高压输电线范文10篇

时间:2023-03-21 23:38:47

高压输电线

高压输电线范文篇1

关键词:超高压输电绝缘子可靠性评价

线路绝缘子性能的优劣直接影响到输电线路,特别是超高压《EHV》输电线路运行的可靠性和经济性。因此,如何评价EHV输电绝缘子的可靠性,已成为电力部门和绝缘子制造部门尤为关注的问题。

在架空输电线路上现在使用的有三种材料绝缘子——瓷绝缘子、玻璃绝缘子和有机复合绝缘子。我国目前的生产现状是以生产和使用瓷绝缘子为主,玻璃绝缘子国内生产能力只占国内绝缘子总需求量的20%;我国复合绝缘子的研制起步较晚,由于近年来国内外在此技术上的进展较快,生产和使用量已呈上升态势。

1对绝缘子可靠性评价的五项准则

运行的可靠性是决定绝缘子生命力的关键。最好的评价是大量绝缘子在输电线路上长期运行的统计结果和可靠性试验所反映出来的性能水平。因此,评价绝缘子应遵循下述准则:

⑴寿命周期

产品在标准规定的使用条件下,能够保持其性能不低于出厂和标准的最低使用年限为“寿命周期”,此项指标不仅反映绝缘子的安全使用期,也能反映输电线路投资的经济性。我国曾先后多次对运行5—30年的玻璃和瓷绝缘子进行机电性能跟踪对比试验。结果表明:玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘体。玻璃绝缘子的寿命周期可达40年,而瓷绝缘子除全面采用国外先进制造技术后有可能较大幅度地延长其寿命周期外,其平均寿命周期仅为15—25年,复合绝缘子经历了“三代”的发展。但从迄今世界范围内的试验及运行结果分析来看,其平均寿命周期只有7年。[2]

⑵失效率

运行中年失效绝缘子件数与运行绝缘子总件数之比称为年失效率。对于国产玻璃绝缘子,其寿命周期内平均失效率为(1—4)×10-4/a[1]A,对于国产瓷绝缘子的失效率,除个别合资企业产品将有可能降低外,比玻璃绝缘子约高1—2个数量级;对于复合绝缘子,由于寿命周期不能预测、复合材料配方和制造工艺还不能安全定型。其失效率很难预测。

⑶失效检出率

绝缘子失效后能否检测出来的检出率对线路安全运行的影响是比失效率本身更为重要的因素,检出率取决于绝缘子失效的表现形式和失效的原因。玻璃绝缘子失效的表现形式是“自动破碎”和“零值自破”[1]。“自破”不是老化,而是玻璃绝缘子失效的唯一表现形式,所以只需凭借目测就可方便地检测出失效的绝缘子,其失效检出率可达百分之百,瓷绝缘子失效的表现形式为头部隐蔽“零值”或“低值”,复合绝缘子失效的主要表现形式为伞裙蚀损以及隐蔽的复合“界面击穿”,此外,瓷和复合绝缘子失效的原因是材料的老化,而老化程度是时间的函数。老化是隐蔽的,因此给检测带来极大的困难,造成检出率极低,对于复合绝缘子,实际上根本无法检测。

⑷事故率

年掉线次数与运行绝缘子件数之比称为年事故率。绝缘子掉串是架空输电线路最为严重的事故之一。对于EHV输电,若造成大面积、长时间停电,后果则不堪设想。

国产玻璃绝缘子30年来的运行经验证明:在220—500KV的输电线路上,从来没有因为玻璃绝缘子失效而发生过掉线事故。而国产瓷绝缘子掉线事故率则高达2×10-5。前苏联的研究指出,即使失效率相同,瓷绝缘子较玻璃绝缘子的事故率也至少高一个数量级[3]。由于复合绝缘子为长棒式,掉线事故一般很少发生。但导致内绝缘击穿、芯棒断裂和强度下降的因素始终存在,一旦失效,事故概率会高于由多个元件组成的绝缘子串。

⑸可靠性试验

为对绝缘子进行可靠性评价,国内外曾对玻璃绝缘子和瓷绝缘子作过各种方式的加速寿命试验和强制老化试验。如:陡波试验、热机试验、耐电弧强度试验、1500万次低频(18.5HZ)和200万次高频(185—200HZ)振动疲劳试验及内水压试验,都从不同角度得出结论:与玻璃绝缘子相反,绝大多数瓷绝缘子都不能通过这些试验[1]。对于复合绝缘子,可靠性试验则还是一个有待于继续探索的课题。

2影响绝缘子可靠性的三大因素

⑴材料是基础

玻璃和瓷均属铝硅酸盐,瓷是三相(结晶相、玻璃相和气相)共存的不均质体,而玻璃是液态和玻璃态互为可逆的均质体。“均质性”是影响绝缘材料介电强度的重要因素。脆性材料的机械强度和热稳胜,不完全取决于材料力学性质,而极大程度上取决于材料内部的缺陷和表面状态。这就是钢化玻璃较之退火玻璃和瓷,上釉的瓷较不上釉的瓷强度高得多的原因。此外,玻璃的“热钢化”技术,赋予玻璃表层一个高达100—250Mpa和永久预应力。这就是“钢化玻璃”强度钢铁化,热稳定性高,较瓷不易老化和寿命长的道理,对于复合绝缘子的难点是解决有机材料在户外条件下的老化、芯棒的脆断的蠕变。可见,钢化玻璃既较瓷有高得多的机械、绝缘强度,又较有机材料具有优良的抗老化性能,为绝缘子的可靠运行奠定了良好的基础。

⑵产品结构和耐污性能是关键

玻璃绝缘子采有圆柱头结构,承力组件受力均匀。较之国内传统瓷绝缘子数十年一贯制的圆锥头结构,具有尺寸小、重量轻、强度高和电性能优良的特点。由于玻璃的线膨胀系数较瓷大得多,较复合绝缘材料小得多,且与金属附件和水泥的线膨胀事故接近,因而受力组件材质匹配良好。在各种气候条件下,不会象瓷绝缘子和复合绝缘子那样容易产生危险应力而导致老化。且复合绝缘子很难解决复合界面的结构质量。

但复合绝缘子具有优良的耐污性能,而且通常无需清扫这就极大地减少了线路维护费用。就此而论,复合绝缘子发展前景广阔。玻璃的介电常数较大,因而单只玻璃绝缘子的干闪络电压比瓷绝缘子的低,但有较大的主电容来改善表面的电压分布,使之与瓷绝缘子串的闪络电压相当。加之玻璃绝缘子泄漏比距大,表面产生的凝聚物少,抵抗由污秽引起的热应力的能力强,因而不易因闪络而出现事故。污闪实践一证明,玻璃绝缘子的耐污性能优于瓷绝缘子。

⑶制造水平是保证

在国外,优质产品的生产均已形成相当经济规模、且具有工艺先进的高自动化生产线。因而,整个西欧和前苏联,玻璃绝缘子的市场占有率高达90%以上,整个北美复合绝缘子使用量为世界之最占本地绝缘子市场总量的25%—30%;在日本,瓷绝缘子则一统天下。在我国,所幸的是国产玻璃绝缘子通过技术引进和自己开发,已具备了上述生产条件,对于瓷和复合绝缘子,除个别合资企业外,上述制造水平有我国尚未达到。可见,选用何种产品还取决于产品的制造水平和对产品性能及使用环境的全面了解。

3结束语

⑴绝缘子的寿命周期、失效率、失效率检出率、事故率和可靠性试验,应居为综合评价EHV绝缘子可靠性的五项准则。

⑵扩大使用国产玻璃绝缘子在当前在着较大的优势。作为玻璃绝缘子制造者应精益求精,有效降低绝缘子运行头几年的失效率。

高压输电线范文篇2

一、(略)

若要延长清扫周期或不清扫,则还需要很据运行经验适当增加泄漏比距才能保证安全运行。将图2、图3画在同一图上则如图4所示。由图看出,同样泄漏比距应用到清洁区和污秽区,其污闪跳闸率相差甚大。以泄漏比距为1.6厘米/千伏为例,污秽区污闪跳闸率比消洁区大13.2倍。说明这些地区新建线路时,污秽区和清洁区采用绝缘相同,是造成频繁跳闸的根本原因。.02.22.4.2.6泄漏比足巨匣米/千了弋图4土海、兰州、西安110一220千伏线路清洁区和污秽区污闪跳闸率比较

二、人工清扫问题

清除绝缘子表面污秽曾是线路防污闪的基本方法之一,包括带电清扫、仃电清扫、水冲洗等。目前,我国仍大量采用带电或仃电清扫,水冲洗很有前途,正在逐步推行。本文着重分析带电或仃电清扫。试验结果和运行经验都证明,当绝缘子表面清洁时,是不会发生污闪的。以110千伏线路为例,7片标准悬式绝缘子可耐受的污秽度为盐密。.034毫克/厘米2,若加强人工清扫使绝缘子表面盐密不超过此值,则这串绝缘子就不会发生污闪。由于人工清扫简单易行,也比较直观,因此在防污斗争初期,国内外均获得最广泛的应用。我国五十年代初期,由于对加强绝缘认识不足,国内生产的防污型产品数量也少,因此,人工清扫曾作为一种基本的防污措施,对许多地区甚至是唯一的防污措施。然而,随着污源的增加和电力系统的迅速发展,人工清扫的局限性就明显的表现出来。1.可靠性不高,容易出现漏洞。人工清扫可靠性不高的原因,其一是清扫质量难以绝对保证,特别是大面积人工清扫,清扫合格率即使达到”%,则闪络仍会在薄弱环节处发生。其二是对某些污源和恶劣的气象条件,人工清扫是对付不了的。例如,对于带有潮湿蒸汽和导电性化学物质的化工污秽气体,即使是刚清扫过的清洁绝缘子串,也会引起闪络。又如持续几十小时的海雾入侵,或逆温层复盖下工业污秽地区持续数天的大雾,由于绝缘子表面污秽的积累效应足以使绝缘水平不高的绝缘子串发生污闪。此外,大风将盐碱土复盖在绝缘子表面,台风将海水微粒吹到沿海线路,都是属于绝缘子急剧污染的情形。若跟着来一次潮湿天气,爬距小的绝缘子串很容易发生污闪。2.线路清扫工作量太多,劳动力安排不过来。随着电力工业的迅速发展,维护人员的增长速度远远赶不上送电线路的增长速度。目前,多数地区的供电部门实际上不可能做到对线路每年清扫1一2次。3.工人劳动条件异常艰苦污闪事故具有明显的季节特点,我国东北、华北、华东等地区污闪最严重的季节为2一3月份,因此,这些地区人工清扫多数安排在最严寒的冬季进行。对于超高压线路如3:10一500千伏线路,线路长,杆塔高、绝缘子片数多,线路离市区远、人工清扫非常困堆,侮年全线清扫1一2次是难以接受的。4.仃电损失十分惊人目前,各地的清扫工作多数还是在仃电中进行,每年由于仃电清扫造成的损失是十分惊人的。以220千伏线路为例,从图5、图6可以看出,根据清洁区和污秽区线路典型运行经验,由污秽问题带来的各项损失或费用中,仃电清扫造成的损失超过事故损失,:片居首位。

三、加强绝缘与人工清扫的经济比较

以华东、西北、华北等220千伏线路的典型运行经验为例,加强绝缘与人工清扫的经济比较如图5、图6所示。图中计及加强绝缘后,污闪跳闸率将降低、事故损失减少以及仃电\清扫次数降低,少售电损失减少等综合情况。关于图5、图6的几点说明:1.图中220千伏线路加强绝缘后(泄漏比距增加到3.0厘米/千伏以下)均未考虑加大杆塔尺寸。(1)采用大爬距、小高度的防污绝缘子可以在不增大绝缘子串长的前提下,大大增加泄漏比距。例如:220千伏线路采用13片X评l一4。5防污型绝缘子代替13片X4.5标准型绝缘子,泄漏比距从1.65厘米/千伏增加到2.42厘米/千伏,保持串长不变。因此采用防污型绝缘子,可以解决大部分污秽区加强绝缘的问题。(2)线路绝缘子片数增加,串宾雾霆蜜默糯粼黔-3一每百公里年污闪跳闸造成国民经济报头窦爵误瑞絮盅吸资”母叫令随、以次2.32.4泄漏比距匣米/千伏图5220千伏清洁区线路由污秽问题弓l起的各项费用和损失对比图长也增加,会使雷击间隙闪络率增加。但增加绝缘后,沿绝缘子串路径的耐雷水平将显著提高,会大大降低沿绝缘子串的雷击闪络率。目前,我国一般220千伏线路间隙裕度较大,绝大部分雷击跳闸是由于沿绝缘子串路径雷击闪络引起的。例如,对东北、华东、武汉、陕西几个地区110一220千伏线路运行67500公里年的调查结果,绝缘子串的闪络率为。.3川次/百公里年,而空气间隙则为。,。‘63次/百公里年,前者是后者1一由污秽问题引起的每百公里年总损失Zse每百公里年停电清扫少售电损失每百公里年污闪跳闸造成国民经济损失4一每百公里年人工清扫费用5一每百公里年J曾加绝缘子投资费用(虔线部分)考虑泄漏比距超过3.。厘米/千伏以后,需要增大杆琪尺弓•引起总费用,%.剧增加加加》泄漏比距厘米/l一伏图6220千伏沁秽区线路以J才亏秽]、IJ早还引小!的各项卿用和拐失对卜匕图的5.铭倍。可见,目前杆塔绝缘的薄现点不在间隙而在绝缘子串。文〔6〕加强绝缘正好弥补了线路耐雷的薄弱环节,对线路防雷也有好处。因此,.我国砚有的大多数线路入绝缘子.串长增加20一功%,从防雷的观点来说,是不必加大杆塔尺一d‘的。各地运行经验证明,2功千伏线路绝缘子从13片增加到16片(16片xw,一”.5绝缘子串泄漏比距达到2.98厘米‘千伏)均没有加大杆塔尺寸,雷击跳闸率也没有明显增加。(3)国外有大量污秽区送电线路增加绝缘子片数,串长增加20一30%,而原用杆塔不变.运行效果良好。.当然,增大串长也会带来有些线路对地距离不够等问题。一般在增加串长使污闪事故率下降带来的利益超过增加串长造成的其他损失的条件下,则可采取增加绝缘子片数的措施。2.随着新塑杆城结构的出现,为了降低杆塔造价,间隙裕度必定会减少,对绝缘子串长亦将有所限制。因此,今后应推广使用大爬距,小高度的防污型绝缘子,提高绝缘子单位高度的泄漏距离,以适应线路防污的需要。3.关于线路加强绝缘以后,雷击事故会不会转移到变电站的问题。目前结论是线路加强绝缘不会影响变电站的防雷保护。变电站防雷保护是由进线保护和避雷器保护构成的,线路加强绝缘并没有改变变电站的防雷保护方式,所以不会影响其防雷效果。理论分析和实测都说明,变电站避雷器放电后’,加到被保护设备上的雷电振荡波的幅值取决于侵入波的陡度和避雷器到被保护设备之间的距离,而与侵入波的幅值无关。增加线路绝缘后,线路绝缘子串的反击率将降低,从而使避雷器动作次数减少,对变电站是有利的。即使发生反击,入侵波的幅值有所增加,但陡度不变。因此,避雷器动作后,加到被保护设备上的雷电振荡波的幅值还是不变。所以,线路加强绝缘对变电站防雷没有什么坏处。4.线路加强绝缘后,大大提高了污秽绝缘子抵抗工频电压和操作过电压同时作用、污秽绝缘子抵抗工频电压和大气过电压同时作用的能力;降低了每片绝缘子承受的工作电压,从而降低绝缘子的老化率;同时在整个运行期间,增加了线路的绝缘裕度,增强了对其它意外事故的抵抗能力。对图5、图6的简单分析:、i)由图5看出,清洁区采用泄漏比距为2.04厘米/千伏时获得最佳经济效果。这和现行规程规定清洁区采用泄漏比距为1.6厘米/千伏有较大出入。(2)无论清洁区还是污秽区,污闪跳闸率在0.02次/百公里年以下时,才获得良好的经济效果。(3)由污秽问题引起的各项损失中,仃也清扫造成的损失占居首位。而图中仃电清扫的损失只计算售电价格。若还要计及由于仃电造成国民经济其它部门的经济损失,则仃电清扫的损失还将成倍地增加。从获得最佳经济效果着眼,今后各地都应尽量不采用仃电清扫,而用其它较为经济的防污措施来代替。(4)对于污秽区,采用泄派比距小于2.04厘米/千伏是极不经济的。若将污秽区绝缘加强到不用清扫而能安全运行,又无需增大杆塔尺寸,则可以获得最佳经济效果。若绝缘已经加强到2.98厘米/千伏,还需要定期洁扫才能保证安全运行的,则这种地区一肯定是属于盐密超过0.25毫克/厘米’的特污区,宜采用腊类涂料绝缘子。(5)由污秽问题引起的总损失中,最主要的是仃电清扫少售电损失和污闪跳闸损失两项。要获得良好的经济效益,必项把这两项损失降下来,适当增加泄漏比距是降低这两项损失的经济而有效的办法。特别是采用大爬距小高度的防污型绝缘子,在串长增加不名的条件下,泄漏比距可以大大增加,经济效果十分显著。因此,在污秽区推厂‘使用造型良好的防污型绝缘子,具有很大的经济意义。

高压输电线范文篇3

关键词:高压输电线;造价分析;控制;措施

1前言

经济发展直接导致区域用电规模的扩大,在这样的背景下,需要加强电网系统的配电能力,从而对于电力的稳定性和质量带来一定的影响,因此电力系统必须推进输电线路的建设以及完成区域内高压输电线施工。高压输电线路是电力系统建设中的基础项目,但是有在造价管理中存在潜在的风险较多,往往会在一定程度上降低高压输电线路建设的管理水平,因此针对高压输电线路管理存在的问题,提出相应的解决策略,能够有效避免出现投资失控等问题。

2输电线路工程造价分析

工程造价管理是任何一个项目管理的重要一部分,在高压输电线路施工中也是重要的一部分,规范施工过程中的成本投入以及落实相应的预算支出,可以最大程度的提高施工企业的经济效益。随着我国大规模的投入高压输电线路建设,很多企业的造假管理一直保持高风险,主要体现在以下几个方面:

2.1多样性

高压输电线路由于线路较长,在施工的过程中,由于不同区域的施工难度和需要的人手材料不同,所以必须重视施工过程中的平衡,实现多主题的控制,避免由于造价管理单一带来的风险;

2.2动态性

高压输电线路自施工的过程中常常会受到许多因素的影响,造价工程无法保持在一个静态水平上;

2.3系统性

高压输电线路中各项子工程存在内在的而联系,在进行造价管理的过程中,不能独立进行划分,存在一定的整体和系统性。

3高压输电工程造价的影响因素

高压输电线路单位主要是以“万元/km”作为指标是,随着我国高压输电工程建设过程中更加的多样化,相应的气离散程度也会越来越复杂,影响高压输电工程造价主要包括以下几个方面:

3.1自然环境因素

不同地区由于环境差别较多,对于平原地带,其相关的造价较低,对于处于山区和风速较大的地区,其造价也会在一定程度上提高,根据目前相关研究表明,地区的风速没提高一级,相应的杆塔数量会增加3成,相对而言,增加了工程造价。

3.2技术因素

同样技术原因也会对工程造价产生较大的影响,目前的研究发现,在进行高压输电线路建设中,需要队工线路的输送量,导线的界面和回路等参数进行具体的分析,其中在这些参数中,输送量是影响造价工程最为重要的因素。如果要扩大工程的输送量,就必须在一定程度上增加导线的斜面积,因此在碱性输电网的建设之前,需要选择合理的输电导线,这样能够在一定程度上提高输电能力。如果上述工作没有统计好,在进行实际施工中,截面积就会大大增加,截面积的巨大变化会造成耗材指标的变化,最终对整个工程的耗材也会产生较大影响。所以,在施工设计的过程中,需要合理的选择导线分裂数,紧凑施工的线路一方面可以通过增加分裂数来完成,另外导线方案的实施和塔形的合理建设也能够降低工程造价,也可以提高输电设备的电气功能。耐张比是高压输电线路施工的影重要概念,值得是耐张塔的数量和杆塔总数量的比值,由于耐张塔的结构较为复杂,同时耐张塔的结构较为复杂,对于材料和结构的要求更高,因此会增加工程的造假,耐张比需要控制在一定的范围以内。另外,在线路设计中,需要尽量的减少曲折系数,受到区域的影响,曲折系数会有很大的变化,但是无论曲折系数怎么变化,最终需要降低曲折系数,实现造价控制。

4控制输电线路工程造价的技术措施

4.1做好施工准备工作

在进行高压输电线路施工之前,对线路进行有效的勘察较为重要,由于高压输电线路较长,同时在进行施工的过程中宏还会涉及到林区的砍伐,房屋的拆迁,合理的规划线路是施工准备工作的重要一步。线路优化的原则是减少房屋的拆迁,同时还需要避开一些煤炭长等比较稀疏的地带,另外在对地形进行勘察的过程中,还需要沿线地区污染位置的分布图,有效规划高压输电线路周边污区的分布图,能够有效实现绝缘配置优化,在技术上实现串联布置的方式,降低施工成本。

4.2做好杆塔排位设计

杆塔的排位问题一直是设计中的重点,在进行杆塔排位的过程中,可以采用黄金分割法,对噶他的水平在和垂直在和等受力进行分析,从而最终的确定杆塔的数量,研究表明,通过科学设计最大能够降低3%它重。另外在进行施工的过程中,需要做好基础的配置工作,根据杆塔设计的位置,做好土方开挖量的计算,对施工现场的地下水和土石的开挖量进行计算,做好相关钢筋材料使用的预算工作。

4.3优化材料运输、使用

针对具体的造假控制,一方面按照环境勘测人员勘测的数据,对塔基的平面图做好准确的计算工作,高压输电线路施工需要做到零基础进行开挖,一方面能够降低施工过程中的成本,另外一方面能够降低水土流失,由于工程造价中,运输费用在工程造价中占有非常重要的比例,在材料的选购中,做好采购点的制定和运输方案的选择,能够最终降低造价成本。此外,材料的合理利用是造价管理的重要方面,优化材料,避免材料浪费。因此从这个角度上讲,高压输电线路的施工造价管理贯穿于整个工程造价中,采用全面的造价管理,能够为企业合理的工程造价提供指导,保证在高压输电线路质量安全的前提下,最大程度的降低工程造价。

5结束语

综上所述,高压输电线路和普通的工程建设存在一定的差异,由于建设较为复杂,同时工程的不确定因素较大,因此在进行高压输电线路施工中,为了实现造价控制,必须在高压输电线路建设之前,做好相应的准备工作,优化线路设计,从而保证高压输电线路质量的前提下,实现高压输电线路的造假控制。

作者:张德望 单位:河北省电力勘测设计研究院

参考文献:

[1]杨巍.高压输电线路工程造价分析及其控制[J].环球市场信息导报:月末版,2014(07):106.

[2]史玮.浙江省输电线路工程造价管理研究[D].华北电力大学,2015.

高压输电线范文篇4

目前,我国的电力工程在对高压输电线路的设计管理中仍存在一定的问题,这就要求各施工单位在充分遵守现有规章制度的基础上,全面控制高压输电线路设计的整个过程,落实管理人员的责任和义务,严格实行责任到人制度,确保管理人员能对电力工程高压输电线路进行全面的管理工作。

1.1高压输电线路设计管理的作用

一般而言,电力工程高压输电线路的施工设计包括线路施工的前期准备、线路施工的实际安装和线路施工的后期验收。因此,电力工程高压输电线路的设计管理工作通常是基于上述3方面开展的。虽然在不同的线路设计阶段中的管理内容有差异,但其之间具有明显的联系性,这就要求相关人员必须充分调动积极因素,确保工程企业中的人力和物力资源的作用都能得到充分发挥,促使其更加快速、安全地完成电力工程高压输电线路的设计工作。

1.2高压输电线路的设计过程管理

1.2.1线路设计的前期管理

对电力工程高压输电线路的施工前期进行充分的管理工作,能确保线路设计更加科学、合理。

1.2.1.1开展设计审查的组织工作

施工组织设计是指对高压输电线路的设计过程进行相关指导的技术文件。通过对高压输电线路的设计工作进行全面、严格的组织和计划,可有效实现施工管理的目的。

1.2.1.2开展合理的设计沟通

在进行电力工程高压输电线路的设计前,要求与各个施工单位必须进行充分的沟通和交流,使其参与到工程项目的图纸设计活动中来,从而帮助设计人员及时发现电力工程高压输电线路设计中存在的问题,使设计方案能更好地为高压输电线路施工提供依据和保障。

1.2.2线路设计的过程管理

在实际施工过程中,设计人员必须严格遵循“安全第一”的设计理念,预测高压输电线路施工过程中可能遇到的各种危险点和危险源,并进一步识别风险,采取相应的防护措施保护施工。同时,必须在设计图纸中详细说明在实际施工中可能存在的安全隐患,以确保在实际施工中实现安全“双零”。

2高压输电线路设计的要点分析

由于电力工程高压输电线路的施工环境具有一定的特殊性和多变性,因此,如何充分保证工程施工的进度和质量,是整个电力工程高压输电线路设计的要点。

2.1杆塔基础工程的设计要点

通常情况下,电力工程中的高压输电线路设计一般采用管杆或铁塔结构。然而,为了充分降低投资成本,通常使用铁塔或混合土杆作为电力工程高压输电线路的主要结构。与铁塔工程相比,铁杆结构中的基础部分是确保高压输电线路在实际运行过程中不因受外力作用而发生沉降的核心部位。因此,杆塔基础工程的设计质量会直接影响整个高压输电线路的运行质量。

2.1.1基础开挖和浇注设计

在进行杆塔基础的开挖设计时,必须依据工程所在地的实际地质特征和地形条件选择恰当的开挖方法,从而有效提高岩石结构的整体性;以钢筋混凝土作为杆塔浇注的基础,并以施工现场周围的砂石作为浇注的原材料。

2.1.2基础排水和回填设计

如果基坑中的水未及时排出,则不仅会使杆塔基础的开挖难度进一步提高,还会使壁坑出现严重的坍塌和下滑现象,进而导致电力工程的高压输电线路施工无法在规定工期内完成。因此,在进行杆塔的基础排水设计时,杆塔基础必须低于地下水位。此外,对于杆塔基础浇注工作中的土壤回填和夯实,必须充分考虑回填土的密度,使其满足回填土的夯实密度要求。

2.2导线架设工程设计的要点

在整个电力工程高压输电线路的设计过程中,导线架设设计是核心部分。在导线架设设计前期,设计人员必须对相应的施工设备进行全面、详细的了解,并制订相应的施工进程表格,确保在实际的施工过程中不会出现顺序混乱的现象。

2.2.1导线的放线设计

一般而言,导线的放线设计的主要目的是确保高压输电导线的质量,同时观察金属导钩与裸导线段是否存在分股的现象。因此,工程设计人员必须确保杆塔混凝土的强度达到设定值。

2.2.2导线的连线设计

在电力工程的高压输电线路设计中,架空线的连接设计通常包括架空导线之间的相互连接、架空线与压接式耐张线夹之间的连接等。因此,在设计中,导线耐张线夹与跳线之间必须形成良好的连接,促使其更好地与电阻接触,从而有效避免不合格的导线进入电力工程高压输电线路的实际安装过程中。

3结束语

高压输电线范文篇5

关键词:电力工程;高压输电线路;杆塔接地电阻

随着社会需求的不断上升,提高了电力工程中高压输电线路的设计和管理难度。在高压输电线设计工作中,自身设计的安全性和可靠性会直接影响整个电力工程供电的可靠性和安全性。为了提高整个电网的安全性和可靠性,应该科学、合理地设计高压输电线路工程[1]。

1电力工程高压输电线路设计管理

1.1对高压输电线路设计进行管理的重要性。要确保电力工程高压输电线路设计的合理性。由于不同的地区和气候可能影响电力工程项目的安全性,在进行设计工作之前,电力设计工作人员应该对电力工程的实际施工环境进行实地考察,做好前期的准备工作。为了保障电力工程的施工质量,需要严格把关电力工程高压输电线路的设计工作,控制实际的安装过程。为用户提供生命和财产安全的保障,从多个角度保障电力工程项目的安全性。严格管理电力工程高压输电线路,需要进行工程验收工作。如果在施工过程发现问题,要及时采取相应的措施,以促进电力行业的发展[2]。1.2高压输电线路设计过程管理。高压输电线路设计工作主要包含对高压输电线路设计的过程管理和高压输电线路设计前期管理。针对前者,要详细分析高压输电线路设计的风险,从多个角度进行设计;针对后者,相关工作人员需要在设计之前,审核设计文件,做好充分的准备工作,有效保障线路运行的科学性和安全性。

2电力工程高压输电线路设计要点

输电线路的设计工作直接关系到电力传输水平和电力系统的安全运行,是一项十分重要的工作。在设计之前,应该明确周围环境、地质标准、地上地下建筑物等。做好输配电设计的勘察工作,确保电网输配电线路设计的合理性,提高输电线路设计管理效果。按照实际情况和标准进行设计,明确路线测量的要点,精准测量分析各个搭架过程,准确分析测绘标准,确保实际测量数据的合理性。按照实际测绘的过程,准确分析输电线路的设计路径。测绘工作人员要明确相关流程和标准,对输电线路进行区域划分,讨论确定最佳方案,确定设计勘察的位置,保障输电路施工顺利开展。2.1输电线路设计的整体要素分析。2.1.1高压输电防雷设计。通过安全的引入方法安全避雷针,保障输电线路接触不到雷击点。制定科学、合理地防雷电流引流方式。为了更加有效地进行避雷准备工作,应该采用有效的保护设备。掌握实际雷电引流导体、接地装置的组成标准,正确使用避雷线,使用水平悬挂的方式进行导线分布。为了防止周边建筑物受到雷电的影响,应该按照高压输电设备的配套方式,多架设一些输电线路设备。2.1.2建立有效的导线选择设计标准。按照高压输电线路的实际位置,明确气温环境可能产生的影响因素,详细分析判断降雨、冰雹风暴对输电线路的影响程度,明确实际工业化学气体排放的过程,确定输电线路的实际影响标准。通过高压输电线路的设计,分析出路线的材质和基础结构。2.1.3高压输配电线路的实际路径分配标准。为了保证输电线路的正常运行,应该详细分析实际输电线路的标准结构,科学有效地设置输配电高压线路,明确降低高压输电线路的施工成本和标准,通过实际输电线路的标准结构,确定周边环境和地质条件。进行前期勘测分析,保障整体线路的安全性、经济性和可靠性。分配综合评价标准,明确施工方案,确定辅助角和地形施工的标准,有效降低工程的经济成本[3]。2.1.4确定杆塔搭建设计的位置和施工设计方案。杆塔基础设计工作和施工质量直接影响了整体高压输电线路的建设质量。在杆塔搭建设过程中,需要根据高压输电线路的实际组成结构,确定杆塔施工的工期、线路输送范围。根据杆塔设计的标准,充分掌握历史资料,仔细考察设计施工现场。根据施工现场的实际情况,全面分析实际的地理环境和地质条件。为了减少杆塔施工建设事故,需要采取有效的措施。在进行开挖设计工作时,为了提高岩石结构的整体性,相关设计人员应对实际施工现场进行地形和地质的勘测,使用科学、合理的方法开挖。在浇筑设计工作中,浇筑基础和浇筑原材料质量的好坏直接影响了电力工程的整体质量。所以在选择原材料时,浇筑基础使用的原材料可以选择钢筋混凝土,选择施工现场附近的砂石料作为原材料。开挖杆塔时,确保基坑内水全部排出,确保杆塔基础在低下水位下,合理设计排水工作,避免基坑内部出现坍塌或者下滑的情况。另外,一定要做好回填设计,充分考虑回填土的密度,保障基础浇筑工作顺利开展。2.1.5高压输配电设计过程中需要防污损的标准。在高压输电线路防污损设计工作中,要充分了解高压输电线路的配置方式和标准,参考实际案例,有效降低污损对高压线路的影响情况。充分了解高压输电线路的污损情况,确定高压输电线路的绝缘距离和结构的标准,确定污损的类型和规律,采取合理有效的防护措施。为了保障污损处理效果的合理性,要使用合适的物理测量方式,提高化学分析效果,有效提高污损处理的效果。2.2输电线路设计技术问题的处理对策。2.2.1优化铁塔基础性施工标准过程。在铁塔建设施工之前,应该明确实际结构标准和实际的载荷量,明确实际铁塔搭建的设计标准,做好计算工作。充分了解基础施工的方式,不断提高输电线路对整体水文地质情况的分析,保障地接符合实际载荷量,充分了解铁塔的受力情况。2.2.2单双回路的有效搭配过程和相关问题。在高压输电线路实际施工中,为了确保项目效果,有效提高铺设线路的项目开发,进行区域、地段的架设,使用双回路终端塔设计的方式,确保电力系统持续性的电源供给。保障用户的供电效果,明确实际电源故障问题,详细分析停电原因,并且发挥后备供电作用。2.2.3杆塔接地电阻的降低处理过程。在处理高压输电线路杆塔接地电阻的问题时,使用深埋和横向延展的方式确定电阻降低标准。横向延展接地可以有效抑制接地电阻和冲击接地电阻,施工经济成本较低。当土体结构的电阻率特别低时,也可以使用竖井和深埋的方式进行保护。

3结论

优化高压输电线路设计,是保障电力企业用电安全的前提和基础,同时是整个电力工程发展的核心和关键。相关设计工作人员应该重视高压输电线路的设计管理工作,以有效提高高压线路设计质量[4]。

参考文献:

[1]张弦.电力工程输电线路施工技术要点探析[J].科技与企业,2014,(21):130.

[2]唐亮.110~220kV输电线路设计要点分析[J].通讯世界,2014,(19):132-133.

[3]綦振杰.论述电力工程高压输电线路的施工管理与质量控制[J].黑龙江科技信息,2014,(9):107.

高压输电线范文篇6

关键词:串联电容补偿;过电压;潜供电流;次同步谐振(SSR);暂态恢复电压(TRV);电力系统

1、引言

采用串联电容补偿技术可提高超高压远距离输电线路的输电能力和系统稳定性,且对输电通道上的潮流分布具有一定的调节作用。采用可控串补还可抑制系统低频功率振荡及优化系统潮流分布;

但在系统中增加的串联电容补偿设备改变了系统之间原有的电气距离,尤其是串补度较高时,可能引起一系列系统问题,因此在串补工程前期研究阶段应对这种可能性进行认真研究,并提出解决问题的相应方案及措施。我国南方电网是以贵州、云南和天生桥电网为送端、通过天生桥至广东的三回500kV交流输电线路及一回500kV直流输电线路与受端广东电网相联的跨省(区)电网,2003年6月贵州—广东的双回500kV交流输电线路建成投运,南方电网形成了送端“五交一直”、受端“四交一直”的北、中、南三个西电东送大通道。随着南方电网西电东送规模的进一步扩大,为提高这些输电通道的输送能力和全网的安全稳定水平及抑制系统低频振荡,经研究决定分别在平果与河池变电所装设可控串补(TCSC)及固定串补装置(FSC)。通过对南方电网平果可控串补工程及河池固定串补工程进行的系统研究工作,作者对超高压远距离输电系统中,采用串联电容补偿技术可能引起的系统问题获得了比较全面的了解,并总结了解决这些问题的措施及方案。

研究结果表明,超高压输电线路加装串补后所引发的系统问题主要有过电压、潜供电流、断路器暂态恢复电压(TRV)及次同步谐振(SSR)等问题。

2、串补装置结构及其原理

目前在电力系统中应用的串联电容补偿装置按其过电压保护方式可分为单间隙保护、双间隙保护、金属氧化物限压器(MOV)保护和带并联间隙的MOV保护四种串补装置。带并联间隙的MOV保护方式的串补装置具有串补再次接入时间快、减少MOV容量及提供后备保护等优势,相对而言更有利于提高系统暂态稳定水平,因此目前在电力系统的串补工程中得到了比较广泛的应用。

(1)MOV是串联补偿电容器的主保护。串补所在线路上出现较大故障电流时,串联补偿电容器上将出现较高的过电压,MOV可利用其自身电压–电流的强非线性特性将电容器电压限制在设计值以下,从而确保电容器的安全运行。

(2)火花间隙是MOV和串联补偿电容器的后备保护,当MOV分担的电流超过其启动电流整定值或MOV吸收的能量超过其启动能耗时,控制系统会触发间隙,旁路掉MOV及串联补偿电容器。

(3)旁路断路器是系统检修和调度的必要装置,串补站控制系统在触发火花间隙的同时命令旁路断路器合闸,为间隙灭弧及去游离提供必要条件。

摘要:文章结合我国南方电网河池固定串补及平果可控串补工程,对超高压输电线路装设串联电容补偿装置后的系统状况进行了比较深入的研究,指出一些系统问题,如过电压水平升高、潜供电流增大和可能发生的次同步谐振均源于串联电容补偿装置的固有特性,通过研究认为当串补所在输电线路发生内部故障时,采取强制触发旁路间隙等保护措施,是避免出现系统恢复电压水平超标和潜供电流增大等问题的有效途径。此外,还建议在串补站内装设抑制或监视次同步谐振的二次装置以抑制和避免系统发生次同步谐振。

关键词:串联电容补偿;过电压;潜供电流;次同步谐振(SSR);暂态恢复电压(TRV);电力系统

1、引言

采用串联电容补偿技术可提高超高压远距离输电线路的输电能力和系统稳定性,且对输电通道上的潮流分布具有一定的调节作用。采用可控串补还可抑制系统低频功率振荡及优化系统潮流分布;

但在系统中增加的串联电容补偿设备改变了系统之间原有的电气距离,尤其是串补度较高时,可能引起一系列系统问题,因此在串补工程前期研究阶段应对这种可能性进行认真研究,并提出解决问题的相应方案及措施。我国南方电网是以贵州、云南和天生桥电网为送端、通过天生桥至广东的三回500kV交流输电线路及一回500kV直流输电线路与受端广东电网相联的跨省(区)电网,2003年6月贵州—广东的双回500kV交流输电线路建成投运,南方电网形成了送端“五交一直”、受端“四交一直”的北、中、南三个西电东送大通道。随着南方电网西电东送规模的进一步扩大,为提高这些输电通道的输送能力和全网的安全稳定水平及抑制系统低频振荡,经研究决定分别在平果与河池变电所装设可控串补(TCSC)及固定串补装置(FSC)。通过对南方电网平果可控串补工程及河池固定串补工程进行的系统研究工作,作者对超高压远距离输电系统中,采用串联电容补偿技术可能引起的系统问题获得了比较全面的了解,并总结了解决这些问题的措施及方案。

研究结果表明,超高压输电线路加装串补后所引发的系统问题主要有过电压、潜供电流、断路器暂态恢复电压(TRV)及次同步谐振(SSR)等问题。

2、串补装置结构及其原理

目前在电力系统中应用的串联电容补偿装置按其过电压保护方式可分为单间隙保护、双间隙保护、金属氧化物限压器(MOV)保护和带并联间隙的MOV保护四种串补装置。带并联间隙的MOV保护方式的串补装置具有串补再次接入时间快、减少MOV容量及提供后备保护等优势,相对而言更有利于提高系统暂态稳定水平,因此目前在电力系统的串补工程中得到了比较广泛的应用。

(1)MOV是串联补偿电容器的主保护。串补所在线路上出现较大故障电流时,串联补偿电容器上将出现较高的过电压,MOV可利用其自身电压–电流的强非线性特性将电容器电压限制在设计值以下,从而确保电容器的安全运行。

(2)火花间隙是MOV和串联补偿电容器的后备保护,当MOV分担的电流超过其启动电流整定值或MOV吸收的能量超过其启动能耗时,控制系统会触发间隙,旁路掉MOV及串联补偿电容器。

(3)旁路断路器是系统检修和调度的必要装置,串补站控制系统在触发火花间隙的同时命令旁路断路器合闸,为间隙灭弧及去游离提供必要条件。

(4)阻尼装置可限制电容器放电电流,防止串联补偿电容器、间隙、旁路断路器在放电过程中被损坏。3串补装置引起的过电压问题串补装置虽可提高线路的输送能力,但也影响了系统及装设串补装置的输电线路沿线的电压特性。如线路电流的无功分量为感性,该电流将在线路电感上产生一定的电压降,而在电容器上产生一定的电压升;如线路电流的无功分量为容性,该电流将在线路电感上产生一定的电压升,而在电容器上产生一定的电压降。电容器在一般情况下可以改善系统的电压分布特性;但串补度较高、线路负荷较重时,可能使沿线电压超过额定的允许值。河池及平果串补工程的线路高抗与串补的相对位置不同时,输电线路某些地点的运行电压可能超过运行要求。

例如,惠河线或天平线一回线故障时,如将高抗安装在串补的线路侧,则串补线路侧电压可达到561kV或560kV以上[2],均超过高抗允许的长期运行电压,因此在两工程中均建议将线路高抗安装在串补的母线侧以避免系统运行电压超标的问题。在输电线路装设了串联电容补偿装置后,线路断路器出现非全相操作时,带电相电压将通过相间电容耦合到断开相。河池FSC及平果TCSC工程中的惠(水)—河(池)及天(生桥)—平(果)线路上均已装设并联电抗器,如新增加的电容器容抗与已安装的高压并联电抗器的感抗之间参数配合不当,则可能引发电气谐振,从而在断开相上出现较高的工频谐振过电压[3].因此在这两个工程的系统研究工作中对串联电容器参数进行了多方案比选以避免工频谐振过电压的产生。对这两个串补工程进行的过电压研究表明,由于惠河线及天平线两侧均接有大系统,无论惠河线或天平线有无串补,在线路发生甩负荷故障时,河池及平果母线侧工频过电压基本相同;仅在发生单相接地甩负荷故障时,串联电容补偿的加入使得单相接地系数增大,从而使线路侧工频过电压略有提高,但均未超过规程的允许值,不会影响电网的安全稳定运行。

4、串补装置对潜供电流的影响

线路发生单相接地故障时,线路两端故障相的断路器相继跳开后,由于健全相的静电耦合和电磁耦合,弧道中仍将流过一定的感应电流(即潜供电流)[4],该电流如过大,将难以自熄,从而影响断路器的自动重合闸。在超高压输电线路上装设串联电容补偿装置后,单相接地故障过程中,如串补装置中的旁路断路器和火花间隙均未动作,电容器上的残余电荷可能通过短路点及高抗组成的回路放电,从而在稳态的潜供电流上叠加一个相当大的暂态分量。该暂态分量衰减较慢,可能影响潜供电流自灭,对单相重合闸不利;单相瞬时故障消失后,恢复电压上也将叠加电容器的残压,恢复电压有所升高,影响单相重合闸的成功。根据对河池串补工程进行的研究:惠河线的惠水侧单相接地时,潜供电流波形是一个低频(f≈7Hz)、衰减的放电电流,电流幅值高达250-390A[5](见图2)。断路器分闸0.5s后,该电流幅值仍可达200-300A,它将导致潜供电弧难以熄灭;如单相接地后旁路开关动作短接串联电容,潜供电流中将无此低频放电暂态分量[5]

高压输电线范文篇7

关键词:串联电容补偿;过电压;潜供电流;次同步谐振(SSR);暂态恢复电压(TRV);电力系统

1、引言

采用串联电容补偿技术可提高超高压远距离输电线路的输电能力和系统稳定性,且对输电通道上的潮流分布具有一定的调节作用。采用可控串补还可抑制系统低频功率振荡及优化系统潮流分布;

但在系统中增加的串联电容补偿设备改变了系统之间原有的电气距离,尤其是串补度较高时,可能引起一系列系统问题,因此在串补工程前期研究阶段应对这种可能性进行认真研究,并提出解决问题的相应方案及措施。我国南方电网是以贵州、云南和天生桥电网为送端、通过天生桥至广东的三回500kV交流输电线路及一回500kV直流输电线路与受端广东电网相联的跨省(区)电网,2003年6月贵州—广东的双回500kV交流输电线路建成投运,南方电网形成了送端“五交一直”、受端“四交一直”的北、中、南三个西电东送大通道。随着南方电网西电东送规模的进一步扩大,为提高这些输电通道的输送能力和全网的安全稳定水平及抑制系统低频振荡,经研究决定分别在平果与河池变电所装设可控串补(TCSC)及固定串补装置(FSC)。通过对南方电网平果可控串补工程及河池固定串补工程进行的系统研究工作,作者对超高压远距离输电系统中,采用串联电容补偿技术可能引起的系统问题获得了比较全面的了解,并总结了解决这些问题的措施及方案。

研究结果表明,超高压输电线路加装串补后所引发的系统问题主要有过电压、潜供电流、断路器暂态恢复电压(TRV)及次同步谐振(SSR)等问题。

2、串补装置结构及其原理

目前在电力系统中应用的串联电容补偿装置按其过电压保护方式可分为单间隙保护、双间隙保护、金属氧化物限压器(MOV)保护和带并联间隙的MOV保护四种串补装置。带并联间隙的MOV保护方式的串补装置具有串补再次接入时间快、减少MOV容量及提供后备保护等优势,相对而言更有利于提高系统暂态稳定水平,因此目前在电力系统的串补工程中得到了比较广泛的应用。

(1)MOV是串联补偿电容器的主保护。串补所在线路上出现较大故障电流时,串联补偿电容器上将出现较高的过电压,MOV可利用其自身电压–电流的强非线性特性将电容器电压限制在设计值以下,从而确保电容器的安全运行。

(2)火花间隙是MOV和串联补偿电容器的后备保护,当MOV分担的电流超过其启动电流整定值或MOV吸收的能量超过其启动能耗时,控制系统会触发间隙,旁路掉MOV及串联补偿电容器。

(3)旁路断路器是系统检修和调度的必要装置,串补站控制系统在触发火花间隙的同时命令旁路断路器合闸,为间隙灭弧及去游离提供必要条件。

(4)阻尼装置可限制电容器放电电流,防止串联补偿电容器、间隙、旁路断路器在放电过程中被损坏。3串补装置引起的过电压问题串补装置虽可提高线路的输送能力,但也影响了系统及装设串补装置的输电线路沿线的电压特性。如线路电流的无功分量为感性,该电流将在线路电感上产生一定的电压降,而在电容器上产生一定的电压升;如线路电流的无功分量为容性,该电流将在线路电感上产生一定的电压升,而在电容器上产生一定的电压降。电容器在一般情况下可以改善系统的电压分布特性;但串补度较高、线路负荷较重时,可能使沿线电压超过额定的允许值。河池及平果串补工程的线路高抗与串补的相对位置不同时,输电线路某些地点的运行电压可能超过运行要求。

例如,惠河线或天平线一回线故障时,如将高抗安装在串补的线路侧,则串补线路侧电压可达到561kV或560kV以上[2],均超过高抗允许的长期运行电压,因此在两工程中均建议将线路高抗安装在串补的母线侧以避免系统运行电压超标的问题。在输电线路装设了串联电容补偿装置后,线路断路器出现非全相操作时,带电相电压将通过相间电容耦合到断开相。河池FSC及平果TCSC工程中的惠(水)—河(池)及天(生桥)—平(果)线路上均已装设并联电抗器,如新增加的电容器容抗与已安装的高压并联电抗器的感抗之间参数配合不当,则可能引发电气谐振,从而在断开相上出现较高的工频谐振过电压[3].因此在这两个工程的系统研究工作中对串联电容器参数进行了多方案比选以避免工频谐振过电压的产生。对这两个串补工程进行的过电压研究表明,由于惠河线及天平线两侧均接有大系统,无论惠河线或天平线有无串补,在线路发生甩负荷故障时,河池及平果母线侧工频过电压基本相同;仅在发生单相接地甩负荷故障时,串联电容补偿的加入使得单相接地系数增大,从而使线路侧工频过电压略有提高,但均未超过规程的允许值,不会影响电网的安全稳定运行。

4、串补装置对潜供电流的影响

线路发生单相接地故障时,线路两端故障相的断路器相继跳开后,由于健全相的静电耦合和电磁耦合,弧道中仍将流过一定的感应电流(即潜供电流)[4],该电流如过大,将难以自熄,从而影响断路器的自动重合闸。在超高压输电线路上装设串联电容补偿装置后,单相接地故障过程中,如串补装置中的旁路断路器和火花间隙均未动作,电容器上的残余电荷可能通过短路点及高抗组成的回路放电,从而在稳态的潜供电流上叠加一个相当大的暂态分量。该暂态分量衰减较慢,可能影响潜供电流自灭,对单相重合闸不利;单相瞬时故障消失后,恢复电压上也将叠加电容器的残压,恢复电压有所升高,影响单相重合闸的成功。根据对河池串补工程进行的研究:惠河线的惠水侧单相接地时,潜供电流波形是一个低频(f≈7Hz)、衰减的放电电流,电流幅值高达250-390A[5](见图2)。断路器分闸0.5s后,该电流幅值仍可达200-300A,它将导致潜供电弧难以熄灭;如单相接地后旁路开关动作短接串联电容,潜供电流中将无此低频放电暂态分量[5]

高压输电线范文篇8

关键词:高压输电;施工安全;管理电力行业

对经济发展起着至关重要的作用。高压输电作为电力系统的重要组成部分,带动了经济的发展。高压输电线路施工的安全至关重要,所以对高压输电的监管和检测也必不可少。在高压线路建成后,整个网络运行的安全性和稳定性很大程度上取决于高压线路的质量。因此,相关企业必须加大施工安全监管和监测力度,确保生产线的稳定运行。文中将着重介绍高压输电线路工程施工的安全质量控制策略。

1加强施工质量的必要性

我国电力能源分布的情况和电负荷在全国范围内不均匀,为了解决这一问题,可以多建能源供应站,同时还可以将能源从需求量少的地方输送到能源消耗大的地方。这就涉及到高压输电和其安全的管理。在任何事业中,加强对项目质量的监管是实现经济效益和投资效益最大化的基础。作为一个新兴的电力行业,高压输电工程中还要加强对基础施工质量的监督,保证基础施工质量,从而为整个高压输电线路的建设打下坚实的基础[1]。

2高压输电线路工程施工安全质量内部控制策略

2.1做好每一级安全工作。在高压输电线路工程中,要做好各级安全工作。深化并严格执行国家电网公司颁布的安全责任标准,确保党和政府有同样的责任和义务,严格对待渎职,并追究其责任。加强施工人员的安全技能培训,提高施工人员这方面的理论知识和施工技能。管理部门应协调和监督施工过程,确保项目按既定计划实施。此外,需培养严谨的工作态度,确保工作有序开展,确保施工安全。2.2构建规范的安全管理体系。为了提高高压工程的质量和管理效果,必须要有完善的安全管理体系,包括提前计划和应急措施。在开始施工之前,做好充分的施工准备工作是很有必要的。仔细分析存在安全隐患的地方,并在发生问题之前做好准备,确保施工安全。加强人员在施工过程中的安全防范意识,确保施工现场处于安全环境。遵循以人为本,安全第一的原则,把工作人员的生命安全放在首位。此外,有必要制定符合项目建设实际情况的制度规划,同时完善奖惩制度、薪酬制度等,使建设工作积极性更好。为施工人员提供教育培训,包括施工安全知识教育和施工质量知识教育。还可以定期开展施工标准教育培训会,确保施工人员具有高标准的质量意识。同时,根据施工现场的具体情况,为不同级别的施工人员选择相应类型的培训计划。认真了解施工人员工作中的问题和疑惑,做好相关记录,集中解决这些难点和问题[2]。借此方式,可以确保培训工作的有效进行,从而切实提高高压输电线路的施工质量。2.3优化安全责任考核制度。加大培训力度,强化员工自律性和责任感,进而降低安全事故产生的概率。考核要针对预防安全事故,还应设立奖惩措施,以强化施工人员安全意识。(1)选出一个项目负责人为组长的安全排查小组。(2)项目安全调查组的主要工作是评估参与项目安全生产责任制的所有职能部门和个人的安全生产绩效。(3)考核采用量化评分的方法进行,满分为100分,依据考核项目的完成情况和实际施工过程中落实情况按统一标准打分。(4)评估结果分为3个等级,最终得分为80分及以上为优秀,得分为60~80分为合格,60分以下则为不合格。(5)考核时间为每个月设定的日期。

3高压输电线路工程施工安全质量控制的外部策略

3.1选择适合施工的环境条件。尽量避免在恶劣条件下施工。由于气候环境复杂多变,大雨和强风将对施工质量产生负面影响[3]。此外,火灾、地震及泥石流等自然灾害也可能对塔的基础产生极其不利的影响。因此,在施工前,应该仔细查看未来一段时间的天气状况,避开不利于施工的时间段。3.2合理选择工程实施地点。除了气候环境状况外,还应考虑当地的发展状况及城市的规划情况,这些都可能影响施工的质量[4]。施工前应选择最优施工地点,避开不利于施工的环境地点。此外,还应注意减少对居民生活的影响,合理安排施工顺序,以达到交通、人力及设备等资源的最大化利用。

4结论

通过本文的介绍,可以了解到高压输电线路项目会受到多种因素的共同影响,包括内部施工管理、外部天气及人为因素。要提高高压工程质量,必须做好各级安全工作,建立规范的安全管理体系,进一步优化安全责任考核体系。此外,需选择合适的环境条件,提高施工人员的操作技能、管理人员的认知和管理能力,做好规划也十分重要。实施过程检查措施,确保项目建设处于安全稳定的建设状态。

参考文献:

[1]杨忠辉.输电线路工程施工中技术问题及处理措施的探讨[J].广东科技,2010,(14):174-175.

[2]王雪峰.电力工程施工安全管理与施工质量管控策略分析[J].中国新技术新产品,2014,(8):47-48.

[3]徐梓华.浅谈电力工程高压输电线路的施工管理与质量控制[J].科技风,2013,(13):142.

高压输电线范文篇9

关键词:特高压交直流水电系统;技术经济性;比较

1引言

特高压交直流水电系统技术一般是以高压直流输电技术以及超高压电网技术为基础,并进行创新与完善的一种技术。2009年1000kV交流输电试验示范工程投入运行,来年±800kV直流水电试验示范工程也投入运行。随着我国电力事业的快速发展,我国特高压输电工程建设正处于稳步上升阶段。特高压输电技术的广泛应用,很好地解决了当前输电技术存在的经济性较低以及无法实现或者实现难度较大的更远距离输电问题,进一步提高了输电系统供电的稳定性、安全性以及经济性。对于当前特高压输电网而言,1000kV以及±800kV输电系统的技术经济性是重中之重。基于此,研究特高压交直流输电系统技术经济性具有重要的现实意义。

21000kV和±800kV输电系统建设成本阐述

2.11000kV输电系统的建设成本。一般来说,都是使用单位输电建设成本来表示1000kV与±800kV输电系统的建设成本。同时,参照示范工程投资决算实对其施估算。以2009年投入运行的1000kV特高压交流试验示范工程为例来看,其最初建设成本为56.9亿元。根据试验示范工程相关元器件成本以及建设成本的实际情况,使用工程成本计算方法对其建设成本进行估算,拟使用1000kV、4410MW、1500km特高压输电系统,其单位输电建设成本预期估算成本为1900元/km•MW。若将500kV输电系统建设成本按照2500元/km•MW的价格来看,那么此1000kV特高压输电系统的单位建设成本则近似为500kV输电系统的8成左右。2.2±800kV输电系统的建设成本。对于±800kV直流输电系统而言,首先需要把各发电单元机组通过电站500kV母线汇集在一起,接着借助500kV输电线路连通到直流输电的整流站中,从而把三相交流电更换成直流电,再使用两条正负极输电线路将其配送到逆变站中,再把直流电转变为三相交流电,最后输送到有电压作为保障的500kV枢纽变电站中。和其余输电系统相同,±800kV直流输电系统在进行长距离、大规模输电的过程中,也需要两个电厂作为支撑,拟将其发电机组定位6×600MW以及5×600MW,线路总长度为1500km,通过±800kV特高压直流输电示范工程数据对其输电建设成本实施估算。某±800kV特高压直流输电示范工程的直流输电线路总长度为1891km,额定直流电流为4kA,额定换流功率为6400MW,分裂导线的规格为6×720mm2,开工建设的时间为2007年,不断对系统进行调试,最终于2010年正式投入使用。根据系统调试以及投入运行的实际结果来看,自助研发的±800kV特高压直流输电系统及其相关设备具有较高的运行性能。该±800kV直流输电示范工程建设成本为190亿元,其中换流站与相关线路的成本均占总成本的一半。根据示范工程建设成本进行估算,±800kV、6400MW、1500km直流输电系统的单位输电建设成本应为1780元/km•MW。2.31000kV和±800kV输电系统建设成本对比分析。一般来说,通过逆变站的输出功率对交流输电进行估算,而直流输电的估算亦是如此;1000kV交流输电系统的单位建设成本与±800kV直流输电系统的单位建设成本基本一致,都为1900元/km•MW,处于相同等级。1000kV交流输电系统的对地电压为578kV和±800kV直流输电系统极线的对地电压相匹配。±800kV直流输电系统的对地电压为800kV,极线之间的电压为1600kV,两者与1000kV交流输电系统相比,前者对地电压与极线间电压分别是后者的1.35倍以及1.6倍。对于特高压交直流输电系统的建设成本来说,其成本主要以绝缘成本为主,而绝缘成本简单来说就是系统对地电压函数。架空线路的建设成本受到方方面面的因素影响,其不会随着分裂导线截面的增加而同比增大。例如,1000kV交流试验示范工程分裂导线的截面和±800kV直流试验示范工程分裂导线相比,前者是后者的1.4倍;但前者实际每千米平均建设成本和后者相比,仅为86.4%,而非前文的1.4倍。1000kV和±800kV输电系统都能够对系统参数进行优化,大幅提高输电线路的供电能力,并切实降低输电建设成本。从理论方面以及实际试验示范工程成本的估算结果来看:当输电线路处于1500km以内的时候,1000kV和±800kV输电系统两者进行比较,前者的建设成本不仅低于±800kV直流输电,而且低于超高压输电。

31000kV和±800kV输电系统电阻功率损耗对比分析

一般来说,通常都是用功率损耗率来表示1000kV和±800kV输电系统的输电功率损耗(电阻功率),也就是通过输送功率以及输电功率损耗的百分比进行表示;而使用电能损耗率来表示电能损耗,也就是使用全年的输送电能值以及电能损耗值的百分比进行表示。3.11000kV输电系统电阻功率损耗。1000kV输电系统的电能损耗以及功率损耗主要包括三大方面,即输电线路、开关站以及变电站。其中开关站与变电站的功率损耗主要来自于变压器的高压并联电抗以及静止无功补偿的功率损耗,其确切数值一般和变压器的实际运行状况以及参数优化存在之间关联。但参数进行优化之后,开关站与变电站的功率损耗则近似可以看作是变压器德尔功率损耗。就当前实际状况而言,我国1000kV变压器的功率损耗一般不会超过0.15%。结合国产设备参数的估算结果来看,1000kV两开关站与两变电站功率损耗率的估算值是0.4%。当1000kV输电系统的输送功率为4410MW的时候,线路的电流则为2.546kA,则电流与电压二者的比值则为4.404×10-3。而如果导线的温度为25°的时候,8×630mm2分裂导线单位长度的电阻则为5.839×10-3Ω/km。结合输电线路电阻功率相关计算公式可知,1000kV输电线路电阻功率损耗率则为3.9%。之后,把两部分功率损耗的实际结果加在一起就能知道整个输电系统的总功率损耗。经过相关计算可知,1000kV、4410MW、1500km交流输电系统的输电功率损耗率约为4.15%。3.2±800kV输电系统电阻功率损耗。±800kV输电系统的电能损耗以及功率损耗同样包括三个部分,即输电线路、逆变站以及整流站。其中,逆变站与整流站的功率损耗主要涉及交直流滤波器、平波电抗器、无功补偿设备、晶闸管换流阀以及换流变压器等设备的功率损耗,而换流变压器与晶闸管换流阀的功率损耗占据的比重最大。由于输电系统中不可避免会存在谐波电流,因此和常规变压器相比,换流变压器的功率损耗要更大。除晶闸管存在的功率损耗之外,晶闸管换流阀功率损耗还包括电阻、阻尼电容、均压电阻以及阀电抗器等带来的功率损耗,实际数值随着电压的升高而不断增加。当±800kV换流阀处于额定功率运行的时候,其直流电流应当为4kA,则电流与电压二者之间的比值则为5.0×10-3。而如果导线的温度为25°的时候,6×720mm2分裂导线单位长度的电阻则为6.861×10-3Ω/km。±800kV、6400MW、1500km直流输电系统的电阻功率损耗率的估算值约为6.85%。总而言之,±800kV线路电阻功率损耗高于1000kV交流输电线路的根本原因在于前者线路的分裂导线电阻更大、电流与电压之间的比值更高。因此,如果想要大幅降低线路功率的损耗率,一方面应当减小输电线路中的电流,另一方面也需要增加分裂导线的横截面积。

4结束语

综上所述,随着社会经济的发展,人们对于电力的需求与依赖程度不断增加,如何提高特高压交直流输电系统的技术经济性是当前相关部门亟待解决的难题。基于此,有关工作人员需要深入研究特高压交直流输电系统的技术经济性。

参考文献

[1]曾庆禹.特高压交直流输电系统技术经济分析[J].电网技术,2015,39(02):341~348.

[2]李明节.大规模特高压交直流混联电网特性分析与运行控制[J].电网技术,2016,40(04):985~991.

[3]胡毅,刘凯,刘庭,肖宾,彭勇,苏梓铭.超/特高压交直流输电线路带电作业[J].高电压技术,2012,38(08):1809~1820.

高压输电线范文篇10

关键词:变压器;过电压;原因;保护措施

变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。

内部过电压一般为额定电压的3.0~4.5倍,而大气过电压数值很高,可达额定电压的8~12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生并进行有效的保护。

过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。

由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHz以上。在正常运行时,电网的频率是50Hz,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部流过。但对高频过电压波来说,变压器的容抗变成很小,而感抗变成很大,此时电流主要由电容流过,所以必须考虑电容的影响。

CFe—绕组每单位长度上的对地电容;C''''—高低压绕组之间每单位长度上的电容;Ct—绕组每单位长度上的匝间电容;L''''—过电压时绕组每单位长度上的漏电感;R''''—绕组每单位长度上的电阻。

下面简单说明两种不同类型过电压产生的原因:

1内部过电压

我市电网中,绝大多数是降压变压器,下面就以降压变压器空载拉闸为例说明内部电压产生的原因。

根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值为实际值的(1/K2)倍,所以二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe是并联的,故对地总电容为:CFe=ΣCFe

由于一次侧单位长度上的匝间电容Ct是串联的,故它的匝间总电容为:Ct=1/(Σ1/Ct)

在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。当再忽略绕组电阻R1时,可得空载拉闸过电压时的简化等效电路:

其中L1是一次绕组的全自感。

把空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸瞬间,电感L1中储藏的磁场能量为1/2L1i2a,电容CFe上储藏的电场能量为1/2CFeU2a。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。当不考虑能量损失时,根据能量守恒原理有

CFeU2cmax=L1i2a+CFeU2a

故得,Ucmax=■

上式表明,当拉闸电流和电容上的电压一定时,绕组的电感愈大,对地电容愈小,则拉闸时过电压愈高。电力系统中,拉闸过电压通常不超过额定电压的3.0~4.5倍。

2大气过电压

大气过电压是输电线路直接遭受雷击或雷云放电时,电磁场的剧烈变化所引起的。当输电线路直接遭受雷击时,雷云所带的大量电荷(设为正电荷)通过放电渠道落到输电线上,大量的自由电荷向输电线路的两端传播,就在输电线上引起冲击过电压波,称为雷电波。雷电波向输电线两端传播的速度接近于光速,持续的时间只有几十微秒,电压由零上升到最大值的时间只有几微秒。雷电波的典型波形如图3。

曲线由零上升到最大值这一段称为波头,下降部分称为波尾。如果把波头所占时间看成是周期波的四分之一周期,则雷电波可看成是频率极高的周期性波。这样,当过电压波到达变压器出线端时,相当于给变压器加上了一个频率极高的高电压。这一瞬变过程很快,一开始,由于高频下,ωL很大的,1/ωC很小,电流只从高压绕组的匝电容和对地电容中流过。由于低压绕组靠近铁心,它的对地电容很大,(即容抗很小),可近似地认为低压绕组接地。可雷电波袭击时,沿绕组高度上的电压分布取决于匝间电容Ct和对电容CFe的比例。在一般情况下,由于两种电容都存在,过电压时,一部分电流由对地电容分流,故每个匝间电容流的电流不相等,上面的匝间电容流过的电流最大愈往下面则愈小,随着电压沿绕组高度的分布变为不均匀,见图4:(图中UAX是过电压波加在变压器两端的电压)。

从图4中可见,起始电压分布很不均匀,靠近输电线A端的头几匝间出现很大的电压梯度,因此,在头几个线匝里,匝间绝缘和线饼之间的绝缘都受到很大的威胁,这时最高匝间电压可能高达额定电压的50~200倍。

3过电压保护

为了防止变压器绕组绝缘在过电压时被击穿,必须采取适当的过电压保护措施,目前主要采用下列措施:

(1)避雷器保护。在变压器的出线端装设避雷器,当雷电波从输电线侵入时,避雷器的保护间隙被击穿,过电压波对地放电,这样雷电波就不会侵入变压器,从而保护了变压器。

(2)加强绝缘。除了加强变压器高压绕组对地绝缘外,针对雷电波作用的特性,还要加强首端及末端部分线匝的绝缘,以承受由于起始电压分布不均匀而出现的较高的匝间电压。这种方法效果有限,而且加厚绝缘使散热困难,同时减少了匝间电容,增大了匝间电压梯度。目前只在35kV及以下的变压器中采用。

(3)增大匝间电容。匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。过去常采用加装静电板或静电屏的方法,现在在110kV以上的高压变压器上,广泛采用纠结式线圈。纠结式线圈制造工艺简单,不增加材料,与连续式线圈相比能显著增大匝间电容,所以现在高压大型电力变压器的高压绕组大多数采用了这种绕线法。