高压大功率范文10篇

时间:2023-04-03 00:14:26

高压大功率

高压大功率范文篇1

山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。

2国内现生产的高压大功率变频器的方案及优缺点

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1)器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2)均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3)对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4)输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5)dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6)系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7)四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8)冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9)可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

3变频器的性能特点

(1)变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2)输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3)控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4)控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5)采用全中文的Windows彩色液晶显示触摸界面。

(6)主电路模块化设计,安装、调试、维护方便。

(7)完整的故障监测和报警保护功能。

(8)可选择现场控制、远程控制。

(9)内置PID调节器,可开环或闭环运行。

(10)可根据需要打印输出运行报表。

4工作原理

4.1基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

4.2功率单元电路

图1方案原理框图

图2整机原理图(为了简明,图中仅画了18单元)

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

每个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的输出波形如图5所示。

4.3系统结构与控制

(1)系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

图3功率单元主回路

图4单元电路波形图

图56个单元输出迭加后的波形

图6系统结构图

a)隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b)变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c)控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1)利用三次谐波补偿技术提高了电源电压利用率。

(2)控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3)系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

5现场应用

本公司分别于2002年8月、10月和2003年3月、4月分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1)变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2)电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3)变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4)变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5)运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6)变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

6结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。

高压大功率范文篇2

山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。

2国内现生产的高压大功率变频器的方案及优缺点

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1)器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2)均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3)对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4)输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5)dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6)系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7)四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8)冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9)可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

3变频器的性能特点

(1)变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2)输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3)控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4)控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5)采用全中文的Windows彩色液晶显示触摸界面。

(6)主电路模块化设计,安装、调试、维护方便。

(7)完整的故障监测和报警保护功能。

(8)可选择现场控制、远程控制。

(9)内置PID调节器,可开环或闭环运行。

(10)可根据需要打印输出运行报表。

4工作原理

4.1基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

4.2功率单元电路

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

每个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的输出波形如图5所示。

4.3系统结构与控制

(1)系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

a)隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b)变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c)控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1)利用三次谐波补偿技术提高了电源电压利用率。

(2)控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3)系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

5现场应用

本公司分别于2002年8月、10月和2003年3月、4月分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1)变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2)电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3)变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4)变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5)运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6)变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

6结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。

高压大功率范文篇3

山东风光电子有限公司是在多年研制中低压变频器的基础上,综合了国内外高压大功率变频器的多种方案的优缺点,采用最优方案研制成功的,并于2002年12月通过了省级科技成果及产品鉴定,成为国内生产高压大功率变频器的为数较少的几个企业之一。

2国内现生产的高压大功率变频器的方案及优缺点

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1)器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2)均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3)对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4)输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5)dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6)系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7)四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8)冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9)可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

3变频器的性能特点

(1)变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2)输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3)控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4)控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5)采用全中文的Windows彩色液晶显示触摸界面。

(6)主电路模块化设计,安装、调试、维护方便。

(7)完整的故障监测和报警保护功能。

(8)可选择现场控制、远程控制。

(9)内置PID调节器,可开环或闭环运行。

(10)可根据需要打印输出运行报表。

4工作原理

4.1基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

4.2功率单元电路

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

每个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的输出波形如图5所示。

4.3系统结构与控制

(1)系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

a)隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b)变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c)控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1)利用三次谐波补偿技术提高了电源电压利用率。

(2)控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3)系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

5现场应用

本公司分别于2002年8月、10月和2003年3月、4月分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1)变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2)电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3)变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4)变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5)运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6)变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

6结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。

高压大功率范文篇4

关键词:多电平变换器;拓扑结构;高压大功率

引言

变频调速技术的飞速发展为变频器性能的提高提供了技术保障,而环保和节能的客观需要,又为变频器在生产和生活的各个领域中的应用提供了发展空间,但是,随着国民经济的发展,小容量变频器已越来越不能满足现代化生产和生活的需要。目前,我国采用的变频调速装置基本上都是低压的,即电压为380~690V,而在节能方面起着更主要作用的高电压大容量变频器在我国尚处于起步阶段。是什么原因阻碍了高压大功率变频调速技术的应用呢?主要原因一是大容量(200kW以上)电动机的供电电压高(6kV或者10kV),而电力电子器件的耐压等级和所承受的电流的限制,造成了电压匹配上的困难;二是高压大功率变频调速系统技术含量高,难度大,成本高,而一般的风机、水泵等节能改造项目都希望低投入、高回报,较少考虑社会效益和综合经济效益。这两个原因使得高压变频调速技术的发展和推广受到了限制,因此,提高电力电子变流装置的功率容量,降低成本,改善其输出性能是现代电力电子技术的重要发展方向之一,也是当前世界各国相关行业竞相关注的热点,为此,国内外各变频器生产厂商八仙过海,各有高招,虽然其主电路结构不尽一致,但都较为成功地解决了高压大容量这一难题[5]。

1大功率电力电子变流装置的拓扑学进展[3]

近年来,各种高压变频器不断出现,可是到目前为止,高压变频器还没有像低压变频器那样具有近乎统一的拓扑结构。根据高压组成方式,可分为直接高压型和高—低—高型;根据有无中间直流环节,可以分为交—交变频器和交—直—交变频器。在交—直—交变频器中,根据中间直流滤波环节的不同,又可分为电压源型(也称电压型)和电流源型(也称电流型)。高—低—高型变频器采用变压器实行降压输入、升压输出的方式,其实质上还是低压变频器,只不过从电网和电动机两端来看是高压的,这是受到功率器件电压等级限制而采取的变通办法。由于需要输入、输出变压器,而存在中间低压环节电流大、效率低、可靠性下降、占地面积大等缺点,只用于一些小容量高压电动机的简单调速。常规的交—交变频器由于受到输出最高频率的限制,只用在一些低速、大容量的特殊场合。

下面对直接高压大功率电力电子装置拓扑结构作一个分类,分类是针对单个器件的电压或电流承受能力往往不能适应容量要求这一特点进行的,为此,把大功率电力电子变流装置的拓扑结构分为两类:

1)以器件串联为基础的桥臂扩展型结构;

2)以变流单元电路串联为基础的多单元变流器结构。

这种分类方式从电路构成的角度揭示了名种拓扑结构的内在联系。按照这种分类方式,多管串联的两电平变换电路,二极管钳位和飞跨电容钳位型多电平拓扑属于以器件串联为基础的桥臂扩展型结构;级联型多电平变流器属于以变流单元电路串联为基础的多单元变流器结构。

2高—低—高结构

该种结构将输入高压经降压变压器变成380V

的低压,然后用普通变频器进行变频,再由升压变压器将电压变回高压。很明显,该种结构的优点是可利用现有的低压变频技术实现高压变频,易于实现,价格低;其缺点是系统体积大、成本高、效率低、低频时能量传输困难等。

3器件串联拓扑结构[4]

3.1多管串联的两电平变换电路

将器件串联使用,是满足系统容量要求的一个简单直观的办法。串联在一起的各个器件,被当作单个器件使用,其控制也是完全相同的。这种结构的优点是可利用较为成熟的低压变频器的电路拓扑,控制策略和控制方法;其缺点是串联开关管需要动态均压和静态均压。这是因为串联器件开、关时间不一致,最后开通或最先关断的器件将承受全部电源电压,这就必然影响到它的可靠运行,所以,电力电子器件串联运行时应有相应的均压措施,而均压电路使系统复杂化,损耗增加,效率下降。另外,为使串联器件同时导通和关断,对驱动、控制电路的要求也大大提高。图1为多管串联的两电平主电路拓扑结构。

3.2中点钳位型多电平拓扑结构

3.2.1二极管钳位型多电平结构

为了解决器件直接串联时的均压问题,逐渐发展出以器件串联为基础,各器件分别控制的变流器结构。在这方面,日本学者A.Nabae于1983年提出的中点钳位型PWM逆变电路结构具有开创性的意义。单相中点二极管钳位型变流器的结构如图2所示,该变流器的输出电压为三电平。如果去掉两个钳位二极管,这种变流器就是用两个功率器件串联使用代替单个功率器件的半桥逆变电路。由于两个钳位二极管的存在,各个器件能够分别进行控制,因而避免了器件直接串联引起的动态均压问题。与普通的二电平变流器相比,由于输出电压的电平数有所增加,每个电平幅值相对降低,由整个直流母线电压降为一半直流母线电压,在同等开关频率的前提下,可使输出波形质量有较大的改善,输出dv/dt也相应下降,因此,中点钳位型变流器显然比普通二电平变流器更具优势。

图4

图2中DA,DA′,DB,DB′为钳位二极管,分压电容C1=C2。开关管SA1,SA1′和SB1,SB1′等互补。

增加分压电容、钳位二极管,功率开关管可以得到多电平变换电路。若要得到m电平,则需要(m-l)个直流分压电容,每一桥臂需要2(m-l)个主开关器件和(m-l)(m-2)个钳位二极管。在需要四象限可逆运行的场合,可将两组相同的多电平变换器按照“背靠背”的方式进行连接。

二极管钳位型变流器同时具有多重化和脉宽调制的优点,即输出功率大,器件开关频率低,等效开关频率高;交流侧不需要变压器连接;动态响应好,传输带宽较宽;便于双向功率流控制。其缺点是

1)钳位二极管的耐压要求较高,数量庞大。对于m电平变流器,如果使每个二极管的耐压等级相同,每相所需的二极管数量为(m-1)(m-2),不但大大提高了成本,而且在线路安装方面相当困难。因此,在实际应用中一般仅限于7电平或9电平变流器的研究。

2)开关器?的导通负荷不一致。最靠近母线的开关SA1仅在Va0=Vdc时开通。而最靠近输出端的SAm仅在Va0=0时不开通。导通负荷不平衡导致开关器件的电流等级不同。在电路中,如果按导通负荷最严重的情况设计器件的电流等级,则每相有2(m-2)个外层器件的电流等级过大,造成浪费。

3)在变流器进行有功功率传送的时候,直流侧各电容的充放电时间各不相同,从而造成电容电压不平衡,增加了系统动态控制的难度。

3.2.2飞跨电容多电平变换器结构

图3所示为单相飞跨电容三电平变换器的拓扑结构,C1及C2为直流侧串联电容,CA及CB为钳位电容。假定每个电容的电压等级与开关器件相同,那么一个m电平变流器在直流侧需要m-1个电容。通过比较不难看出,直流侧电容不变,用飞跨电容取代钳位二极管,工作原理与二极管钳位电路相似。这种拓扑结构虽省去了大量的二极管,但又引入了不少电容。对高压系统而言,电容体积大、成本高、封装难。不过在电压合成方面,由于电容的引进,开关状态的选择更加灵活,使电压合成的选择增多,通过在同一电平上不同开关状态的组合,可使电容电压保持均衡。由此可知,电容钳位型多电平变流器的电平合成自由度和灵活性高于二极管多电平变流器。电容钳位型多电平变流器的优点是开关方式灵活,对功率器件保护能力较强;既能控制有功功率,又能控制无功功率,但控制方法非常复杂,而且开关频率增高,开关损耗增大,效率随之降低。其主要缺点是

1)需要大量的存储电容。如果所有电容的电压等级都与主功率器件的相同,那么一个m电平的电容钳位型多电平变流器每相桥臂需要(m-1)(m-2)/2个辅助电容,而直流侧上还需要(m-1)个电容。电平数较高时就增加了安装的难度,同时也增加了造价。

2)为了使电容的充放电保持平衡,对于中间值电平需要采用不同的开关组合,这就增加了系统控制的复杂性,器件的开关频率和开关损耗。

3)与二极管钳位型多电平变流器一样,电容钳位型多电平变流器也存在导通负荷不一致的问题。

4以变流单元电路串联为基础的多单元变流器结构

4.1级联型多电平拓扑结构

这是一种较为新颖的多电平变换器拓扑结构。级联型多电平变流器,采用若干个低压PWM变流单元直接级联的方式实现高压输出。由这种拓扑结构组成的电压源型变频器系由美国罗宾康公司发明并申请专利,取名为完美无谐波变频器。我国北京利德华福生产的高压变频器也是采用这种结构。该变频器结构具有对电网谐波污染小,输入功率因数高,不必采用输入谐波滤波器和功率因数补偿装置,输出波形好,不存在由谐波引起的电动机附加发热,转矩脉动,噪声,共模电压等问题,可以使用普通的异步电动机。

4.1.1单元串联多电平变换器原理[3]

单元串联多电平变换器采用若干个独立的低压功率单元串联的方式来实现高压输出,其原理如图4(a)所示。6kV输出电压等级的变频器主电路拓扑结构如图4(b)所示。电网电压经过二次侧多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交—直—交PWM电压源型逆变器结构〔见图4(c)〕,将相邻功率单元的输出端串接起来,形成丫联结结构,实现变压变频的高压直接输出,供给高压电动机。每个功率单元分别由输入变压器的一组二次绕组供电,功率单元之间及变压器二次绕组之间相互绝缘。对于额定输出电压为6kV的变频器,每相由5个额定电压为690V的功率单元串联而成,输出相电压最高可达3450V,线电压可达6kV左右,每个功率单元承受全部的输出电流,但只提供1/5的相电压和1/l5的输出功率,所以,单元的电压等级和串联数量决定变领器输出电压,单元的额定电流决定变频器的输出电流。

由于不是采用传统器件串联方式来实现高压输出,而是采用整个功率单元串联,所以,不存在器件串联引起的均压问题。由于串联功率单元较多,对单元本身的可靠性要求很高。输入变压器实行多重化设计,达到降低谐波电流的目的。

4.1.2同其他拓扑结构的比较

与采用高压器件直接串联的变频器相比,采用这种主电路拓扑结构会使器件的数量增加。但低压IGBT门极驱动功率较低,其峰值驱动功率不到5W,平均驱动功率不到1W,驱动电路非常简单。由于开关频率低,且不必采用均压电路和浪涌吸收电路,所以系统在效率方面具有较大的优势。功率单元采用目前低压变频器中广泛使用的低压IGBT功率模块,技术成熟、可靠。由于采用二极管不可控整流电路结构,所以,变频器对浪涌电压的承受能力较强。

相对于二极管钳位型和电容钳位型多电平变流器,这种结构避免了使用大量的钳位二极管或电压平衡电容。每个独立直流源与一个单相全桥变流器相连。交流侧的端电压通过串联方式叠加,形成多电平变流器的输出电压。每个单相全桥变流器可以产生一个三电平的输出电压。由m个变流器单元级联而成的多电平变流器的电平数为(2m+1)。

单元级联多电平拓扑结构的优点是:1)使用串联的方法可以将耐压低、开关频率也不高的功率器件直接应用到高压大功率场合;

2)基于单元串联结构,每个单元的控制逻辑都是独立的,从而解决了中点钳位逆变电路在电平数增加时,开关逻辑越来越复杂的问题;

3)各单元互相隔离,串级电路结构不存在静、动态均压问题;

4)在串级电路设计上可以使用功率单元旁路技术,这样当某个单元发生故障时,控制系统可以直接将故障单元旁路,电路仍可继续工作,只是输出电压略有下降;

5)串级电路的单元模块化为实际安装和使用提供了很大便利;

6)串级电路使用多副边绕组变压器,通过副边绕组的移相联接可以将电流谐波影响几乎减小到零,从而改善了电路的功率因数。

然而,串级电路结构的缺点也比较明显:

1)每个基本单元都用一个独立的直流电源供电,虽然使各个单元彼此隔离,但随着电平数增加,直流电源数也将增加;

2)使用的功率单元及功率器件数量较多,增加了投入,造价昂贵,且装置的体积大,需要占用一定的安装空间;

3)无法实现能量回馈及四象限运行,只适用于风机、水泵等一般不要求四象限运行的设备。

4.2改进的级联型多电平变换器[1][2]

当独立的直流电源电压相等,并且取E时,由m个单相全桥逆变单元组成的单相级联型多电平电路输出电平数为2m+1。若将级联多电平变换器中各独立直流电源的电压分别取E,2E,4E,2mE,则其输出电平数大幅度地增加到2m-1,这就是改进的级联多电平变换器的思想,从更严格的意义上讲,它不是一种新的电路拓扑结构,说是一种控制策略更为合适。

图5为采用改进的级联多电平结构的GTO和IGBT混合型逆变电路。该逆变器的直流侧总电压为4.5kV,由GTO组成的高压单元承担3kV,由IGBT构成低压单元承担1.5kV。采用合适的控制策略,可以在输出合成由-4.5kV,-3kV,

-1.5kV,0,1.5kV,3kV,4.5kV等7电平构成的阶梯波,如表1所列。和电压相等的普通级联多电平电路相比,输出电压的级数由5增加到7。将波形合成策略和脉冲宽度调制PWM策略相结合,可以得到一种非常适合于该种混合型级联多电平逆变器的控制策略,即较高电压的GTO逆变单元以输出电压的基波频率为切换频率;而较低电压的IGBT逆变单元则在较高的频率下进行脉冲宽度调制,以此来改善输出波形。GTO和IGBT在电路中的作用有所不同,GTO主要用来承担电压,而IGBT用来改善波形。图6为混合逆变电路仿真输出波形,其中图6(a)为GTO输出波形,开关频率为基波频率,图6(b)为IGBT输出波形,载波频率为4kHz。级联型多电平变换器中各独立直流电源的电压还可以分别取E,3E,9E,3mE,则其输出的电平数大幅度地增加到3m。但由于电压以2m或者3m倍数增加,而器件的耐压有限,所以,改进型级联多电平电路的串联级数不能无限增加,实际系统的级联数目最多不会超过3。

表1改进的级联多电平变流器各输出电平组合情况(Vdc=2Vdc=2E)

Vdc

GTO单元的输出电压

IGBT单元的输出电压

3E

2E

E

2E

2E

E

E

E

2E

-E

-E

-E

-E

-2E

E

-2E

-2E

-3E

-2E

-E

高压大功率范文篇5

目前,国内生产的高压大功率变频器中,以2种方案占主流:一种是功率单元串联形成高压的多重化技术;另一种是采用高压模块的三电平结构。而其他的采用高-低-高方案的,由于输出升压变压器技术难度高,成本高,占地面积大,都已基本被淘汰。因此采用高-高方案是高压大功率变频器的主要发展方向。

而高-高方案又分为多重化技术(简称CSML)和三电平(简称NPC)方案,目前有的厂家生产的高压大功率变频器是采用的三电平方案,而大多数厂家则是采用低压模块、多单元串联的多重化技术。这2种方案比较,各有优缺点,主要表现在:

(1)器件

采用CSML方式,器件数量较多,但都是低压器件,不但价格低,而且易购置,更换方便。低压器件的技术也较成熟。而NPC方案,采用器件少,但成本高,且购置困难,维修不方便。

(2)均压问题(包括静态均压和动态均压)

均压是影响高压变频器的重要因素。采用NPC方式,当输出电压较高时(如6kV),单用单个器件不能满足耐压要求,必须采用器件直接串联,这必然带来均压问题,失去三电平结构在均压方面的优势,系统的可靠性也将受到影响。而采用CSML方案则不存在均压问题。唯一存在的是当变频器处于快速制动时,电动机处于发电制动状态,导致单元内直流母线电压上升,各单元的直流母线电压上升程度可能存在差异,通过检测功率单元直流母线电压,当任何单元的直流母线电压超过某一阈值时,自动延长减速时间,以防止直流母线电压上升,即所谓的过压失速防止功能。这种技术在低压变频器中被广泛采用,非常成功。

(3)对电网的谐波污染和功率因数

由于CSML方式输入整流电路的脉波数超过NPC方式,前者在输入谐波方面的优势很明显,因此在综合功率因数方面也有一定的优势

(4)输出波形

NPC方式输出相电压是三电平,线电压是五电平。而CSML方式输出相电压为11电平,线电压为21电平(对五单元串联而言),而且后者的等效开关频率大大高于前者,所以后者在输出波形的质量方面也高于前者。

(5)dv/dt

NPC方式的输出电压跳变台阶为高压直流母线电压的一半,对于6kV输出变频器而言,为4kV左右。CSML方式输出电压跳变台阶为单元的直流母线电压,不会超过1kV,所以前者比后者的差距也是很明显的。

(6)系统效率

就变压器与逆变电路而言,NPC方式与CSML方式效率非常接近。但由于输出波形质量差异,若采用普通电机,前者必须设置输出滤波器,后者不必。而滤波器的存在大约会影响效率的0.5%左右。

(7)四象限运行

NPC方式当输入采用对称的PWM整流电路时,可以实现四象限运行,可用于轧机、卷扬机等设备;而CSML方式则无法实现四象限运行。只能用于风机、水泵类负载。

(8)冗余设计

NPC方式的冗余设计很难实现,而CSML方式可以方便的采用功率单元旁路技术和冗余功率单元设计方案,大大的有利于提高系统的可靠性。

(9)可维护性

除了可靠性之外,可维护性也是衡量高压大功率变频器的优劣的一个重要因素,CSML方式采用模块化设计,更换功率单元时只要拆除3个交流输入端子和2个交流输出端子,以及1个光纤插头,就可以抽出整个单元,十分方便。而NPC方式就不那么方便了。

总之,三电平电压形变频器结构简单,且可作成四象限运行的变频器,应用范围宽。如电压等级较高时,采用器件直接串联,带来均压问题,且存在输出谐波和dv/dt等问题,一般要设置输出滤波器,在电网对谐波失真要求较高时,还要设置输入滤波器。而多重化PWM电压型变频器不存在均压问题,且在输入谐波及dv/dt等方面有明显优势。对于普通的风机、水泵类一般不要求四象限运行的场合,CSML变频器有较广阔的应用前景。这类变频器又被国内外设计者称之为完美无谐波变频器。

我公司的设计人员经过多方探讨,综合各种方案的优缺点,最后选定了完美无谐波变频器的CSML方案作为我们的最佳选择,这就是我们向市场推出的JD-BP37和JD-BP38系列的高压大功率变频器。

2变频器的性能特点

(1)变频器采用多功率单元串联方案,输出波形失真小,可配接普通交流电机,无须输出滤波器。

(2)输入侧采用多重化移相整流技术,电流谐波小,功率因数高。

(3)控制器与功率单元之间的通信用多路并行光纤实现,提高了抗干扰性及可靠性。

(4)控制器中采用一套独立于高压源的电源供电系统,有利于整机调试和操作人员的培训。

(5)采用全中文的Windows彩色液晶显示触摸界面。

(6)主电路模块化设计,安装、调试、维护方便。

(7)完整的故障监测和报警保护功能。

(8)可选择现场控制、远程控制。

(9)内置PID调节器,可开环或闭环运行。

(10)可根据需要打印输出运行报表。

3工作原理

3.1基本原理

本变频器为交-直-交型单元串联多电平电压源变频调速器,原理框图如图1所示。单元数的多少视电压高低而定,本处以每相为8单元,共24单元为例。每个功率单元承受全部的电机电流、1/8的相电压、1/24的输出功率。24个单元在变压器上都有自立独立的三相输入绕组。功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,目的是实现多重化,降低输入电流的谐波成分。24个二次绕组分成三相位组,互差为20°,以B相为基准,A相8个单元对应的8个二次绕组超前B相20°,C相8个单元对应的8个二次绕组落后B相20°,形成18脉冲整流电路结构。整机原理图如图2所示。

3.2功率单元电路

所有单元都有6支二极管实现三相全波整流,有4个IGBT管构成单相逆变电路。功率单元的主电路如图3所示,4个IGBT管分别用T1、T2、T3、T4表示,它们的门极电压分别是UG1、UG2、UG3、UG4、

个功率单元的输出都是一样的PWM波。功率单元输出波形如图4所示。逆变器采用多电平移相PWM技术。同一相的功率单元输出完全相同的基准电压(同幅度、同频率、同相位)。多个单元迭加后的输出波形如图5所示。

4.3系统结构与控制

(1)系统结构

整个系统有隔离变压器、3个变频柜和1个控制柜组成,参见图6。

a)隔离变压器

原边为星形接法,副边共有24个独立的三相绕组,为了适应现场的电网情况,变压器原边留有抽头

b)变频柜

A、B、C三相分装在3个柜内,可分别称为A柜、B柜、C柜

c)控制柜

柜内装有控制系统,柜前板上装有控制面板、控制接线排等。由于电压等级和容量的不同,不同机型的单元的数量不同,面板的布置也会有些不同。

4.4系统控制

整机控制系统有16位单片机担任主控,24个功率单元都有一个自己的辅助CPU,由8位单片机担任,此外还有一个CPU,也是8位单片机,负责管理键盘和显示屏。

(1)利用三次谐波补偿技术提高了电源电压利用率。

(2)控制器有一套独立于高压电源的供电体系,在不加高压的情况下,设备各点的波形与加高压情况相同,这给整机可靠性、调试带来了很大方便。

(3)系统采用了先进的载波移相技术,它的特点是单元输出的基波相迭加、谐波彼此相抵消。所以串联后的总输出波形失真特别小。

4

本公司分别于2002年8月、10月和2003年3月、4月分别在山东莱芜钢铁股份有限公司炼铁厂、辽河油田锦州采油厂、浙江永盛化纤有限公司应用了本公司生产的高压大功率变频器JD-BP37-630F2台、JD-BP38-355、JD-BP37-550F各1台。从运行情况看:

(1)变频器结构紧凑,安装简单

由于变频器所有部分都装在柜里,不需要另外的电抗器、滤波器、补偿电容、启动设备等一系列其他装置,所以体积小,结构紧凑,安装简单,现场配线少,调试方便。

(2)电机及机组运行平稳,各项指标满足工艺要求。

由变频器拖动的电机均为三相普通的异步电动机,在整个运行范围内,电机始终运行平稳,温升正常。风机启动时的噪音及启动电流很小,无任何异常震动和噪音。在调速范围内,轴瓦的最高温升均在允许的范围内。

(3)变频器三相输出波形完美,非常接近正弦波。

经现场测试,变频器的三相输出电压波形、电流波形非常标准,说明变频器完全可以控制一般的普通电动机运行,对电机无特殊要求。

(4)变频器运行情况稳定,性能良好。

该设备投运以来,变频器运行一直十分稳定。设备运行过程中,我公司技术人员对变频器输入变压器的温升,功率单元温升定期巡检,完全正常。输出电压及电流波形正弦度很好,谐波含量极少,效率均高于97%,优于同类进口设备。

(5)运行工况改善,工人劳动强度降低。

变频器可随着生产的需要自动调节电动机的转速,达到最佳效果,工人工作强度大大降低。

(6)变频器操作简单,易于掌握及维护。

变频器的起停,改变运行频率等操作简便,操作人员经过半个小时培训就可以全面掌握。另外,变频器各种功能齐全,十分完善,提高了设备可靠性,而且节电效果明显。以山东莱钢股份有限公司应用的JD-BP37-630F变频器为例,该系统生产周期大约为1h,出铁时间为20min,间隔约40min,系统配置电机的额定电流为80A,根据运行情况,及其它生产线的实际运行情况,预计该电机运行电流应在60A,以变频器上限运行频率45HZ时,电流为45A,间隔时间运行频率20HZ时,电流为20A。根据公式测算节能效果达到42.7%。

5结束语

从这几台这几个月的运行情况看,我公司自行研制生产的高压大功率变频器,运行稳定可靠,节能效果显著,改善了工作人员的工作环境,降低了值班人员的劳动强度。变频器对电机保护功能齐全,减少了维修费用,延长了电机及风机的使用寿命,给用户带来了显著的经济效益,深得用户好评。据专家估计我们国家6kV以上的高压大功率电机约有3万多台,约合650万kW,因此,高压大功率变频器的市场是极其广阔的。

高压大功率范文篇6

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

高压大功率范文篇7

英那河水源泵站位于庄河市的英那河水库下游400m处,在大连市的东北部,距市中心180km。英那河泵站是大连市引英入连供水应急工程的头部工程,通过水泵加压经109.18km的DN1800钢管输水至洼子店受水池,以解决大连市城市居民生活及工业用水紧张的局面。泵站扬程H=109.45m,水库最低水位为60m,水库多年平均水位为73.80m,正常高水位为79.10m。水库水位高差为13.80m,为了充分利用水库位能,以降低运转费用,达到节约能源的目的,确定英那河水源泵站水泵采用变频调速设备。

泵站分两期建设,一期供水规模33万吨/日,水泵3台,2用1备,2台工作泵配套电机功率为2750kW,采用变频调速装置;备用泵配套电机功率为2800kW,不调速;系统额定电压为10kV。

二期供水规模25万吨/日,再上2台泵,配套电机功率为2750kW,2台都采用变频调速装置。

2几个知名公司变频器的性能比较

变频调速装置根据输出电压的调节方法分为2种:

(1)改变脉冲宽度比例的调节方法,称为PWM脉宽调制方法

(2)改变输出电压幅值的调节方法,称为PAM脉冲幅值调制方法

最近10几年来,随着高电压、大容量全控型器件的发展,在水泵类的调速应用上脉宽调制方法的变频调速装置已基本上占据了主导地位。所以,只对采用PWM脉宽调制方法的变频调速装置进行了调研,也向一些专家进行了咨询。调研的对象主要是针对几个在中国市场上销售的知名公司和有特色的公司。笔者根据调查、研究和应用实践,对其产品的性能及应用作出了比较。

2.1Siemens公司的高压IGBT三电平大容量变频器(SIMOVERTMV)

SimovertMV电压源型系列变频器采用了基于电压空间矢量调制原理的三电平技术,高性能矢量控制(VC)技术以及全数字无速度传感器控制技术。变频器的整流部分是由2个功率相同的三相整流桥系统组成,形成12脉冲,从而保证网侧电源反馈谐波较小,并使电机受到较小的冲击。变频器的逆变部分是由IGBT和钳位二极管形成的三电平的电压源逆变器。原理接线见图1。

主要技术特点为:输入侧设置变频传动变压器,三卷变压器二次侧分别采用Δ/Δ/Y接线,等效12脉冲整流使得电源输入侧谐波大为降低,在逆变器侧采用了大功率半导体全控器件-高压IGBT,逆变器采用三电平PWM控制。变频传动变压器与变频器柜是分体的,功率元件是HV-IGBT,输出频率范围是0~150Hz。冷却方式:风冷水冷可任选。

不足之处:输出电压特性具有低谐波分量,当与Siemens生产的电机配套使用时,可直接应用,在选用其他厂商生产的电机时,需要一个输出滤波电抗器。IGBT具有快速的开关性能,但在高压变频中其导通损耗大,变频装置的发热是个不能轻视的问题,大容量的变频装置应采取强排风措施。

2.2ROBICON公司采用低压IGBT的多重式、多级串联高压变频器

主要原理是利用输入隔离变压器得到多组低压工频电压,采用多级低压小功率IGBT的PWM变频单元,分别进行整流、滤波和逆变,串联叠加得到高压三相变频输出。罗宾康采用功率单元串接的新型结构方式,将几个低压的PWM功率单元串接组成中、高压变频器,较好的解决了一般6脉冲或12脉冲变频器不可避免的谐波干扰问题,这样无需额外加装消谐滤波装置,同时也可选用国产普通电机,这样将提高性能价格比。原理接线见图2。

主要技术特点为:电源侧谐波非常小,对电网污染很小,由于采用了多重化的脉宽调制技术,输出谐波更小,几乎可认为是正弦波,称作完美无谐波,不用考虑因谐波引起的转矩脉动及电机发热、噪音问题。采用多重化的技术,使用功率元件的数量大为增加。功率单元可选择旁路,可让用户在一个功率单元故障的情况下继续运行变频,无需马上停机。输入隔离变压器(干式变压器)与变频器的功率单元柜可并柜,功率元件是LV-IGBT,功率元件的电压等级是690V。输出频率范围是0~150Hz。

不足之处:使用的功率单元及功率器件数量相比比较多,可能故障的环节就相对的多一些,可靠性比使用功率元件的数量少的差,如果处理不及时,易造成功率元件“雪崩”似的故障。采用风冷时,噪声比较大。

对电机绝缘没有特殊要求,可适用于任何电机,而不用配置输出滤波电抗器。

2.3北京利德华福公司采用低压IGBT的单元串联多电平高压变频调速器(HARSVERT)

原理与ROBICON基本相同。该公司是依托清华大学国家重点实验室的一流技术基础进行开发、研究、生产变频器的。

主要技术特点:与ROBICON基本相同,二者电路结构大同小异。只是他们采用的IGBT功率元件的耐压不同,所用的逆变器数量也不同。适配电机额定电压可达10kV。目前,生产输出电压为10kV的变频装置的公司比较少,因国外3kV电压等级用的较多,他们可能不太注重开发10kV的变频装置。

不足之处:使用功率元件的数量相比稍多,可能故障的环节就相对的多一些。采用风冷时,噪声比较大。IGBT具有快速的开关性能,但在高压变频中其导电损耗高,变频装置的发热是个不能轻视的问题。因其为国内公司研究开发的,应用时间不长,运行经验较少。尤其是适配电机功率达到2750kW的大容量高压变频器。

与国外同容量的变频装置相比价格占有优势。对电机没有特殊要求,可适用于任何电机,而不用配置输出滤波电抗器。

可直接适用于旧设备的改造,无须输出滤波器就可使输出电缆长度很长。对于原有10kV电机的,如果还利用原电机,则用HARSVERT的变频器比较合适。如果用其他的变频器,要配升压变压器将6kV升到10kV。

2.4ABB公司采用IGCT的三电平大容量变频器(ACS1000)

IGCT(IntegratedGateCommutatedThyristor)是90年代在晶体管技术的基础上结合了GTO和IGBT技术开发的大功率新型器件,与IGBT相比,它开关快速,开通能力强、存储时间短、开关导电损耗较低。为减小引线电感,其管芯必须与门驱动电路集成安装、整体更换。IGCT由于其导通压降低,损耗低,比IGBT更适合于高电压、大容量使用。目前使用的IGCT元件电压等级最大做到4.5kV,接线原理与SIEMENS的高压IGBT三电平大容量变频器(SIMOVERTMV)基本相同,只是采用的元件不同,不需要元件串、并联。IGCT器件耐压等级提高以后,它将是构成大功率和超大功率高压变频器的优选功率器件。

主要技术特点为:输入侧设置变频传动变压器,三卷变压器二次侧分别采用Y、Δ接法,等效12脉冲整流使得电源输入侧谐波大为降低。变频传动变压器与变频器柜是分体的,功率元件是HV-IGCT,输出频率范围是0~150Hz,逆变器采用三电平PWM控制。采用了DTC-直接转矩控制专利技术,直接转矩控制(DTC)是交流传动中最佳的电动机控制方法,可以对电动机所有的关键变量进行直接控制。

SIEMENSABBROBICON利德华福

技术原理三电平PWM三电平PWM多重化-PWM多重化-PWM

逆变功率元件HV-IGBTIGCTLV-IGBTIGCT

对4.16kV的变频器,

逆变器中需用功率

元件个数12个高压IGBT6个钳位二极管12个IGCT60个低压IGBT

输入变压器三绕组变频整流变压器三绕组输入隔离变压器一体化干式多绕组变压器一体化干式多绕组变压器

功率因数≥96%

≥95%(调速范围内)≥95%95%(>20%负载)

变频器本身效率≥98.5%(额定工作点)≥98%≥98.5%(调速范围内)≥95%(额定负载下)

谐波输出有低谐波分量有输出正弦滤波器,谐波含量极小谐波非常小谐波非常小

最高输出频率150Hz66Hz(可选122Hz)120Hz120Hz

逆变器电平数3311多电平

适配电机西门子电机最佳其他厂商的电机要另加输出滤波器可与标准的鼠笼型电机配用可与任意厂商生产的交流鼠笼型电机配用可与任意厂商生产的交流鼠笼型电机配用

电机电压(kV)2.33.34.1662.33.34.162.33.34.1663610

电机功率范围800~4000kW315~5000kW400~7500kW300~4000kW

初投资价格(同容量)高高高低

不足之处:IGCT元件需要的触发电路要比IGBT元件所需要的触发电路复杂、触发功率大。当适配电机功率超过1800kW时,变频装置需要采用水冷,整套设备占地面积比较大。因对冷却循环水的水质有要求,要加一套净化水设备。实际上,运行人员更习惯于用风冷,也更喜欢用风冷。由于IGCT器件耐压的限制,某些型号的三电平变频器至今尚无输出电压6000伏规格的产品。

表1为4家中压大容量变频装置特性比较。

3结论

综合各方面因素,经过招标,最后采用的是SIEMENS变频装置(6SE8033-1CA01)和配套电机(1RQ4562-6JV40)。

此规格变频器在欧洲已有应用,在国内水行业中还是头次应用,取得了一些经验。

(1)该工程于2000年10月开始设计,2001年7月一次通水成功,现已运行将近2年时间。通过这段时间的运行看,该泵站运行安全稳定,节能效果显著。根据最典型的应用工况,一期各方案经济比较见表2。

从表2分析结果知,b方案为最优方案,即2台调速泵方案最优。其次方案为a方案,即一台调速与一台恒速泵并联方案。虽然a方案的设备投资比b方案少425万元,但a方案比b方案一年的运行费用多108.84万元,这样b方案3.9年所省的运行费,即可抵消掉其设备所增加的投资,即静态回收期为3.9年。

从表2还可看出全调方案与阀调节方案的比较其节能效果:水位控制变频调速技术为泵站一年省电费378.25万元(一期工程),静态回收期为2.25年。(注:上述的计算只是针对水库多年平均水位,电费按0.50元/度计算)

通过几年来的运行表明,在大型地表水厂的送水泵房中采用大功率变频器(水行业中最大单机容量2800kW),虽然一次性投资较大,但是长期运行节能效果非常明显,特别是在较大产水量的情况下,节能效果更加明显,值得推广。

(2)通过这段时间的运行看,其不足之处有以下几点:

a)变频装置的进线断路器要具有失压脱扣功能。

当控制电源没有时,不论高压工作电源是否故障,都要跳开进线断路器,使变频装置断开工作电源。此时,当变频装置恰巧发生故障时的跳闸,对变频装置起到了保护的作用。而当变频装置无故障时的跳闸,易额外产生水锤效应,水锤效应具有极大的破坏性:压强过高处,将引起管子的破裂;反之,压强过低处又会导致管子的瘪塌,对供水管线产生危害。此外,水锤效应也可能损坏阀门和固定件,对泵站厂房产生危害,易淹泵房。如何解决这个问题并获得认可,值得研究。

b)大容量的变频装置的发热是个不能轻视的问题。

从目前使用来看,发热比较厉害,尤其夏季环境温度比较高的时候。对变频装置采取了强排风措施,但排风扇产生的噪声比较大,相应的要采取隔音措施。如何解决大功率高压变频器发热和噪声,将是变频器生产厂家迫切解决的问题。

参考文献

高压大功率范文篇8

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献:

[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。

[2]季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998。

[3]叶治正,叶靖国:开关稳压电源。高等教育出版社,1998。

高压大功率范文篇9

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

高压大功率范文篇10

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。