多联式范文10篇

时间:2023-04-05 14:09:02

多联式范文篇1

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

多联式范文篇2

随着我国经济建设的发展,住宅建设迅猛增长,为了满足人们对室内外空气环境要求不断提高的需要,近年来出现了所谓"住宅空调",水--空气系统、空气系统(管道机)和多联式空调机组分别适合不同需要,呈三足鼎立局面。但是,必须注意的是,住宅空调的特点是冷暖两用、调控优良、可靠性高、节约能源,具备上述四方面的空调设备才堪称"住宅空调",才能在此领域立足壮大。而调控是水-空气系统、空气系统(管道机)当前的薄弱环节,应从速解决。至于多联式空调机组虽然比较完美,但是仍存在标准与难以掌握两大问题,本文将对此进行论述。

变制冷剂流量(VRF)空调系统根据室内机数量多少,可分为单元式和多元式两种类型,而多联式空调机组就是多元式变制冷剂流量空调系统,因此,名为机组实际是一套整体系统,必须用整体的系统的观点进行分析研究与试验,才能正确地掌握与评价。

1两相流体网络模拟分析空调系统

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

2运行稳定性

多联式空调机组以节约能源、智能化调节和精确的温度控制著称,但是,是否能真正具备上述三项优越性呢?实际并不一定,而与其容量大小和系统运行稳定性相关。

21关于多联式空调机组容量

为了宣传多联式空调机组的优越与万能,常用以下几点表达,即:多室外制冷压缩机的单一系统,可联接64台、128台甚至256台室内机,配管最长可达125m,室外机、室内机之间的高差可为50m,室内机之间的高差可达30m。且不论为了实现这种大系统的可靠运行,特别是针对由于环境温度过低与管路过长带来的液体回流、液态制冷剂再闪发和回油困难等问题,需要增加一些辅助回路与附件,致使系统复杂,更重要的是将造成过多能量消耗,以及系统难以稳定运行。

为什么能耗增加?一方面由于机组容量增加,实现系统各部件的最优化匹配有难度,致使能耗增加。例如,日本为了实现1997年12月京都会议决议,规定多联式空调机组的制冷能效比(EER)为:制冷量小于等于4kW为4.12,小于等于7

kW为3.23,小于等于28

kW为3.07,可以说明问题。另一方面,由于管路过长,阻力损失大大增加,也将造成制冷压缩机能耗大为增加,各厂家对此均有说明,故不多述。总之,多联式空调机组容量不宜太大,额定制冷量以不大于56

kW为好,而且,室外机就说可能分散布置。

22关于系统运行稳定性

以制冷工况为例,蒸发温度和冷凝温度是表征系统运行状态的参数。但是,对于室内机来说却不能作为调节参数,为了保证系统稳定运行,需要控制蒸发器制冷剂出口的过热度,以防止回液,因此,室内机的被控参数是室温和蒸发器制冷剂出口的过热度,而调节参数只有室内机的风量和电子膨胀阀的开度。

对于室外机来说,其中变频制冷压缩机是VRF气液两相流体网络的动力源,其吸气压力和排气压力的变化是系统稳定运行的关键;但是,尽管制冷压缩机吸气压力和排气压力一定,室外环境温度、压缩机频率和冷凝器风量变化,都直接影响冷凝器制冷剂出口的再冷度,而此再冷度又是系统稳定可靠运行的一个重要参数,因此,制冷压缩机吸气压力、排气压力以及冷凝器风量是调节参数,而这些参数之间又存在充分的耦合关系。

根据上述分析,石文星博士[1]提出VRF空调系统的自治协调控制法,即:

①在保证室内机蒸发器制冷剂出口具有一定过热度的条件下,应用电子膨胀阀控制室温稳定;

②在保证室外机冷凝器制冷剂出口具有一定再冷度的条件下,调节压缩机频率和冷凝器风量控制制冷压缩机吸气压力和排气压力;

③在室外机处集中控制压缩机吸气过热度。

尽管如此,在众多室内机的运行台数和调节模式组合多变条件下,可以保证系统稳定可靠运行,但是,压缩机吸气压力、排气压力、吸气过热度与冷凝器再冷度会在一定范围内变化,如果系统容量过大,不但各室内机电膨胀阀前的制冷剂供液压力和蒸发器回气压力将有较大的变化,而且,吸气过热度与冷凝器再冷度可能超出期望范围,致使系统不能稳定地运行。

3试验评价

以上反复强调多联式空调机组是多元变制冷剂流量空调系统,对于某给定多联式空调机组来说,在满载运行条件下,系统内在参数(蒸发温度、冷凝温度等)以及系统制冷(制热)特性,取决于外在参数,即室内外空气温湿度。因此,作为标准的评价试验采用分别进行室内机评价试验和室外机评价试验是不正确的,必须在相同要求条件下进行整体系统的试验,才能相对准确地评价与比较多联式空调机组。

31必须整体试验

首先,分析室内机与电子膨胀阀联合调节特性

由于对于给定室内机来说,换热器几何参数是定值,因此,影响蒸发器效果的因素主要有:室内环境温湿度、风量、电子膨胀阀开度以及蒸发温度和冷凝温度。但是,进行机组标定试验时,室内环境温湿度、风量和电子膨胀阀开度可均匀定值,这样,影响蒸发器效果的因素就只有蒸发温度、冷凝温度以及膨胀阀前制冷剂再冷度,而这些参数均为系统的内在参数,取决于多联式空调机组组成与匹配,难以人为给定,所以,单独进行室内机评价试验,实际是不可行的。

其次,分析室外机组联合调节特性。

多联式空调机组的室外机由变频制冷压缩机(组)和换热器及其风扇组成,其中换热器几何参数是定值,因此,影响室外机的制冷剂流量和制冷能力的因素主要有:室外环境温湿度、风量、制冷压缩机频率以及蒸发温度和冷凝温度。这样,与室内机相同,进行机组标定试验时,室外环境温湿度、风量和制冷压缩机频率可均为定值,而影响定外机性能的因素就只有取决于多联式空调机组组成与匹配、且难以人为给定的系统内在参数--蒸发温度、冷凝温度以及吸气过热度和冷凝器出口制冷剂再冷度。所以,单独进行室外机组的评价试验,实际也是不可行的。

总之,企图简化试验手段,采取分别进行室内机评价试验和室外机评价试验,以达到评价多联式空调机组的方法是不可行的。

32多联式空调机组标定试验的设想

由于评价试验多联式空调机组必须整体进行,因此,提出如下设想。

①以标准额定制冷量计,当前被评价的多联式空调机组最在制冷能力取28kW为宜。

②标定试验在室外侧和室内侧分别为上下设置的房间热平衡量热计装置内进行。

以最大制冷能力为28kW的机组为例,试验机组系统的条件应为:室内机与室外机的高差不小于5m;配管最远长度不小于30m。

④按GB/T7725《房间空气调节器》规定的试验工况室内外参数进行。

⑤试验内容见表。

多联式范文篇3

随着我国经济建设的发展,住宅建设迅猛增长,为了满足人们对室内外空气环境要求不断提高的需要,近年来出现了所谓"住宅空调",水--空气系统、空气系统(管道机)和多联式空调机组分别适合不同需要,呈三足鼎立局面。但是,必须注意的是,住宅空调的特点是冷暖两用、调控优良、可靠性高、节约能源,具备上述四方面的空调设备才堪称"住宅空调",才能在此领域立足壮大。而调控是水-空气系统、空气系统(管道机)当前的薄弱环节,应从速解决。至于多联式空调机组虽然比较完美,但是仍存在标准与难以掌握两大问题,本文将对此进行论述。

变制冷剂流量(VRF)空调系统根据室内机数量多少,可分为单元式和多元式两种类型,而多联式空调机组就是多元式变制冷剂流量空调系统,因此,名为机组实际是一套整体系统,必须用整体的系统的观点进行分析研究与试验,才能正确地掌握与评价。

1两相流体网络模拟分析空调系统

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

2运行稳定性

多联式空调机组以节约能源、智能化调节和精确的温度控制著称,但是,是否能真正具备上述三项优越性呢?实际并不一定,而与其容量大小和系统运行稳定性相关。

21关于多联式空调机组容量

为了宣传多联式空调机组的优越与万能,常用以下几点表达,即:多室外制冷压缩机的单一系统,可联接64台、128台甚至256台室内机,配管最长可达125m,室外机、室内机之间的高差可为50m,室内机之间的高差可达30m。且不论为了实现这种大系统的可靠运行,特别是针对由于环境温度过低与管路过长带来的液体回流、液态制冷剂再闪发和回油困难等问题,需要增加一些辅助回路与附件,致使系统复杂,更重要的是将造成过多能量消耗,以及系统难以稳定运行。

为什么能耗增加?一方面由于机组容量增加,实现系统各部件的最优化匹配有难度,致使能耗增加。例如,日本为了实现1997年12月京都会议决议,规定多联式空调机组的制冷能效比(EER)为:制冷量小于等于4kW为4.12,小于等于7

kW为3.23,小于等于28

kW为3.07,可以说明问题。另一方面,由于管路过长,阻力损失大大增加,也将造成制冷压缩机能耗大为增加,各厂家对此均有说明,故不多述。总之,多联式空调机组容量不宜太大,额定制冷量以不大于56

kW为好,而且,室外机就说可能分散布置。

22关于系统运行稳定性

以制冷工况为例,蒸发温度和冷凝温度是表征系统运行状态的参数。但是,对于室内机来说却不能作为调节参数,为了保证系统稳定运行,需要控制蒸发器制冷剂出口的过热度,以防止回液,因此,室内机的被控参数是室温和蒸发器制冷剂出口的过热度,而调节参数只有室内机的风量和电子膨胀阀的开度。

对于室外机来说,其中变频制冷压缩机是VRF气液两相流体网络的动力源,其吸气压力和排气压力的变化是系统稳定运行的关键;但是,尽管制冷压缩机吸气压力和排气压力一定,室外环境温度、压缩机频率和冷凝器风量变化,都直接影响冷凝器制冷剂出口的再冷度,而此再冷度又是系统稳定可靠运行的一个重要参数,因此,制冷压缩机吸气压力、排气压力以及冷凝器风量是调节参数,而这些参数之间又存在充分的耦合关系。

根据上述分析,石文星博士[1]提出VRF空调系统的自治协调控制法,即:

①在保证室内机蒸发器制冷剂出口具有一定过热度的条件下,应用电子膨胀阀控制室温稳定;

②在保证室外机冷凝器制冷剂出口具有一定再冷度的条件下,调节压缩机频率和冷凝器风量控制制冷压缩机吸气压力和排气压力;

③在室外机处集中控制压缩机吸气过热度。

尽管如此,在众多室内机的运行台数和调节模式组合多变条件下,可以保证系统稳定可靠运行,但是,压缩机吸气压力、排气压力、吸气过热度与冷凝器再冷度会在一定范围内变化,如果系统容量过大,不但各室内机电膨胀阀前的制冷剂供液压力和蒸发器回气压力将有较大的变化,而且,吸气过热度与冷凝器再冷度可能超出期望范围,致使系统不能稳定地运行。

3试验评价

以上反复强调多联式空调机组是多元变制冷剂流量空调系统,对于某给定多联式空调机组来说,在满载运行条件下,系统内在参数(蒸发温度、冷凝温度等)以及系统制冷(制热)特性,取决于外在参数,即室内外空气温湿度。因此,作为标准的评价试验采用分别进行室内机评价试验和室外机评价试验是不正确的,必须在相同要求条件下进行整体系统的试验,才能相对准确地评价与比较多联式空调机组。

31必须整体试验

首先,分析室内机与电子膨胀阀联合调节特性

由于对于给定室内机来说,换热器几何参数是定值,因此,影响蒸发器效果的因素主要有:室内环境温湿度、风量、电子膨胀阀开度以及蒸发温度和冷凝温度。但是,进行机组标定试验时,室内环境温湿度、风量和电子膨胀阀开度可均匀定值,这样,影响蒸发器效果的因素就只有蒸发温度、冷凝温度以及膨胀阀前制冷剂再冷度,而这些参数均为系统的内在参数,取决于多联式空调机组组成与匹配,难以人为给定,所以,单独进行室内机评价试验,实际是不可行的。

其次,分析室外机组联合调节特性。

多联式空调机组的室外机由变频制冷压缩机(组)和换热器及其风扇组成,其中换热器几何参数是定值,因此,影响室外机的制冷剂流量和制冷能力的因素主要有:室外环境温湿度、风量、制冷压缩机频率以及蒸发温度和冷凝温度。这样,与室内机相同,进行机组标定试验时,室外环境温湿度、风量和制冷压缩机频率可均为定值,而影响定外机性能的因素就只有取决于多联式空调机组组成与匹配、且难以人为给定的系统内在参数--蒸发温度、冷凝温度以及吸气过热度和冷凝器出口制冷剂再冷度。所以,单独进行室外机组的评价试验,实际也是不可行的。

总之,企图简化试验手段,采取分别进行室内机评价试验和室外机评价试验,以达到评价多联式空调机组的方法是不可行的。

32多联式空调机组标定试验的设想

由于评价试验多联式空调机组必须整体进行,因此,提出如下设想。

①以标准额定制冷量计,当前被评价的多联式空调机组最在制冷能力取28kW为宜。

②标定试验在室外侧和室内侧分别为上下设置的房间热平衡量热计装置内进行。

以最大制冷能力为28kW的机组为例,试验机组系统的条件应为:室内机与室外机的高差不小于5m;配管最远长度不小于30m。

④按GB/T7725《房间空气调节器》规定的试验工况室内外参数进行。

⑤试验内容见表。

多联式范文篇4

多联式空调机组由一台或多台室外机与多台室内机组成,依靠制冷剂流动进行能量转换与输送,所以,它是由制冷剂管路将制冷压缩机、室内外换热器、节流装置和其它辅助部件联接而成的闭式管网系统,而室内外换热器又可视为具有扩展表面的传热管,在管内进行着连续冷凝或蒸发过程;这样,多联式空调机组--严格说即变制冷剂流量空调系统,实质上是由制冷压缩机、电子膨胀阀、其它阀件(附件)以及一系列管路构成的环状管网系统。系统中的管路有以下3种类型:

①外肋片直管:具有扩展表面的传热管段,承担系统与室内外环境进行热量交换作用;

②光管直管:当其外覆保温层时,则视为复合直管,由于布置不同,有上升立管、下降立管和水平管之分;

③光管弯管:具有一定弯曲角度的光管。

根据上述剖析与归纳,石文星博士[1]率先提出以变容量制冷压缩机为核心的气液两相流体网络模型,从网络拓扑关系描述入手,通过增广关联矩阵,建立了变制冷剂流量空调系统的通用的分布参数模型,采用变步长求解。并以此为手段分析了多联式空调机组的运行特性,研究了系统的调节特性,从而为多元式变制冷剂流量空调系统难以进行分析研究提供了解决方法。

以变容量制冷压缩机为核心气液两相流体网络模型,与具有恒压点的单相不可压缩流体网络模型有明显的不同特点:

具有相变过程。制冷剂沿管路流动存在压力损失,且与外界环境发生热交换,会产生相变(冷凝或蒸发);在稳定工况下,流入与流出节点的质量流量相等,而体积流量不等。

管段阻力特性系统S并非常数。微元管段阻力系数取决于制冷剂状态和流速变化,各管段的阻力特性系数并非管段结构的函数,即管段阻力特性系数不能作为常数处理。

网络系统无恒压点。网络中各点的压力取决于制冷压缩机、冷凝器、蒸发器和膨胀阀的匹配和调节关系,取决于环境温度和制冷剂流动状态;网络系统通过制冷剂充注量或补充相应的方程封闭求解。

制冷剂的动力特性和传热特性存在耦合关系。各管段制冷剂的温度不仅取决于与外界环境的换热状况,还与该管段的压力密切相关。

多联式范文篇5

关键词:昆明地铁;地下车站;多联空调;冗余系统

昆明作为一座地处温和地区的城市,拥有其他建设地铁的城市所不具备的得天独厚的气候条件。通过昆明典型气象年数据[1]制作图1,可以发现昆明最高月平均干球温度为20.1℃,整个夏季气候舒适,只要通风条件良好,房间无大量余热余湿均能达到很好的舒适度要求。然而地铁站房的环境控制又区别于普通民用建筑,除了需满足人员的生理及心理条件要求,还要保证设备正常运转,对于地下车站设备管理用房的环境控制,地铁设计规范[2-3]中规定了室内计算温度、相对湿度和换气次数的要求,因此需要在地铁设备管理用房设置通风空调系统(小系统)。昆明地区地铁为了达到节能降耗的目的小系统宜最大化的采用机械通风系统,而变频多联空调作为一种可变冷媒流量的空调系统,调节灵活控制先进、管理智能化,可以作为备用冗余,保证通风空调系统的节能运行和紧急情况下全线系统的正常运营。

1冗余多联系统的设计理念

根据昆明市的气候条件,随着节能标准的深入可尽量采用机械通风的方式来满足设备管理用房的舒适性要求,避免集中空调的使用。虽然昆明大部分气候条件可以满足通风及空调的要求,夏季通风计算温度采用历年最热月14:00时的月平均温度的平均值23℃完全可以满足第一类通风降温要求房间的送风要求,比如降压变电所、牵引变电所这类虽然发热量大但是房间计算温度较高的这类房间。但是采用历年平均不保证50h的干球温度作为夏季室外空气计算干球温度却完全不能达到同样具有较大发热量却与人对环境耐受要求度相同的第二类空调要求房间的空调送风状态点,如通信设备室、通信电源室、信号设备室、信号电源室、综合监控设备室等。因此在设备管理用房的通风空调系统(小系统)设计中为了最大限度使用昆明的自然条件,又保证地铁设备的正常运转,不考虑设置带有水系统的集中空调系统,全部使用机械通风系统,针对第二类房间和人员用房设置可变冷媒流量的备用冗余多联空调系统,避免按常规设计的集中空调系统可能经常在部分负荷以至低负荷下,在小温差、大流量、低效率、高能耗工况下运行[4]。因此对于设置有冗余多联空调系统的小系统在正常运行工况下制定了小新风空调、全新风空调和全通风三种运行模式:1)当室外空气焓值大于室内空气焓值时,采用小新风空调,送风机和排风机均变频运行,风量需满足各房间最小新风量要求;2)当室外温度小于室内温度及室外空气焓值小于室内空气焓值时,采用全新风空调,送风机和排风机工频运行,变频多联空调机组同时运行;3)当室外温度低于空调送风温度时,采用全通风运行,送风机和排风机工频运行,变频多联空调机组停止运行。而当设备管理用房发生火灾时,整个系统需立即转入火灾模式运行,变频多联空调机组及与火灾排烟防烟无关的系统停止运行[5]。这样设置不仅灵活地控制了室内环境质量,还最大限度地避免了能源的浪费,在通风系统发生故障阶段还能起备份系统的作用保障全线正常运营、以及保障车站正常运行工况与紧急情况下工况运行的转换。

2分析以往设计中的得失经验总结

从深圳地铁3号线在国内地铁小系统中首次采用备用空调设计[6]以来,国内越来越多的地铁小系统开始设置备用冗余系统,从当初的分体机到如今的变频多联空调系统,虽然各个地方的设置原则不一样,运行模式不尽相同,但是对于其中出现的各种问题进行分析总结对昆明地铁冗余系统设计中避免这些问题十分有必要。常见问题经验主要有总结以下几点:1)冷凝管道漏水的问题。由于地铁站内各种管线交错,安装空间有限,所以很多工程中在多联空调系统的冷凝水系统中采用了冷凝水提升泵。在冷凝水系统中采用冷凝水提升泵无形中增加了维护管理的工作,而且由于提升泵本身有提升高度的限值,很多设计由于没有考虑综合管线时的施工安装往往造成实际安装完后机外排水高度超过提升泵的提升高度造成漏水。对于昆明地铁的小系统,为了尽量使用室外空气,风管往往要比全年使用制冷系统的空调系统要大,因此安装空间更加的紧张,为避免冷凝管漏水的问题,在设计时建议不采用冷凝水提升泵,室内机冷凝水依靠重力来实现排水,因此设置冷凝水排放管排入设备区的离壁墙内的排水沟内,有条件可以直接接入地漏,排放管坡度不小于0.01,避免管道内出现异物堵塞。2)制冷制热工况转换问题。地铁冗余多联系统往往同时也负担管理人员用房的空调,人对于室内环境较为敏感,当然个体之间也有差异,难免会出现预计平均热感觉指数(PMV)为负的情况,尤其是冬季,部分寒冷地区为保证环境卫生及新风要求的送风抵消室内全热后还具有一定热负荷,由此产生了供热需求。然而设备房间常年需要制冷,此时外机同时负担了具有制冷及可能会有的供热需求房间的空调,因此会造成外机出现模式报警,指示室内机故障。昆明地区属于温和地区,虽然人员用房会有一定的供暖需求,但这点需求具有短期性、间歇性且冷负荷特别小;虽然其他地区通过集中统一管理克服了报警问题,但是供暖工况的使用率同样值得商讨。因此昆明地区的地铁冗余多联空调系统采用单冷型多联空调,控制显示器也不具备供暖工况。3)配管过长造成回油困难。地铁车站的管理用房区一般而言具有大小头两端,大端的进深较大,往往从风井到末端房间就已经超过60m的距离。虽然多联空调系统布置灵活配管长度随着技术提升也相应增加,由于地铁多采用风冷型多联空调机组,故其室外机的设置位置一般都在排风井或者室外。从室外机到第一个分歧管的距离一般都接近或超过要求长度的最长距离的一半,而且近端与远端室内机的等效长度也同样有长度限制,部分设计接近限值,但在安装阶段由于管线走管等因素,造成最后安装完后配管过长超出限值,这样的多联空调系统长时间运行容易出现机内堵油,运行EER下降等一系列问题,其主要原因是吸气管管路阻力增加,造成压缩机的吸气压力下降,表现在lgP-h图上就是冷媒从室内机吸热后进入过热区的温度降低,从室内机过热区到气液分离器这段吸气管路易析出机油[7]。因此多联空调系统宜尽量的按区块分拆减少冷媒管路的配管长度,并根据多联机制冷剂管路的实际配管长度对其制冷容量进行修正。

3设计实例

本文截取一个含有冗余多联空调系统的具体车站大端设备管理用房部分用房为例,介绍设计过程[8-9]。

3.1负荷的计算确定

根据工艺专业提供设备散热,室内外计算参数计算出室内余热余湿,计算出房间的冷负荷如表1。

3.2室内外机初步选型

多联空调系统按两套独立室外机设置,信号设备室、信号电源室、综合监控设备室、车站控制室的室内机设置也应为偶数台,按室内机设备编号单、双号分别连在不同的室外机上,管理用房室内机可根据管路布置任意连接一台室外机。因此室内机选型如表2。由于车站控制室为末端房间,单台制冷容量考虑管长负荷配置相对取大,两套室内机额定制冷总容量分别为:35.6kW、31kW。依据地铁站空调使用情况,室内外机容量配比系数为100%~110%,分别计算出所需室外机名义制冷容量为:32.4kW、28.2kW。根据样本选择室外机组PCU-a101额定制冷容量为33.5kW;室外机组PCU-a201额定制冷容量为28kW。

3.3冷量校核

根据室内外机的设置位置高差-5m(室内机高于室外机)和管线配管等效长度115m,查取样本的配管长度及高差综合修正系数为0.84,计算出室外机额定制冷容量不满足所需名义制冷容量,重新选取室外机组PCU-a101额定制冷容量为40kW;室外机组PCU-a201额定制冷容量为33.5kW。3.4系统原理图和平面图图2为冗余变频多联空调系统原理图,图3为冗余变频多联空调系统平面图。

4结语

引入变频多联空调系统作为地铁车站的冗余备用系统对于地铁设备管理用房的空调系统具有重要意义,不仅提高了系统运行的稳定性,其良好的可调节性及管理的智能化都极大的提高了地铁空调运营效果,减少了能源的消耗,其布置灵活的特点也为拥挤的地铁设备管线设计腾出了很大的发挥空间,通过不断的工程积累及设计改进,相信变频多联空调系统能够在更多的地铁车站安全运行,为降低地铁环控系统的能耗做出贡献。

作者:石胡兴 吴馨旎 单位:中国中铁二院昆明勘察设计研究院有限责任公司

参考文献

[1]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2010.

[2]北京城建设计研究总院.地铁设计规范(GB50157-2003)[S].北京:中国计划出版社,2003.

[3]北京市规划委员会.地铁设计规范(GB50157-2013)[S].北京:中国建筑工业出版社,2013.

[4]崔跃,罗建方.温和地区公共建筑暖通设计优化十题[J].暖通空调,2014,44(9):5-10

[5]中国中铁二院工程集团有限责任公司.昆明地铁三号线工程通风空调技术要求[R].2011.

[6]曾臻,叶冲.地铁小系统备用空调设计探讨[J].制冷与空调,2012,26(1):66-68

[7]姚杨.暖通空调热泵技术[M].北京:中国建筑工业出版社,2008.

多联式范文篇6

关键词:捷联惯导;串口通信;DSP

1引言

捷联式惯性导航系统(StrapdownInertialNavigationSys-tem,SINS)将惯性器件直接固连在运载体上,惯性器件可以感应出运载体的加速度和姿态等信息,而且不受任何外部因素的影响,可以实现真正意义上的自主式导航[1-3]。捷联惯导系统具有成本较低、体积更小、可靠性更高等优点,因此已成为惯性导航技术的重要发展方向之一。相对于传统平台式惯性导航系统,捷联惯导数字化程度更高,因此数字信号的传输与通信是导航实现的前提和基础。目前,捷联惯导与上位机或导航解算计算机的通信主要采用串行通信。通信数据主要包含陀螺仪输出的角速度数据和加速度计输出的加速度数据等,用于后续导航解算和数据处理分析。为保证导航解算对于惯性器件数据更新率的要求,惯导串行通信通常具有数据量大、波特率高、更新率高等特点。在通用计算机上实现惯导高速串行通信相对简单,文献[4][5]介绍了在VC++开发平台下,基于MSComm进行串口编程的方法。文献[6][7]阐述了在VC++开发平台下基于MOXA多串口卡的多串口实时通信的实现方法。但是在嵌入式计算机上,由于要兼顾成本和性能,需要对系统资源进行优化配置,对程序进行合理设计。本文基于低成本的DSP28335硬件架构,设计了捷联惯导高速串行通信模块,以较低的硬件成本,构建了惯性导航实现平台。

2DSP28335及开发环境简介

DSP(DigitalSignalProcesser)即数字信号处理器,是美国德州仪器公司(TexasInstruments,简称TI)研发生产的专用于数字信号处理的芯片,其强大的浮点型计算能力是目前市面上其他CPU无法比拟的,集成有专用数学计算指令集以及对内存优化能力使这款专用CPU在数字信号处理领域表现优异。由于是专用CPU,因此DSP只能用TI公司专用的软件开发工具设计软件,TI公司将这款软件命名为CCS(CodeComposerStudio,CCS集成代码开发环境)。DSP系统软件开发工具CCS编辑、编译、连接、软件仿真以及硬件调试等功能于一体,操作简单,拥有良好的人机交互界面,并支持C语言标准,编程简单易于开发[8]。它不仅提供了配置、建立、调试、跟踪和分析程序的工具,而且便于实时、嵌入式信号处理程序的编制和测试,能够加速程序开发进程,提高设计工作效率。

3通信指标与程序流程

惯性导航设备陀螺仪和加速度计数据采用IEEE标准浮点型数据格式输出,每个浮点型数占4个字节外加协议头和协议尾以及自定义信息共62字节。由于惯性导航解算要求陀螺仪和加速度计数据更新率不低于100Hz,为保证信息的有效传输以及为后续导航解算预留硬件资源,设定通信波特率为1843200bit/s。串口接收数据以及发送数据都设置为中断模式,利用中断模式接收数据可以有效节省CPU资源,避免主程序实时查询带来不必要的浪费,当串口完整接收一个字节时将数据存储在预先定义的串口接收缓存区中,缓存区至少能缓存3条最大协议内容的长度。这种设计方式能够保证即使主程序不能及时处理串口数据也不会造成数据丢失的问题。主程序遍历串口接收数据缓存区,如果协议缓存区字节数超过最大协议长度字节数62字节依然没有收到协议头或者协议尾,或者校验失败则丢弃这条协议,清除协议解析缓冲区。这种串口接收数据处理方式称之为双缓存区模式。这种处理方式可以很轻松处理高速数据通信问题而且不容易丢失数据。串口数据接收协议解析流程如图1所示。

4串行通信实现

4.1初始化

DSP28335芯片初始化阶段,主要对系统时钟频率、串行通信SCI模块、芯片引脚、中断向量等进行初始化设置,其主要代码及其功能如下:InitSysCtrl();//设置系统时钟频率InitScic();//初始化串行通信SCI模块InitGpio();//初始化GPIO引脚InitPieCtrl();//禁止PIE,清除PIEIER和PIEIFR寄存器InitPieVectTable();//加载中断向量表EnableInterrupts();//中断使能PieVectTable.SCITXINTC=&SCITXINTC_ISR;//初始化PIE中断向量表PieVectTable.SCIRXINTC=&SCIRXINTC_ISR;//初始化PIE中断向量表

4.2串口接收中断服务程序

串口接收中断服务程序主要将输入缓冲区的数据读入到存储器中,同时将数据按照协议进行解析,将其转换成计算机能处理的数据形式,便于后续进行惯性导航解算,其主要代码及功能如下:

5结语

捷联惯性导航系统在军、民用领域都有重要应用,而嵌入式惯性导航解算计算机是捷联惯导的重要组成部分。陀螺仪和加速度计等惯性器件与嵌入式计算机的通信是实现惯性导航的前提和基础。为了兼顾惯性导航串行通信的高更新率、高波特率、大数据量等特性,以及嵌入式计算机成本等需求,本文基于DSP28335硬件架构设计了捷联惯导通信模块,从而实现了捷联惯导高速、稳定、可靠的数据通信。

参考文献:

[1]秦永元.惯性导航(第二版)[M].北京:科学出版社,2014.

[2]张天光,王秀萍,王丽霞.捷联惯性导航技术[M].北京:国防工业出版社,2007.

[3]王巍.惯性技术研究现状及发展趋势[J].自动化学报,2013,39(6):723-729.

[4]李薇,耿淑琴.基于VC实现MSP430与PC之间的异步串行通信[J].微型机与应用,2012,31(5):23-25.

[5]周小刚,单斌,汪立新,等.基于PC104的嵌入式转台控制系统设计[J].自动化应用,2013(1):62-24.

[6]赵素娟.基于Moxa多串口卡的多串口通信的VC++实现[J].计算机与现代化,2011(8):117-123.

[7]李瑞先.VC++中基于Moxa多串口卡串行通信的实现[J].通信技术,2009,42(11):7l-72+192.

多联式范文篇7

关键词:雷电防护氧化锌阀片并联使用测试研究

一、前言

大气中的雷电现象会给人类的生存和社会活动带来危害,对它的防护问题一直是人们关心的问题。随着社会经济和科学技术的发展,微电子设备的广泛应用,我们不仅耀注意预防对影响建筑物或其他物体的直击雷灾害,而且对雷击电磁脉冲(LEMP)的防护更给足够地重视[1][2][3],目前国内外在实施雷电防护过程中对于LEMP的防护,通常是采用电涌保护器(SPD)(SURGEPROTECTIVEDEVICES)限制瞬态过电压和引导泄放电涌电流来实现[4][5][6],现在一般在SPD中使用的主要器件为:金属氧化锌(MOV)阀片、放电间隙、气体或固体放电管、滤波线圈、瞬变二极管(SIDACTOR)等,而使用在低压线路(220V~/380V~)中的SPD、绝大多数是使用MOV阀片。在低压电路中为了达到25~50ns高速响应时间,国际上MOV阀片的直径一般控制在14~20mm左右,最大通流容量一般在60~70KA,电流波形为8/20μs。美国在UL1449第二版《瞬时电压浪涌保护器标准》TVSS(TRANSIENTVOLTAGESURGESUPPRESION)中建议[7],采用多片MOV阀片并联使用,以达到更大的通流容量。由于目前在国内外多片MOV阀片并联技术的测试试验和分析研究工作还不多,所以对这一技术在雷电防护中使用也存在不同看法。本文针对上述问题,试图通过在美国JOSLYN公司实验室的测试试验,以及对样本和数据的分析,对多片MOV阀片并联技术的使用给出了肯定的答复。

二、MOV阀片的主要性能

MOV阀片的主要成分为氧化锌(ZnO),并渗有少量的其它氧化物,外层由两层铅和一层塑料涂层组成[8],在低压电源系统中,一般采用圆形的直径为14mm和20mm的MOV阀片。在直流电压为3KV下,电容量分别为5600PF和22000PF,标称通流容量分别为4KA和6.5KA,电流波形为8/20μs。MOV阀片两端电压低于压敏电压时,呈高阻抗状态。当电压高于压敏电压时,由于阀片内的齐纳效应和雪崩效应,迅速呈低阻抗。电压低于压敏电压又回到高阻抗状态。MOV阀片的好坏主要决定以下一些参数。

1、压敏电压

当温度为20℃,一般认为在MOV阀片上有1mA电流流过的时候,相应加在该阀片上的电压叫做压敏电压。应按如下公式计算:

Vn≥(VNII×√2/0.7)1.2

式中:VN――MOV阀片压敏电压值

VNH――电源额定电压值(有效值)

压敏电压冲击前后的变化率应小于±10%

2、漏电流

MOV阀片在标称持续工作电压下流过阀片的电流称为漏电流。按国家标准应小于30μA。冲击前后的变化率应小于200%。

3、残压及残压比

在规定波形、标称放电电流冲击氧化锌阀片,阀片两端测到的电压峰值,称为残压。

残压与压敏电压的比值,称为残压比。

一般情况下残压比应≤3。

三、MOV阀片的并联使用

在保证高速响应的前提下,要提高TVSS或SPD的通流容量,一般采取多片并联使用。欧洲及国内一些专家认为多片MOV阀片并联使用,由于阀片性能不一致,可能产生雷电能量分配不均匀,造成MOV阀片的温度升高,性能下降,导致热崩溃,或提早老化、失效,因此不主张采取多片氧化锌阀片并联使用。但目前国际上使用在低压电源配电系统上的单片MOV阀片的最大通流容量只能达到60-70KA(8/20μs)满足不了实际工程的需要,所以对于MOV阀片并联使用的研究具有十分重要的意义。

四、在美国JOSLYN实验室测试数据分析

美国JOSLYN公司是雷电浪涌防护的专业公司,从1950年就开始专门研究雷电和瞬间过电压保护。JOSLYN公司从1979年以来一直生产并行MOV的TVSS、产品遍布世界130多个国家的通信、电力、交通、航空、金融、计算机网络等。美国总统座机空军一号就采用了该公司的产品。

作者与美国JOSLYN公司实验室的HansSteinhaff博士进行了以下的测试。

(一)测试仪器

1、Keytek587型8/20μs波形标准冲击试验仪。

2、KeytekS1/S3、S4/S5/S6及S7的浪涌网络单元。

3、Peason301x型电子宽带电流变换器。

4、7A26双踪放大器。

5、Tekronix7835存储式示波器。

(二)样本的抽取

本次试验一共抽取三组样本,A组是随机从一批产品中抽取50片MOV阀片;B组从一批阀片中选取1mA压敏电压最高和最低的MOV阀片各25片;C组是从一批MOV阀片产品中抽出压敏电压最高的25片,从另一批产品中抽出压敏电压最低的25片样品。所有的MOV阀片在同一等级通流容量下冲击两次,表1显示了通过每组MOV阀片受冲击后电流的平均值及占总电流的百分比。表中A1、A2是从A组中选出每两片MOV阀片配为一对(共25对),并联后经同一电流冲击两次测得得平均数值。B1、B2是从B组中选出压敏电压最高和最低得MOV阀片各片配为一对(共25对),并联后经同一电流冲击两次测得平均数值。C1、C2是从C组中选出压敏电压最高和最低的MOV阀片各片配为一对(共25对),并联后经同一电流冲击两次测得的平均数值。

表1每组MOV阀片电流平均值(A)及百分比

冲击电流(A)A组电流百分比%B组电流百分比%C组电流百分比%

A1A2A1A2B1B2B1B2C1C2C1C2

12571665248114228416120168812

500250245514937013074263901008020

750380375505053022570305601807624

3000150014905050175012005941180012006040

10000475047505050525042005644540040005743

表2显示了MOV阀片冲击前后,1mA压敏电压变化情况,并且给出了冲击前后正负极1mA压敏电压的变化。

表2冲击前后正负极压敏电压平均值(V)

样品冲击前冲击后

正负正负

A1238239240243

A2237238239242

B1225224224224

B2251251251255

C1227227226229

C2254254248257

(三)数据分析

从表1不难看出,A组同一批发货样品中抽出的MOV阀片,即使没有经过严格筛选、配对,不管在小电流还是大电流冲击情况下,并联两片MOV阀片上吸收的能量基本平衡,但在B组同一批产品中,抽出MOV阀片压敏电压最高和最低配对。在小电流(125-750A)冲击下,两片并联MOV阀片上吸收的能量是不平衡的,最大误差在84%和16%。在大电流(3000~10000A)冲击下,两片并联MOV阀片吸收的能量基本平衡,最大误差在59%和41%。C组为不同批次中抽取的最高和最低压敏电压MOV阀片配对,在小电流(125~750A)冲击下,两片并联MOV阀片上吸收能量更不平衡,最大误差在88%和12%,比B组还要大,但在大电流(3000~10000A)冲击下,两片并联MOV阀片上电流也还基本平衡。

五、JOSLYN实验室做的其它辅助测试

(一)、近来JOSLYN公司从一批产品中任意抽取6各使用3片20mmMOV阀片并联的TVSS,冲击电流为1500A,波形为8/20μs,经过10000次冲击试验(记录了2500次的测试),其中5各TVSS经过10000次冲击后,1mA下的压敏电压变化率≤±10%,另一个在8500次冲击测试后,1mA下压敏电压变化率>10%。

(二)、另一个测试将4片MOV阀片并联,不用刻意去匹配,冲击电流为10000A,波形8/20μs,一共冲击220次,然后分别在测试前、中、后4片并联MOV阀片的1mA压敏电压变化率为+7.3~7.5%,每一片MOV阀片的1mA压敏电压变化率为+5.3~6.7%。

(三)、另一个制造商生产的TVSS,也使用上述同样的方法测试,在220次冲击后,总的1mA压敏电压变化率为12.4~20.9%,在10000A冲击电流下,40~60次冲击后,1mA压敏电压产生了大于10%的变化。

六、结论

(一)、由于MOV阀片性能不一致,特别是1mA下压敏电压不一致,会造成在小电流(125~750A)冲击下多片MOV阀片并联时,每个阀片吸收雷电能量不一致。

(二)、在大电流(3000~10000A)冲击下,即使MOV阀片性能不太一致,多片并联使用时每片MOV阀片吸收雷电能量基本一致。

(三)、因此,只要对MOV阀片略加挑选配对,且利用保险丝阻抗帮助平衡电流,多片MOV阀片是可以并联使用的,不会因吸收能量不一致而产生热崩溃或提早老化。

参考文献:

⑴R.H.Golde《Lightning》1997

⑵苏邦礼等《雷电避雷工程》1998

⑶GB50057-1994《建筑物防雷设计规范》(2000年版)

⑷IEC61643-11998《连接至低配电系统电涌保护器》第一部分性能要求和试验方法

⑸IEC61643-2/Ed1.02000《连接电信网络及信号网络的电涌保护器》第一部分性能要求和试验方法

⑹IEEE《低压防浪涌装置性能》

多联式范文篇8

上下联在形式上平行并列,语气一致,上下联分别从两个不同的角度说明同一个事物,以表示同一主题的称为并列关系,这种形式的联语常在句中用“也”、“又”、“既……又”等,也可以不用关联,不用关联词。

看游俊作成都武侯祠联:

两表酬三顾;

一对足千秋。

作者抓住最能表现诸葛亮形象的两个方面,“两表”(即《前、后出师表》),“一对”(《隆中对》),对诸葛亮进行了歌颂。表现了他超人的才智和非凡的功绩。联语语言精炼,条理清楚,出语惊人。此类对联,浓笔重彩.形象鲜明,但如果处理不当,会有单调和重复累赘之弊。

二、承接关系

上下联按时间顺序叙述连续的事件,或者按意义上的承接关系构成,称连贯关系,关联词多用“已……又……”、“才……又……”等。如:

台湾省已归日本;

颐和园又搭天棚。

甲午战争以后,清政府被逼将台、澎列岛割让日本,其后有些人主张办海军以图强,可慈禧却把海军的公款拿去建供她个人享乐用的颐和园,国人无不气愤,有人写出上联予以讽刺。

三、递进关系

对句和出句的关系从小而大,由浅入深,由表及里,这种关系被称为递进关系。常用的关联词有“况”、“更”、“不但……而且”等。

如一理发店联:

不教白发催人老;

更喜春风吹面生。

在叙事层次上,下联比上联更深一层,下联化用白居《草》中诗歌句“春风吹又生”,寓意尤浓,此为联句的高妙之处。有的联省去表示递进关系的关联词,而并不减其递进的意思。

四、假设关系

出句提出假设,对句作出结论,这种句法关系称假设关系,常用的关联词有“若”、“如”、“便”、“如果……就”、“要是……就”等等。如启功所撰一联:

若能杯水如名淡;

应信村茶比酒香。

上联出句提出假设,对句推出结果,意思是说如果能将名利视为杯水一样清淡,你会觉得农家的清茶胜过酒的香醇。

五、条件关系

即出句提出条件,对句得出结果,这种句法关系就是条件关系。如:

多勤寡欲;

益寿延年。

“多勤寡欲”是条件,“益寿延年”是结果,只有条件具备才能达成结果。以上三联均属此类。

六、转折关系

出句推出条件,对句却从相反的方向去叙说,称转折关系。这种句法在对联中很常见。常用关联词“但”、“却”、“然”等,但也有不用者。

如一理发店联:

虽为毫末技艺;

却是顶上功夫。

上联“毫末技艺”在于抑,下联“顶上功夫”,意在扬。

再如翁同龢自题联:

文章真处性情见;

谈笑深时风雨来。

此联虽未用关联词,不难看出仍为转折关系。两种境界有弥缕之感,但其转折处却是山回路转,柳暗花明。

七、选择关系

上下句分别说两件事,表示二者择一,称为选择关系或称取舍关系。常用“宁……不……”、“与其……不如……”、“但”、“不”等,如:

宁为玉碎;

不为瓦全。

联句以“宁……不……”关联直抒胸臆,表现出刚正不阿,一身正气的英雄气概。

再如一婚联:

但求天长地久;

何必朝相暮依。

可以看出,这是一对身居两地的新婚夫妇,为表达爱情的真挚而撰写的对联。

八、因果关系

出句和对句分别推出原因和结果的关系。—般出句讲原因、理由,对句讲结果、或做出结论,但也有倒装者。

如雁门关联:

莫愁前路无知己;

西出阳关多故人。

此为因果倒装句式,出句是结论,对句是理由,倒装句式,可增添对联的文学色彩。

九、目的关系

出句和对句是表示目的和行动的关系。或者出句是目的,对句是行动或措施,但也有互为倒装者。

看下联:

忍令上国衣冠沦于夷狄;

多联式范文篇9

关键词:热电冷三联供节能性当量热力系数

一.引言

对于吸收式制冷系统节能性的问题,几年来一直是国内学术界争论的热点。直接以锅炉蒸汽为热源的吸收式制冷机或直燃机一次能耗高于压缩式制冷机,这一点大家的观点是一致的。对于热电冷三联供,即以热电厂供热汽轮机抽汽或背压排汽为热源的吸收式制冷相对于压缩式制冷机的节能性,则在已发表的文章中众说纷纭,多数文章认为热电冷三联供系统是节能的[1][2],一些文章认为该系统节能是有条件的[3],而另一些文章则认为热电冷三联供系统并不节能[4]。本文结合国内一些关于热电冷三联供系统节能性的典型文献,谈一下自己的看法。

二.对当量热力系数的认识

代表热电冷三联供系统节能观点的典型文献[1]用当量热力系数对系统进行了分析。当量热力系数表示为单位一次燃料所制取的冷量。设由汽轮机抽汽口得到的每1kJ热能所耗燃料热能本应为TJ,由于蒸汽在抽汽口前已作功wKwh,而每1KWh在凝汽式机组中所耗热能为vkJ,故而抽汽得到的每1kJ热能真正耗用燃料热能的kJ数为:T-wvkJ,其倒数u=1/T-wv表示单位燃料燃烧产生的高品位热量相当于供热汽轮机抽汽或背压排汽口处的低品位热量。吸收式制冷机的当量热力系数可因此表示为:

u的值大于1,它将视热电厂汽轮机入口处和抽汽或背压排汽口处的蒸汽参数及锅炉效率而定。据文献[1]引用巴窦尔克斯等的计算,当抽汽压力不超过0.6MPa的情况下,高压汽轮发电机组的u值可达2.65。在采用此汽轮发电机组的热电冷三联供系统中,某双效吸收式制冷机的当量热力系数为:

这大大超过压缩式制冷机的当量热力系数ξc:

如果汽轮机的初参数降低,则u值和相应的ξea也将随之减小,表1列出了文献[1]给出的不同初参数下的当量热力系数。

由表1可以看出,热电冷三联供制冷能耗要比压缩式制冷低的多。即使采用低参数汽轮机的抽汽或背压排汽作为热源,吸收式制冷机的能耗也大大低于压缩式制冷,此结果多次被引用来说明热电冷三联供系统的节能优势。

表1不同初参数下热电冷三联供制冷和压缩式制冷的当量热力系数

表1不同初参数下热电冷三联供制冷和压缩式制冷的当量热力系数

双效吸收式制冷机的热力系数变化不大,基本上在1.2左右。于是,u值成为影响当量热力系数的关键。文献[1]没有给出u值的计算方法,而只是直接引用几十年前巴窦尔克斯的《吸收式制冷机》的有关值。在此,有必要对u的取值重新计算一下。

根据上述对当量热力系数的定义,u值可简化为下式表示:

若设汽轮机相对内效率为0.82,热电冷三联供系统中汽轮机的抽汽或背压排汽在吸收式制冷机放热凝结后返回电厂系统的温度为饱和温度,机组凝汽器压力为4.9kPa,其他有关参数取值见表2。由以上参数值容易计算出表1所示三种抽凝机组的纯凝汽发电效率ηc2值分别为0.280、0.262和0.230。于是,由式(3)可得三种初蒸汽参数的u值,进而得到此三种初参数下热电冷三联供制冷的当量热力系数,见表1。本文计算出的当量热力系数显然比文献[1]低。

再看一下压缩式制冷机当量热力系数的计算。由于在计算热电冷三联供吸收式制冷机的当量热力系数时没考虑冷水泵、冷却水泵、冷却塔风机和溶液泵等辅助设备的电耗,因此式(2)中的W0应是压缩式制冷系统比吸收式制冷系统多耗的电量,采用表3中的值。同时,压缩式制冷的电动机效率也不应在该式中体现。于是,压缩式制冷的当量热力系数应为:

这样,由重新计算的结果(见表1)来看,虽然与发电效率为0.34的压缩式制冷系统相比,热电冷系统是具有节能优势的,但这种优势并没有文献[1]所描绘的那么大,尤其是对低参数机组。那么,是否凭表1中的几个数值就能说明热电冷三联供系统就一定节能呢?以下进一步谈谈对此问题的认识.

1|2

三.对热电冷三联供系统节能性的认识

热电冷三联供系统中吸收式制冷机的当量热力系数与多个因素有关。事实上,评价和分析热电冷三联供系统的节能性应考虑以下几方面:

(1)节能是相对的,与比较对象的选取有关

一个系统是否节能,是相对于具有相同产出的另一系统能耗而言的。热电冷三联供系统在发电方面是与其他发电形式(代替电厂)作比较的,在式(3)中即表现为代替电厂的发电效率ηc2。

对于新建抽凝机组的热电冷三联供系统以及由背压式供热机组构成的热电冷三联供系统,其发电量可由当地电网的其他电厂发电代替,因而,代替电厂发电效率ηc2可选择当地电网的发电效率或全国平均水平发电效率。如果ηc2取为全国平均水平发电效率0.325[5],则三种热电冷系统的当量热力系数如图1所示。当压缩式制冷以全国平均水平发电效率的电能为动力时,即ηc=0.325,则采用双效机的高、中参数热电冷系统节能效果是明显的,而低参数的热电冷系统在高抽汽参数下节能优势并不大。

对于由抽凝汽轮机组成的现存热电厂,当改造其为热电冷三联供系统时,原本凝汽发电的蒸汽变成以抽汽的形式发电。因而,ηc2可取为该热电厂的凝汽发电效率。这种情况下热电冷三联供系统的当量热力系数如图2所示。可以看出,此时采用双效机的热电冷三联供系统节能优势与图1所示的情况相比更加明显。

在制冷方面,热电冷三联供系统是与压缩式制冷系统作比较的。因此,其节能性与压缩式制冷机的COP以及该制冷机所耗电的发电效率等因素有关。

(2)热电冷三联供系统的节能性与汽轮机初参数的高低有关

在图1和图2中,随着机组初蒸汽参数的降低,热电冷系统当量热力系数也会降低。这是由于初蒸汽参数降低使锅炉中不可逆传热加大,从而增加了系统能耗。因而,当初参数高的热电冷系统节能时初参数低的系统却不一定节能。

(3)汽轮机抽汽或背压排汽的压力对节能性的影响

文献[1]仅考虑该压力为6MPa(绝压)的情况。实际热电厂的供热机组往往不是这个抽汽压力。当较远距离输送蒸汽时,考虑到热网的压损,为满足双效机的热源参数要求,汽轮机抽汽或背压排汽的压力应比此压力高。对于在原有热电厂基础上扩建的热电冷系统,由于原有供热机组的抽汽压力已系列化,使得抽汽参数与制冷机所要求的额定值往往存在较大偏差。因而有必要分析汽轮机抽汽或背压排汽的压力对系统能耗的影响。从图1和图2可看出,系统当量热力系数随着汽轮机背压排气或抽汽压力的升高而降低。从热力学第二定律看,背压排气或抽汽压力的提高,会使蒸汽在汽轮机中作功的火用损失减小,热电厂的火用效率增加,有使热电冷系统能耗减小的趋势。但是,制冷侧的火用效率却以更大幅度减小。随蒸汽压力的改变,制冷机出力变化较为显著,而其COP值的变化并不十分明显,可近似以常数处理。蒸汽压力增大时,制冷机传热传质的不可逆程度增大,甚至为避免溴化锂溶液结晶,要对蒸汽进行减温减压处理,进一步加大了系统的不可逆损失,使得系统的当量热力系数减小。相反,如果大幅度减小汽机抽汽或背压排气压力,虽然系统的能耗降低了,但制冷机的出力会下降。因此从经济上讲,汽轮机抽汽或背压排气压力的选择存在一个优化问题。

(4)吸收式制冷机的机型对系统节能性的影响

这里的机型是指单效或双效。图3和图4分别为ηc2取全国平均水平发电效率和热电冷系统供热机组凝汽发电效率时的当量热力系数。可以看出,在图3中,采用单效机的中、低参数热电冷三联供系统是不节能的。在图4中,高、中参数的热电冷三联供系统在抽汽参数足够低时是节能的,而低参数热电冷三联供系统的能耗明显大于压缩式制冷机。比较采用双效机(图1、2)和单效机(图3、4)的热电冷三联供系统便可很容易看出,采用双效机的系统当量热力系数明显高于采用单效机的系统。显然这是由于单效机的COP远低于双效机所造成的。因此,优先采用双效机,是降低热电冷三联供系统能耗的有效措施。这对制冷站设在热电厂或热量输送系统为蒸汽网的热电冷三联供形式是容易实现的。但热电冷三联供形式之一是热电厂提供的热量通过热水网输送到各建筑物,提供吸收式制冷机所需热量。对不宜修建蒸汽热网的市区,这是可行的方案之一。由于目前普通的直埋热水管道所允许的最高供水温度不超过130℃,这种情况下只能采用单效机,其代价是增大了热电冷系统的能耗。

多联式范文篇10

【关键词】牵引变电所内部联跳馈线开关开关失灵拒动短路电流死区。

【Abstract】Basedonauther’sworkingexperienceinmetroprojects,putforwardtwokindsofprotectionmethodwhichareabsolutelynecessarilyforthetractionsubstation,theinter-trippingofbreakerandthebreakerfailureandtrippingdisabledprotection,becausenoremotestandbyprotectionisinstalledinfeedbreaker.Cuttingoffthepowersupplyimmediatelyisthefinalaimofallrelayprotection,especiallyfortheDCsystem.Inordertocutoffthepowerquickly,theprinciplethattheshort-circuitcurrentshouldbecutoffinitsriseprocessshouldbefollowedintheprotectionofDCsystem.Threecausationswhichleadtotheskipareaofprotectionisanalyzed.Inordertomaketheprotectionoffeederbreakerperfectmuchmore,ThetripdisableprotectionforfailureofbreakershouldbeinstalledinfeedbreakerofDCsystemtoinsurethesafetyofthetrainoperation.

【Keywords】tractionsubstation,inter-tripping,feedbreaker,thebreakerfailureandtrippingdisabled,shortcircuitcurrent,skiparea

一、概述

地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源,既当牵引网发生短路时,并非仅双边供电两侧的牵引变电所向短路点供电,而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区,是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时,首先要迅速“切断电源”、“消除死区”,针对这两点,牵引供电系统除交流系统常用的保护外,还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt△I等特殊保护措施,这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。对任何供电系统的继电保护而言,可靠性总是第一位的,而对直流牵引供电系统,速动性可以看成和可靠性是同等重要的,所以直流侧保护皆采用毫秒级的电器保护设备,如直流快速断路器、di/dt△I保护等,目的就是在直流短路电流上升过程中将其遮断,不允许短路电流到达稳态值。至于选择性,在直流牵引供电系统中则处于次要位置,其保护的设置应是“宁可误动作,不可不动作”。误动作可以用自动重合闸进行矫正;不动作则很可怕,因为牵引供电系统短路时产生的直流电弧,如不迅速切断电源,电弧可以长时间维持燃烧而不熄灭;而交流电弧则不同,其电压可以过零而自动熄灭。

关于地铁牵引供电系统的常用保护,已为业内人士所熟知,这里不再多作介绍。下面谈一下容易被人忽视的两种保护。

二、引变电所内部联跳保护

牵引变电所内部联跳的定义:当发生短路故障引起两台整流机组直流引入断路器或交流断路器同时跳闸时,应迅速跳掉全部直流馈线断路器,以及时切断电源。见图(01)

当牵引变电所内部发生短路时,如K2点短路,则流向短路点的短路电流有6路,两台整流机组2路:IK1、IK2,相邻牵引变电所通过4路馈线开关流向短路点的有4路:IK3、IK4、IK5、IKy。若只跳掉两台整流机组的直流开关或交流开关是不够的(只切断IK1、IK2),相邻牵引变电所仍会通过牵引网继续向短路点供电(IK3、IK4、IK5、IKy),因此必须跳掉直流母线上所有开关,以切断电源,实现牵引变电所内部联跳;

当牵引变电所外部发生短路时,如K1点短路,则流经DS6开关的短路电流有5路,两台整流机组2路:IK1、IK2,相邻牵引变电所通过3路馈线流经DS6开关的短路电流有3路:IK3、IK4、IK5,此时若馈线开关DS6拒动,而又没有远后备保护,此时只能通过牵引变电所内部联跳及时切断电源。

牵引变电所内部联跳的保护范围:无论是牵引变电所内部短路还是外部短路,凡引起两台整流机组同时跳闸的故障均应实行牵引变电所内部联跳。

由图01可以看出,流经馈线开关DS6的短路电流IKZ是由IK1→IK55个短路电流组成的,这就说明,如果馈线开关DS6失灵拒动,要切断短路点的电源,只跳掉DS1、DS2是不够的,还要跳掉DS3、DS4、DS5等5路开关,即必须跳掉牵引变电所直流母线上的所有开关。

牵引变电所内部联跳保护,就是为当发生短路故障时,迅速切断电源的一种保护措施。如发生一路馈线开关失灵拒动或两台整流机组直流侧两路开关同时跳闸(或两路交流中压开关同时跳闸),为迅速切断电源,都必须实行变电所内部联跳,既跳掉直流母线上的所有开关,否则不能切断电源,如图(01)所示。

图中K1(牵引变电所外部短路)和K2(牵引变电所内部短路)点短路时,如果DS1、DS2两台直流断路器或DL1、DL2两台交流断路器同时动作,则必须实行变电所内部联跳,跳掉所有直流馈线断路器。即跳掉DS3、DS4、DS5等馈线开关,否则不能切断电源,相邻牵引变电所继续向短路点供电。

三、直流馈线开关失灵拒动保护

目前国内地铁直流馈线开关设置了多种保护和自动装置,这些都是必要的,但尚缺少一种重要的保护:开关失灵拒动保护。当开关失灵拒动时,开关本身设置的所有保护均失效,而馈线开关又没有远后备保护,这是直流馈线保护的“软肋”。众所周知,从牵引变电所的主接线上看,直流馈线开关没有远后备保护设备,这是由地铁供电网络的构成特点所决定的。在直流母线上共设置6路开关:2路直流引入开关、4路馈线开关,见图(01)。从电源角度讲,每路馈线开关的上一级有5路电源开关,这和交流电路不一样,交流电路上一级只有一路开关,所以当下一级开关失灵拒动时,上一级开关可以作为它的远后备保护。直流则不然,它的上级5路开关都不是它的远后备保护设备。从图(01)中可以看出,当K1点发生短路时,如为变电所出口短路,馈线开关失灵拒动可能引起2路直流引入线开关跳闸,引起变电所联跳,及时切断5路电源。如果发生远端短路,馈线开关失灵拒动就非常危险,此时将有5路短路电流IK1、IK2、IK3、IK4、IK5持续不断流入短路点,短路点的直流电弧将烧毁一切,对于运行的电动车辆,尤其危险,对人身安全造成极大的危害。

其实,解决这一问题并不需要什么高深技术和增加投资,直流电路保护的最大特点就是一个字:“快”,迅速切断所有电源的唯一可靠的办法就是通过牵引变电所内部联跳,迅速切断电源。

判断馈线开关失灵拒动有两个条件:

1.di/dt△I/△t动作;

2.经一定的时限馈线开关不动作(开关辅助常开接点仍处于合闸位置)。

将上两个条件组成“与”电路,即di/dt△I/△t动作信号、经一定可调整的延时(30~100ms),而开关辅助常开接点仍处于合闸位置,既判断为开关失灵拒动。应及时实现牵引变电所内部联跳,切断短路点的电源。

牵引变电所内部联跳、馈线开关失灵拒动两种保护,希望能引起业内人士的重视。

三、直流馈线保护的死区

直流馈线保护,在牵引供电系统中是最重要的保护,这是由它的供电方式和供电对象的特点决定的。因供电方式不同而形成保护上的不同的“死区”;因供电的对象是随时变化并移动的负荷,还需要在保护上进行配合,这就形成了保护上的特殊要求。直流馈线保护首先是以保障列车的正常运行、保护旅客的人身安全为第一要素。

1.死区的形成因供电方式的不同,保护设置不同,形成保护上的死区也不同,单边供电死区发生在供电区段的末端附近;大双边供电死区发生在供电区段的中点附近,运行列车主保护不能断弧时死区发生在电动车辆的上,可以发生在列车运行区间的任何位置。

死区的大小和供电方式、供电距离、保护措施有密切的关系,采取适当的供电方式和保护装置,死区是完全可以消除的。

⑴单边供电死区发生在末端

死区的大小,取决于开关整定值的大小和供电距离的大小,当只靠开关本身整定值保护时,形成死区的范围见图(02)。

由图02可见,单边供电时,开关整定值越大,死区越大;供电距离越长,死区也越大,图中Izd为馈线开关整定值。1.2Izd是考虑开关整定值有10%的误差时确定保护死区的范围。

⑵大双边供电死区发生在中点附近

如果只靠开关的大电流速断保护,死区会出现在两端变电所的附近,这里所说大双边供电死区发生在中点是指馈线保护设置了双边联跳装置以后形成的死区。正常双边供电是不会形成死区的,因为区间任何一点发生短路,都可以使一端开关跳闸,并使另一端开关联跳。而采用大双边供电时,在供电区的中点附近可能出现死区,见图(03)。

图中Izd为馈线开关整定值。

⑶列车主保护不能断弧形成的死区

这一死区发生在车上,范围在整个供电区间都可能发生,直接威胁旅客的生命安全,非常可怕。要求变电所的馈线保护和车辆的主保护要相互配合和协调。

牵引变电所保护和地铁车辆的主保护相互配合的基本原则是:

①地铁车辆主保护应当“自己保护自己”,即地铁车辆在运行中无论在任何地点,当车辆发生短路故障时,其主保护应动作可靠,不允许有拉弧现象,“要动作就可靠动作并断弧,不动作就拒动”。绝不允许开关动作而出现燃弧现象。