二面角范文10篇

时间:2023-03-25 20:51:36

二面角范文篇1

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

二面角范文篇2

α、β是由出发的两个半平面,O是l上任意一点,OCα,且OC⊥l;CDβ,且OD⊥l。这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角。

它有如下列特征:

(1)过棱上任意一点,其平面角是唯一的;

(2)其平面角所在平面与其两个半平面均垂直;

另外,若在OC上任取上一点A,作AB⊥OD于B,则由特征(2)知AB⊥β.通过l、OA、OB、AB,之间的关系,便得到另一特征;

(3):体现出三垂线定理(或逆定理)的环境背景。

2二面角的平面角的特征剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征(1)表明:其平面角的定位可先在棱上取一“点”,但这点必须与问题背景相互沟通,给计算提供方便。

特征(2)指出:如果二面角α-l-β的棱l垂直某一平面γ与α、β的交线,则交线所成的角即为α-l-β的平面角,:

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

特征(3)显示:如果二面角α-l-β的两个半平面之一,存在垂线段AB,由B作OB⊥l于O,连OA,由三垂线定理可知OA⊥l;或由A作OA⊥l于O,连OB。由三垂线逆定理可知OB⊥l。此时,∠AOB即为二面角α-l-β的平面角。

由此可见,二面角的平面角的定位可以找“垂线段”.

以上三个特征提供的思路在解决具体问题时各具特色,其目标是分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而至.掌握这种关系对提高解题技能和培养空间想象力非常重要。

3二面角的平面角的定位分析

[例1]:已知E是矩形ABCD边CD的中点,且,CD=2,BC=1,现沿AE将△DAE折起至△D′AE,使得D′到B、C两点的距离相等,求二面角D′-BC-A的大小。

解析:取AE中点P,BC中点Q.则可得PQ⊥BC,又由D′B=D′C,得D′Q⊥BC,

∴∠D′QP是二面角D′-BC-A的平面角。

经计算得:∠D′QP=23

找“点”,由定义确定二面角的平面角。

[例2]:矩形ABCD,AB=3,BC=4,沿对角线AC把△ABC折起,使点B在平面ADC内的射影B′恰好落在AD上,求二面角B-AC-D的大小。

解析:这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变”与“不变”。

在平面图形中过B作BE⊥AC交AC于O、交AD于E,则折叠后OB、OE与AC的垂直关系不变.但OB与OE此时变成相交两线段并确定一平面,此平面必与棱AC垂直。由特征(2)知,面BOE与面BAC、面DAC的交线OB与OE所成的角∠BOE,即为所求二面角的平面角。

另外,点B在面DAC上的射影必在OE所在的直线上,又题设射影落在AD上,所以E点就是B′点,这样的定位给下面的定量提供了便捷条件。

经计算:OB=AB·BCAC=3×45=125,AO=AB2AC=95,OE=AO·CDAD=2720,

在Rt△BEO中,设∠BOE=θ,则cosθ=OEOB=916,

∵0°<θ<180°,∴θ=arccos916,

即所求二面角B-AC-D为arccos916,

通过对[例2]的定性分析、定位作图和定量计算,由特征(2)从另一角度告诉我们:要确定二面角的平面角,可以把构成二面角的两个半平面“摆平”,依题目条件,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相呼映,不仅便于定性、定位,更利于定量。

由“垂线段”定位二面角的平面角。

[例3]:已知二面角α-a-β为,PA⊥α于A,PB⊥β于B,且PA=8cm,PB=10cm.求P点到a的距离。

解析:过PA、PB作平面γ,分别与α、β交于AO、BO,

由PA⊥α,aα,知PA⊥a,又由PB⊥β,aβ,知PB⊥a,因此,a⊥平面γ,

∵AO,BO,∴a⊥AO,a⊥BO,

∴∠AOB为二面角α-a-β的平面角,即∠AOB=120°,

连PO,由PO,得a⊥PO.∴PO的长为P点到a的距离。

经计算:AO=43(cm),PO=PA2+AO2=82+(43)2=47(cm).

由棱的“垂面”定位二面角的平面角。

[例4]:在正方体ABCD-A′B′C′D′中,棱长为2,E为BC的中点.求面B′D′E与面BB′C′C所成的二面角的大小。

解析:面B′D′E与面BB′C′C构成两个二面角,由特征(2)知,这两个二面角的大小必定互补.通过特征(3),我们只须由C′(或D′)作B′E的垂线交B′E于H,然后连结HD′(或HC′),即得面B′D′E与面BB′C′C所成二面角的平面角∠C′HD′(三垂线定理)。

经计算可得:H′C′=455,在Rt△D′C′H中,∠D′HC′=D′C′H′C′=52,

故所求的二面角角为arctan52或π-arctan52.

二面角的三个特征,虽然客观存在,互相联系,但在许多问题中却很难通过直观图反映出来,这就需要我们培养良好的空间思维想象能力,正确定位。

[例5]:在正方体ABCD-A1B1C1D1中,E是CC1的中点,求截面AD1E与底面ABCD所成角的正切值。

解析:图中截面AD1E与底面ABCD只给出一个公共点,没有直接反映出二面角的棱,因此还需找出它与底面的另一个公共点.通过补形作出棱,进而再求二面角的大小。

延长DC、D1E交于F,连AF,得截面AD1E与底面ABCD相交所得棱AF,AF交BC于G,过C作CH⊥AF于H,连EH,

∵EC⊥面ABCD,CH⊥AF,∴EH⊥AF(三垂线定理)

∴∠EHC即为所求截面AD1E与底面ABCD所成二面角的平面角.

可设正方体棱长为a,经计算得:EC=CG=a2,CF=a,GF=52a,CH=,55a

∴tan∠EHC=ECCH=52,

即所求二面角的正切值为52.

[另]:△D1FA在底面ABCD的射影是△DFA,

S△DFA=12DF×DA=a2,又D1A=2,S△D1FA=12D1A×322a=32a2,

由射影面积法,所求角(记为θ)的余弦值为cosθ=S△DFAS△D1FA=23,

则所求二面角的正切值为52。

[另]:还可用向量法求二面角的平面角。

定位是为了定量,二面角的计算是通过其平面角所在的三角形计算而得.而作平面角也是由其基本定义出发,在棱上找一点,在半平面内找一点,或在二面角内找一点,从这点出发作棱的垂线或垂面而得。如果二面角的棱在图中没有出现,可采取补形等办法作出二面角的棱。

综上所述,二面角其平面角的正确而合理的定位,要在其正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的空间思维,以不变应万变。

二面角范文篇3

α、β是由出发的两个半平面,O是l上任意一点,OCα,且OC⊥l;CDβ,且OD⊥l。这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角。

它有如下列特征:

(1)过棱上任意一点,其平面角是唯一的;

(2)其平面角所在平面与其两个半平面均垂直;

另外,若在OC上任取上一点A,作AB⊥OD于B,则由特征(2)知AB⊥β.通过l、OA、OB、AB,之间的关系,便得到另一特征;

(3):体现出三垂线定理(或逆定理)的环境背景。

2二面角的平面角的特征剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征(1)表明:其平面角的定位可先在棱上取一“点”,但这点必须与问题背景相互沟通,给计算提供方便。

特征(2)指出:如果二面角α-l-β的棱l垂直某一平面γ与α、β的交线,则交线所成的角即为α-l-β的平面角,:

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

特征(3)显示:如果二面角α-l-β的两个半平面之一,存在垂线段AB,由B作OB⊥l于O,连OA,由三垂线定理可知OA⊥l;或由A作OA⊥l于O,连OB。由三垂线逆定理可知OB⊥l。此时,∠AOB即为二面角α-l-β的平面角。

由此可见,二面角的平面角的定位可以找“垂线段”.

以上三个特征提供的思路在解决具体问题时各具特色,其目标是分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而至.掌握这种关系对提高解题技能和培养空间想象力非常重要。

3二面角的平面角的定位分析

[例1]:已知E是矩形ABCD边CD的中点,且,CD=2,BC=1,现沿AE将△DAE折起至△D′AE,使得D′到B、C两点的距离相等,求二面角D′-BC-A的大小。

解析:取AE中点P,BC中点Q.则可得PQ⊥BC,又由D′B=D′C,得D′Q⊥BC,

∴∠D′QP是二面角D′-BC-A的平面角。

经计算得:∠D′QP=23

找“点”,由定义确定二面角的平面角。

[例2]:矩形ABCD,AB=3,BC=4,沿对角线AC把△ABC折起,使点B在平面ADC内的射影B′恰好落在AD上,求二面角B-AC-D的大小。

解析:这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变”与“不变”。

在平面图形中过B作BE⊥AC交AC于O、交AD于E,则折叠后OB、OE与AC的垂直关系不变.但OB与OE此时变成相交两线段并确定一平面,此平面必与棱AC垂直。由特征(2)知,面BOE与面BAC、面DAC的交线OB与OE所成的角∠BOE,即为所求二面角的平面角。

另外,点B在面DAC上的射影必在OE所在的直线上,又题设射影落在AD上,所以E点就是B′点,这样的定位给下面的定量提供了便捷条件。

经计算:OB=AB·BCAC=3×45=125,AO=AB2AC=95,OE=AO·CDAD=2720,

在Rt△BEO中,设∠BOE=θ,则cosθ=OEOB=916,

∵0°<θ<180°,∴θ=arccos916,

即所求二面角B-AC-D为arccos916,

通过对[例2]的定性分析、定位作图和定量计算,由特征(2)从另一角度告诉我们:要确定二面角的平面角,可以把构成二面角的两个半平面“摆平”,依题目条件,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相呼映,不仅便于定性、定位,更利于定量。由“垂线段”定位二面角的平面角。

[例3]:已知二面角α-a-β为,PA⊥α于A,PB⊥β于B,且PA=8cm,PB=10cm.求P点到a的距离。

解析:过PA、PB作平面γ,分别与α、β交于AO、BO,

由PA⊥α,aα,知PA⊥a,又由PB⊥β,aβ,知PB⊥a,因此,a⊥平面γ,

∵AO,BO,∴a⊥AO,a⊥BO,

∴∠AOB为二面角α-a-β的平面角,即∠AOB=120°,

连PO,由PO,得a⊥PO.∴PO的长为P点到a的距离。

经计算:AO=43(cm),PO=PA2+AO2=82+(43)2=47(cm).

由棱的“垂面”定位二面角的平面角。

[例4]:在正方体ABCD-A′B′C′D′中,棱长为2,E为BC的中点.求面B′D′E与面BB′C′C所成的二面角的大小。

解析:面B′D′E与面BB′C′C构成两个二面角,由特征(2)知,这两个二面角的大小必定互补.通过特征(3),我们只须由C′(或D′)作B′E的垂线交B′E于H,然后连结HD′(或HC′),即得面B′D′E与面BB′C′C所成二面角的平面角∠C′HD′(三垂线定理)。

经计算可得:H′C′=455,在Rt△D′C′H中,∠D′HC′=D′C′H′C′=52,

故所求的二面角角为arctan52或π-arctan52.

二面角的三个特征,虽然客观存在,互相联系,但在许多问题中却很难通过直观图反映出来,这就需要我们培养良好的空间思维想象能力,正确定位。

[例5]:在正方体ABCD-A1B1C1D1中,E是CC1的中点,求截面AD1E与底面ABCD所成角的正切值。

解析:图中截面AD1E与底面ABCD只给出一个公共点,没有直接反映出二面角的棱,因此还需找出它与底面的另一个公共点.通过补形作出棱,进而再求二面角的大小。

延长DC、D1E交于F,连AF,得截面AD1E与底面ABCD相交所得棱AF,AF交BC于G,过C作CH⊥AF于H,连EH,

∵EC⊥面ABCD,CH⊥AF,∴EH⊥AF(三垂线定理)

∴∠EHC即为所求截面AD1E与底面ABCD所成二面角的平面角.

可设正方体棱长为a,经计算得:EC=CG=a2,CF=a,GF=52a,CH=,55a

∴tan∠EHC=ECCH=52,

即所求二面角的正切值为52.

[另]:△D1FA在底面ABCD的射影是△DFA,

S△DFA=12DF×DA=a2,又D1A=2,S△D1FA=12D1A×322a=32a2,

由射影面积法,所求角(记为θ)的余弦值为cosθ=S△DFAS△D1FA=23,

则所求二面角的正切值为52。

[另]:还可用向量法求二面角的平面角。

定位是为了定量,二面角的计算是通过其平面角所在的三角形计算而得.而作平面角也是由其基本定义出发,在棱上找一点,在半平面内找一点,或在二面角内找一点,从这点出发作棱的垂线或垂面而得。如果二面角的棱在图中没有出现,可采取补形等办法作出二面角的棱。

综上所述,二面角其平面角的正确而合理的定位,要在其正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的空间思维,以不变应万变。

二面角范文篇4

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

由此可见,要作,最好考虑作“垂线段”。

综上所述,二面角其平面角的正确而合理的定位,要在正确其定义的基础上,掌握其三个基本特征,并灵活运用它们考察问题的环境背景,建立良好的主观心理空间和客观心理空间,以不变应万变。定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

二面角范文篇5

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

二面角范文篇6

一、重温二面角的平面角的定义

如图(1),α、β是由ι出发的两个平面,O是ι上任意一点,OC

α,且OC⊥ι;CDβ,且OD⊥ι。这就是二面角的平面角的环境背景,即∠COD是二面角α—ι—β的平面角,从中不难得到下列特征:

Ⅰ、过棱上任意一点,其平面角是唯一的;

Ⅱ、其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取上一点A,作AB⊥OD垂足为B,那么

由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,这便是另一特征;

Ⅲ、体现出一完整的垂线定理(或逆定理)的环境背景。

对以上特征进行剖析

由于二面角的平面角是由一点和两条射线构成,所以二面角的平面角的定位可化归为“定点”或“定线(面)”的问题。

特征Ⅰ表明,其平面角的定位可先在棱上取一“点”,耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背景相互沟通,给计算提供方便。

例1已知正三棱锥V—ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。

由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角如图(2)。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。

特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ与

α、β的交线,而交线所成的角就是α—ι—β的平面角,如图。

由此可见,二面角的平面角的定位可以考虑找“垂平面”。

例2矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,

使点A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在

于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了优质服务。事实上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5,tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。

通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。

特征Ⅲ显示,如果二面角α—ι—β的两个半平面之一,存在垂线段AB,那么过垂足B作ι的垂线交ι于O,连结AO,由三垂线定理可知OA⊥ι;或者由A作ι的垂线交ι于O,连结OB,由三垂线定理逆定理可知OB⊥ι,此时,∠AOB就是二面角α—ι—β的平面角,如图。

由此可见,地面角的平面角的定位可以找“垂线段”。

例3在正方体ABCD—A1B1C1D1中,棱长为2,E为BC的中点。求面B1D1E与面积BB1C1C所成的二面角的大小。

例3的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,

由特征Ⅱ可知,这两个二面角的大小必定互补,下面,如

果思维由特征Ⅲ监控,背景中的线段C1D1会使眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1),即得面D1BE与面CC1B1E所成二面角的平面角∠C1OD1,如图,计算可得C1O=4*51/2/5。

在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。

故所求的二面角角为arctg51/2/2或π-arctg=51/2/2

三、三个特征的关系

以上三个特征提供的思路在解决具体总是时各具特色,其标的是

分别找“点”、“垂面”、“垂线段”。事实上,我们只要找到其中一个,另两个就接踵而来。掌握这种关系对提高解题技能和培养空间想象力非常重要。

1、融合三个特征对思维的监控,可有效地克服、抑制思维的

消极作用,培养思维的广阔性和批判性。

例3将棱长为a的正四面体的一个面与棱长为a的正四棱锥的

一个侧面吻合,则吻合后的几何呈现几个面?

这是一道竞赛题,考生答“7个面”的占99.9%,少数应服从多数吗?

如图,过两个几何体的高线VP、VQ的垂足P、Q分别作BC的垂线,则垂足重合于O,且O为BC的中点,OP延长过A,OQ延长交ED于R。由特征Ⅲ,∠AOR为二面角A—BC—R平面角,结合特征Ⅰ、Ⅱ,可得VAOR为平行四边形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以这道题的答案应该是5个面!

2、三个特征,虽然客观存在,互相联系,但在许多同题中却

表现得含糊而冷漠——三个“标的”均藏而不露,在这种形势下,逼你去作,那么作谁?

由特征Ⅲ,有了“垂线段”便可定位。

例4已知Rt△ABC的两直角边AC=2,BC=3,P为斜边上一

点,沿CP将此直角三角形折成直二面角A—CP—B,当AB=71/2时,求二面角P—AC—B的大小。

作法一:∵A—CP—B为直角二面角,

∴过B作BD⊥CP交CP的延长线于D,则BD⊥DMAPC。

∴过D作DE⊥AC,垂足为E,连BE。

∴∠DEB为二面角A—CP—B的平面角。

作法二:过P点作PD′⊥PC交BC于D′,则PD′⊥面APC。

∴过D′作D′E′⊥AC,垂足为E′,边PE′,

∴∠D′E′P为二面角P—AC—B的平面角。

再说,定位是为了定理,求角的大小往往要化归到一个三角形中去解,有了“垂线段”就可把它化归为解一个直角三角形。

二面角范文篇7

目前,我国高中数学教学中的各种知识和概念分布相对分散,然而在开展高中数学教学时,应当注重数学知识的整体性和各个数学概念的内在联系.相关数学概念的内在联系教师可以通过类比推理法来进行整理和设计后向学生展示,不断优化学生的概念网络和知识结构.教师在进行高中数学新概念或新知识的讲解时,可以将新知识或新概念与之前学习的相近或相似的概念进行类比,推导出新概念的含义,同时也可以通过与相似旧概念的类比,让新概念成为旧概念某些方面的延伸和拓展,不断拓展和延伸学生的数学知识构架.相比于单独讲解数学知识或数学概念,类比推理在高中数学新概念学习中的应用能够加深学生对新概念或新知识的掌握和记忆,通过复习旧知识或旧概念,对旧概念和旧知识的定义、推理、运用进行系统的回忆,然后在此基础上引导学生去探索新概念和新知识,这样能够降低学生对新知识或新概念的记忆难度,避免与旧知识或旧概念出现混淆.笔者在讲解高中二面角相关数学知识时,通过“角”的概念来进行二面角概念的类比推理,从而帮助学生理解和掌握二面角概念.从一点所发出的两条射线组成的图形是角,同理,从一条直线发出两个半平面所组成的图形是二面角;其中角是由射线———点———射线构成,同理,二面角是由半平面———直线———半平面构成.角和二面角的定义、构成以及结构图形之间非常类似,教师可以将角和二面角的概念进行类比推理,引导学生联想角和二面角之间的关联,帮助学生更好地理解二面角的概念.

二、类比推理在高中数学知识整合中的应用

在高中数学教学中对概念或知识进行整合时,类比推理能够有效对相关概念和知识进行归纳和分类.如笔者在讲解向量相关数学知识时,为了帮助学生对共线向量、平面向量以及空间向量相关知识的理解和掌握,尤其是这三个向量定理关系的区分,避免学生在学习这三种向量时产生混乱,采用了类比推理法.在进行类比推理时,让学生先理解和掌握共线向量的定理和共线向量的相关运算,再将共线向量的相关知识推广到平面向量中,在学生理解和掌握相关平面向量的定量以及计算后,进一步推广到空间向量上.类比推理在高中数学知识整合中的应用,能够让学生更好地体会数学学习的整体性和和谐性,领悟到数学的思想模式,不断培养学生的数学思维,不断提高高中数学课堂教学效果.又如笔者在整合等比数列和等差数列的相关知识时,由于等差数列和等比数列在某些方面有着相似的性质,在进行等差数列和等比数列相关知识的整合时,可以采用类比推理法进行教学,引导学生运用此种方法进行推理、计算,加强这种方法的运用,从而使得学生的数列相关知识结构更加完整和有条理,提高高中数学课堂教学效率.

三、类比推理在高中数学提出和解决问题中的应用

人们的学习和相关思维过程都源自于对问题的提问,通过对问题的提问,从而激发人们进行思考和求知,最终解决问题,并获得知识.学生提出问题的价值能够有效衡量学生思维能力.类比推理在高中数学提出和解决问题中的应用能够有效帮助学生发现问题,提出问题和进行问题的猜想以及探索,进而有效解决问题.同时,类比推理在高中数学提出和解决问题中的应用,能够有效锻炼学生思维能力,提高学生的数学学习兴趣,促进学生从“学会新知识”朝着“会学新知识”方面不断发展,不断提高学生的创新能力和研究能力.例如,在课堂上,教师可以通过对正三角形内任意一点到三角形三条边的距离之和是一个定值进行类比推理,使得学生能得出正四面体内任意一点到四面体各面的距离之和是一个定值.

四、结束语

二面角范文篇8

[关键词]高中数学;类比法

既然数学知识是一个持续发展的过程,那么,在这之中所出现的内容,必然会存在着相似之处。抓住这些相似之处,并将之作为探索新知的线索,就是适用类比法开展学习的基础。

一、类比相对内容,打造高效课堂

将知识进行类比的一个重要切入点就是知识的相对性。在高中数学领域,很多知识内容都是以相对的形式出现的,从知识结构到内容特点,都像是对称的一般。如果能够把握住这个规律,学生们便可以通过唤醒一个知识点而很自然地联想到另一个,让学习效率大增。例如:在对二面角的内容进行教学时,我发现,在其基本概念当中,存在着很多和平面角相对应的地方,于是借此展开类比,实现了很好的二面角教学效果。我从图形、定义、构成和表示法这四个角度分别进行类比:第一,从图形角度来看,二者的形态表示自然是不同的;第二,从定义的角度来看,平面角是指从平面内一点出发的两条射线(半直线)所组成的图形;二面角则是指从空间一条直线出发的两个半平面所组成的图形;第三,从构成的角度来看,平面角是由射线(半直线)——点(顶点)——射线构成的,二面角则是由半平面——线(棱)——半平面构成的;第四,从表示法的角度来看,平面角可以表示为∠AOB,而二面角则可以表示为α-a-β。通过对相对内容进行类比,学生们在点与线、线与面、平面与空间的移转中全面掌握了二面角的概念,教学效果很好。将相对内容进行类比,为相似的数学知识之间搭建起了一座联系的桥梁。学生们只要掌握了其中的一个知识点,便可以很顺利地触发到与之相关的内容,大大减轻了每一次重新认知知识的精力负担,让新知的接受过程简单高效。

二、类比新旧内容,打造高效课堂

在高中数学的学习过程当中,新知识数量过多,出现形式零散,一直是禁锢学生高效学习的因素之一。为了能够解决这个问题,笔者从旧知识当中着眼,找到了很多与新知识挂钩的部分,并以之为引导,推动新知识的顺利呈现。例如:在对立体几何的内容展开教学时,为了让学生们能够从空间的角度建立起整体认识,我从平面几何这个旧的知识模块出发,以类比的方式建立其与立体几何之间的联系,如在平面几何中,若直线a∥b,b∥c,则a∥c,在空间几何中,若平面α∥β,β∥γ,则α∥γ;在平面几何中,若两平行线被第三条直线所截,则同位角相等,在空间几何中,若两平行平面与第三个平面都相交,则同位二面角相等;在平面几何中,任何三角形都有一个外接圆和一个内切圆,在立体几何中,任何四面体都有一个外接球和一个内切球。这几个内容的类比,向学生们清晰展现出了立体几何与平面几何的相似与不同。在这个思路的启发下,学生们还在学习的过程中,自己找到了更多可以进行类比的地方,为知识的学习灵活了思路,也丰富了资源。数学知识的探究是一个持续深化发展的过程,知识内容之间自然存在着普遍的联系。笔者在新旧之间进行类比教学,正是抓住了这个特点。从旧知识出发,往往能够延伸挖掘出新知识。而从新知识出发,则常常能够捕捉到旧知识的影子。在新旧知识的类比交替之中,学习效率也就随之提升了。

三、类比同类内容,打造高效课堂

二面角范文篇9

二面角作为空间中最重要的角之一,我们认为不管是哪一种教材体系,都应当把它列为重要的研究对象。而教材对二面角的处理仅仅设置了1课时,给师生以一带而过的感觉。特别是对二面角平面角的作法,绝大多数学生在一节课的时间内难以掌握,所以当学生都无法找到计算对象时,就更谈不上去求解它了。另外,该部分内容又不容易自然地纳入向量方法体系之中。因此,建议增加关于二面角的例题。一方面,把二面角的求解与向量方法结合起来;另一方面,借此适当地提高综合推理的训练。因为空间中的角度(也包括距离)是立体几何中重要的度量问题,这些问题的解决又一定程度依赖于综合推理。正如课程标准中要求所说:“把几何推理与代数运算推理有机地结合起来,为学生的思维活动开发了更加广阔的空间,在教学中要紧紧把握这个大方向,不能有所偏废。”

二、用向量方法研究平行关系的问题相对较少

教材中利用向量方法研究垂直关系的例题、练习及习题比比皆是,但利用向量方法研究平行关系的例题却为数不多。且不能很好地体现向量方法的优越性。

例如教材第30页例3,课堂教学中发现,学生首先想到的不是用向量方法,反而更容易想到的是用相似三角形这一较为熟知的知识点去推证四边形EFGH与,平行四边形ABCD的各边对应平行,并且简洁易行。类似这样的题目还有第41页例5(该题用反证法也很容易证明),第79页参考例题2(该题用三角形中位线及等腰三角形底边上的中线也是高线的知识也很容易解决),限于篇幅,不再一一赘述。总之,这些题口给我们的感觉只是为了介绍向量方法,但却不能显示出向量方法的优越性。另外,在练习和习题中再很难找到用向量方法来研究平行关系的题目了。笔者建议,教材要让所选例题更具有典型性和代表性,并且在练习和习题中编拟一些利用向量方法研究,平行关系(包括线线,平行、线面平行、面面平行)的题目,来充分显示用向量方法解决立体几何问题的优越性。

三、教材的知识体系需要进一步条理和完整

教材中,球的体积及表面积公式的推导分别用到了教材中未出现的圆柱和棱锥的体积公式,而这些公式无论是对帮助学生理解球的体积及表面积公式的推导过程,还是对在实际应用中的价值方面,都是应当在本章中有所体现的,即使它们是被作为了解的内容。另外,用祖呕原理(这一原理的发现比西方早了1100多年)推导球的体积公式反映了我国古代数学的伟大成就,建议可作为阅读材料介绍给学生,以此,对学生进行爱国主义教育,激励学生的民族自豪感和为国富民强而勤奋学习的热情。总之,教材的改革是要对传统教材中的“繁难偏旧”进行改革,而如果把传统教材中精华的部分也舍掉的话,那肯定不是课程改革的初衷。

在中学阶段,向量方法被应用于立体几何的教学中尚属首次。以上虽不是什么大的问题,但作为中学教材,它是要在全国进行推广和使用的。因此,无论是从它的权威性而言,还是从它的科学性而言,这些“小问题”都希一望引起编者的重视。相信,只要通过教师本着边学、边教、边改进、边完善的精神,中学数学教材的改革必将日趋完善,日趋成熟。

参考文献:

[1]马复.设计合理的数学教学.高等教育出版社,2003.

[2]刘兼,黄翔,张丹.数学课程设计[M].高等教育出版社,2003.

[3]郑毓信.数学教育:从理论到实践[M].上海教育出版社,2004.

[4]戴再平.开放题——数学教学的新模式[M].上海教育出版社,2004.

[5]陈昌平.数学教育比较与研究[M].华东师大出版社,2000.

[6]孔企平,张维忠,黄荣金.数学新课程与数学学习[M].高等教育出版社,2004.

二面角范文篇10

[关键词]现代教育技术整合情境促进数学教学

1.引言

当我们步入21世纪时,以计算机和网络为核心的现代技术的不断发展,正在越来越深刻的改变着我们的生活、工作和学习方式;同时以建构主义学习理论和认知主义学习理论为代表的现代教育理论的蓬勃发展和广泛传播,以及新课程标准的实施,使我国基础教育特别是高中教育面临着难得的发展机遇,也面临着严峻挑战。如何运用现代教育技术,提高教育教学质量,就成了我们探讨和研究的一个重要课题。

简单的说,现代教育技术主要指现代教育媒体和现代教育理论在教育中的运用。李克东教授根据我国国情,结合美国教育技术学会(AECT)的1994年新定义,给出了更为全面的说明,即:“现代教育技术是指运用现代教育理论和现代信息技术,通过对教与学过程和教与学资源的设计、开发、评价和管理,以实现教学最优化的理论和实践。”本文笔者结合自己的实践与思考,就如何运用以现代信息技术为依托,以现代教育与心理学的理论为基础的现代教育技术来优化高中数学教学,做了一些初步的研究。

2.实践与思考

2.1运用现代教育技术整合数学课程内容,使教材“活”起来

由于教学大纲和教材编写的限制,当今世界上最鲜活的、具有明显时代特征的数学学科教学素材和教学内容很难在教材中反映出来。华罗庚曾经说过,对数学产生枯燥乏味、神秘难懂的印象的主要原因就是脱离实际。其实,数学本身就是一门与生活联系比较紧密地学科,不同的是,学生所要学习的知识是人类几千年来积累的直接经验,它具有较高的抽象性,要使他们理解性的接受、消化,仅凭目前课堂上教师的口耳接受是够的,还应充分利用信息资源跨越时空界限的特点,将信息技术融合到高中数学课程教学中来,充分利用各种信息资源,引入时代活水与高中数学教学内容相结合,创设出多种教学情境,使学生的学习内容更加丰富多彩,更具有时代气息,更贴近生活,使教材“活”起来,从而有效的促进教师的教和学生的学。

(1)创设真实情境,激发学生学习数学的兴趣与好奇心

建构主义学习理论强调创设真实情境,把创设情境看作是“意义建构”的必要前提,并作为数学设计的最重要内容之一。而多媒体技术正好是创设真实情境的有效工具;如果再与仿真技术相结合,则更能产生身临其境的逼真效果。

个案1、对于高中数学新教材三角函数y=Asin(wx+∮)+k的图象随A、W、R的变化而变化一节,通过让学生接触、观察各种图象,使其意识到A、w、∮、k可能对图象有影响,进一步让学生相互合作,自主探索得出规律。教师仅仅是提供资料和建议,这可使学生的探索能力得到发展。

个案2:利用几何画板讲椭圆的定义。

打开几何画板,做一个圆心为A的圆,在圆内任取不同于A的点B,在圆上取一点C,连接线段AC、BC,做线段BC的中垂线交AC于点P,连线段PB,引导学生发现|PA|+|PB|=|CA|,即圆的半径,且大于|AB|,然后让学生操作电脑拖动点C在圆上运动,得到P的轨迹——椭圆。启发学生得到椭圆的第一定义。再进行发散思维训练,当点B在圆上、圆外时,点P的轨迹是什么图形?通过这样的教学设计,不仅使学生亲自参与了对椭圆形成过程的探索,还使学生动手操作电脑,提高了学习兴趣,有利于学生数学知识的建构。

因此我认为应让学生更多地操作电脑来完成对数学知识的再发现,体验数学美的魅力。如在上三角函数的图像、“立体几何”导言课时,运用多媒体手段可以变静为动,变抽象为具体,使教学内容得到深化。再如,在教授有关“最值”和“定值”一类问题的处理时,笔者结合实际提出了一个问题:丰富的钢铁和煤炭资源促进了我市经济的发展,但环境污染问题也必须引起我们的重视。现在汶河南岸的一家煤矿和一家铁厂准备联合在河边建一座一家污水处理厂,问如何选址到两厂的距离之和最小(两厂间的河段近似看作直线)?并制作了多媒体课件指导学生来进行动态分析、思考、讨论、探索出解决问题的方法。使学生认识到了数学的实际应用,培养了学生用数形结合、转化等思想方法解决实际问题的能力和建模能力。

在实际情境下进行学习,激发了学生的联想思维,激发了学生学习数学的兴趣和好奇心,有效地降低了学生对数学的恐惧。使学生能利用自己原有认知结构中的有关经验,去同化和索引当前学习到的新知识,从而在新旧知识之间建立起联系,并赋予新知识某种意义。

(2)拓宽学习资源,通过“情境再现”,使数学教学成为再创造、再发现的教学

利用多媒体向学生展示科技发展史尤其是数学发展史,运用电脑模拟数学发现的历程,使用计算机进行数学试验,通过电脑证明数学定理,让学生通过数学问题的发现、提出、探究、解决过程的情景再现,意识到“问题是数学的心脏”,重要的问题历来就是推动数学前进的最重要的力量,进而“启发学生如何去发现问题和提出问题;并善于独立思考,学会分析问题和创造性地解决问题。”例如,笔者在讲解解析几何内容时就通过课件《奇妙的坐标系》向学生展示了坐标系的诞生、完善及应用历程,使数学教学成为了再创造、再发现的教学。

(3)创设想象情境,拓宽思维空间,培养学生的想象能力和发散思维

贝弗里奇教授说:“独创性常常在于发现两个或两个以上研究对象之间的相似点,而原来以为这些对象或设想彼此没有关系。”这种使两个本不相干的概念相互接受的能力,一些心理学家称之为“遥远想象”能力,它是创造力的一项重要指标。让学生在两个看似无关的事物之间进行想象,如同给了学生一块驰骋的空间。人的生活中有一种比知识更重要的东西,那就是人的想象力,它是知识进化的源泉。因此,在教学中可充分利用一切可共想象的空间,挖掘发展想象力的因素,发挥学生的想象力。

例如:课本上的图形是“死图”,无法表现二次曲线的形成过程,而黑板上的图形鉴于技术原因,很难画的准确,更难展现二次曲线的连续变化,而利用多媒体就可以生动的把离心率的大小变化与圆锥曲线的形状变化,这种数与形之间的内在联系完美的展现出来。同时,也可展示出椭圆、抛物线、双曲线三种“看似不相关”的二次曲线之间的内在联系。在教学过程中,可由学生通过网络访问教师放置的服务器上的课件,让学生独立探索得出结论。

(4)创设纠错情境,培养学生严谨的逻辑推理能力

“错误是正确的先导”,学生在解题时,常常出现这样或那样的错误,对此我针对学生常犯的隐晦错误利用现代教育技术,创设纠错情境,引导学生分析研究错误的原因,寻找治错良方,在知错中改错,在改错中防错,以弥补学生知识上的缺陷和逻辑推理上的缺陷,提高解题的准确性,增强思维的严谨性。例如:学生常常想当然的把平面几何的有关性质照搬到立体几何中,教师在黑板中很难表示清楚,我利用几何画板设计并创作了“边对应垂直的两个角”的课件,让学生自主探索,自己纠错,就收到了良好的效果。

2.2运用现代教育技术,使教师的教学方式活起来,真正体现学生主体,促进意义构建

在运用多媒体的同时,加上教师的精讲与启发,再结合学生的自主探索、质疑、问难和讨论,使学生通过身临其境的直观感受和仔细观察,从而得出正确的结论,改变了过去那种光靠教师“灌”,学生被动接受的形式,有效的激发了学生学习的兴趣;真正体现了学生的主体地位。例如:在上高二数学“二面角定义及其应用”时,利用几何画板制作“二面角定义及其应用”的课件,并将要解决的问题:“二面角概念”、“怎样度量二面角的大小”、“二面角的平面角的概念”、“如何作二面角的平面角”、“如何求二面角的平面角的大小”、“已知二面角的大小,山路与水平面的角,和山路与山脚所成的角中的两个,如何求第三个?”、“解决折叠问题的方法和规律是什么?”等隐藏在精心设计的、循序渐进的教学情境中,让学生独立探索,并通过实验猜测推导论证,由学生在个人自主探索的基础上,开展小组讨论协商,教师帮助学生共同完成以上问题,并加以整理,然后教师启发性的回答、解决学生的问题。这样就进一步完善和深化了对主题——“二面角的概念及其平面角的求法”的意义建构,既有效的解决了教学中的重点,又突破了难点,优化了教学过程,丰富了教学形式,提高了教育质量。

再如:笔者在上高一数学y=Asin(wx+∮)+k的图象时,利用多媒体技术,制作好课件,在教学中让学生分别拖动、控制A、w、∮、k等调数棒,自己观察、探索、讨论,教师再适当点拨,就可由学生自己得出结论,并不需要教师象传统教学中那样做滔滔不绝的讲解,而学生的理解与掌握反而比传统教学要深刻的多。

2.3运用现代教育技术,促进学生学会学习

(1)运用现代教育技术,促进学生形成良好的学习心态。

利用现代教育技术的形象化和多样化,把学科内容与优美的艺术形式结合起来,展示给学生,引起学生的兴趣和注意,增强学生的求知欲,并创造条件,逐步促进各种非智力因素的发展,帮助他们克服畏难情绪,激发学习积极性,增强学生学习的信心和勇气,使这些非智力因素转化为学生学习的动力,发展并形成良好的学习心态,以满足他们学习和身心发展的需求。

(2)在促进知识的迁移,形成新的知识结构过程中,选用适宜的电教媒体促进学生学会学习。

心理学认为,迁移的实质是概括,迁移是灵活的运用知识的基础,在教学中教师通过选择和设计内在逻辑联系密切,便于加强比较,便于进行概括的多媒体课件,促进学生知识的迁移,由于有序地提供合适的电教媒体作为思维材料,学生有了正确的思维方向,运用“迁移”认识了知识之间的内在联系,推导出新的知识,建立新的知识结构,同时学会了迁移的学习方法。

(3)在不同的课型中,依据教学目标,选用适宜的电教媒体,促进学生学会学习。

例如,在概念教学中,以相关知识为载体,运用电教媒体揭示概念本质,引导学生学会抽象、概括的学习方法,便于深刻理解概念。笔者在上《函数单调性》一课时,运用课件第一次演示,帮助学生直观的感受单调性的概念,再次使用时,帮助学生理解单调性概念的本质。在两次使用多媒体课件的过程中,引导学生掌握抽象、概括的学习方法。

3.问题和对策探讨

任何事物都有其两面性,我们在感慨现代教育技术给数学所带来的种种益处的同时,也不能不注意它的负面影响。

3.1影响师生情感交流

“情感能左右注意力对智力活动的引导,能影响对输入信息的反应。”教学过程同时也是师生情感交流的过程。而在多媒体教室上课,由于教师要求操作各种机器设备,且教学内容大部分是由机器呈现,客观上减少了师生间的直接交流,再加上光线等原因,学生的情感体验也就易被忽视。这必然在一定程度上影响了学生对知识的吸收。因此,在进行多媒体教学时,更要注重教学设计,要充分考虑学生的需要,要尽量创造机会使学生获得成就感,要设法帮助学生排除心理障碍,提高自学能力,树立信心。

3.2警惕认知交流中的“多媒体霸权”

由于缺少合适的网络课件和工具平台,缺乏专家和相关的理论指导,易导致教师的精神被多媒体所操纵,学生的思维被多媒体所束缚,师生共同成为被多媒体牵着鼻子走的人。因此教师必须加强现代教育理论、现代计算机知识与技能的学习和探索,转变教育理念,让学生成为学习的主人,不要让媒体成为辅助教师向学生灌输的工具,教材成为灌输的内容。

3.3影响学生身体健康

由于多媒体教室光线昏暗,加之长时间盯看投影屏幕,学生易产生头晕、眼睛疲劳等不适感觉,时间长了就会导致注意力分散,甚至影响身体健康。因此,进行多媒体教学必须注意适时、适度等原则。要考虑教学内容和学生实际,要从有利于更好的突出教学重点、攻破教学难点;有利于帮助学生更快的构建新的认知结构;有利于取得更好的教学效果的角度考虑,当用则用,不当用则不用。

总之,现代教育技术能够变革课堂教学的传递结构,扩展信息功能,增加个别化教学的能力,优化教学;但也要注意,现代教育技术也不可能解决教学中的所有问题,因此夸大其作用,试图以此盲目代替传统教学的做法是不现实的,在未来的教学当中,现代教育技术必将得到进一步的应用;但现代教育技术的运用不能无节制,要与常规教学相结合,要以促进教学过程的优化为重点,设计好媒体使用的强度和时机。当然,这还需要我们在今后的教学实践中,继续去探索和完善。

参考文献

[1]郭琴信息技术对现代教育的影响J.电化教育研究2000

[2]何克抗现代教育技术M..北京:北京师范大学出版社1998

[3]栗亚东论计算机多媒体技术的发展与现代课堂教学的应用J.中小学电教2000

[4]刘电芝学习策略研究北京:人民教育出版社1998