阶段结束。

7)阶段7〔t6,t7〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就为S1的零电压导通创造了条件。此时,Lr上的承受电压v1为

v1=Vin+NVo(5)

Lr上电流快速上升。流过副边整流二极管D电流iD则快速下降。

diD/dt=-N[Vin+NVo]/Lr+NVo/Lm)(6)

考虑到LrLm,式(6)可简化为

diD/dt=-N(Vin+NVo)/Lr(7)

8)阶段8〔t7,t8〕t7时刻S1的门极变为高电平,S1零电压开通,流过寄生二极管的电流流经S1。t8时刻副边整流二极管D电流下降到零,D自然关断,电路开始进入下一个周期。

可以看到,在这种方案下,两个开关S1和S2实现了零电压开通,二极管D自然关断。

2软开关的参数设计

假定电路工作在CCM状态。由于S2的软开关实现是Lr与Lm联合对Cr1及Cr2充?电,而S1的软开关实现是单独的Lr对Cr1及Cr2充放电。因此,S2的软开关实现比较容易,而S1的软开关实现相对来说要难得多。所以,在参数设计中,关键是要考虑S1的软开关条件。

电流连续模式有源嵌位Flyback变换器ZVS设计步骤如下所述。

2.1变压器激磁电感Lm的设定

由于Lr的存在,变换器的有效占空比Deff(根据激磁电感Lm的充放电时间定义,见图2)要小于S1的占空比D,但是由于t5~t8时刻iLr的上升速度非常的快,所以可近似地认为Deff=D。这样,根据Flyback电路工作在CCM条件,则

式中:η为变换器效率;

fs为开关频率;

PoCCM为变换器的输出功率。

在实际设计中,为了保证电路在轻载时也能工作在电流连续模式,Lm一般取为

2.2电感Lr的设定

为了实现S1的ZVS,t5时刻储存在Lr内的能量足以令S1的输出结电容Cr1放电到零,同时使S2的输出结电容Cr2充电到最大。即

式中:vds=vds1=vds2≈Vin+NVo;

Cr=Cr1+Cr2。

根据式(4)取定合适的谐振周期可以令

2.3电容Cclamp的设定

根据式(4)有

在满足式(15)的前提下,取定合适的Cclamp令iLrmax=iLrmin。

2.4死区时间的确定

为了实现S1的ZVS,必须保证在t6到t7时间内,S1开始导通。否则Lr上电流反向,重新对Cr1充电,这样S1的ZVS条件就会丢失。因此,S2关断后、S1开通前的死区时间设定对S1的ZVS实现至关重要。合适的死区时间为电感Lr与S1及S2的输出结电容谐振周期的1/4,即

严格地讲,开关管输出结电容是所受电压的函数,为方便起见,在此假设Cr1与Cr2恒定。

2.5有效占空比Deff的计算

有效占空比Deff比开关管S1的占空比D略小。

Deff=D-ΔD(17)

[(Vin+NVo)/Lr]ΔDT≈2(P/DVin)(18)

ΔD≈2PLrfs/DVin(Vin+NVo)(19)

代入式(17)得

Deff=D-2PLrfs/(DVin(Vin+NV0)(20)

2.6开关管电压应力计算

Vs1,s2≈Vin+NVo+(2PLrfs/DVin(1-D)(21)

式(21)中第三项相对来说较小,故开关管的电压应力接近于Vin+NVo。

3实验结果

为了验证上述ZVS的实现方法,设计了一个实验电路,其规格及主要参数如下:

输入电压Vin48V;

输出电压Vo12V;

输出电流Io0~5A;

工作频率f100kHz;

主开关S1及S2IRF640;

变压器激磁电感Lm144μH;

变压器原副边匝数比n=N8/3;

电感Lr10μH;

电容Cclamp2μF。

图4给出的是负载电流Io=2A时的实验波形。从图4(e)及图4(f)可以看到,S1和S2都实现了ZVS。图5给出了两种Flyback电路的效率曲线,可以看到,有源嵌位Flyback软开关电路有效地提升了变换器的效率。