电流范文10篇

时间:2023-04-04 23:13:52

电流

电流范文篇1

新的物理课程标准提出了新的教学理念:

1.“从生活走向物理,从物理走向社会”,即力求贴近学生生活,激发学生的学习兴趣,通过探索物理现象,揭示其中的物理规律。

2.强调认知过程对学生发展的必要性和重要性。

3.“注重科学探究,提倡教学方式多样化”,即以物理知识和技能为载体,让学生经历科学探究过程,学习科学探究的方法,培养学生的探究精神、实践能力以及创新意识,改革以书本为主、实验为辅的传统教学模式,鼓励将现代信息技术、多媒体技术应用于物理教学中。

为了体现这些新的理念,“电流和电路”一节的设计思想是,通过创设问题情境,激发学生探究的积极性,扩展学生对自己学习的责任感。通过让学生亲自动手实验,营造民主、和谐、合作的探究氛围,给学生的主动探索、自主学习和提高能力留有充足的空间。通过使用多媒体技术,帮助学生对电流的形成和电流方向等抽象知识的学习,优化课堂教学,提高教学效率和质量。

二、教学器材

1.电教器材:计算机,投影仪,教学课件。

2.实验器材:两节电池组成的电源,开关,小灯泡,小电动机,小门铃,导线,铅笔,橡皮,金属钢笔帽,塑料笔杆,硬币。(以上器材均为两人一套)

三、过程设计

教学内容

教学方法和手段

教师活动

学生活动

设计说明

引入课题

设问讨论

问题:(1)世界上如果没有了电,会是什么样子?

(2)你想知道有关电的哪方面的知识?

筛选本节学习内容,告诉学生其他电的知识,以后将逐步学到。

展开联想,积极讨论回答问题。

根据自己的兴趣需要提出自己想要知道的电学知识。

创设情景引起注意,激发学习动机,扩展学生对自己学习的责任感。

电流和电路

学生实验

(1)讨论

提示实验警钟。

巡回指导学生实验。

三次动手连接电路使小灯泡发光,小门铃发声,小电机转起来。

讨论探究,为什么小灯泡会发光,小门铃会发声,小电机会转。

发现问题,解决问题。

让学生在动手实验过程中发现用导线将电池、开关、用电器连接起来,有了“电”的流淌路径,从而产生电路的概念。

计算机投影演示猜想

演示、点拨学生思路

观看、讨论、猜想.

了解电路是如何形成的。

利用现代化手段使抽象变为形象。

电路的组成

观察讨论

引导学生观察电路由哪几部分组成。

观察自己所连接的电路,联系自家的家庭电路讨论、回答问题。

培养观察能力

由简单电路联想到家庭电路及其他复杂电路的组成。

电源

用电器

设问学生实验(2)讨论

问题:(1)前边学过,光是一种能量,热也是一种能量,电是不是一种能量?(2)在电路中电能由谁提供?最终电又变成了什么?(3)我们生活中使用的手电筒、收音机、计算器中的电池会用完吗?

电流范文篇2

1、理解为什么电感对交变电流有阻碍作用.

2、知道用感抗来表示电感对交变电流阻碍作用的大小,知道感抗与哪些因素有关.

3、知道交变电流能通过电容器.知道为什么电容器对交变电流有阻碍作用.

4、知道用容抗来表示电容对交变电流阻碍作用的大小,知道容抗与哪些因素有关.

能力目标

使学生理解如何建立新的物理模型而培养学生处理解决新问题能力.

情感目标

1、通过电感和电容对交流电的阻碍作用体会事物的相对性与可变性.

2、让学生充分体会通路与断路之间的辩证统一性.

3、培养学生尊重事实,实事求是的科学精神和科学态度.

教学建议

教材分析

本节着重说明交流与直流的区别,有利于加深学生对交变电流特点的认识.教学重点突出交流与直流的区别,不要求深人讨论感抗和容抗的问题.可结合学校的实际情况,尽可能多用实验说明问题,不必在理论上进行讨论.

教法建议

1、根据电磁感应的知识,学生不难理解感抗的概念和影响感抗大小的因素.教学中要注意适当复习或回忆已学过的有关知识,让学生自然地得出结论.这样既有利于理解新知识,又可以培养学生的能力,使学生学会如何把知识联系起来,形成知识结构,进而独立地获取新知识.

2、对交变电流可以"通过"电容器的道理,课本用了一个形象的模拟图,结合电容器充、放电的过程加以说明,使学生有所了解即可.对于容抗的概念和影响容抗大小的因素,课本是直接给出的,让学生知道就可以了,不要作更深的讨论.

3、本节最后,结合实际说明了电容的广泛存在,可以适当加以扩展和引伸,以开阔学生思路和引导学生在学习中注意联系实际问题.

教学设计方案

电感和电容对交变电流作用

教学目的:

1、了解电感对电流的作用特点.

2、了解电容对电流的作用特点.

教学重点:电感和电容对交变电流的作用特点.

教学难点:电感和电容对交变电流的作用特点.

教学方法:启发式综合教学法

教学用具:小灯泡、线圈(有铁芯)、电容器、交流电源、直流电源.

教学过程:

一、引入:

在直流电流电路中,电压、电流和电阻的关系遵从欧姆定律,在交流电路中,如果电路中只有电阻,例如白炽灯、电炉等,实验和理论分析都表明,欧姆定律仍适用.但是如果电路中包括电感、电容,情况就要复杂了.

二、讲授新课:

1、电感对交变电流的作用:

实验:把一线圈与小灯泡串联后先后接到直流电源和交流电源上,观察现象:

现象:接直流的亮些,接交流的暗些.

引导学生得出结论:接交流的电路中电流小,间接表明电感对交流有阻碍作用.

为什么电感对交流有阻碍作用?

引导学生解释原因:交流通过线圈时,电流时刻在改变.由于线圈的自感作用,必然要产生感应电动势,阻碍电流的变化,这样就形成了对电流的阻碍作用.

实验和理论分析都表明:线圈的自感系数越大、交流的频率越高,线圈对交流的阻碍作用就越大.

应用:日光灯镇流器是绕在铁芯上的线圈,自感系数很大.日光灯起动后灯管两端所需的电压低于220V,灯管和镇流器串联起来接到电源上,得用镇流器对交流的阻碍作用,就能保护灯管不致因电压过高而损坏.

2、交变电流能够通过电容

实验:把白炽灯和电容器串联起来分别接在交流和直流电路里.

现象:接通直流电源,灯泡不亮,接通交流电源,灯泡能够发光.

结论:直流不能通过电容器.交流能通过交流电.

引导学生分析原因:直流不能通过电容器是容易理解的,因为电容器的两个极板被绝缘介质隔开了.电容器接到交流电源时,实际上自由电荷也没有通过两极间的绝缘介质,只是由于两极板间的电压在变化,当电压升高时,电荷向电容器的极板上聚集,形成充电电流;当电压降低时,电荷离开极板,形成放电电流.电容器交替进行充电和放电,电路中就有了电流,表现为交流“通过”了电容器.

学生思考:

使用220V交流电源的电气设备和电子仪器,金属外壳和电源之间都有良好的绝缘,但是有时候用手触摸外壳仍会感到“麻手”,用试电笔测试时,氖管发光,这是什么?

原因:与电源相连的机芯和金属外壳可以看作电容器的两个极板,电源中的交变电流能够通过这个“电容器”.虽然这一点“漏电”一般不会造成人身危险,只是为了在机身和外壳间真的发生漏电时确保安全,电气设备和电子仪器的金属外壳都应该接地.

3、电容不仅存在于成形的电容器中,也存在于电路的导线、无件、机壳间.有时候这种电容的影响是很大的,当交变电流的频率很高时更是这样.同样,感也不仅存在于线圈中,长距离输电线的电感和电容都很大,它们造成的电压损失常常比电阻造成的还要大.

总结:

电流范文篇3

关键词:应用电子式;电流互感器;变压器差动保护研究

我国一直致力于民生事业的建设,随着科技的发展,电力已经成为了人们日常生活中不可或缺的必需物,而在电力输送过程中电流互感器以及变压器等继电器的存在是保障电流等电信号满足人们日常所需的关键,这也是由于目前所采用的继电器多为电磁式互感器,而而这种互感器极易受到外界影响,进而影响电力的正常输送,而无论城乡电网还是低级电网随着时间的推移都逐渐出现饱和的趋势,而电子式电流互感器的出现对于饱和的电信号有着重要作用。

1电子式电流互感器综述

虽然电子式电流互感器在解决电流等电信号饱和上有着得天独厚的优势,但是不可否认由于电子式电流互感器出现的时间较晚,使得绝大多数人员依旧采用传统的电磁式互感器,所以为了推动电子式电流互感器的使用,就必须对其有一定的了解。1.1电子式电流互感器的概念。随着信息化脚步的加快,目前社会上的绝大多数的仪器都在朝智能化的方向迈进,以期望能在解放劳动力的同时提高工作效率,毫无疑问,变电站的危险性相对较高,因此当前一部分智能变电站的出现使得电力中转更为便捷,但是传统的电磁式互感器极易受到影响,损耗了大亮的电信号,因此电子式电流互感器的出现使得智能变电站更为符合时代的发展,这主要是由于相对于传统的互感器,电子式电流互感器具有体积小,重量轻,绝缘材料简单,动态范围较宽,无磁饱和现象,数字量、模拟量输出均可,且二次输出可开路,但是温度对其影响较大。目前社会上广泛使用的电子式电流互感器包括应用电子式电流互感器以及光学互感器。1.2电子式电流互感器工作原理。电子式电流互感器之所以能快速的代替传统的电磁式互感器的原因正是由于其所具有的特点,同样也离不开电子式电流互感器的工作原理。电子式电流互感器的工作原理包括:罗氏线圈原理、低功率小铁心线圈原理、电阻分压原理、阻容分压原理以及串联感应分压原理,其中罗氏线圈原理是通过电磁感应定律算出导体的电动势,从而调节线圈,进而使得互感器更为合理、科学;而低功率小铁心线圈原理则是算出电路中的电功率,从而调节小铁心线圈,进而提高互感器的电流调节作用;电阻分压原理利用电阻并联的方法对工作中的电子式电流互感器进行差动保护;而阻容分压则是通过为了降低过高电压通过的可能性,进而避免短路的情况出现,从而起到保护变压器的作用;串联感应分压器原理就是将多种不同级的电抗器串联在电路中,从而根据反馈的电信号合理的尽心线圈设置,从而保障电子式电流互感器的工作。

2应用电子式电流互感器的变压器差动保护的必要性

显然,正是由于电子式电流互感器的优点使得传统的电磁式互感器的应用价值受到了威胁,尤其是在全面智能化的未来,但是即便如此也需要对电子式电流互感器采取一定的措施进行保护,这是由于尽管电子式电流互感器尽管不具备磁饱和现象影响电力信号的传输,但是却极易受到温度的影响,也就是说如果通过的电子式电流互感器的电压或电流过高轻则损耗电力,重则会产生危险,所以为了保障电子式电流互感器能够正常的工作,有必要对应用电子式电流互感器进行变压器差动保护。

3变压器差动保护的研究现状

正是由于变压器差动保护对于电子式电流互感器的工作正常有着十分重要的作用,所以必须对差动保护原理有一定的了解,并了解当前电子式电流互感其以及差动保护的现状。3.1差动保护原理分析。由于差动保护的原理简单并且上手容易,所以被广泛的应用在各大变电站电力保护中,是十分重要的电力运输保护原理。一般所采用的差动保护分为全电流差动保护以及基于故障分量的电流差动保护,主要通过对比不同级别的电压侧得电流,一般情况下智能变电站所采用的是三相变压器差动保护相位补偿方式,通过对不对等的电流进行处理,令两侧的电流差为零,但是这种差动保护方式并不能体现出电子式电流互感器的使用优点,所以必须对其进行改善。3.2电子式电流互感器变压器差动保护的原理分析。电子式电流互感器与传统的电磁互感器之间最大的不同的就是当遇到系统障碍时,电子式电流互感器不会遇到饱和的问题,所以仅仅是简单的采用传统的差动保护原理是不足以体现出电子式电流互感器的应用价值的,所以必须对变压器差动保护进行改善,现在所采用的电子式电流互感器变压器差动保护原理包括差动保护整合算式以及运行过程中的差动保护方案,前者通过对互感器差动保护中的电流进行运算,确定保护条件,从而得出额定电压,进而最大程度的保障电子式电流互感器的工作安全以及工作效率,而后者则是为了使差动保护的效率提高而提出的运行方案,这是由于在电子式电流互感器工作期间可能会出现意外的情况影响其工作,所以在此过程中必须根据电子式电流互感器的工作原理,进行合理的运算,得出其工作过程中的电力参数,进而帮助工作人员合理的调节线圈的大小,使其满足电子式电流互感器的差动保护要求,同时也可以根据电子电流互感器的差动保护特性进行及时的调节,从而提高电子式电流互感器的差动保护效率,进而保证电子式电流互感器的工作质量。

4应用电子式电流互感器的变压器差动保护情况

如今应用电子式电流互感器的使用范围越来越广,而为了保障电子式电流互感器的工作效率以及工作质量,对其进行变压器差动保护是十分必要,更遑论,但是当今社会对于继电器的保护装置的研究十分重视,但是由于电子式电流互感器的出现较短,且又需要其能在商业化应用中具有更高的价值,就必须对电子式电流互感器的变压器差动保护提出更高的要求,应用电子式电流互感器在工作过程中由于损耗等问题不同级别的电流量是时刻变化的,而这在动态保护方案中虽然也被考虑到,但是却由于信息采集不到位而导致电子式电流互感器的工作出现问题,因此必须同步采样,保障两侧的电力信息能最大化的同步,可采用GPS硬件时钟法,最大化的实现全电站的样本采集的同步化,除此之外,必须对电子式电流互感器进行多次分析及时的发现差动保护的漏洞,进而针对解决,同时也要对差动保护进一步的研究,从而保证电子式电流互感器的工作质量。

综上所述,随着社会的变迁,时代的发展,智能化的变电站会最大化的保障人们日常对电力的需求,也能解放劳动力,但是电磁式互感器却并不适用于智能变电站,因此为了提高智能变电站的商业价值,必须推进应用电子式电流互感器的普及以及使用。而电子式电流互感器的优点时期成为了炙手可热的新一代传感器,因此对其进行变压器差动保护具有十分重要的作用。

作者:臧红波 管志岳 单位:1.无锡职业技术学院 2.宝克(无锡)测试设备有限公司

参考文献

电流范文篇4

关键词:企业电站接地电容电流偏磁式消弧线圈动态自动跟踪全补偿

一、引言

化工企业蒸汽用量大,利用蒸汽余热发电,既经济、节能又能提高企业用电的可靠性。再加上目前电力紧张,进一步促进了各企业兴建热电联产式热电站的热情。现在正在设计或施工的此类工程很多,可以说遍地都是。化工企业电站的机压母线一般都采用10KV或6KV中性点不接地系统,而且一般都采用机压母线对负荷直配电缆。该方案运行维护简单,节省了全套升压站的投资,非常受企业的欢迎。但是,此方案会造成单相接地电容电流很大。在我公司承担的青海某90万吨/年纯碱工程中,第一期工程的单相接地电容电流就达到了31.5A,二期预计与一期工程的规模一样。在我公司承担的山东某100万吨/年纯碱工程中,其第一期工程的单相接地电容电流已达到了33.5A,而且企业已有规划,一期工程竣工就开始二期工程的设计,到2008年完成三期工程的建设。国家规范要求,单相接地电容电流4A以上就必须采取补偿措施。单相接地电容电流问题是工程设计必须解决的问题。

二、单相接地电容电流的危害

中性点不接地的高压电网中,单相接地电容电流的危害主要体现在四个方面:

1.弧光接地过电压危害

当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。

2.造成接地点热破坏及接地网电压升高

单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3.交流杂散电流危害

电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4.接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

三、消弧线圈的作用

电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿接地电容电流,使得接地电流减少;同时使得故障相恢复电压速度减少,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效地防止铁磁谐振过电压的产生。消弧线圈补偿效果越好,对电网的安全保护作用越大,所以需要跟踪电容电流变化自动调谐的消弧线圈。

四、消弧线圈作用原理及国内外现状

4.1补偿系统的原理

消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减少,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效地减少产生弧光接地过电压的机率,还可以有效地抑制过电压的幅值,同时也最大限度地减少故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接近或等于电容电流,工程上用脱谐度v描述调谐程度

当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。如煤矿6KV电网,当消弧线圈处于全补偿时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10-25倍,这就是通常所说的串联谐振过电压。除此之外,电网中各种操作(如大电机投入,断路器非同期合闸等)及电网发生其它故障时(如单相断线,断路器非全相合闸等)都可能产生危险的过电压,所以在电网正常运行时,或发生单相接地之外的其他故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。综上所述,当电网发生单相接地故障时,希望消弧线圈的脱谐度越小越好,最好是全补偿。当电网正常运行时,希望消弧线圈的脱谐度越大越好,最好是退出运行。

4.2补偿系统的分类

早期采用人工调匝式固定补偿的消弧线圈,称为固定补偿系统。固定补偿系统的工作方式是:将消弧线圈整定在过补偿状态,其过补程度的大小取决于电网正常稳态运行时不使中性点位移电压超过相电压的15%,之所以采用过补偿是为了避免电网切除部分线路时发生危险的串联谐振过电压。因为,如整定在欠补偿状态,切除线路将造成电容电流减少,可能出现全补偿或接近全补偿的情况。可见,固定补偿方式很难适应变动比较频繁的电网,这种系统已逐渐不再使用。取代它的是能跟踪电网电容电流自动调谐的装置,这类装置又分为两种,一种称之为随动式补偿系统。随动式补偿系统工作方式是:自动跟踪电网电容电流的变化,随时调整消弧线圈,使其保持在谐振点上,在消弧线圈中串联一电阻,增加电网阻尼率,将谐振过电压限制在允许范围内。当电网发生单相接地故障后,控制系统将电阻短接掉,达到最佳补偿效果,该系统的消弧线圈不能带高电压调整。另一种称之为动态补偿系统。动态补偿系统的工作方式是:在电网正常运行时,调整消弧线圈远离谐振点,彻底避免串联谐振过电压及各种谐振过电压产生的可能性,当电网发生单相接地后,瞬间调整消弧线圈至最佳状态,使接地电弧自动熄灭。这种系统要求消弧线圈能带高电压快速调整,从根本上避免了串联谐振产生的可能性,通过适当的控制,系统是唯一可能使电网中原有的功率方向型单相接地选线装置(高漏)继续使用的系统。

4.3国内主要产品的比较

目前,自动补偿的消弧线圈国内主要有三种产品,分别是调气隙式,调匝式及偏磁式。

4.3.1调气隙式

调气隙式属于随动式补偿系统。其消弧线圈为动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。然而,其调整只能在低电压或无电压的情况下进行,其电感调节范围上下限之比为2.5倍。控制系统在电网正常运行情况下将消弧线圈调整至全补偿附近,将约100Ω电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。当电网发生单相接地后,必须在0.2S秒内将电阻短接掉实施最佳补偿,否则电阻有爆炸的危险。该产品的主要缺点有四条:

1.工作噪音大,可靠性差

动芯式消弧线圈由于其结构上有运动部件,当高压施加其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音愈来愈大。串联电阻约3KW,100Ω。当补偿电流为50A时,需要250KW容量的电阻才能长期工作,所以在接地后,必须迅速切除电阻,否则有爆炸的危险。这就影响到整个装置的可靠性。

2.调节精度差

由于气隙的微小变化都造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。用液压调节成本太高。

3.过电压水平高

在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联电阻将稳态谐振过电压限制在允许范围内。但是电网中,各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬间过电压危害较为严重。

4.功率方向型单相接地选线装置不能继续使用

安装该产品后,电网中原有的功率方向型单相接地选线装置不能继续使用。

4.3.2调匝式

该装置属于随动式补偿系统,它同调气隙式的唯一区别是将动芯式消弧线圈用有载调匝式消弧线圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的,有载调节开关每调节一档时间13秒。其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈电感不能连续调节,只能离散地分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联电阻存在爆炸的危险等缺点,另外,该装置比较零乱,它由四件设备组成(接地变压器,消弧线圈,电阻箱,控制柜),安装施工比较复杂。总的来讲,该装置技术上比较落后。

由于经济上的原因,国产有载调匝式消弧线圈的有载调节开关采用低电压开关,它只能在低压下调节抽头,发生接地后不能调节。

4.3.3偏磁式

偏磁式消弧线圈成套装置具有以下特点:

1.利用自然零序电压原理在线实时测量电网对地电容。

2.运用磁放大器原理进行动态补偿,电网正常运行时少量投入补偿电抗,电网脱谐度大,可有效地防止串联谐振过电压的发生。发生单相接地后,瞬间实施最佳补偿。

3.现在广泛应用的功率方向原理的单相接地保护装置,仍能继续使用。

综上所述,偏磁式上述1、2、3点,在技术上属国内领先水平。

偏磁式消弧线圈成套装置属动态补偿系统,这种补偿系统要求消弧线圈的技术水平高,其消弧线圈内部为全静态结构,无任何运动部件,电感的调节通过辅助励磁的方法实现,可以在高电压下以电的速度调节电感,调节范围大,精度高,可靠性高。控制器在电网正常运行时实时检测电容电流数值,调节消弧线圈远离谐振点,通常处于其下限位置,从根本上避免了串联谐振过电压产生的可能性,当电网发生单相接地后,在5ms内调整消弧线圈达到最佳补偿状态,使接地电弧自动熄灭。该装置可靠性高,采用适当的控制方式后,可以使电网中原有的方向型接地选线装置继续使用。

五、偏磁式消弧线圈补偿系统的功能特点及技术性能

1.消弧线圈结构的特点

电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。这种线圈的基本工作原理是利用施加直流励磁,改变铁芯的磁阻,从而达到改变消弧线圈电抗值的目的,它可以带高压以电的速度调节电感值。

2.控制方法的特点

(1)采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。众所周知,消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿状态或接近全补偿状态,会出现串联谐振过电压,使中性点电压升高,电网中的各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。所以在电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门有关规程规定“固定补偿式消弧线圈不能工作在全补偿及接近全补偿状态”的原因,一般都是工作在过补偿状态。国内其它类似的自动补偿装置均是随动系统,都是在电网尚未发生故障前即将消弧线圈调节到全补偿状态等待接地故障的发生,为了避免出现过高的串联谐振过电压而在消弧线圈上串联一个阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题。另外;由于电阻的功率限制,在出现接地故障后必须迅速切除,这无疑给电网增加了一个不安全的因素。

(2)不是采取限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬间(约5ms)调节消弧线圈实施最佳补偿。

3.实际应用情况

根据偏磁式消弧线圈补偿系统能在电网发生单相接地后,瞬间调节消弧线圈实施最佳补偿的特点,在选型时可以留出适当的余量。

在我公司承担的青海某90万吨/年纯碱工程中,第一期工程的单相接地电容电流31.5A,考虑到二期工程的规模,选用的是100A的消弧线圈。

在我公司承担的山东某100万吨/年纯碱工程中,其第一期工程的单相接地电容电流33.5A,根据企业现有规划,考虑到二期工程和三期工程的规模,选用的是120A的消弧线圈。

电流范文篇5

人教版义务教育课程标准实验教科书《物理》八年级上册第五章第四节“探究串、并联电路的规律”。

教学过程

一、提出问题

在学生的实验桌面上,有电池组,2.5V的灯泡两个,3.8V的灯泡两个,电流表一个,开关一个,导线若干。

首先教师要求学生画出有两个灯泡的串联电路图,并把任意两个灯泡串联起来接到电源上,闭合开关,使灯泡发光。

闭合开关,灯泡发光,说明电路中有电流通过,电流的方向是怎样的呢?(学生回答:电流从电源的正极出来,经过灯泡,流回电源的负极。)

提出问题:串联电路中各处的电流之间有什么关系呢?

二、进行猜想

让学生分组讨论,选代表发言,提出自己的猜想。概括起来,有两种相反的意见:

1.串联电路中各处的电流相等。理由是:串联电路中电流只有一条通路。

2.串联电路中各处的电流不相等,靠近电源正极的电流大一些。理由是:电流通过灯泡时使灯泡发光,要消耗一些电能,所以电流通过灯泡后会减小。

对两种猜想教师都要表扬,说明学生经过思考,动了脑筋。哪种猜想正确呢?实验是检验对否的最好方法。

三、设计实验

各小组讨论,提出自己的实验方案。各小组的方案主要不同之处是把电流表放在何处,测几个点的电流,用几个电流表去测。

有的组提出测两个点的电流:①电源正极和开关之间的电流;②电灯乙和电源负极之间的电流。

有的组提出测三个点的电流:①电源正极和电灯甲之间的电流;②电灯甲和电灯乙之间的电流;③电灯乙和电源负极之间的电流。

通过讨论,大多数组认为测三个点的电流较好。(下面电路图中的A、B、C点)

对于用几个电流表去测量,有的组认为同时用三个较好,测一次就能同时看出各点的电流是否相同;有的组认为用一个较好,理由是:不同的电流表测量时可能有误差,同一处的电流用不同的电流表测量结果也可能稍有不同。最后统一意见,用一个电流表分别测A、B、C三点的电流。

四、进行实验

教师提醒学生实验时要注意正确使用电流表,把实验结果如实地记录下来,填写在下面的实验记录中,并把实验中遇到的问题也记下来。

*

五、分析论证

让各小组展示自己的实验记录,根据测量结果说出得到什么结论?

大多数组测量的结果是A、B、C三点的电流相同(即IA=IB=IC);但有一个组测出的A、B、C三点的电流却不相同。这是为什么?教师请其他组与这个组进行交流,共同寻找原因。各组提出的问题有:

1.是否电流表有问题?建议换一个电流表重新实验;

2.是否电路连成了并联?建议认真检查电路;

3.是否每次测量时用的灯泡不同?建议三次测量时不要更换灯泡;

4.是否电路没有连接好?建议认真检查电路。

这个组的同学认真听取了其他组的建议,经过检查发现是电路连接处有接触不良的现象。实验中用的是插件,有的地方插的松一些或没插好时,电流表的指针就会来回摆动,三次的示数会有不同。

六、再次实验

一次实验不一定能得到正确的结论。教师提出:换用不同的灯泡再做实验或者把三个、四个灯泡串联起来,多测几个点的电流,看一看各点的电流是否都相等?

经过同学们的多次实验,自己得出结论:串联电路中各处的电流相等。

七、评估交流

这节课通过提出问题,进行猜想,设计实验,进行实验,分析论证,探究了串联电路中电流的规律。教师特别提出:应该表扬第一次实验中得到的结论与其他组不同的这个组,因为他们实事求是,这是科学的态度。正是由于他们的结果不同,给大家带来了很多的思考,得到了很多的启示,知道了一些在实验中应注意的问题。

通过这节课,又一次对学生进行了探究问题的方法训练。

最后,教师请学生提出还有什么不懂的地方和还想知道的问题。

有的学生提出:既然串联电路中各处的电流相同,为什么两个灯泡的亮度不一样呢?

有的学生提出:用同样的电源,分别接上两个不同的灯泡时,为什么电路中的电流不同呢?

教师对学生提出的问题给以肯定,这些问题提得很好,请学生在课下继续交流探讨,在以后的学习中我们会继续探究这些问题。

点评:

本节课是一节典型的探究实验课,目的是要学生体验探究过程,学习科学探究的方法,通过自主地探究实验得出结论。

电流范文篇6

知识和技能

l初步认识电流、电路及电路图

l知道电源和用电器

l从能量转化的角度认识电源和用电器的作用

过程与方法

l观察简单的电路,尝试用开关控制一个用电器的工作

l尝试用符号来表示电路中的元件,绘制最简单的电路图

情感、态度与价值观

l通过连接电路的活动,激发学生的学习兴趣,使学生乐于动脑筋找出新的连接电路的方法。

教学重点

认识电流、电路,会画简单的电路图

教学难点

从能量转化的角度认识电源和用电器的作用

教学器材

分组:小灯泡、小电动机各一个、一个开关、两节电池(带电池盒)、

一些导线、发光二极管

演示:各种电源

板书设计

第五章第一节电流和电路

注意:不能把电池的两端直接连在一起!

1.用导线将电源、用电器和开关连接起来就组成了电路。

2.只有电路闭合时,电路中才有电流。

3.电源是提供电能的装置;用电器是消耗电能的装置。

4.电流方向:正极用电器负极

教学过程

教学内容和环节

教师指导活动

学生主体活动

教后感

引入课题

我们生活在电的世界里,也许你会感到它很神秘。为什么收音机通上电就能放出音乐?为什么电视机通上电就能看到影像?为什么电饭锅通上电就能做熟米饭?为什么洗衣机通上电就能转动?

实际上,这些看似复杂的东西都是由最简单的电路组合而成的,让我们走进这个世界看一看,试一试吧!

[板]第一章第一节电流和电路

想想做做

请大家看一看,你们的台面有什么器材?你能否将这些器材连接,分别使小灯泡发光、电机转动?看谁做得最快。

注意:任何情况下都不能把电池的两端直接连在一起!否则会烧坏电池,甚至会发生危险。

学生阅读P90的“要求”后连接电路,使小灯泡发光、电机转动。

电流和电路

[问]为什么连接好电路,闭合开关,灯泡会亮、电机会转动?

[设问]电流是如何形成的呢?从微观上来说,道理是这样的,导线、灯丝,都是金属做的,金属里面有大量电子,其中有的可以自由移动。平时它们运动的方向杂乱无章,可是接上电池之后,它们就受到了推动力,出现了定向移动,于是形成了电流。

[问]从宏观上来说,刚才你们怎样做才能使灯泡和电机里有电流通过?

对,[板]1.用导线将电源、用电器和开关连接起来就组成了电路。

但在电路中,若开关是打开的,电路中是否有电流?

对,[板]2.只有电路闭合时,电路中才有电流。

在物理学中,经常用图来直观地表示物理现象和过程,画图时如果把电池、电灯等物体原样画出来,非常麻烦,所以我们常用符号代表它们,这样画出来的就是电路图。(图5.1-2)

练习:

1.读图5.1-3,完成《一课一练》P44第2题

2.P92想想议议

答:因为有电流流过了灯泡和电机。

答:用导线将电源、用电器和开关连接起来就有了电流。

答:没有,必须将开关合上,使电路闭合才能有电流。

学生完成练习题。

电源和用电器

在前面的实验中我们用电池对小灯泡提供电流,所以电池是一种电源,你知道的电池有多少种?

教师补充:(新型电池)

锌银电池、锂电池、太阳电池、原子电池(图5.1-5)、学生电源(小资料)

【问】在电路中,电源和用电器各是什么样的装置?

【实验】电动机的转速随电源电能的消耗而变慢。

练习:《物理套餐》P82第一题

学生列举:

干电池、蓄电池

答:

【板】3.电源是提供电能的装置;用电器是消耗电能的装置。

导体和绝缘体

在日常生活中,大家经常听说过导体和绝缘体这两个词,什么是导体和绝缘体?常见的导体和绝缘体有哪些?请大家阅读课本相关内容并联系实际进行讨论一下。然后完成练习:

《物理套餐》P833(4)、(5)

学生阅读、讨论后回答:

导体是指善于导电的物体;绝缘体是指不善于导电的物体。

学生完成练习。

电流的方向

前面说过电路中有了电流,用电器才能开始工作,电流就象水流、人流一样,是有方向的。电流方向是怎样的?请同学们在课本上找一找。

回答得非常对。(图5.1-8)

4.电流方向:正极用电器负极

对于灯泡来说,电流在灯丝中无论沿什么方向流动,都能发光。但是有一种叫做半导体二极管的电子元件,电流只能从它的一端流向另一端,不能反向流动。下面请大家通过实验判断一下发光二极管允许电流从它的哪端流入,哪端流出。

学生阅读、找出答案:电流沿着正极、用电器、负极的方向流动。

学生实验发现:二极管只能单向导电。

动手动脑学物理

第1、2、3题

课堂完成

作业

电流范文篇7

以往初中物理教材多把力学放在电学之前,认为力学是学习物理的基础。而电学内容比较抽象,应该放在力学之后学习。但是“新课标”强调知识与技能的同时,非凡倡导过程与方法的学习,并关注情感态度与价值观的培养,使培养目标上走向多元化。我们看到“新课标”对电学内容的知识和技能的教学要求也有所降低。并且初中学生学习物理的思维特点是由具体形象思维逐步向抽象逻辑思维过渡,因此我们考虑初中阶段可以从学生爱好、熟悉规律和探究的方便出发,不过分强调学科自身逻辑的体系和概念规律的严密性,先以声、光、热、电有趣的物理现象入手,激发学生学习物理的爱好和愿望,尽可能多地联系生活实际,使学生充分感受到,这些知识跟自己的生活很贴近,而且很有用。提倡多动手,增加实践机会,经历与科学工作者进行科学探究时的相似过程。体验科学探究的乐趣,领悟科学的思想和精神。

新教材在电学中某些内容的处理上有所考虑,许多概念仅从实用角度出发熟悉,例如强调只有电路闭合时电路中才有电流而引入“电流”、“电路”等概念。另外,“探究串、并联电路中电流的规律”的设计,为了从过分强调知识的传承和积累向知识的探究过程转化,从学生被动接受知识向主动获取知识转化,培养科学探究能力,实事求是的科学态度和敢于创新的科学探索精神,而不倡导让学生背“结论”和概念。公务员之家

现代生活与电的联系已远远超过人们预期的想象,电磁学及其相关的电子技术和信息技术在上世纪90年代开始受到公众的瞩目。今天的物理教材有必要也有责任把电学知识作为提高全体学生科学素质来处理。

关于“电流和电路”教学目标的设计

本章教材的内容是学习电学概念和规律的基础,生活中又经常用到。

教学目标的设计完全依据《全日制义务教育物理课程标准》,从知识与技能、过程与方法、情感态度与价值观三者并重的层面上加以考虑,并将其分为三个单元。具体内容见图表所示。

第五章电流和电路教学目标的设计

单元

知识与技能

过程与方法

情感、态度

与价值观

评价

电流和电路

电流的强弱

知道电源是提供电能的装置;用电器是消耗电能的装置。

熟悉常用电气元件的符号。

知道电流的方向:电池正极→用电器→电池负极。电流的单位。

会使用电流表测量电流。会读数。

了解什么是导体、绝缘体及其区别。

熟悉电气元件,并动手组装控制一个用电器的简单电路。

用电气元件的符号画出电路图。

通过灯泡的明亮程度,间接地分析电路中电流的强弱。

经历用电流表测量电路中电流的过程。

关心生活、生产、自然现象中常见电现象,如电流的数值等。

乐于在四周生活中发现所学过的电源、开关和用电器。

敢于动手做物理课的电路实验,在实验中乐于动脑思考问题,积极动手进行尝试,养成严谨的科学态度。

知:能否从能量转化的角度熟悉电源和用电器。能否识别电流的方向。

技:能否独立连接简单电路。能否正确使用电流表。

情:对电路的组装是否有爱好。实验中是否乐于动脑思考问题,积极动手进行尝试。

串联和并联

探究串并联电路中电流的规律

知道什么是串联电路;什么是并联电路

能说出生活、生产中采用简单串联或并联电路的实例。

知道串联电路中各处电流相等。

知道并联电路中干路的电流等于各支路电流的和。

进一步巩固使用电流表测量电流的技能。

动手组装控制两个以上用电器工作的串联电路和并联电路。并会画出相应的电路图。

探究串联电路中各点电流的规律。

探究并联电路中干路和支路中电流的规律。

通过科学探究全过程的切身体验,领会科学研究的方法,培养严谨的科学态度与协作精神。

关心生活、生产中串联和并联的实际电路。

具有提出问题的意识;强烈的好奇心,勤于思考;乐于通过实验来证实自己的猜想;有合理的设计方案、积极动手操作、认真评估自我、勇于交流。在探究的过程中体现实事求是,严谨的科学态度与协作精神。

技:是否能独立连接串并联电路。

过与法:重点要放在学生是否认真经历了探究过程。不要把探究的结论作为评价的标准,而要根据学生参与探究活动的全过程所反映出的学习状况、态度等做出适当的评价。通过交流,培养全体学生的参与意识。

家庭电路

知道家庭电路的基本组成。

会用试电笔检测家庭供电线路中的火线和零线。

了解家庭电路中的保险装置(保险丝、空气开关)。

从闭合电路了解常见两种生活中的触电及急救措施。

了解接地,三线插头和漏电保护器的安全防护功能。

观察家庭电路的组成结构。

观察家庭电路中的保险装置(保险丝、空气开关)。

尝试用试电笔检测家庭供电线路中的火线和零线。

观察过程中留意器件铭牌及说明书等。

关心生活电路的连接情况。乐于观察家用电器、电工器材上标注的文字和符号并乐于了解其含义。

对初次接触的家用电器具有好奇心。

在生活和实验中具有安全用电的意识。

过:能否认真观察家庭电路的组成。

知:能否从闭合电路中有电流的角度了解安全用电的常识。

电流范文篇8

关键词:剩余电流保护装置线运行探讨

目前,在农网等低压配电系统中,大量使用的是普通电流型电子式剩余电流保护装置,包括剩余电流继电器、剩余电流断路器等,选用这些产品除了应满足国家相关产品标准,取得合格3C认证外,对其安装后在线运行时,应具有的动作特性,如动作电流、动作时间等,也应满足国家相关安装和运行管理标准要求。

1三相漏电流不平衡因素的影响

农网等低压配电系统正常运行时,由于三相负荷及绝缘水平存在差异,客观上使得三相泄漏电流存在不平衡现象,而供电线路和用电设备的泄漏电流与气候、温度、负载特性、负荷大小等因素有关,变化范围大,不易控制。从剩余电流保护技术角度讲,供电线路泄漏电流数值较大时,在不同相上出现突然施加的相同值瞬时故障电流,会合成出不同值的剩余电流。对普通电流型产品而言,在某相上虽然瞬时接地故障电流等于或大于额定动作值,但合成的剩余电流可能小于该产品的额定动作值,此时剩余电流保护装置可能不动作,即通常遇到的三相供电系统,存在有剩余电流动作不灵敏相的现象。

正常运行状态下对剩余电流保护装置做试验,除了用保护装置本身的试验按钮检查外,用剩余电流保护装置专用测试仪器检查其在线运行时的动作特性。例如当额定动作电流I△n为300mA在线运行时,某时刻线路存在泄漏电流,见图1。此时若用300mA作为试跳故障电流,分别在A、B、C三相上做试验,就会合成出不同值的剩余电流。

图1中,I△是由穿过剩余电流互感器的相线及N线的泄漏电流合成得到的,其幅值和相角受其影响是个随机变化量。一般而言剩余电流保护装置专用测试仪器是纯阻性负载特性,因此用其分别在A、B、C三相作试跳时,可以认为I△n与UA、UB、UC同相位。从图1中可求出与在三相上分别合成为不同幅值与相角的剩余电流I△(A)、I△(B)、I△(C),以幅值为例,则得出I△(A)≈400mA,I△(B)≈240mA,I△(C)≈280mA。也就是说用IΔn作试验出现了三种不同结果:A相I△(A)>U△n正确动作,B相I△(B)<I△n,不能动作,从运行角度可认为指标不合格。C相I△(C)<I△n,但可能接近于该产品的整定动作值,处于动作与不动作的临界状态。上述现象尽管为特定例子,但仔细分析后不难发现,在向量图中还有不少由于实际存在的泄漏电流,从而形成不灵敏相的区域。

从低压配电系统安全可靠运行角度看,出现单相接地等瞬时故障(树枝碰线、断线落地、接地短路电弧等)占有一定比例。而在农网等低压配电系统中选用的,用于间接接触电击保护和防止电气火灾及电气设备损坏的剩余电流保护装置,国家相关产品标准要求能检测突然施加或缓慢上升的剩余电流,且在额定动作值时应符合分断时间要求。因此,注意到我国低压配电系统现状,在选用剩余电流保护装置产品时,也应充分重视其在线运行时动作电流、最大分断时间、极限不驱动时间等动作特性参数指标是否仍能符合标准。从技术措施角度讲,这对低压配电系统剩余电流保护,更具有安全可靠的实际意义。

2动作时间因素的影响

根据剩余电流保护装置国家相关产品标准,以分断时间分类有一般型和延时型两大类。S(选择)型作为延时型的一种,有时可以单独列为一类,例如JB/T8756-1998《剩余电流动作保护继电器》标准中,以分断时间分为一般型、延时型、S型三类。剩余电流继电器与交流接触器或各种具备电动合分闸功能的低压断路器组成组合式剩余电流保护装置,具有技术含量较高、可维护性好等优点,在农网等低压配电系统得到了广泛应用。S型剩余电流继电器作为延时型的一种,可与一般型产品配合,用作选择性分级保护,可以设置一次自动重合闸功能。因其在额定动作电流下较一般型分断时间长得多,对雷击感应或系统操作过电压等形成的尖峰干扰有较强的抗干扰能力,明显减少了误动作机会。此外,由于住宅或单台设备使用的大多为小型剩余电流断路器,分断时间小于0.1s,额定动作电流一般在50mA左右,因此与S型剩余电流保护装置(最小不驱动时间为0.13s)组成分级保护,能满足下一级极限不驱动时间大于上一级动作时间的要求。实际使用效果证明,S型剩余电流继电器更适合在我国农网中大量推广使用。S型剩余电流继电器与一般型、延时型动作时间比较见表1。

目前大量使用的电流型电子式产品,动作时间的设置多采用阻容元件组成的模拟电路技术。常温状态下在做型式试验或其它试验时,可以达到相关产品标准要求。但安装运行较长时间后,应考虑是否仍能满足在I△n、2I△n、5I△n时均能符合分断时间和极限不驱动时间要求。GB13955-2005《剩余电流动作保护装置安装和运行》中,对产品的运行管理特别提出:为检验剩余电流保护装置在运行中的动作特性及其变化,运行管理单位应配置专用测试仪器,并应定期进行动作特性试验,包括测试动作电流值、分断时间、极限不驱动时间等,有很强的针对性和实用意义,对考核剩余电流保护装置的质量,指导正确选用和运行管理有很好的督促作用,应引起供电管理部门和生产厂商的高度重视。

4电流型剩余电流继电器技术改进措施

从以上分析可以看出,现有普通电子式电流型剩余电流保护装置,在三相供电系统使用中,存在剩余电流动作不灵敏相现象。而采用模拟电路设置动作电流值及分断时间和极限不驱动时间等整定值,离散性大,难以完全满足农网等低压配电系统安全可靠运行的技术要求。

随着单片机技术的快速发展,其信息处理功能大大增强。引入单片机技术对现有的电流型剩余电流保护装置进行技术更新升级,可以克服目前产品的缺陷,大幅度提高动作时间及动作电流值设置的精确度,以适应低压配电系统安全可靠运行对剩余电流保护装置更高的要求。南京工程学院附属工厂在这方面做了一定工作,研制开发了LJM微机S型剩余电流继电器产品等。它在普通S型产品基础上增加了单片机技术,对经过剩余电流互感器检测到的突然施加或缓慢上升的剩余电流信号,采用适当的数学处理方法,进行动态相位检测、数字滤波、实时计算等,且对互感器无同名端方向性要求。使得剩余电流动作保护值在360°相角变化范围内不受漏电流影响,解决了普通电流型产品在低压配电系统存在三相不平衡漏电流且数值较大时,有不灵敏相的问题。此外,采用数字及软件设置技术,使得动作电流与动作时间的额定整定值设置精确度大大提高,低压配电系统的可靠性、稳定性得到保证,克服了模拟电子电路易产生性能漂移的问题。

·当被保护的低压配电系统漏电流值小于额定整定剩余动作电流值时,各相用同样的接地试跳电流(产品铭牌标称的额定剩余动作电流),对剩余电流保护装置做动作特性试验,均可确保动作准确。

·当线路任一相发生瞬时接地故障出现突然施加的漏电流,该产品能准确检测到,当其达到额定动作值时均能可靠动作,不受三相漏电流不平衡因素影响,使得单相接地故障剩余电流动作值保持一致,并具有一次重合闸功能,保证了产品安全可靠投入运行。

·当被保护的低压配电系统缓变剩余电流达到额定动作值时,立即动作跳闸,也有一次重合闸。若故障继续存在则跳闸闭锁,需关掉剩余电流继电器工作电源后重新合上开关,才能继续运行。

·剩余电流互感器安装无方向要求,互感器与本机没有一一对应关系约束,互换性好,便于大批量生产、安装、维护。

·剩余电流实时数字显示,可设置报警功能。

·接地故障剩余电流动作值记录、储存,有助于故障原因分析。

·可附加通信接口功能。

电流范文篇9

关键词:性点电流互感器故障动稳定MALAB

1引言

最近我单位发生了两起110kV变电站的10kV电容器组中性点电流互感开裂的故障,其中一起故障的经过如下:

2002年5月24日,110kV新升变电站161#1电容器组中的#16电容器熔丝熔断,更换熔丝后送电,立即发生中性点电流互感器击穿开裂的现象(图1),同时161开关跳闸。故障前该电容器组的结构示意图如图2。



从图2中可以看出,当某一个电容器贯穿性击穿损坏以后,该相的其它电容即被短路,电容值变为零(图3),该支路的阻抗减小,双星形的两个中性点电位不一致,出现不平衡电流,且电流是突然增大的,暂态过程中的电流很大,导致中性点电流互感器损坏。

要定量地分析损坏的原因,需计算161断路器合闸后的暂态过程。借助MALAB的电力系统模拟工具箱(PSB),可非常方便分析出暂态过程中的电流变化情况。

2合闸于故障电容器情况的模拟

根据一次模拟图,用PSB建立如图4的系统模型图.该系统模型图的说明如下:

10kV的电源来自110kV主变,其内阻忽略不计,故采用三个理想的正弦波电源,相角相差120°.断路器的初始状态为分.在一个周波即20ms后合上,断路器接触电阻取100μΩ,没有并联电阻和并联电容。串联电抗器的电抗值为0.2,阻尼电阻的电阻值为1.6Ω。C1~C6为电容器,用串联阻抗元件模拟,其中的电阻为熔丝接触电阻,取0.01Ω。由于断路器为非线形元件,因模拟计算的关系,C1不能为零,取1e-16F,C2~C6为正常的电容值,8μF。RL为方便模拟计算用的负载,此处设为电容器组母排对地电容,取1pF。中性点电流互感器采用PSB中的元件,参数按照实际情况取,变比取15/5,容量取25VA,一次二次的阻抗分别取0.001和0.04的标么值。电压互感器的容量为80VA,电压比10kV//100V,一次二次的阻抗也分别取0.001和0.04的标么值。B1~B4是母线,这里用作节点以方便连线,用连线模拟成实际的网络拓扑结构以后即可进行模拟计算。

用不同的网络拓扑结构进行多次模拟,可发现电压互感器的参数及其负载的参数对中性点电流的影响微弱,可忽略不计,原因也是显而易见的,因为它们是并联在电容器组上的。

用图4的系统模型图,不同的初相角进行多次模拟,模拟的结果由各个示波器观察,示波器3反映的即为流过中性点电流互感器的电流波形,图5选取了4幅比较典型的波形图,分别反映相角为10°、60°、90°和270°时的波形。

从一系列波形图可以发现,A相的角度为0°和180°时流过中性点电流互感器的暂态电流最小,A相的角度为90°和270°时暂态电流最大,且90°和270°时的相位暂态电流也相差180°.在角度为90°出现的最大暂态电流峰值为1750A,是一高频电流,频率约为10.4z。暂态电流在约0.002秒后衰减到稳态,稳态电流峰值为12.5A,衰减后的波形片断见图6。

3中性点电流互感器击穿的原因分析

该电流互感器的型号为LZJC-10型,1999年2月出厂,电流比15/5,其技术数据为1s热稳定倍数75,动稳定倍数150,按照一次侧15A的额定电流计算,动稳定极限是3182A(峰值)。同时在模拟时也发现,最大电流值对中性点电流互感器的参数敏感,若取的参数再小一点,最大电流值可超过2000A,在不计中性点电流互感器的阻抗时,最大电流为2500A。从模拟出的暂态电流值,我们可以推断出该电流互感器击穿的原因是动稳定失稳。从破碎的情况也可以看出,线圈间的间隙变大,说明线圈在受到电动力后的变形,而变形超过了环氧树脂的承受能力,导致环氧树脂崩裂,而铁轭上几个细小的放电点是绝缘破坏后线圈放电引起的。

另外,今年我公司110kV竹辉变10kV电容器组也发生了一起中性点电流互感器击穿的故障,故障后开关跳闸,现场检查的现象是某一电容器熔丝熔断,同时中性点电流互感器开裂。该成套电容器组与新升变161电容器的设备是相同的设备。从故障后的情况分析,可以推断出是某一电容器首先故障,导致流过中性点电流互感器的电流突然增大,因保护动作使该电容器组断路器跳闸的时间需0.1s左右,而暂态过程比较短,仅1/10个工频周波左右,因此在跳开开关之前,暂态电流已经使电流互感器损坏。

4结论与对策

新升变电容器组中性点电流互感器在送电时开裂,竹辉变电容器组中性点电流互感器在运行中发生开裂,说明该电流互感器未达到设计的性能指标,是造成损坏的主要原因。而同型号的电容器组以前也发生过熔丝熔断、开关跳闸的情况,为什么没有出现开裂的情况呢?从上述模拟过程可以看出,暂态电流的大小与相角有关,0°和180°附近电流很小,不会造成动稳定失稳。再者,从电容器组成套产品设计角度上讲,即使在最恶劣的90°和270°情况下,暂态电流也不会超过动稳定极限值,但是已经接近了产品的性能极限,因此很难避免电流互感器开裂的发生。

新升变161电容器组故障,开关跳闸后,检修人员到现场,更换了熔丝,在没有让电试班检查电容器状况的情况下,就恢复送电,是导致中性点电流互感器击穿的次要原因。因此,今后凡遇到电容器熔丝熔断情况,一定要检查电容器本身是否损坏,切不可急于送电。

为了加大动稳定的裕度,建议是否可考虑采用一次额定电流为40A或以上的中性点电流互感器,这样从理论上讲,动稳定电流的极限值加大了一倍,裕度可加大,另外可以通过保护的调整来弥补中性点不平衡电流保护灵敏度的降低,以避免发生类似的故障。

参考文献

电流范文篇10

一、知识目标

1、知道三相交变电流是如何产生的.了解三相交变电流是三个相同的交流电组成的.

2、了解三相交变电流的图象,知道在图象中三个交变电流在时间上依次落后1/3周期.

3、知道产生三相交变电流的三个线圈中的电动势的最大值和周期都相同,但它们不是同时达到最大值(或为零).

4、了解三相四线制中相线(火线)、中性线、零线、相电压、线电压等概念.

5、知道什么是星形连接、三角形连接、零线、火线、线电压及相电压.

二、能力目标

1、培养学生将知识进行类比、迁移的能力.

2、使学生理解如何用数学工具将物理规律建立成新模型

3、训练学生的空间想象能力的演绎思维能力.

4、努力培养学生的实际动手操作能力.

三、情感目标

1、通过了解我国的电力事业的发展培养学生的爱国热情

2、让学生在学习的过程中体会到三相交流电的对称美

教学建议

教材分析

三相电流在生产和生活中有广泛的应用,学生应对它有一定的了解.但这里只对学生可能接触较多的知识做些介绍,而不涉及太多实际应用中的具体问题.三相交变电流在生产生活实际中应用广泛,所以其基本常识应让每个学生了解.

教法建议

1、在介绍三相交变电流的产生时,除课本中提供的插图外,教师可以再找一些图片或模型,使学生明白,三个相同的线圈同时在同一磁场中转动,产生三相交变电流,它们依次落后1/3周期.三相交变电流就是三个相同的交变电流,它们具有相同的最大值、周期、频率.每一个交变电流是一个单相电.

2、要让学生知道,三个线圈相互独立,每一个都可以相当于一个独立的电源单独供电.由于三个线圈平面依次相差120o角.它们达到最大值(或零)的时间就依次相差1/3周期.用挂图配合三相电机的模型演示,效果很好.

让三个线圈通过星形连接或三角形连接后对外供电,一方面比用三个交变电流单独供电大大节省了线路的材料,另一方面,可同时提供两种不同电压值的交变电流.教师应组织学生观察生活实际中的交变电流的连接方式,理解课本中所介绍的三相电的连接.

教学设计方案

三相交变电流

教学目的

1、知道三相交变电流的产生及特点.

2、知道星形接法、三角形接法和相电压、线电压知识.

教具:演示用交流发电机

教学过程:

一、引入新课

本章前面学习了一个线圈在磁场中转动,电路中产生交变电流的变化规律.如果三组互成120°角的线圈在磁场中转动,三组线圈产生三个交变电流.这就是我们今天要学习的三相交变电流.

板书:第六节三相交变电流

二、进行新课

演示单相交流发电机模型:只有一个线圈在磁场中转动,电路中只产生一个交变电动势,这样的发电机叫单相交流发电机.它发出的电流叫单相交变电流.

演示:三相交流发电机模型,提出研究三相交变电流的产生.

板书:一、三相交变电流的产生

1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流

2、三相交变电流的特点:最大值和周期是相同的.

板书:三组线圈到达最大值(或零值)的时间依次落后1/3周期

我们还可以用图像描述三相交变电流

板书:三相交变电流的图像

三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?

板书:二、星形连接和三角形连接

1、星形连接

说明:在实际应用中,三相发电机和负载并不用6条导线连接,而是把线圈末端和负载之间用一条导线连接,这就是我们要学习的星形连接

①把线圈末端和负载之间用一条导线连接的方法叫星形连接(符号Y)

②端线、火线和中性线、零线

从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线.从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线.

③相电压和线电压

端线和中性线之间的电压叫做相电压

两条端线之间的电压叫做线电压.

我国日常电路中,相电压是220V、线电压是380V

2、三角形连接

①把发电机的三个线圈始端和末端依次相连的方式叫三角板连接(符号△)