低密度校验码范文10篇

时间:2023-04-08 14:33:01

低密度校验码

低密度校验码范文篇1

论文摘要:低密度校验码(LowDensityParityCheckCodes,LDPCcodes)是当前编码理论领域研究最热的信道编码之一。本文介绍了LDPC码的概念及其性能,并对低密度校验码应用的现状和今后方向作出了展望。

一、LDPC码简述

低密度校验(LDPC)码又称为哥拉格(Gallager)码,它是哥拉格于1962年提出的一种性能接近香农(Shan2non)限的好码。在很长的一段时间里,LDPC码并未受到人们的重视。直到1993年,Berrou等提出了Tur2bo码后,人们研究发现Turbo码其实就是一种LDPC码,LDPC码又重新引起了人们的研究兴趣。1996年,MacK2ay的研究,使LDPC码的研究跨入了一个新的阶段.最近几年的研表明,在非规则图上构造的基于GF(q)域上的LDPC码性能要好于Trubo码,它的性能非常接近香农限。LDPC码是根据稀疏随机图来构造的,因而它的码子之间具有很好的码距离。LDPC码属于线性纠错码,它的校验矩阵是一个稀疏校验阵:每个码子满足一定数目的线性约束,而约束的数目通常是非常小的是约束数目为3的校验矩阵)。同时由于LDPC码的约束是由一个稀疏图定义的,因而使得它的译码变得较为容易。目前,LDPC码已经成为编码领域的一个新的研究热点。

二、LDPC码的性能分析

LDPC码的译码性能分析方法主要可以归纳为三类:1)密度进化(DensityEvolution)理论。2)高斯近似(GaussianApproximation);3)EXIT表(ExtrinsicInformationTransformChart)。

1.密度进化

LDPC码的和积译码算法或BP算法中,信息在变量节点和校验节点之间不断迭代传递的,每次迭代传递的信息是随机变量。在这种迭代译码中,存在一种阈值现象,即在信道噪声水平低于某个阈值时,随着码长趋向于无穷大时,码的BER可以任意逼近零,否则错误概率将大于一个正常数。最早由Gallager利用组合数学和概率理论对和积译码算法下码的误码率进行了理论分析并观察了二进制对称信道(BSC)的阈值现象,提出跟踪LDPC码迭代传递的外信息的概率分布来分析译码器的收敛行为,即对于每次迭代计算节点的输出误比特率,输出误比特率是本次迭代输入误比特率的函数,每次迭代的平均误比特率可以通过变量节点和校验节点之间传递的信息的概率密度函数得到。Lubyetal将这种分析思想应用到LDPC码的硬判决译码中,在二进制删除信道(BEC)中译码过程同样存在这种阈值现象,利用随机构造的非规则LDPC码可以改进阈值,非规则LDPC码的性能优于规则LDPC码。Richardson和Urbanke在Gallager和Luby的工作基础上将对LDPC码的译码算法的分析方法扩展到更一般的信道模型。在给定的信道模型下,假设基于二分图的LDPC是无环的,或在设定的迭代次数和校验矩阵足够大的情况下,信息节点在深度为2的邻域内为树状结构,那么在节点之间迭代的信息是独立同分布的随机变量。Richardson等人分析了这些传递信息的概率密度的进化情况,发现在和积译码算法的每次迭代信息传递中出现错误信息的部分可以递归地表示成LDPC码的度分布序列和信道参数的函数。迭代计算节点间传递信息的概率密度函数的方法就称为密度进化。Richardson等在进一步的研究中表明描述节点间传递的错误信息的概率是一种称为Martingale的随机过程,在和积译码算法下信息的平均错误概率集中在它的期望值周围,当码长趋向于无穷时,基于有环二分图的LDPC码的译码性能逼近无环时的行为。

2.高斯近似。利用密度进化理论来计算阈值和寻找好的度数分布的算法复杂度是相当大的,特别对于信息概率密度函数是多维的信道来说,密度进化算法就过于复杂而难以处理。为提高密度进化算法的计算速度,Chung等人采用高斯近似的方法,即根据中心极限定理可以近似认为节点间迭代的信息的概率密度函数是符合高斯分布的,这样将迭代计算的多维问题转化为更新高斯密度均值的一维问题,就大大简化了分析和计算信道参数阈值的复杂度,而且可以快速的搜索和优化非规则LDPC码。这样可以将信道阈值的计算由多维参数动态系统的密度进化理论模型转化为单一参数(均值)动态系统的高斯逼近模型,在只需要牺牲很小的精度就可以得到计算维数上的巨大降低,从而可以很快计算出阈值和优化度序列的分布。高斯近似是一个很好的分析工具,被很多关于迭代译码性能分析中所采用。如利用混合的高斯近似方法来对基于LDPC码的MIMO-OFDM系统进行译码分析、寻找好的度分布以及优化系统的性能。

3.EXIT表。EXIT表(ExtrinsicInformationTransferChart)是由S.tenBrink提出的一种用迭代译码器之间传输的外部信息来表征迭代译码中收敛行为的分析工具。对于串/并行级联码,EXIT表技术是跟踪分量码之间信息交换(互信息)的情况来估计译码器的收敛性,并且可以分析影响译码算法收敛性的因

素(如分量码的选择等),适当地改变这些影响因素可以优化系统的性能。S.tenBrink等人[56]将EXIT表技术引入到LDPC码译码分析中,即把LDPC码的译码过程可以看作是变量节点译码器和校验节点译码器之间外部信息的迭代,用EXIT表跟踪译码器之间的互信息传递来估计LDPC码和积译码算法的收敛性。文献[56]中还给出了在不同的信道模型下(AWGN,MIMO等信道)利用EXIT表技术来计

算信道阈值和寻找好的度分布序列,从而优化系统的性能。

三、LDPC码的应用及展望

1996年,Mackey和Neal重新研究了LDPC码后,研究人员发现LDPC码具有很多非常好的特点,如能够逼近香农信道容量,描述及实现简单,易于进行理论分析和研究,译码简单且易于实现等。近年来,LDPC码以其优异的性能和良好的应用前景受到研究人员的关注,成为编码理论界的一大亮点和热点。目前,LDPC码可以应用于深空通信、卫星通信,光纤通信、ADSL、磁记录设备及无线局域网等领域。LDPC码今后的研究主要集中在:⑴现有的可信传播迭代译码方法还比较复杂,寻找LDPC码的线性时间译码算法将成为一个重要的课题。⑵对于非规则图设计的研究,寻找获得最优的序列λ和ρ的方法,以得到较好的码结构,提高LDPC码的性能。⑶继续探讨LDPC码在通信和计算机领域的应用。目前已有人将它的纠删方法应用于计算机通信网中,用于恢复在传输中丢失的数据,获得了很好的效果。今后将会加强这方面的研究工作。目前,LDPC码研究领域的主要工作集中在译码算法的性能分析、编码方法、码的优化算法等方面。经研究人员的努力,LDPC编码领域取得很大进展,但仍有许多问题需要研究:

•LDPC码校验矩阵的构造。尽管在构造最优的LDPC码方面取得了一些进展,但目前还没有一套系统的办法来构造所需要的好码,特别是在码字长度有限、码率一定的条件下,构造性能优异的好码是一个非常具有挑战性的课题。这方面的研究可以借助有限域理论、图论等相关理论。

•LDPC编码系统的联合优化设计。将编码技术与调制技术、空时编码技术、OFDM结合进行性能优化是当前及将来的发展方向之一。.

•无线衰落信道及MIMO信道下LDPC码的性能分析方法及优化设计准则。目前LDPC码字的优化设计主要在加性高斯白噪声信道下得到的,而无线衰落信道下,特别是时变信道下码字的性能分析方法、优化设计准则和信道估计的影响也是非常关键的课题,需要进一步的研究探索。

•寻找适合硬件实现的编译码方法也是一个非常值得研究的课题。

参考文献:

[1]王新梅,肖国镇.纠错码—原理与方法[M].西安:西安电子科技大学出版社.1998.

低密度校验码范文篇2

论文摘要:低密度校验码(LowDensityParityCheckCodes,LDPCcodes)是当前编码理论领域研究最热的信道编码之一。本文介绍了LDPC码的概念及其性能,并对低密度校验码应用的现状和今后方向作出了展望。

一、LDPC码简述

低密度校验(LDPC)码又称为哥拉格(Gallager)码,它是哥拉格于1962年提出的一种性能接近香农(Shan2non)限的好码。在很长的一段时间里,LDPC码并未受到人们的重视。直到1993年,Berrou等提出了Tur2bo码后,人们研究发现Turbo码其实就是一种LDPC码,LDPC码又重新引起了人们的研究兴趣。1996年,MacK2ay的研究,使LDPC码的研究跨入了一个新的阶段.最近几年的研表明,在非规则图上构造的基于GF(q)域上的LDPC码性能要好于Trubo码,它的性能非常接近香农限。LDPC码是根据稀疏随机图来构造的,因而它的码子之间具有很好的码距离。LDPC码属于线性纠错码,它的校验矩阵是一个稀疏校验阵:每个码子满足一定数目的线性约束,而约束的数目通常是非常小的是约束数目为3的校验矩阵)。同时由于LDPC码的约束是由一个稀疏图定义的,因而使得它的译码变得较为容易。目前,LDPC码已经成为编码领域的一个新的研究热点。

二、LDPC码的性能分析

LDPC码的译码性能分析方法主要可以归纳为三类:1)密度进化(DensityEvolution)理论。2)高斯近似(GaussianApproximation);3)EXIT表(ExtrinsicInformationTransformChart)。

1.密度进化

LDPC码的和积译码算法或BP算法中,信息在变量节点和校验节点之间不断迭代传递的,每次迭代传递的信息是随机变量。在这种迭代译码中,存在一种阈值现象,即在信道噪声水平低于某个阈值时,随着码长趋向于无穷大时,码的BER可以任意逼近零,否则错误概率将大于一个正常数。最早由Gallager利用组合数学和概率理论对和积译码算法下码的误码率进行了理论分析并观察了二进制对称信道(BSC)的阈值现象,提出跟踪LDPC码迭代传递的外信息的概率分布来分析译码器的收敛行为,即对于每次迭代计算节点的输出误比特率,输出误比特率是本次迭代输入误比特率的函数,每次迭代的平均误比特率可以通过变量节点和校验节点之间传递的信息的概率密度函数得到。Lubyetal将这种分析思想应用到LDPC码的硬判决译码中,在二进制删除信道(BEC)中译码过程同样存在这种阈值现象,利用随机构造的非规则LDPC码可以改进阈值,非规则LDPC码的性能优于规则LDPC码。Richardson和Urbanke在Gallager和Luby的工作基础上将对LDPC码的译码算法的分析方法扩展到更一般的信道模型。在给定的信道模型下,假设基于二分图的LDPC是无环的,或在设定的迭代次数和校验矩阵足够大的情况下,信息节点在深度为2的邻域内为树状结构,那么在节点之间迭代的信息是独立同分布的随机变量。Richardson等人分析了这些传递信息的概率密度的进化情况,发现在和积译码算法的每次迭代信息传递中出现错误信息的部分可以递归地表示成LDPC码的度分布序列和信道参数的函数。迭代计算节点间传递信息的概率密度函数的方法就称为密度进化。Richardson等在进一步的研究中表明描述节点间传递的错误信息的概率是一种称为Martingale的随机过程,在和积译码算法下信息的平均错误概率集中在它的期望值周围,当码长趋向于无穷时,基于有环二分图的LDPC码的译码性能逼近无环时的行为。

2.高斯近似。利用密度进化理论来计算阈值和寻找好的度数分布的算法复杂度是相当大的,特别对于信息概率密度函数是多维的信道来说,密度进化算法就过于复杂而难以处理。为提高密度进化算法的计算速度,Chung等人采用高斯近似的方法,即根据中心极限定理可以近似认为节点间迭代的信息的概率密度函数是符合高斯分布的,这样将迭代计算的多维问题转化为更新高斯密度均值的一维问题,就大大简化了分析和计算信道参数阈值的复杂度,而且可以快速的搜索和优化非规则LDPC码。这样可以将信道阈值的计算由多维参数动态系统的密度进化理论模型转化为单一参数(均值)动态系统的高斯逼近模型,在只需要牺牲很小的精度就可以得到计算维数上的巨大降低,从而可以很快计算出阈值和优化度序列的分布。高斯近似是一个很好的分析工具,被很多关于迭代译码性能分析中所采用。如利用混合的高斯近似方法来对基于LDPC码的MIMO-OFDM系统进行译码分析、寻找好的度分布以及优化系统的性能。

3.EXIT表。EXIT表(ExtrinsicInformationTransferChart)是由S.tenBrink提出的一种用迭代译码器之间传输的外部信息来表征迭代译码中收敛行为的分析工具。对于串/并行级联码,EXIT表技术是跟踪分量码之间信息交换(互信息)的情况来估计译码器的收敛性,并且可以分析影响译码算法收敛性的因

素(如分量码的选择等),适当地改变这些影响因素可以优化系统的性能。S.tenBrink等人[56]将EXIT表技术引入到LDPC码译码分析中,即把LDPC码的译码过程可以看作是变量节点译码器和校验节点译码器之间外部信息的迭代,用EXIT表跟踪译码器之间的互信息传递来估计LDPC码和积译码算法的收敛性。文献[56]中还给出了在不同的信道模型下(AWGN,MIMO等信道)利用EXIT表技术来计

算信道阈值和寻找好的度分布序列,从而优化系统的性能。

三、LDPC码的应用及展望

1996年,Mackey和Neal重新研究了LDPC码后,研究人员发现LDPC码具有很多非常好的特点,如能够逼近香农信道容量,描述及实现简单,易于进行理论分析和研究,译码简单且易于实现等。近年来,LDPC码以其优异的性能和良好的应用前景受到研究人员的关注,成为编码理论界的一大亮点和热点。目前,LDPC码可以应用于深空通信、卫星通信,光纤通信、ADSL、磁记录设备及无线局域网等领域。LDPC码今后的研究主要集中在:⑴现有的可信传播迭代译码方法还比较复杂,寻找LDPC码的线性时间译码算法将成为一个重要的课题。⑵对于非规则图设计的研究,寻找获得最优的序列λ和ρ的方法,以得到较好的码结构,提高LDPC码的性能。⑶继续探讨LDPC码在通信和计算机领域的应用。目前已有人将它的纠删方法应用于计算机通信网中,用于恢复在传输中丢失的数据,获得了很好的效果。今后将会加强这方面的研究工作。目前,LDPC码研究领域的主要工作集中在译码算法的性能分析、编码方法、码的优化算法等方面。经研究人员的努力,LDPC编码领域取得很大进展,但仍有许多问题需要研究:

•LDPC码校验矩阵的构造。尽管在构造最优的LDPC码方面取得了一些进展,但目前还没有一套系统的办法来构造所需要的好码,特别是在码字长度有限、码率一定的条件下,构造性能优异的好码是一个非常具有挑战性的课题。这方面的研究可以借助有限域理论、图论等相关理论。

•LDPC编码系统的联合优化设计。将编码技术与调制技术、空时编码技术、OFDM结合进行性能优化是当前及将来的发展方向之一。.

•无线衰落信道及MIMO信道下LDPC码的性能分析方法及优化设计准则。目前LDPC码字的优化设计主要在加性高斯白噪声信道下得到的,而无线衰落信道下,特别是时变信道下码字的性能分析方法、优化设计准则和信道估计的影响也是非常关键的课题,需要进一步的研究探索。

•寻找适合硬件实现的编译码方法也是一个非常值得研究的课题。

参考文献:

[1]王新梅,肖国镇.纠错码—原理与方法[M].西安:西安电子科技大学出版社.1998.

低密度校验码范文篇3

低密度校验(LDPC)码又称为哥拉格(Gallager)码,它是哥拉格于1962年提出的一种性能接近香农(Shan2non)限的好码。在很长的一段时间里,LDPC码并未受到人们的重视。直到1993年,Berrou等提出了Tur2bo码后,人们研究发现Turbo码其实就是一种LDPC码,LDPC码又重新引起了人们的研究兴趣。1996年,MacK2ay的研究,使LDPC码的研究跨入了一个新的阶段.最近几年的研表明,在非规则图上构造的基于GF(q)域上的LDPC码性能要好于Trubo码,它的性能非常接近香农限。LDPC码是根据稀疏随机图来构造的,因而它的码子之间具有很好的码距离。LDPC码属于线性纠错码,它的校验矩阵是一个稀疏校验阵:每个码子满足一定数目的线性约束,而约束的数目通常是非常小的是约束数目为3的校验矩阵)。同时由于LDPC码的约束是由一个稀疏图定义的,因而使得它的译码变得较为容易。目前,LDPC码已经成为编码领域的一个新的研究热点。

二、LDPC码的性能分析

LDPC码的译码性能分析方法主要可以归纳为三类:1)密度进化(DensityEvolution)理论。2)高斯近似(GaussianApproximation);3)EXIT表(ExtrinsicInformationTransformChart)。

1.密度进化

LDPC码的和积译码算法或BP算法中,信息在变量节点和校验节点之间不断迭代传递的,每次迭代传递的信息是随机变量。在这种迭代译码中,存在一种阈值现象,即在信道噪声水平低于某个阈值时,随着码长趋向于无穷大时,码的BER可以任意逼近零,否则错误概率将大于一个正常数。最早由Gallager利用组合数学和概率理论对和积译码算法下码的误码率进行了理论分析并观察了二进制对称信道(BSC)的阈值现象,提出跟踪LDPC码迭代传递的外信息的概率分布来分析译码器的收敛行为,即对于每次迭代计算节点的输出误比特率,输出误比特率是本次迭代输入误比特率的函数,每次迭代的平均误比特率可以通过变量节点和校验节点之间传递的信息的概率密度函数得到。Lubyetal将这种分析思想应用到LDPC码的硬判决译码中,在二进制删除信道(BEC)中译码过程同样存在这种阈值现象,利用随机构造的非规则LDPC码可以改进阈值,非规则LDPC码的性能优于规则LDPC码。Richardson和Urbanke在Gallager和Luby的工作基础上将对LDPC码的译码算法的分析方法扩展到更一般的信道模型。在给定的信道模型下,假设基于二分图的LDPC是无环的,或在设定的迭代次数和校验矩阵足够大的情况下,信息节点在深度为2的邻域内为树状结构,那么在节点之间迭代的信息是独立同分布的随机变量。Richardson等人分析了这些传递信息的概率密度的进化情况,发现在和积译码算法的每次迭代信息传递中出现错误信息的部分可以递归地表示成LDPC码的度分布序列和信道参数的函数。迭代计算节点间传递信息的概率密度函数的方法就称为密度进化。Richardson等在进一步的研究中表明描述节点间传递的错误信息的概率是一种称为Martingale的随机过程,在和积译码算法下信息的平均错误概率集中在它的期望值周围,当码长趋向于无穷时,基于有环二分图的LDPC码的译码性能逼近无环时的行为。

2.高斯近似。利用密度进化理论来计算阈值和寻找好的度数分布的算法复杂度是相当大的,特别对于信息概率密度函数是多维的信道来说,密度进化算法就过于复杂而难以处理。为提高密度进化算法的计算速度,Chung等人采用高斯近似的方法,即根据中心极限定理可以近似认为节点间迭代的信息的概率密度函数是符合高斯分布的,这样将迭代计算的多维问题转化为更新高斯密度均值的一维问题,就大大简化了分析和计算信道参数阈值的复杂度,而且可以快速的搜索和优化非规则LDPC码。这样可以将信道阈值的计算由多维参数动态系统的密度进化理论模型转化为单一参数(均值)动态系统的高斯逼近模型,在只需要牺牲很小的精度就可以得到计算维数上的巨大降低,从而可以很快计算出阈值和优化度序列的分布。高斯近似是一个很好的分析工具,被很多关于迭代译码性能分析中所采用。如利用混合的高斯近似方法来对基于LDPC码的MIMO-OFDM系统进行译码分析、寻找好的度分布以及优化系统的性能。

3.EXIT表。EXIT表(ExtrinsicInformationTransferChart)是由S.tenBrink提出的一种用迭代译码器之间传输的外部信息来表征迭代译码中收敛行为的分析工具。对于串/并行级联码,EXIT表技术是跟踪分量码之间信息交换(互信息)的情况来估计译码器的收敛性,并且可以分析影响译码算法收敛性的因

素(如分量码的选择等),适当地改变这些影响因素可以优化系统的性能。S.tenBrink等人[56]将EXIT表技术引入到LDPC码译码分析中,即把LDPC码的译码过程可以看作是变量节点译码器和校验节点译码器之间外部信息的迭代,用EXIT表跟踪译码器之间的互信息传递来估计LDPC码和积译码算法的收敛性。文献[56]中还给出了在不同的信道模型下(AWGN,MIMO等信道)利用EXIT表技术来计

算信道阈值和寻找好的度分布序列,从而优化系统的性能。

三、LDPC码的应用及展望

1996年,Mackey和Neal重新研究了LDPC码后,研究人员发现LDPC码具有很多非常好的特点,如能够逼近香农信道容量,描述及实现简单,易于进行理论分析和研究,译码简单且易于实现等。近年来,LDPC码以其优异的性能和良好的应用前景受到研究人员的关注,成为编码理论界的一大亮点和热点。目前,LDPC码可以应用于深空通信、卫星通信,光纤通信、ADSL、磁记录设备及无线局域网等领域。LDPC码今后的研究主要集中在:⑴现有的可信传播迭代译码方法还比较复杂,寻找LDPC码的线性时间译码算法将成为一个重要的课题。⑵对于非规则图设计的研究,寻找获得最优的序列λ和ρ的方法,以得到较好的码结构,提高LDPC码的性能。⑶继续探讨LDPC码在通信和计算机领域的应用。目前已有人将它的纠删方法应用于计算机通信网中,用于恢复在传输中丢失的数据,获得了很好的效果。今后将会加强这方面的研究工作。目前,LDPC码研究领域的主要工作集中在译码算法的性能分析、编码方法、码的优化算法等方面。经研究人员的努力,LDPC编码领域取得很大进展,但仍有许多问题需要研究:

•LDPC码校验矩阵的构造。尽管在构造最优的LDPC码方面取得了一些进展,但目前还没有一套系统的办法来构造所需要的好码,特别是在码字长度有限、码率一定的条件下,构造性能优异的好码是一个非常具有挑战性的课题。这方面的研究可以借助有限域理论、图论等相关理论。

•LDPC编码系统的联合优化设计。将编码技术与调制技术、空时编码技术、OFDM结合进行性能优化是当前及将来的发展方向之一。.

•无线衰落信道及MIMO信道下LDPC码的性能分析方法及优化设计准则。目前LDPC码字的优化设计主要在加性高斯白噪声信道下得到的,而无线衰落信道下,特别是时变信道下码字的性能分析方法、优化设计准则和信道估计的影响也是非常关键的课题,需要进一步的研究探索。

•寻找适合硬件实现的编译码方法也是一个非常值得研究的课题。

参考文献:

[1]王新梅,肖国镇.纠错码—原理与方法[M].西安:西安电子科技大学出版社.1998.

[2]陈军,孙韶辉,王新梅.基于A3算法的快速软判决译码[J].西安电子科技大学报.2000.27.(2)

[3]白宝明,马啸,刘丰.三维Turbo码的设计与性能分.[J].西安电子科技大学学报.1998.25.(5).

低密度校验码范文篇4

论文摘要:低密度校验码(LowDensityParityCheckCodes,LDPCcodes)是当前编码理论领域研究最热的信道编码之一。本文介绍了LDPC码的概念及其性能,并对低密度校验码应用的现状和今后方向作出了展望。

一、LDPC码简述

低密度校验(LDPC)码又称为哥拉格(Gallager)码,它是哥拉格于1962年提出的一种性能接近香农(Shan2non)限的好码。在很长的一段时间里,LDPC码并未受到人们的重视。直到1993年,Berrou等提出了Tur2bo码后,人们研究发现Turbo码其实就是一种LDPC码,LDPC码又重新引起了人们的研究兴趣。1996年,MacK2ay的研究,使LDPC码的研究跨入了一个新的阶段.最近几年的研表明,在非规则图上构造的基于GF(q)域上的LDPC码性能要好于Trubo码,它的性能非常接近香农限。LDPC码是根据稀疏随机图来构造的,因而它的码子之间具有很好的码距离。LDPC码属于线性纠错码,它的校验矩阵是一个稀疏校验阵:每个码子满足一定数目的线性约束,而约束的数目通常是非常小的是约束数目为3的校验矩阵)。同时由于LDPC码的约束是由一个稀疏图定义的,因而使得它的译码变得较为容易。目前,LDPC码已经成为编码领域的一个新的研究热点。

二、LDPC码的性能分析

LDPC码的译码性能分析方法主要可以归纳为三类:1)密度进化(DensityEvolution)理论。2)高斯近似(GaussianApproximation);3)EXIT表(ExtrinsicInformationTransformChart)。

1.密度进化

LDPC码的和积译码算法或BP算法中,信息在变量节点和校验节点之间不断迭代传递的,每次迭代传递的信息是随机变量。在这种迭代译码中,存在一种阈值现象,即在信道噪声水平低于某个阈值时,随着码长趋向于无穷大时,码的BER可以任意逼近零,否则错误概率将大于一个正常数。最早由Gallager利用组合数学和概率理论对和积译码算法下码的误码率进行了理论分析并观察了二进制对称信道(BSC)的阈值现象,提出跟踪LDPC码迭代传递的外信息的概率分布来分析译码器的收敛行为,即对于每次迭代计算节点的输出误比特率,输出误比特率是本次迭代输入误比特率的函数,每次迭代的平均误比特率可以通过变量节点和校验节点之间传递的信息的概率密度函数得到。Lubyetal将这种分析思想应用到LDPC码的硬判决译码中,在二进制删除信道(BEC)中译码过程同样存在这种阈值现象,利用随机构造的非规则LDPC码可以改进阈值,非规则LDPC码的性能优于规则LDPC码。Richardson和Urbanke在Gallager和Luby的工作基础上将对LDPC码的译码算法的分析方法扩展到更一般的信道模型。在给定的信道模型下,假设基于二分图的LDPC是无环的,或在设定的迭代次数和校验矩阵足够大的情况下,信息节点在深度为2的邻域内为树状结构,那么在节点之间迭代的信息是独立同分布的随机变量。Richardson等人分析了这些传递信息的概率密度的进化情况,发现在和积译码算法的每次迭代信息传递中出现错误信息的部分可以递归地表示成LDPC码的度分布序列和信道参数的函数。迭代计算节点间传递信息的概率密度函数的方法就称为密度进化。Richardson等在进一步的研究中表明描述节点间传递的错误信息的概率是一种称为Martingale的随机过程,在和积译码算法下信息的平均错误概率集中在它的期望值周围,当码长趋向于无穷时,基于有环二分图的LDPC码的译码性能逼近无环时的行为。

2.高斯近似。利用密度进化理论来计算阈值和寻找好的度数分布的算法复杂度是相当大的,特别对于信息概率密度函数是多维的信道来说,密度进化算法就过于复杂而难以处理。为提高密度进化算法的计算速度,Chung等人采用高斯近似的方法,即根据中心极限定理可以近似认为节点间迭代的信息的概率密度函数是符合高斯分布的,这样将迭代计算的多维问题转化为更新高斯密度均值的一维问题,就大大简化了分析和计算信道参数阈值的复杂度,而且可以快速的搜索和优化非规则LDPC码。这样可以将信道阈值的计算由多维参数动态系统的密度进化理论模型转化为单一参数(均值)动态系统的高斯逼近模型,在只需要牺牲很小的精度就可以得到计算维数上的巨大降低,从而可以很快计算出阈值和优化度序列的分布。高斯近似是一个很好的分析工具,被很多关于迭代译码性能分析中所采用。如利用混合的高斯近似方法来对基于LDPC码的MIMO-OFDM系统进行译码分析、寻找好的度分布以及优化系统的性能。

3.EXIT表。EXIT表(ExtrinsicInformationTransferChart)是由S.tenBrink提出的一种用迭代译码器之间传输的外部信息来表征迭代译码中收敛行为的分析工具。对于串/并行级联码,EXIT表技术是跟踪分量码之间信息交换(互信息)的情况来估计译码器的收敛性,并且可以分析影响译码算法收敛性的因

素(如分量码的选择等),适当地改变这些影响因素可以优化系统的性能。S.tenBrink等人[56]将EXIT表技术引入到LDPC码译码分析中,即把LDPC码的译码过程可以看作是变量节点译码器和校验节点译码器之间外部信息的迭代,用EXIT表跟踪译码器之间的互信息传递来估计LDPC码和积译码算法的收敛性。文献[56]中还给出了在不同的信道模型下(AWGN,MIMO等信道)利用EXIT表技术来计

算信道阈值和寻找好的度分布序列,从而优化系统的性能。

三、LDPC码的应用及展望

1996年,Mackey和Neal重新研究了LDPC码后,研究人员发现LDPC码具有很多非常好的特点,如能够逼近香农信道容量,描述及实现简单,易于进行理论分析和研究,译码简单且易于实现等。近年来,LDPC码以其优异的性能和良好的应用前景受到研究人员的关注,成为编码理论界的一大亮点和热点。目前,LDPC码可以应用于深空通信、卫星通信,光纤通信、ADSL、磁记录设备及无线局域网等领域。LDPC码今后的研究主要集中在:⑴现有的可信传播迭代译码方法还比较复杂,寻找LDPC码的线性时间译码算法将成为一个重要的课题。⑵对于非规则图设计的研究,寻找获得最优的序列λ和ρ的方法,以得到较好的码结构,提高LDPC码的性能。⑶继续探讨LDPC码在通信和计算机领域的应用。目前已有人将它的纠删方法应用于计算机通信网中,用于恢复在传输中丢失的数据,获得了很好的效果。今后将会加强这方面的研究工作。目前,LDPC码研究领域的主要工作集中在译码算法的性能分析、编码方法、码的优化算法等方面。经研究人员的努力,LDPC编码领域取得很大进展,但仍有许多问题需要研究:

•LDPC码校验矩阵的构造。尽管在构造最优的LDPC码方面取得了一些进展,但目前还没有一套系统的办法来构造所需要的好码,特别是在码字长度有限、码率一定的条件下,构造性能优异的好码是一个非常具有挑战性的课题。这方面的研究可以借助有限域理论、图论等相关理论。

•LDPC编码系统的联合优化设计。将编码技术与调制技术、空时编码技术、OFDM结合进行性能优化是当前及将来的发展方向之一。.

•无线衰落信道及MIMO信道下LDPC码的性能分析方法及优化设计准则。目前LDPC码字的优化设计主要在加性高斯白噪声信道下得到的,而无线衰落信道下,特别是时变信道下码字的性能分析方法、优化设计准则和信道估计的影响也是非常关键的课题,需要进一步的研究探索。

•寻找适合硬件实现的编译码方法也是一个非常值得研究的课题。

参考文献:

[1]王新梅,肖国镇.纠错码—原理与方法[M].西安:西安电子科技大学出版社.1998.

低密度校验码范文篇5

低密度校验(LDPC)码又称为哥拉格(Gallager)码,它是哥拉格于1962年提出的一种性能接近香农(Shan2non)限的好码。在很长的一段时间里,LDPC码并未受到人们的重视。直到1993年,Berrou等提出了Tur2bo码后,人们研究发现Turbo码其实就是一种LDPC码,LDPC码又重新引起了人们的研究兴趣。1996年,MacK2ay的研究,使LDPC码的研究跨入了一个新的阶段.最近几年的研表明,在非规则图上构造的基于GF(q)域上的LDPC码性能要好于Trubo码,它的性能非常接近香农限。LDPC码是根据稀疏随机图来构造的,因而它的码子之间具有很好的码距离。LDPC码属于线性纠错码,它的校验矩阵是一个稀疏校验阵:每个码子满足一定数目的线性约束,而约束的数目通常是非常小的是约束数目为3的校验矩阵)。同时由于LDPC码的约束是由一个稀疏图定义的,因而使得它的译码变得较为容易。目前,LDPC码已经成为编码领域的一个新的研究热点。

二、LDPC码的性能分析

LDPC码的译码性能分析方法主要可以归纳为三类:1)密度进化(DensityEvolution)理论。2)高斯近似(GaussianApproximation);3)EXIT表(ExtrinsicInformationTransformChart)。

1.密度进化

LDPC码的和积译码算法或BP算法中,信息在变量节点和校验节点之间不断迭代传递的,每次迭代传递的信息是随机变量。在这种迭代译码中,存在一种阈值现象,即在信道噪声水平低于某个阈值时,随着码长趋向于无穷大时,码的BER可以任意逼近零,否则错误概率将大于一个正常数。最早由Gallager利用组合数学和概率理论对和积译码算法下码的误码率进行了理论分析并观察了二进制对称信道(BSC)的阈值现象,提出跟踪LDPC码迭代传递的外信息的概率分布来分析译码器的收敛行为,即对于每次迭代计算节点的输出误比特率,输出误比特率是本次迭代输入误比特率的函数,每次迭代的平均误比特率可以通过变量节点和校验节点之间传递的信息的概率密度函数得到。Lubyetal将这种分析思想应用到LDPC码的硬判决译码中,在二进制删除信道(BEC)中译码过程同样存在这种阈值现象,利用随机构造的非规则LDPC码可以改进阈值,非规则LDPC码的性能优于规则LDPC码。Richardson和Urbanke在Gallager和Luby的工作基础上将对LDPC码的译码算法的分析方法扩展到更一般的信道模型。在给定的信道模型下,假设基于二分图的LDPC是无环的,或在设定的迭代次数和校验矩阵足够大的情况下,信息节点在深度为2的邻域内为树状结构,那么在节点之间迭代的信息是独立同分布的随机变量。Richardson等人分析了这些传递信息的概率密度的进化情况,发现在和积译码算法的每次迭代信息传递中出现错误信息的部分可以递归地表示成LDPC码的度分布序列和信道参数的函数。迭代计算节点间传递信息的概率密度函数的方法就称为密度进化。Richardson等在进一步的研究中表明描述节点间传递的错误信息的概率是一种称为Martingale的随机过程,在和积译码算法下信息的平均错误概率集中在它的期望值周围,当码长趋向于无穷时,基于有环二分图的LDPC码的译码性能逼近无环时的行为。

2.高斯近似。利用密度进化理论来计算阈值和寻找好的度数分布的算法复杂度是相当大的,特别对于信息概率密度函数是多维的信道来说,密度进化算法就过于复杂而难以处理。为提高密度进化算法的计算速度,Chung等人采用高斯近似的方法,即根据中心极限定理可以近似认为节点间迭代的信息的概率密度函数是符合高斯分布的,这样将迭代计算的多维问题转化为更新高斯密度均值的一维问题,就大大简化了分析和计算信道参数阈值的复杂度,而且可以快速的搜索和优化非规则LDPC码。这样可以将信道阈值的计算由多维参数动态系统的密度进化理论模型转化为单一参数(均值)动态系统的高斯逼近模型,在只需要牺牲很小的精度就可以得到计算维数上的巨大降低,从而可以很快计算出阈值和优化度序列的分布。高斯近似是一个很好的分析工具,被很多关于迭代译码性能分析中所采用。如利用混合的高斯近似方法来对基于LDPC码的MIMO-OFDM系统进行译码分析、寻找好的度分布以及优化系统的性能。

3.EXIT表。EXIT表(ExtrinsicInformationTransferChart)是由S.tenBrink提出的一种用迭代译码器之间传输的外部信息来表征迭代译码中收敛行为的分析工具。对于串/并行级联码,EXIT表技术是跟踪分量码之间信息交换(互信息)的情况来估计译码器的收敛性,并且可以分析影响译码算法收敛性的因

素(如分量码的选择等),适当地改变这些影响因素可以优化系统的性能。S.tenBrink等人[56]将EXIT表技术引入到LDPC码译码分析中,即把LDPC码的译码过程可以看作是变量节点译码器和校验节点译码器之间外部信息的迭代,用EXIT表跟踪译码器之间的互信息传递来估计LDPC码和积译码算法的收敛性。文献[56]中还给出了在不同的信道模型下(AWGN,MIMO等信道)利用EXIT表技术来计

算信道阈值和寻找好的度分布序列,从而优化系统的性能。

三、LDPC码的应用及展望

1996年,Mackey和Neal重新研究了LDPC码后,研究人员发现LDPC码具有很多非常好的特点,如能够逼近香农信道容量,描述及实现简单,易于进行理论分析和研究,译码简单且易于实现等。近年来,LDPC码以其优异的性能和良好的应用前景受到研究人员的关注,成为编码理论界的一大亮点和热点。目前,LDPC码可以应用于深空通信、卫星通信,光纤通信、ADSL、磁记录设备及无线局域网等领域。LDPC码今后的研究主要集中在:⑴现有的可信传播迭代译码方法还比较复杂,寻找LDPC码的线性时间译码算法将成为一个重要的课题。⑵对于非规则图设计的研究,寻找获得最优的序列λ和ρ的方法,以得到较好的码结构,提高LDPC码的性能。⑶继续探讨LDPC码在通信和计算机领域的应用。目前已有人将它的纠删方法应用于计算机通信网中,用于恢复在传输中丢失的数据,获得了很好的效果。今后将会加强这方面的研究工作。目前,LDPC码研究领域的主要工作集中在译码算法的性能分析、编码方法、码的优化算法等方面。经研究人员的努力,LDPC编码领域取得很大进展,但仍有许多问题需要研究:

•LDPC码校验矩阵的构造。尽管在构造最优的LDPC码方面取得了一些进展,但目前还没有一套系统的办法来构造所需要的好码,特别是在码字长度有限、码率一定的条件下,构造性能优异的好码是一个非常具有挑战性的课题。这方面的研究可以借助有限域理论、图论等相关理论。

•LDPC编码系统的联合优化设计。将编码技术与调制技术、空时编码技术、OFDM结合进行性能优化是当前及将来的发展方向之一。.

•无线衰落信道及MIMO信道下LDPC码的性能分析方法及优化设计准则。目前LDPC码字的优化设计主要在加性高斯白噪声信道下得到的,而无线衰落信道下,特别是时变信道下码字的性能分析方法、优化设计准则和信道估计的影响也是非常关键的课题,需要进一步的研究探索。

•寻找适合硬件实现的编译码方法也是一个非常值得研究的课题。

参考文献:

[1]王新梅,肖国镇.纠错码—原理与方法[M].西安:西安电子科技大学出版社.1998.

[2]陈军,孙韶辉,王新梅.基于A3算法的快速软判决译码[J].西安电子科技大学报.2000.27.(2)

[3]白宝明,马啸,刘丰.三维Turbo码的设计与性能分.[J].西安电子科技大学学报.1998.25.(5).

低密度校验码范文篇6

1地面数字电视

我国的无线电视经历了50多年的发展,由最开始的无线发射台站接力传输组网实现信号无线覆盖,再到卫星传输、有线传输、无线传输等多种传输渠道共同组网实现信号覆盖的模式。电视制式也由传统的黑白D/K制式、PAL/D制式向目前正在实施的地面数字电视制式转变。

1.1地面数字电视的特点

地面数字电视传输标准(简称:DTMB)采用时域同步正交频分复用技术,支持多种调制方式:64-QAM、32-QAM、16-QAM、4-QAM、4-QAM-NR。DTMB系统在8MHz带宽内可以支持4.813~32.486Mbit/s的净载荷数据传输率,故在一个模拟电视频道内,地面数字电视可以传送几套甚至十几套电视节目。DTMB系统支持不同的应用:SDTV、HDTV、数据广播和互联网等。DTMB系统支持不同的接收方式:固定接收、便携接收、步行接收和高速移动接收。DTMB系统组网方式支持单频组网(SFN)和多频组网(MFN)。DTMB系统采用BCH码和低密度奇偶校验码级联的信道编码形式,对信道编码传输实行严格的差错控制,能够有效控制误码率。总体来讲,地面数字电视的特点有:信息传播安全、可靠,覆盖范围广,传播内容灵活,抗干扰能力强,建设、维护成本低,支持移动接收等。

1.2地面数字电视的发展

2011年以前,被国际标准化组织ITU采纳的地面数字电视标准有3个:美国的ATSC、欧洲的DVB-T、日本的ISDB-T。中国的地面数字电视标准DTMB是2011年才被ITU采纳,正式成为第四个地面数字电视传输国际标准。2012年之后,按照国家广电工信部、国家广电总局的统一战略部署,各个省逐步开始由模拟向数字的转换。2015年9月,国家广电总局广播科学研究院出台《贵州省中央广播电视节目无线数字化覆盖工程技术方案》。2016年开始,逐步完成工程实施并进入试播调试阶段。2020年底,贵州省实现全面关停无线模拟电视,中央广播电视节目无线数字信号区域全覆盖。

2地面数字电视发射系统

数字电视发射机是地面数字电视发射系统的核心,电视发射机经历了电子管、速调管、IOT管、全固态等几个阶段。目前我国的数字电视发射机发展速度很快,发展趋势主要有四个方向:首先是高可靠性,全固态发射机采用晶体管并联运用,采用功率合成技术,整机“冗余性”设计,相对传统的电子管机型有很大的突破。其次是自动化程度较高,随着发射机可靠性的提升。

2.1发射系统的拓扑结构

地面数字电视信号源系统通常简称数字前端,发射系统将数字前端送来的TS流信号经过调制,并进行预失真校正,然后经过功放单元把功率提升到目标发射功率,最后通过天馈系统把数字电视信号以电磁波的形式辐射出去。地面数字电视发射系统的拓扑结构如图1所示。如果组网模式是单频网(SFN),激励器之前还需要有GPS授时器,为单频组网提供参考时钟。配电系统、风冷系统、微机监测监控系统等未在图1中体现。

2.2发射系统的备份技术

信号源备份。地面数字电视的主用信号源是中星6A卫星信号,单频组网的8套央视节目,以及多频组网的4套央视节目,都是分别打包好的,直接用专用接收机解调出来就可以用于发射。但是为了做到信号源备份,通常会选择中星6B上的央视12套节目来作为备用信号源,由于央视12套节目零散地分布在三个下行频率上,故需要分别解调出来,然后再通过编转码、统计复用,最终打包成为我们发射用的央视8套和央视4套节目。当然,在复用的时候,可以选择加入本地四套节目,因为多频网预留有4套节目空间。激励器备份。2016年实施的《贵州省中央广播电视节目无线数字化覆盖工程》项目,统一招投标的发射机是按照主备激励器来配置的。激励器承担着发射系统的调制任务,是发射系统对电视信号加工处理的关键一步。发射机备份。主备机的输出经过同轴开关切换至天线,这种方式比单机工作方式可靠性要高。同轴开关的切换,使得一台连接天馈线,另一台连接假负载。

3发射系统的技术指标

3.1发射功率

地面数字电视发射系统的发射功率决定了地面数字电视信号的电场强度,直接关系着信号的覆盖范围、覆盖质量、可靠性等。2016年实施的《贵州省中央广播电视节目无线数字化覆盖工程》项目,地面数字电视发射机是统一按照1000W标准来配置的。地面数字电视发射系统的发射功率(Pt)与有效覆盖范围的关系可以根据公式Ec=10·lgPt-20·lgd+106.92(式中d为到发射天线的距离,单位:km)来测量,根据测量数据绘制关系图。

3.2频谱特性

带肩。数字电视信号经过放大,会在频道外的互调产物为近似连续频谱,频道外的连续频谱在频道附近产生“肩”效应,称之为带肩。我国一个电视频道带宽为8MHz,带肩比为中心频率与偏离中心频率±4.2MHz处功率的比值,单位为dBc。不平坦度。不平坦度是频谱特性很重要的指标之一,记中心频率处幅度记为Ac,记带内最大和最小幅度值分别记为Amax和Amin,带内频谱不平坦度为Amin与Ac的差到Amax与Ac的差。

3.3相位噪声和抖动

相位噪声和抖动是对同一种现象两种不同的定量方式。在理想状态下,一个1MHz的脉冲信号,每500ns就有一个跳变。但是绝对理想的这种信号并不存在,所以在脉冲跳变就会产生两种情况,一种是跳早了,另一种是跳晚了。这种现象我们称之为相位噪声,或者抖动。

3.4调制误差率

低密度校验码范文篇7

关键词:IEEE802.11nLDPCMIMOOFDM自适应技术智能天线软件无线电

“当今无线技术的发展就如同20年前个人电脑技术的发展那样突飞猛进,令人难以跟上它的节奏。”Intel副总裁兼首席技术官帕特·基辛格如此描述无线网络的崛起。

1997年802.11标准的制定是无线局域网发燕尾服的里程碑。其定义了单一的MAC层和多样的物理层,先后推出了IEEE802.11、IEEE802.11a和IEEE802.11g物理层标准。11b标准采用CCK(补码键控)扩展频调制编码,数据传输速率达11Mbps。但是如果再增加传输速率,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现非常困难。因此,802.11工作组,为了推动无线局域网的发展,又引入OFDM技术。最近正式批准的11g标准与11a一样,采用OFDM技术。最近正式批准的11g标准与11a一样,采用OFDM技术,达54Mbps。

技术不断更新,新的技术标准不断推出,极大地推动了无线局域网的发燕尾服。下一代移动通信的关键技术,如OFDM技术、MIMO技术、智能天线(SmartAntenna)、LDPC(奇偶校验码)、自适应技术和软件无线电SDR(SoftDefinedRadio)等,开始应用到无线局域网中,提升了WLAN的怀能。

图1

1下一代移动通信关键无线局网中应用

1.1OFDM技术

OFDM技术其实是多载波调制MCU(Multi-CarrierModulation的一种。其主要思想是:将信道分成许多正交子队道,在每个子信道上进行窄带调制和传输,这样减少了子信道之间的相互干扰。每个子信疲乏上的信号带宽小于信道的相关带宽,因此每个子信寂的频率选择性衰落是平均的,大大消除了符号间的干扰。

在各个子信道中的正交调制和解调要吧采用IFFT和FFT方法实现。随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。快速傅里叶变换(FFT)的引入,大大降低了OFDM的复杂性,提升了系统的性能。MIMOOFDM发送、接收机系统结构如图2所示。

另外,与单载波系统相比,OFDM还存在一些缺点,易受频率偏差的影响,存在较高的峰值平均功率比(PAR)。

1.2多入多出(MIMO)

MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。它可以定义为发送端和接收端之间存在多个独立信道,也就是说天线单元之间存在充分的间隔,因此消除季天线间信号的相关性,提高信号的链路性能,增加了数据吞吐量。

现代信息论表明:对于发射天线数为N、接收天线数为M的多入多出(MIMO)系统,假定信道为独立的瑞利衰落信道,并设N、M很大,则信道容量C近似为公式(1):

C=[min(M,N)Blog2(p/2)](1)

(其中B为信号带宽,p为接收端平均信噪比,min(M,N)为M、N中的较小者)。

式(1)表明,MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。因此将MIMO技术与OFDM技术相结合是下一代无线局域网发展的趋势。研究表明,在瑞利衰落信道环境下,OFDM系统非常适合使用MIMO技术提高容量。采用多输入多输出(MIMO)系统是提高频谱效率的有效方法。多衰是影响通信质量的订因素,但MIMO系统却能有效地利用我多的影响来提高系统容量。系统容量是雨干扰受限的,不能通过增加发射功率来提高系统容量。而采用MIMO结构不需要增加发射功率就能获得很高的系统容量。

图1、图2分别为采用MIMO技术的OFDM系统发送、接收方案框图。从图中可以看出,MIMOOFDM系统有Nt个发送天线,Nr个接收天线。在发送端和接收端各设置多重天线,可以提高空间分集效应,克服电波衰落的不良影响。这里因为安排恰当的多副天线提供多个空间信道,不会全部同时受到衰落。输入的比特流经串行变换分为多个分支,每个分支都进行OFDM处理,即经过编码、II(交织)、正交幅度调制(QAM)映射、插入导频信号、IFFT变换、加循环前缀等过程,再经天线发送到无线信道中;接收端进行与发射端相反的信号处理过程。例如:去除循环前缀、FFT变换、解码等,同时通过信道估计、定时、同步、MIMO检测等技术完全恢复原来的比特流。

目前正在开发的设备由两组IEEE802.11a收发器、发送天线和接收天线各2个(2×2)及负责运算处理过程的MIMO系统组成,能够实现最大108Mbps的传输速度。支持AP和客户端之间的传输速度为108Mbps,客户端不支持该技术时(IEEE802.11a客户端的情况),通信速度为54Mbps。

1.3LDPC编码技术

纠错编码技术作为改善数字信道通信可靠性的一种有效手段,在数字通信的各个领域中获得极为广泛的应用,其主要有卷积码、分组码、Turbo码和LDPC。在编码器复杂度相同的情况下,卷积码的性能优于分组码。目前IEEE802.11标准大都采用卷积码信道前向纠错编码和Viterbi译码。

虽然,Turbo码可获得比传统级连码更大的编码增益,且具有合理的译码复杂性,被认为是大编码存储卷积码或传统级连码的替代方案。但是,WLAN数据包较短,且采用较为简单的传输机制,无法采用复杂度较高且适用于长数据包传输的Turbo码。

LDPC(低密度奇偶校验码)是一类可以用非常稀疏的Parity-check(奇偶校验矩阵)或Bi-Partitegraph(二分图)定义的线性分组纠错码。

LDPC码的特点是:性能优于Turbo码,具有较大的灵活性和较低的差错平底特性(errorfloors);描述简单,对严格理论分析具有可验证性;译码复杂度低于turbo码,且可实现完全的并行操作,硬件复杂底低,因而适合硬件实现;吞吐量大,极具高速译码潜力。因此,结合LDPC无线局域网必将取得更好的性能。

1.4自适应技术

无线通信采用了OFDM等宽带调制技术,将单一物理信道分割为正交的若干个子信道,以实现高速的数据传输。多输入多输出(MIMO)技术可以定义为发判断端和接收端之间存在多个独立信道。MIMO与OFDM技术相结合,可以将无线通信的信号处理从时频分集扩展为时空频分集,进一步分割信道为空时频正交子信道。这样,就需要根据各个子信道的实际传输情况灵活的地分配发送功率和信息比特。而且由于无线信道的频率先择性和时变性,也需要实时地对信道进行检测,以便更加有效地利用无线资源。

对于所有子载波都使用相同固定调制编码的通信系统来说,其误码率主要由经历衰落最严重的子载波决定。因此在频率选择性衰落信道中,随着平均信噪比的增加,系统的误码率下降十分缓慢。但可以对不同子信道选用最佳的物理传输模式,即采用不同调制编码方案,每个调制编码方案要适应每个子信道的信噪比。

自适应传输的基本思想是改变发射功率的水平、每个子信道的符号传输速率、QAM星座大小、编码等参数或这些参数的组合以维持恒定的误码率(BER)。这样在不牺牲误码率的情况下,通过传输质量好的子信道采用高速传输、而在质量不好的子信道以降低传输速率等方式来提供较高的频谱适用效率。自适应技术大大减少了对均衡和交织的依赖,提升了WLAN系统的性能。图3为自适应方案的系统结构图。

1.5智能天线技术

智能天线是一个由多组独立天组成天线阵列系统。该阵列的输出与收发信机的多个输入相结合,可提供一个综合的时空信号。与单个天线不同的是,天线阵列系统能够动态地调整波束方向,以使每个用户都获得最大的主瓣,并减小了旁瓣干扰。这样不仅改善了信号干扰比SINR(Signal-to-InterferenceandNoiseRatio),还提高了系统的容量,扩大了小区的最大覆盖范围,减小了移动台的发射功率(如图4所示)。

无线信道为共享信道,频率资源非常有限。WLAN工作于免许可证频段:2.4GHz及5GHz。随着工作频率及数据率的提高,硬件实现成本也越高,同时无线的传播范围也会降低。因此,无线局域网IEEE802.11标准的传范围也会降低。因此,无线局域网IEEE802.11标准的传送距离较短,传输距离只有几百米,且传输速率会随着距离的增加而降低。当移动端远离AP节点时或能信质距离的增加而降低。当移动端远离AP节点时或通信质量差时,无线网络会采用降低通信速率的方式保持连接。在实际的组网中,与无线广域网相比,WLAN小区的覆盖范围都较小(一般只有十几米到几十米;热点地区为了增加容量,小区半径更小)。

WLAN引入智能天线技术,可以扩大其传播地,提高信号传的可靠性,使系统能够以不低于108Mbps的传输速率保持通信。智能天线技术可以充分利用无线资源的空间可分性,提高无线局域网系统参考无线资源的利用率,扩大无线信号的传输范围,并从根本上提高系统容量。因此,带有智能天线的WLAN系统可以作为蜂窝移动通信的宽带接入部分,与无线广域网更紧密地结合。一方面,WLAN可以用户提供高数据率的通信服务(例如视频点播VOD,在线观看HDTV)。另一方面,无线广域网为用户提供了更好的移动性。

1.6软件无线电

目前无线局网的多种标准并存,不同标准采用不同的工作频段、为同的调制方式,造成系统间难以互通。WLAN的移动性差,而软件无线电是一种最有希望解决这些问题的技术。软件无线电是指研制出一个完全可编程的硬件平台,所有的应用都通过该平台上的软件编程实现。换言之,不同系统的基站和移动终端都可以由建立在相同硬件基础上的不同软件实现。该技术将能保证各种移动台、移动设备之间的无缝集成,并大大降低了建设成本。

可以预见,基于软件无线电的移动通信将会具有以下特点:在同一硬件平台上兼容不的系统;具有自动漫游能力,能在不同系统之间进行智能切换;可以下载公用软件并进行自身的升级;支持语音、数据、图像和传真等多种业务,并能根据业务流量、信道质量等情况,自动选择合适的传输信道;自动选择通信模式,采用合适的通信协议和信号格式实现无端通信。

软件无线电在下一代WLAN中的应用,将基本改变其网络结构,实现WLAN网与无线广域网融合,并能容其各种标准、协议,提供更为开放的接品,最终大大增加网络的灵活性。

2下一代无线局域网实现与IEEE802.11n

由上述可知,为了实现更高的传输速率,取得更可靠的性能,无线局域网全面采用下一代移动通信的关键技术。首先从发送端送入数据,进行串行变换,然后每个载波分别完成LDPC编码、QAM调制及IFFT转换和加循环前缀,最后由多天线阵列发送到无线信道。接收端先由多天线阵列接收信号,再进行天线选择、去循环前缀、软译码、FFT及LDPC译码;最后将并行转换为串行数据到接收方。另外,在接收端采取信道估计,然后根据所得信道的特片采用相应的自适应算法调整编码调制的参数以达到相应模块的自适应目的。系统实现结构框图如图5所示。

目前,IEEE已经成为800.11n工作小组,以制定一项新的高速无线局域网标准IEEE802.11n。11n工作小组由高吞吐量研究小组发展而来。IEEE802.11n计划将WLAN的传输速率从802.11a和802.11g的54Mbps增加至108Mbps以上,最高速率可达320Mbps,成为802.11b、802.11a、802.11g之后的另一重头戏。与以往的802.11标准不同,802.11n协议为双频工作模式(包含2.4GHz和5GHz两个工作频段)。这样11n保障了以往的802.11a、b、g标准兼容。

低密度校验码范文篇8

关键词:第三代移动通信WCDMACDMA2000LTEUMB

1第三代移动通信(3G)与前两代的主要是提升了传输声音和数据的速度,能够处理图像、音乐、视频流等多种媒体形式,提供包括电话会议、电子商务等多种信息服务

3G系统采用码分多址(CDMA)和分组交换技术。三种主流的技术标准:WCDMA、CDMA2000、TD-SCDMA。主要问题在于:没有一个统一的世界标准;语音不是在IP网络结构上;数据传输达不到速度要求。

国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rdGenerationPartnershipProject,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代)移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rdGenerationPartnershipProject2,即3GPP2)成立于1998年12月,成员包括:TIA(北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。

WCDMA有Release99、Release4、Release5、Release6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。

HSDPA(高速下行分组接入,HighSpeedDownlinkPackagesAccess)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达14.4Mbps。

HSUPA(高速上行链路分组接入,highspeeduplinkpacketaccess)。HSUPA通过采用多码传输、HARQ、基于NodeB的快速调度等关键技术,使得单小区最大上行数据吞吐率达到5.76Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到5.76Mbit/s,大大提高的上行链路数据业务的承载能力。

HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。

CDMA2000即CDMA20001×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为DataOnly(后来把DataOnly改为DataOptimized,表示EV-DO是对CDMA20001X网络在提供数据业务方面的一个有效的增强)。CDMA20001×EV-DO(DataOnly),采用话音分离的信道传输数据。CDMA20001×EV-DV(DateandVoice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA20001X演进到1X增强版或从CDMA20001X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。

CDMA20001X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。

从CDMA20001X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1xEV-DO可沿用现有网络的规划及射频部件。1xEV-DO基站还可与CDMA20001X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1xEV-DO的载波使用高性能的移动数据业务。

从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA20001X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。

2在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入

3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO.0、1xEV-DO.A、1xEV-DO.B,最终到UMB,超移动宽带(UltraMobileBroadband)。中国论文联盟-3GLTE使用OFDM(OrthogonalFrequencyDivisionMultiplexing、正交频分复用技术)以及它的后续技术OFDMA(OrthogonalFrequencyDivisionMultipleAccess、正交频分多址技术)是未来无线宽带技术的基础。同UMB一样,LTE也采用了OFDM/OFDMA作为物理层的核心技术,不同的是LTE不再支持CDMA,而UMB为了保持良好的兼容性仍然支持在总带宽中分出一部分带宽来支持CDMA。LTE在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。UMB是可以在1.25MHz和20MHz间以约150KHz的频率增量灵活部署,支持频段包括450MHz、700MHz、850MHz、1700MHz、1900MHz、1700/2100MHz、1900/2100MHz(IMT)和2500MHz(3G扩展频段),可与现有的CDMA20001X和1xEV-DO系统兼容,但在数据传输速率、延迟性、覆盖度、移动能力及布建弹性等方面都更具优势。UMB系统继承了1xEV-DO系统的自适应编码调制、HARQ(物理层混合重传)以及QoS控制机制,结合了CDMA、TDM、QOFDMA(准OFDMA)、LDPC(低密度奇偶校验码)等其它先进技术,同时引入了基于MIMO(多路输入输出)、SDMA(空分复用接入)和Beamforming(波束赋性)等多天线技术。在4G网络中将主要使用以下一些核心技术。

正交频分复用(OFDM)/正交频分多址接入(OFDMA).OFDM是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,子载波并行传输。每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM可以消除或减小信号波形间的干扰,提高了频谱利用率。OFDMA是OFDM调制的一种形式,具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟。OFDMA会把副载波的子集分配给各个用户,以信道状态的反馈能执行自适应用户到副载波的分配。与OFDM相比,快速衰退、窄带同频干扰性能都得到了提高,改进了系统的频谱效率。

软件无线电是把尽可能多的无线及个人通信功能通过可编程软件来实现,使其成为一种多工作频段、多工作模式、多信号传输与处理的无线电系统。也可以说,是一种用软件来实现物理层连接的无线通信方式。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。多输入多输出(MIMO、Multiple-InputMultiple-Out-put)技术利用多发射、多接收天线进行空间分集的技术,采用分立式多天线能够有效地将通信链路分解成为许多并行的子信道,从而大大提高容量。MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

第四代移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

综上,随着移动通信的发展呈现趋势传送宽带化、应用个性化、接入多样化、网络数据化、系统互补化及有线、无线一体化的大趋势,宽带无线市场必定潜力巨大,发展前景一片光明。

参考文献:

[1]彭林.第三代移动通信技术.电子工业出版社.【ISBN】750538361.

[2]康桂霞,田辉,朱禹涛,杜娟.CDMA20001x无线网络技术.人民邮电出版社[ISBN].978-7-115-16664-7.

[3]张智江,朱士钧,严斌峰,张云勇.3G业务技术及应用.人民邮电出版社[ISBN]978-7-115-14353-2.

低密度校验码范文篇9

3G系统采用码分多址(CDMA)和分组交换技术。三种主流的技术标准:WCDMA、CDMA2000、TD-SCDMA。主要问题在于:没有一个统一的世界标准;语音不是在IP网络结构上;数据传输达不到速度要求。

国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rdGenerationPartnershipProject,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代)移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rdGenerationPartnershipProject2,即3GPP2)成立于1998年12月,成员包括:TIA(北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。

WCDMA有Release99、Release4、Release5、Release6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。

HSDPA(高速下行分组接入,HighSpeedDownlinkPackagesAccess)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达14.4Mbps。

HSUPA(高速上行链路分组接入,highspeeduplinkpacketaccess)。HSUPA通过采用多码传输、HARQ、基于NodeB的快速调度等关键技术,使得单小区最大上行数据吞吐率达到5.76Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到5.76Mbit/s,大大提高的上行链路数据业务的承载能力。

HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。

CDMA2000即CDMA20001×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为DataOnly(后来把DataOnly改为DataOptimized,表示EV-DO是对CDMA20001X网络在提供数据业务方面的一个有效的增强)。CDMA20001×EV-DO(DataOnly),采用话音分离的信道传输数据。CDMA20001×EV-DV(DateandVoice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA20001X演进到1X增强版或从CDMA20001X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。

CDMA20001X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。

从CDMA20001X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1xEV-DO可沿用现有网络的规划及射频部件。1xEV-DO基站还可与CDMA20001X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1xEV-DO的载波使用高性能的移动数据业务。

从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA20001X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。

2在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入

3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO.0、1xEV-DO.A、1xEV-DO.B,最终到UMB,超移动宽带(UltraMobileBroadband)。

3GLTE使用OFDM(OrthogonalFrequencyDivisionMultiplexing、正交频分复用技术)以及它的后续技术OFDMA(OrthogonalFrequencyDivisionMultipleAccess、正交频分多址技术)是未来无线宽带技术的基础。同UMB一样,LTE也采用了OFDM/OFDMA作为物理层的核心技术,不同的是LTE不再支持CDMA,而UMB为了保持良好的兼容性仍然支持在总带宽中分出一部分带宽来支持CDMA。LTE在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。UMB是可以在1.25MHz和20MHz间以约150KHz的频率增量灵活部署,支持频段包括450MHz、700MHz、850MHz、1700MHz、1900MHz、1700/2100MHz、1900/2100MHz(IMT)和2500MHz(3G扩展频段),可与现有的CDMA20001X和1xEV-DO系统兼容,但在数据传输速率、延迟性、覆盖度、移动能力及布建弹性等方面都更具优势。UMB系统继承了1xEV-DO系统的自适应编码调制、HARQ(物理层混合重传)以及QoS控制机制,结合了CDMA、TDM、QOFDMA(准OFDMA)、LDPC(低密度奇偶校验码)等其它先进技术,同时引入了基于MIMO(多路输入输出)、SDMA(空分复用接入)和Beamforming(波束赋性)等多天线技术。在4G网络中将主要使用以下一些核心技术。

正交频分复用(OFDM)/正交频分多址接入(OFDMA).OFDM是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,子载波并行传输。每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM可以消除或减小信号波形间的干扰,提高了频谱利用率。OFDMA是OFDM调制的一种形式,具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟。OFDMA会把副载波的子集分配给各个用户,以信道状态的反馈能执行自适应用户到副载波的分配。与OFDM相比,快速衰退、窄带同频干扰性能都得到了提高,改进了系统的频谱效率。

软件无线电是把尽可能多的无线及个人通信功能通过可编程软件来实现,使其成为一种多工作频段、多工作模式、多信号传输与处理的无线电系统。也可以说,是一种用软件来实现物理层连接的无线通信方式。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。多输入多输出(MIMO、Multiple-InputMultiple-Out-put)技术利用多发射、多接收天线进行空间分集的技术,采用分立式多天线能够有效地将通信链路分解成为许多并行的子信道,从而大大提高容量。MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

第四代移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

综上,随着移动通信的发展呈现趋势传送宽带化、应用个性化、接入多样化、网络数据化、系统互补化及有线、无线一体化的大趋势,宽带无线市场必定潜力巨大,发展前景一片光明。

参考文献:

[1]彭林.第三代移动通信技术.电子工业出版社.【ISBN】750538361.

[2]康桂霞,田辉,朱禹涛,杜娟.CDMA20001x无线网络技术.人民邮电出版社[ISBN].978-7-115-16664-7.

[3]张智江,朱士钧,严斌峰,张云勇.3G业务技术及应用.人民邮电出版社[ISBN]978-7-115-14353-2.

[4]罗凌,焦元媛,陆冰.第三代移动通信技术与业务(第二版).人民邮电出版社[ISBN]978-7-115-15962-5.

[5]田辉,康桂霞,李亦农,徐海博.3GPP核心网技术.人民邮电出版社[ISBN]978-7-115-16109-3.

低密度校验码范文篇10

应急通信特别是“社会应急联动”通信系统,这是借助有线/无线综合通信平台及数字集群调度通信技术建立的一种极有社会价值与现实意义的专用通信系统;在经历了“9.11”、“SAGS”及禽流感、地震、海啸、飓风、台风等突发事件后,它显得更为迫切与重要。与此同时,全球公网、共网、专网建设环境及体制结构均在发生急剧变化与演进,这对现代数字集群代及应急联动通信系统的建设与发展亦将产生重要而深刻的影响。

数字集群的一些重要功能的作用与业务增值意义又愈来愈为人们普遍认同,以PTT或PoC为中心的PTT/PTS/PTM/PTC/PoC及GoTa、GT800等数字集群的成功自主创新努力的一股热浪正在掀起。因此,如何以自主创新与市场驱动导向为基点,积极、稳健、妥善、务实处理好涉及集群功能的公网、专网、共网应用及其有效宽带业务增值等发展策略已成为紧迫研究课题。在此,拟就包括应急联动通信在内的自主创新与市场驱动导向下的数字集群相关发展策略简要地谈几点个人看法,供分析参考。

集群专用移动通信目前发展状况评价及所存在的主要问题

伴随国际/国内电信环境的变化,包括快速调度、安全及应急联通需求的增长,数字集群功能应用的重要性日益凸显。同时,在政府部门的积极支持与引导下,例如信息产业部颁发的涉及我国数字集群通信系统行业标准和新数字集群系统标准参考性文件及一系列频率规划与频谱管理规则和业务分类与市场管理要求,营造了数字集群专用通信共网/专网发展的较好基本环境。

中国卫通、中国铁通和中国网通等几家资本实力较强、运营经验较丰富的公司正积极展开相应数字集群商用试验,以适度竞争与促进规模化发展并重考虑为基点、在积极、理性地推进。在“线式”集群应用,即如铁路、轻轨地铁、航运等方面,由于运营环境较宽松、投资强度较适当及设备性能与功能与市场需求较匹配,从而以Tetra、iDEN体制为主,已呈现出较好发展势头。基于911、SAgS、禽流感、地震、海啸、飓风、台风等突发事件应对及确保重大活动与事件的成功运作需要,在国家与重要城市政府部门直接支持下,作为电子政务重要环节的社会与城市应急联动系统的规划与积极实施已成为一个热点,其中数字集群将成为其无线核心平台支撑。

目前数字集群Tetra、iDEN系统存在的主要问题首先是价位太高,高速多媒体业务运作及前向发展潜力差,细分市场需求的应用终端欠缺,同时,对Tetra多厂商运行环境时包括终端在内的互联互通能力较差,安全保密问题上,包括加密处理在内特种用户的满意度及可信任度也有一定问题。对GoTa、GT800等新系统,在价位方面有极大优势与吸引力;高速多媒体业务运行及前向发展潜力较好安全及保密方面的可信任度及可用性均可望较好对其重要专用集群通信特种功能正在进一步完善与改进,并由相应用户检验,包括快速响应时间、组呼、故障弱化及直通需求等处理在内;产业链、产业化工作及适应专用强力需求的终端配套应用等工作亦在进一步重视中等等。但另一方面,这些自主创新的新系统,均为在现今典型移动通信体制cdmaIX及GSM等基础上进行专用功能结构自主创新及大幅改善性价比而成,一些集群专用功能又为公众通信作增值业务等应用,对此Nextel为最明显示例,从而使人们对如何认识公众移动网与数字集群专用网的相互关系产生疑虑。无论800MHz或350MHz频段的频率资源均很有限,按照既有Tetra、iDEN,加上Gota、GT800乃至TD-SCDMA五种体制状况,如何处理好其频率分配与指配规划及将既有窄频率间隔载波分配、指配状况再规划为适应新的宽频率间隔载波体制共存运营要求,以及如何在这些情况下进一步处理好市场份额。相对公众移动通信而言本来就相当小的前提下,能真正促使其快速、健康、有序、成功发展,显然,这无论对频率、市场等政策管理部门,乃至对运营商与设备制造商均提出了严峻的挑战,这必须立足于全面自主创新,并同心协力打造好共赢合作产业链,才有可能取得满意的结果。

妥善处理好公网,专网,共网及应急联动通信等有机互补合作发展关系

公网、专网在NGN概念上融合于新IP平台为基础的NGN/NGBW之前,它们各有其自身市场定位,不可不切实际地笼统强调公网PTT增值作用可替代专用移动通信的所有功能、作用与实际应急联动等需求,实际上,就以应付突发事件而言,单靠公众网应对,可能导致公众与专用要求全局瘫痪,甚至即便像PTT之类增值业务应用,当公众网业务流量压力巨大时,其快速群呼之类响应也可能成为远不如人意;相反,即使有强有力的E911之类社会应急联动专网,一旦发生突发事件时及时解决人身生命危险的高精度险情定位报告,仍需借助公众移动通信用户的优良LBS定位报告连接能力才行。这即说明,公网、专网各有其明确市场定位并需合作发展的必要性与重要价值所在。当然,这决非包含任何反对在2.50/3Q业务中导入与推广PTT/PTM/PTS/PoC等的基本含义,相反应积极鼓励此类有利sG、类3G业务增值发展的一切新努力。现今将PTT与3G演进的IP多媒体子系统IMS、SIP、IETF及OMA工作结合推进3G演进增值业务发展,看来是一种顺理成章的发展态势,可同时通用于cdma20001Xand1XEV-x及GPRS/EDGE/WCDMAandHSxPA等业务增值,并期望能取得另一辉煌,而且,可以预期,未来PoC的真正价值不仅对目前的以谈话(Talk)为对象的所谓快速“一键通”,而是更广义的促使人机交互界面快速连接的有效手段PTC/PoC及上述所提到的PTS及PTM,可为用户提供一种简单、方便与友好的PTU用户界面,可使人们在保持语音通话的同时能同时收发多媒体内容而无须中间切换,还可使此PTC/PoC/PTS/PTM与现场呈现、功能喜好及定位业务等多种业务功能相结合,充当MMS、即时消息、状态呈现、图片视像收发等诸多新业务快速处理的有效集成工具,并形成运营商、设备制造商、终端厂商、SP、AP、CP等共赢合作的产业链与产业生态环境,创造一个PTC/PoC/PTS/PTM新时代。而公众网的此类集群增值业务的成功发展,亦可给专用集群共网与专网的发展与创新提供更多压力与动力,使整体集群通信功能与业务能建立一种生动活泼的快速、稳妥、健康、有序的发展新局面。从而,本质上透彻理解公众通信网的PTT之类增值业务与专用共网、专网的数

字集群之类专用通信网业务间的区别十分重要,例如有下述10方面的明显差异

a)通话快速响应系统结构与能力的明显差异

按不同快速响应时间定义有下述大致定量对比关系:

i.启动讲话时间STS,按下PTT键至收到提示可讲话时间1600ms:300ms;

ⅱ.呼叫建立时间RTS,从主叫拨出呼叫号或组号建立呼叫至系统提示可讲话的时间2000ms:600ms;

ⅲ.端到端信道时延ETED,从讲话者说话至收听者听到的时延1600ms:1000ms;

ⅳ.整体应答时间TAT,从主叫按键按下至被叫应答的整体时间)4000ms:1000ms。

可见其任何定义时均有明显差异,这与其系统结构不同直接相关。

b)集团群体应急应用的可靠性、可用性的明显差异;

c)基本市场目标用户群的明显差异;

d)用户优先级别的确保与划分方面的明显差异;

e)基本业务结构与特征的明显差异;

f)组网运作基本模式的明显差异;

g)专用特征系统功能完备性的明显差异;

h)用户对终端的喜好与要求的明显差异;

i)市场份额大小与覆盖面的明显差异;以及

j)包括VPN、安全保密性及计费模式等在内的运营管理结构及特种质量要求等方面的明显差异。

相应,政府规则政策管理部门可基于此10方面明显差异考虑,针对上述GoTa、GT800等集群技术创新与集群功能PTT/PTC/PTM/PTS/FoC公网运用等新形势,从标准化、规则政策层面进行更进一步的引导与积极支持,以期集群通信事业及产业在中国按NQN及3G演进等信息电信新环境发展要求及公网、专网、共网有机互补、合作发展的轨道,积极、稳妥、科学、求实地向前推进。一方面,此专用数字集群市场份额相对公众移动通信而言可谓微不足道,在中国目前公众移动通信市场与业务实力是如此强大的前提下,专用数字集群运营商想借助Nextel模式介入或干扰与对抗公众移动通信,如上所述是完全不可能的,专用数字集群运营商象中国卫通亦已一再明确地表达了这种判断与意向,并确立了“卫星通信广播、以数字集群为主的应急通信、卫星导航定位信息服务三大业务板块”的发展战略定位,因此,过分担心引入GoTa等新一代宽带业务能力更强的数字集群通信会干扰3G发展,或者认为这些运营商搞数字集群的真正目的是借助其作为跳板搞3G或3G真正发动后它们看不到其发展前景就会自动息手之类看法是缺乏根据的。而且象应急联动通信之类手段,更主要考虑的应不只是其市场份额,而是其社会宏观作用与效益的战略重要性。另一方面,就中国信息通信事业的总体格局而言,专网数字集群及应急联动通信与公网公众移动通信相比,前者过份弱小,有失平衡,对此拟订合理的规则政策支持,包括应有的互联互通合作支持,促进其较快速、健康发展也属必要,决非有失公允,并应特别注意对应急联动通信支持的战略重要性。这样,社会应急联动通信系统将与社会公众有线网、公众无线/移动通信网、INTER网、智能交通(ITS)网等一道,构筑一个更广义的信息通信平台,实现对突发事件的更快速、有效的应急处理。当然,为使社会应急联动系统SIERS能有效运作,还应解决好市场机制条件下相应SIERS体系的经济补偿机制,至于精确有效的应急定位信息的获得亦需相应公网运营商的大力支持与相应资金投入,以完善其高精度定位系统,必要时亦必须像美国那样,借助政府监管政策支持才可能真正奏效。

积极支持自主知识产权及技术、应用持续创新

自主知识产权努力与国际标准化问题是一个甚为关键、敏感与极其要紧的问题。目前全世界约1.6万项国际标准中约99.8%是由国外(主要是美国)机构所制定,中国参与制定的才不足千分之二,这与中国这一大国的地位极不相称。与此相应,国际标准必须由相应核心专利与知识产权做有效支撑,包括实施此标准的核心技术芯片的有效支撑。目前跨国公司日益密集的国际标准核心“专利与芯片陷阱”已成为包括中国在内的有较好发展势头的发展中国家阻碍其有效发展本国产业的愈来愈棘手的难题,重视与投入自主知识产权努力与国际标准制定的参与及发挥实质作用已成当务之急,而且亦是一项艰巨而需漫长努力的任务,对此,在通信、计算机及家电等高技术领域表现得尤为明显。基于致力于建设创新型国家,坚持走中国特色的自主创新道路的基本指导方针与原则要求,深入分析讨论自主知识产权努力与国际标准化问题处理策略已成当务之急。

近几年来,在我国数字集群领域,由于GoTa、GT800及TD-SCDMA的自主创新与标准化努力已促使包括Tetra、iDEN在内,形成了一种你追我赶的竞争新局面,总体而言,无论从市场层面、技术创新层面与不同体制竞争发展层面均体现出较为良性互动与生动活泼的发展新局面,应予鼓励、支持与发扬。在这方面GoTa的进展表现得相对更为突出,做出了有特色与市场吸引力的自主知识创新。事实上,从在上海举行的2005年应急联动通信国际会议上与TetraMou主席PhilGoidfrey交换意见中证实,TetraMou亦认为尽管Tetra系统在语音调度等专用功能方面很受欢迎,但在数据增值及视频业务能力方面非常乏力,急需改进,而TetraVersion2亦仅为一种增强过渡而已,并末彻底从体制上解决问题。欧洲ETSI及美国TIA虽已接触谋划对此作进一步标准改进,但尚未取得实质进展。对此,GoTa明显先行一步无论对中国乃至国际社会均有深远的战略意义。正如2005年年中,信息产业部通信科技委对GoTa及GT-800鉴定评价中称此创新为“全球首创”、“国际领先”,确实是名副其实。

同时,GoTa的实质重要性在于具有自主核心知识产权,它的诞生,是继我国民族通信产业有了一定的发展之后在数字集群领域的一个重要里程碑,其中已拥有100多项技术专利,不少技术具有国际领先水平。对推进国内民族通信产业的发展,为制定拥有自主知识产权的中国数字集群通信标准奠定坚实的基础。自主研发、具核心知识产权的“GoTa数字集群通信系统的若干关键技术”已成功入选信息产业部2005年度“中国信息产业重大技术发明”,这是迄今为止数字集群领域唯一获得该项荣誉的技术发明。在“十运会”及突尼斯“全球信息社会峰会”上,doTa亦充分显示了其应用威力,成为峰会的“中国骄傲”;而且,中兴GoTa已在俄罗斯、挪威、马来西亚、瑞典、芬兰等20多个国家实现规模商用,成为应用范围最广和国际化程度最高的国产数字集群系统。此次十运会历经仅三个月突击建成的OoTa网络,经受住了大型覆盖及强话务量冲击考验,充分证明了GoTa的实战能力。仅用一个宏基站及一个微基站即达到满意的室内、场外及主场馆覆盖,一方面节省了大量投资,同时亦充分证明只有通过务实自主创新的不懈努力,才促使GoTa形成了实实在在的高效率与大容量系统能力。与此相应,为提高频谱利用效率GT800亦已完成了半速率改进,包括进一步提高效率的TD-SCDMA标准化努力亦在积极进行中;TetraV.2亦已在25kHz频带中由4时隙提升到8时隙运作,Tetra的TEDS即可将25kHz频带内的数据传输速率由原先的19.2kbit/s提升至38.4kbit/s,而其TAPS(TetraAdvancedPacketDataService)将数据传输速率在200kHz频带范围内提升至380kbit/s,而且,MotorolaTetra系统更借助2.4GHz频段的P2P无线网状网技术实现视频多媒体业务,再由网关转接与800MFIz频段数字集群集成应用,以弥补Tetra系统宽带运作能力的不足;iDEN在25kHz频带中亦已由3/6时隙提升至6/12时隙,由64QAM调制进一步推进至256QAM调制,结合Sprint-Nextel市场应用需求亦推出WiDEN(Wide-iDEN)技术支持的NGD下一代调度系统,将传输速率增强至384kbit/s左右,以满足市场竞争需要,推出了MTSO新型基站,可扩大一倍覆盖,并实施多频段集成支持,以IP为基础支持Wi-Fi、WiMAX,以自组织(Ad.Hoc)网络结构,有效支持网络抗灾救助;EADS亦已率先推出350MHz频段TETRA系统,并用新型基站TB3装备,由于采用了基于创新DSP的全数字设计、高增益极化天线的高灵敏度接收及多扇区抑低干扰等新技术,可扩大覆盖达4倍;我国国内有志于Tetra系统研制开发的研发部门与制造厂商,从系统网络平台至手机终端,亦首先瞄准350MHz频段的强力部门实际紧迫需求,2005年6月29日组成了中国移动通信联合会Tetra数字集群联盟(CTU),积极推进产业合作共赢的本地化及自主创新工作,以求Tetra系统亦获得较满意的信价比及安全性与可靠性,等等。总之,这些市场竞争环境驱动下的有益创新工作值得称道、鼓励与支持。

规则政策及运营制造的进一步自主创新发展策略

1.继续积极推行GoTa、GT800“走出去”的海外战略,使产品更早成熟与适应多样化市场业务需求

任何标准及其设备产品必须在市场应用中进一步锤炼、发展与完善,aoTa及GT800亦不例外,应在现今海外应用成绩基础上,再接再厉进一步努力,剪裁与适应所在国市场与规则政策需求,持续创新,使产品更早成熟与适应多样化市场业务需求,亦可为适应国内将来快速大规模推广应用奠定坚实基础;这不是“墙内开在墙外香”的问题,这是面对现实环境的一种积极、务实努力途径,在其它发达国家亦常遇到,并不司空见怪。

2.国家频率资源与市场规则政策管理部门加速管理创新努力,促进数字集群与应急联动通信快速、健康、有序成功发展

如上所述,面对频率资源极为有限及既有Tetra、iDEN,加上Gota、GT800乃至TD-SCDMA五种体制状况,如何处理好其频率分配与指配规划及将既有窄频率间隔载波分配、指配状况再规划为适应新的宽频率间隔载波体制共存运营要求,以及如何在这些情况下进一步处理好市场份额相对公众移动通信而言本来就相当小的前提下,能真正促使其快速、健康、有序、成功发展,显然,这对频率、市场等规则政策管理部门均为严峻的挑战,这必须进行密切结合国情的规则政策管理创新才能解决问题。QoTa、aT-800这几年由中国卫通及中国铁通进行的技术与商用试验无论从技术或市场、业务层面均已取得了巨大进展,在此基础上积极总结经验,尽早确定在多制式环境中频率规划、指配及适度竞争市场环境的规则政策创新指导要求,妥善处理好公网、专网、共网等合作发展关系,引导与协调各类数字集群体制按其自身特征确立好各自市场定位,促进我国数字集群专网、共网及应急联动通信能按快速、健康、有序、成功轨道积极推进,有效发展。

3.持续自主创新,加速数字集群的技术与应用发展

创新是“发展”之本,创新是“可持续发展”的灵魂。创新包括技术创新、业务创新、应用创新、服务创新、内容创新、集成创新、销售创新、市场模式创新、合作策略创新,等等,各种各样围绕市场与产业有效且可持续发展的全方位创新,尤其要着力于原始创新、集成创新和引进消化吸收再创新这三大层面的全方位自主创新。从现实紧迫需求出发,着力突破重大关键技术及共性技术,创造新的市场需求,培育新兴产业,引领与支持未来经济社会持续协调发展。要特别强调加强知识产权保护,同时要利用好全球科技资源。按此,持续自主创新,加速数字集群与应急联动通信的技术与应用发展。

aoTa、QT800等新系统一方面应充分利用自身价位、高速多媒体增值业务能力与前向演进潜力及安全保密处理等方面的优势,另一方面亦应充分认识与面对自身在专用通信领域后来的弱点与不足,进一步自主创新改进,包括脱网故障弱化及直通功能改进等在内。紧抓市场机遇、快速持续创新提高,求真务实,积极稳健推进。同时,有志于Tetra系统研制开发的研发部门与制造厂商,瞄准350MHz频段的强力部门实际紧迫需求,加速推进合作共赢的本地化及自主创新工作,以求Tetra系统获得较满意的性价比及安全可靠性。

此外,为处理好数字集群的前向发展及更有效利用有限、宝贵的频谱资源进行技术创新,积极跟踪关注以下一些对频谱有效利用和无线通信业务更新换代产生重要影响并具有普遍意义的重大关键技术及共性新技术同样是十分有益的。即如:

a.频率域、时间域、空间域、信号域、以至网络域、显示域的多维信号处理与多维频率共用,包括MIMO(多输入、多输天线分集)技术在内。

b.从信源编码至信道编码的一系列现代编码/调制及编码调制技术,特别是H.264/AVC(MPEG-4Part10)/AVS音视频数压缩编码及属并联级联编码范畴的Turbo码及Turbo编码调制技术,多分辨率编码调制,不对称传输环境下的UEP码,LDPO低密度校验码等,包括MIMO/SBTO(分组空时码)-Turbo/LDPO码-(x)-OFDM(y)级联运行在内。

c.自适应环境感知的自适应资源管理与自适应网络构成,包括有效的自适应信号处理与自适应干扰抵消及多用户联合检测在内。

d.高效率扇区天线,智能天线,智能化分布式天线及相应空时编码技术与软件(定义的)无线电技术,包括其高效率、高可靠算法,以有效提高其频谱再利用能力及系统效率。

e.多扇区多小区综合业务平台技术与多操作者运行的联合工作共用平台技术,包括有效利用共网资源的调度算法。

f.涉及NGN及NGBW的软交换/IMS技术、IP及全

IP的自适应IP-QoS技术、中间件技术及网络/终端信息安全技术等一整套软件工程技术。

g.与区域联网及全国联网相关的联网技术,包括有利于产业发展与动态适应市场演变以适应不同频段FDD/TDD灵活安排的所谓可变双工技术等。

h.与NGN、NGBW与W,/MIP、WIBAN/WPAN/WLAN/WMAN/WWAN相连接的应用协议与先进的接入技术,等。

i.业务与环境感知的自适应资源管理及自适应网络构成。

j.与NGN、NGBW相关的IP/全IP环境下具强有力自适应智能网管能力的NG-OSS/BOSS/MBOSS技术等等。

同时,进入宽带时代后应充分重视市场细分条件下的“技术杀手锏”、“业务杀手锏”、“应用杀手锏”及其相互关系问题。

对既有TETgA、iDEN数字集群系统需加速其竞争紧迫感,解决好其多厂商供货的互操性,对此便更要强调标准化与竞争中合作问题,努力创新,加强其性能/价格比竞争力与改进其安全、保密性以充分适应用户需求等问题。

4.应急联动通信统一认识,加速发展策略

a.统一认识,切实增强责任感、紧迫感

国家/省/城市级的社会应急联动系统,简言之就是一个快速反应的通信系统与信息系统有机集成的平台,统一协调公安、消防、交警、急救、公益、民防等各种政府部门,为市民提供快速、及时的各种救助和相应应急服务。“统一报警、统一指挥、快速反应、资源共享、综合功能、联合行动”是其最显著的特征。社会应急联动概念首先落实到人口密集的城市,从而“城市应急联动系统”(CIERS)即成为城市应急管理现代化及数字城市和电子政务的重要工程实施目标。由此不少国家的大中城市近些年来纷纷聚焦社会服务资源的有效整合与利用,以及对市民应急要求的快速服务反应,为城市安全及人民生命财产提供强有力的保障。在经历了“9.11”、“SAGS”及海啸等突发事件后,任何国家政府与人民均已体会到了它的紧迫性与重要性。对中国的情况而言,1998年国务院即提出要在全国部署社会服务联动工作,希望通过各部门联合行动,最终建立一套社会化的公共救助体系,改进我国匪警110、火警119、急救120、交警122等报警救助系统各成体系的不合理、低效率状况。为全面建设小康社会、加快现代化建设提供一个稳定、安全的社会环境。首先统一这些根本认识最为重要。

b.创新摸索,务实推进

另一方面,应急联动通信是一个复杂的系统工程,涉及多部门、多机制、多标准、多模式协同工作,不同财务能力、不同地区具体状况与发展水平差异等多方面约束,期望全国一步到位、按一种统一规范与模式建设一种完美的全国统一的应急联动系统看来是困难的、不现实的。同时,突发公共应急事件主要包括社会公共安全、自然灾害、事故灾难及公共环境卫生等几方面,但从其应急覆盖域及发生概率看,社会公共安全往往占重要位置,由此,目前建设的城市应急联动通信系统往往较多依托在公安应急指挥系统基础上发展,110、119及122三警合一亦最易于统一操作,公安系统通常重视数字集群应用,频率资源上亦获得了国家专门分配的350MHz频段作公安、武警、安全等部门建立数字集群专网应用,亦可加入800MHz频段数字集群共网VPN模式应用,2005年5月1日,公安部亦批准并颁布实施“公安数字集群移动通信系统总体技术规范”。目前我国城市应急联动系统大抵可分为下述几种典型模式:1.南宁模式(统一接警、统一处警、资源共享、联合行动),2.北京模式(统一接警、分布处警),3.上海模式(分布接警、分布处警、大警协同,4.成都模式(统一接警、分布处警、大警协同、资源共享),5.潍坊模式(物理分散、逻辑集中、平战结合、应急响应、天地一体、安全可靠、高效快捷、共赢合作、联动运行)等。各种模式均根据当地实际情况而决策构建,各有利弊,可作为积极推进其应用的起点,探索创新与累积经验,为进一步协同、融合与全国标准化奠定基础。

c.专网、共网、公网有机互补、合作,协同、融合推进

固然,从可移动快速调度而言,专网、共网无线数字集群特别重要,但应急联动系统还必须同时依靠有线及公网平台,包括公众移动通信网络进行有机集成、互补合作、协同工作才能真正实施快速反应与资源共享及联合行动。同时,就公众通信及数字集群多制式环境与应急联动多模式情况而言,应特别强调按统一规则目标,合作协调,协同融合推进,应遵循“国家突发公共事件总体应急预案”、“国家通信保障应急预案”等要求,切实制订与实施好包括预警、监控、管制、协调和保障等内容的应急专项预案,确保应对突发事件的实效性与可操作性。面对目前已建、在建和拟建的20多个城市(南宁、北京、上海、天津、重庆、深圳、成都、南京、广州、杭州、济南、杨州,……等)应急联动通信系统的新局面,一定应按照统一规则要求及标准、体制、典型模式要求,积极、稳妥、科学、求实地通过各部门合作协调、联合行动,最终建立一套社会化的公共救助体系,实现“统一报警、统一指挥、快速反应、资源共享、综合功能、联合行动”的高效、可靠的应急联动系统。