代谢组学范文10篇

时间:2023-03-22 09:27:27

代谢组学

代谢组学范文篇1

关键词:药用植物;代谢组学;功能基因组学

代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础。

图1系统生物学研究的四个层次略

目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。

1代谢组学研究的技术步骤

代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。

1.1植物栽培

对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考

表1代谢组学的分类及定义略

虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,FukusakiE[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。

1.2样本制备

为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。MaharjanRP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱质谱联用(GCMS)和毛细管电泳质谱(CEMS)联用都是分析亲水小分子的重要技术。FiehnO等[6]使用GCMS对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。

1.3衍生化处理

对目标代谢产物的衍生化处理取决于所使用的分析设备,GCMS系统只适合对挥发性成分进行分析,高效液相色谱法(HPLC)一般则使用紫外或荧光标记的方法对样本进行衍生处理,BlauK[7]对酯化、酰化、烷基化、硅烷化、硼烷化、环化和离子化等衍生方法进行了详细的说明。然而离子化抑制常使得质谱分析过程中目标代谢产物的离子化效率降低,这主要是由于分离过程中污染物与目标代谢物难以完全分离开所引起的,优化色谱分离时间可有效缓解离子化抑制,然而在实际操作中不可能对上百种代谢产物的分离时间进行优化,利用非放射性同位素稀释法进行相对定量可以很好的解决该问题。HanDK等[8]应用同位素编码的亲和标记(ICAT),根据经诱导分化的微粒蛋白及其同位素标记物的峰面积比,对该蛋白的相对含量进行分析。ZhangR等[9]发现同位素标记技术也可用于代谢组学的研究,但是却存在许多困难。活体的同位素标记方法对于同位素的洗脱是一种非常有潜力的技术,目前关于使用34s的研究已有报道[10]。

图2代谢组学研究技术步骤略

1.4分离和定量

分离是代谢组学研究中的重要步骤,与质谱联用的色谱和电泳分析技术都是使用紫外或电化学检测的方法进行定量,其对代谢组数据的分辨率与定量能力都有一定的影响。TomitaM等[11]总结了各种色谱分离法中经常遇到的技术问题,认为毛细管电泳和气相色谱法由于具有较高的分辨率,已成为代谢组学研究的常规技术手段之一,液相色谱因其适用范围广,应用也相当广泛。

TanakaN等[12]用高效液相色谱对样品进行分离,认为使用硅胶基质填充毛细管整体柱的高效液相色谱系统具有用量少、灵敏性高、低压降高速分离等优势;同时,TolstikovV等[13]也使用硅胶填充的毛细管液相色谱方法对聚戊烯醇类异构体进行了有效分离,获得了很好的分辨率。TanakaN等[14]发现二维毛细管液相色谱法的分辨率比传统的高效液相法高10倍。相对于其他色谱方法而言,超临界流体色谱(SFC)是分离疏水代谢物最具潜力的技术之一,特别适用于分离那些传统HPLC难以分析的疏水聚合物,BambaT等[15]通过SFC对聚戊烯醇进行分析,证明其具有较好的分离能力。针对质谱中存在的共洗脱现象,HalketJM等[16]发明了一种适用于GCMS的反褶积系统,对共洗脱的代谢产物进行分离与识别。AharoniA等[17]使用傅立叶变换离子回旋共振质谱(FTICRMS)对非目标代谢物进行分析,快速扫描植物突变样品,获得了一定量的代谢成分。

与分离一样,定量能力也是代谢组学研究中的重要因素,其取决于各分析系统的线性范围。傅立叶转换核磁共振(FTNMR)、傅立叶红外光谱(FTIR)以及近场红外光谱法(NIR)等技术由于敏感性低,重复性受共洗脱现象影响较小也被用于检测中。近年来,FTNMR技术常被用于植物代谢组的指纹图谱研究[18],但由于NMR分析需要样品量较大,分析结果易受污染,GriffinJL[19]发现将统计模式识别与FTNMR相结合可以对代谢物进行全面分析。除FTNMR之外,FTIR通过对有机成分的结构进行常规光谱测定,也可适用于代谢组学的研究,特别是应用于构建代谢组学的指纹图谱。尽管它不能对代谢物进行全面分析,但对具有特定功能的组分却有很好的定量效果,对从工业及食品原材料中分离的代谢混合物也可以进行全面分析,目前,已有学者将其成功地应用于拟南芥[20]和番茄[21]代谢产物指纹图谱的研究中。

1.5数据转换

为阐明代谢物复杂的线性或非线性关系,需要进行多变量分析,将原始的色谱图数据转换为数字化的矩阵数据,通过对色谱峰鉴定和整合从而进行多变量分析。由于环境等因素的干扰,光谱数据需要通过适当的数据加工方法进行校正,包括:①降低噪声;②校正基线;③提高分辨率;④数据标准化。JonssonP等[22]报道了一种关于GCMS色谱图数据处理的方法,可以对大量代谢产物样品进行有效的识别。

2代谢组学中的数据分析方法

2.1主成分分析法(PCA)

主成分分析法,将实测的多个指标用少数几个潜在的相互独立的主成分指标线性组合来表示,反映原始测量指标的主要信息。使得分析与评价指标变量时能够找出主导因素,切断其他相关因素的干扰,作出更为准确的估量与评价。PCA数据矩阵通常来自于GCMS,LCMS或CEMS,因此将目标代谢产物作为自变量,而相应的代谢产物含量作为因变量,定义与最大特征值方向一致的特征向量为第一主成分,依此类推,PCA便能通过对几个主要成分的分析,从代谢组中识别出有效信息。主成分分析有助于简化分析和多维数据的可视化,但是该方法可能导致一部分有用信息的丢失。

2.2层次聚类分析法(HCA)

层次聚类分析法也常用于代谢组学的研究中,它是将n个样品分类,计算两两之间的距离,构成距离矩阵,合并距离最近的两类为一新类,计算新类与当前各类的距离。再合并、计算,直至只有一类为止。进行层次聚类前首先要计算相似度(similarity),然后使用最短距离法(NearestNeighbor)、最长距离法(FurthestNeighbor)、类间平均链锁法(BetweengroupsLinkage)或类内平均链锁法(WithingroupsLinkage)四种方法计算类与类之间的距离。该方法虽然精确,但计算机数据密集,对大量数据点进行分析时,更适合选用K均值聚类法(KMC)或批次自组织映射图法(BLSOM),而HCA适合将数据转换为主成分后使用。2.3自组织映射图法(SOM)

神经网络中邻近的各个神经元通过侧向交互作用相互竞争,发展成检测不同信号的特殊检测器,这就是自组织特征映射的含义。其基本原理是将多维数据输入为几何学节点,相似的数据模式聚成节点,相隔较近的节点组成相邻的类,从而使多维的数据模式聚成二维节点的自组织映射图。除PCA和HCA外,SOM同样也可应用于包括基因组和转录组等组学研究中[23]。最初SOM计算时间长,依靠数据输入顺序决定聚类结果,近年来SOM逐渐发展成为不受数据录入顺序影响的批次自组织映射图法(BLSOM)。由于BLSOM可以对类进行调整,且有明确的分类标准,优化次序优于其他聚类法,已在基因组学和转录组学数据分析中得到广泛的应用。

2.4其他数据采矿方法

除PCA、HCA和SOM外,很多变量分析方法都可用于植物代谢组学的分析。软独立建模分类法(SIMCA)是利用主成分模型对未知样品进行分类和预测,适合对大量样本进行分析;近邻分类法(KNN)和K平均值聚类分析法(KMN)也可用于样品分类;主成分回归法(PCR)或偏最小二乘回归法(PLS)在某些情况下也可使用。然而到目前为止由于还没有建立一个标准的数据分析方法,代谢组学仍然是一门有待完善的学科。

3代谢组学在药用植物中的实践

植物药材来源于药用植物体,而药用植物体的形态建成是其体内一系列生理、生化代谢活动的结果。植物代谢活动分为初生代谢和次生代谢,初生代谢在植物生命过程中始终都在发生,其通过光合作用、柠檬酸循环等途径,为次生代谢的发生提供能量和一些小分子化合物原料。次生代谢往往发生在植物生命过程中的某一阶段,其主要生物合成途径有莽草酸途径、多酮途径和甲瓦龙酸途径等。植物药材含有的生物碱、胺类、萜类、黄酮类、醌类、皂苷、强心苷等活性物质的绝大多数属于次生代谢产物,因此探讨次生代谢产物在药用植物体内的合成积累机制及其影响因素,对于提高活性物质含量、保证药材质量、稳定临床疗效等具有重要意义。孙视等[24]通过对银杏叶中黄酮类成分积累规律的研究,提出了选择具有一定环境压力的次适宜生态环境解决药用植物栽培中生长和次生产物积累的矛盾。王昆等[25]以人参叶组织为材料,总结了构建人参叶cDNA文库过程中存在的一些关键问题和应采取的对策,为今后关于人参有效成分如人参皂苷的生物合成途径及其调控的基础研究提供技术参考和理论指导。最近,美国加利福尼亚大学伯克利分校的Keasling等[26]采用一系列的转基因调控方法,通过基因工程酵母合成了青蒿素的前体物质——青蒿酸,其产量超过100mg/L,为有效降低抗疟药物的成本提供了机遇。经过长期的研究积累,人们对代谢途径的主干部分(为次生代谢提供底物的初生代谢途径)已经基本了解,例如酚类的莽草酸途径,萜类的异戊二烯二磷酸(IPP)途径等。被子植物中一些相对保守的次生代谢途径也得到了很好的研究,如黄酮类、木质素的生物合成与调控。然而,对次生代谢最丰富最神奇的部分——特定产物合成与积累的过程,还所知甚少[27]。

4展望

近年来,代谢组学正日益成为研究的热点,越来越多的人已加入到代谢组学的研究中。随着代谢组学积累的数据和信息量的增大,其在药用植物学各个领域的应用价值也与日俱增。它将不仅能对单个代谢物进行全方面的分析,更能寻找其代谢过程中的关键基因、通过代谢指纹分析对药用植物进行快速分类、进一步研究药用植物有效成分代谢途径以及环境因子对植物代谢和品质的影响与调控机制。

然而依据传统中医药学和系统生物学的指导思想,目前急待解决的是中药种质资源的代谢组学研究和中药体内作用的代谢组学研究。同时,代谢组学在分析平台技术、方法学手段和应用策略等方面相对于其他组学技术还需要进一步发展和完善,还需要其他学科的配合和介入。相信随着更有力的成分分析设备的使用及代谢组数据库的建立,药用植物代谢组学将对中医药学产生深远的影响。

【参考文献】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孙视,刘晚苟,潘福生,等.生态条件对银杏叶黄酮含量积累的影响[J].植物资源与环境,1998,7(3):1-7.

[25]王昆,王颖,鲍永利,等.人参叶cDNA文库构建中的问题与对策[J].人参研究,2005,17(4):2-4.

代谢组学范文篇2

【关键词】药用植物;代谢组学;功能基因组学

代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础。

图1系统生物学研究的四个层次略

目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。

1代谢组学研究的技术步骤

代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。

1.1植物栽培

对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考

表1代谢组学的分类及定义略

虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,FukusakiE[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。

1.2样本制备

为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。MaharjanRP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱质谱联用(GCMS)和毛细管电泳质谱(CEMS)联用都是分析亲水小分子的重要技术。FiehnO等[6]使用GCMS对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。

1.3衍生化处理

对目标代谢产物的衍生化处理取决于所使用的分析设备,GCMS系统只适合对挥发性成分进行分析,高效液相色谱法(HPLC)一般则使用紫外或荧光标记的方法对样本进行衍生处理,BlauK[7]对酯化、酰化、烷基化、硅烷化、硼烷化、环化和离子化等衍生方法进行了详细的说明。然而离子化抑制常使得质谱分析过程中目标代谢产物的离子化效率降低,这主要是由于分离过程中污染物与目标代谢物难以完全分离开所引起的,优化色谱分离时间可有效缓解离子化抑制,然而在实际操作中不可能对上百种代谢产物的分离时间进行优化,利用非放射性同位素稀释法进行相对定量可以很好的解决该问题。HanDK等[8]应用同位素编码的亲和标记(ICAT),根据经诱导分化的微粒蛋白及其同位素标记物的峰面积比,对该蛋白的相对含量进行分析。ZhangR等[9]发现同位素标记技术也可用于代谢组学的研究,但是却存在许多困难。活体的同位素标记方法对于同位素的洗脱是一种非常有潜力的技术,目前关于使用34s的研究已有报道[10]。

图2代谢组学研究技术步骤略

1.4分离和定量

分离是代谢组学研究中的重要步骤,与质谱联用的色谱和电泳分析技术都是使用紫外或电化学检测的方法进行定量,其对代谢组数据的分辨率与定量能力都有一定的影响。TomitaM等[11]总结了各种色谱分离法中经常遇到的技术问题,认为毛细管电泳和气相色谱法由于具有较高的分辨率,已成为代谢组学研究的常规技术手段之一,液相色谱因其适用范围广,应用也相当广泛。

TanakaN等[12]用高效液相色谱对样品进行分离,认为使用硅胶基质填充毛细管整体柱的高效液相色谱系统具有用量少、灵敏性高、低压降高速分离等优势;同时,TolstikovV等[13]也使用硅胶填充的毛细管液相色谱方法对聚戊烯醇类异构体进行了有效分离,获得了很好的分辨率。TanakaN等[14]发现二维毛细管液相色谱法的分辨率比传统的高效液相法高10倍。相对于其他色谱方法而言,超临界流体色谱(SFC)是分离疏水代谢物最具潜力的技术之一,特别适用于分离那些传统HPLC难以分析的疏水聚合物,BambaT等[15]通过SFC对聚戊烯醇进行分析,证明其具有较好的分离能力。针对质谱中存在的共洗脱现象,HalketJM等[16]发明了一种适用于GCMS的反褶积系统,对共洗脱的代谢产物进行分离与识别。AharoniA等[17]使用傅立叶变换离子回旋共振质谱(FTICRMS)对非目标代谢物进行分析,快速扫描植物突变样品,获得了一定量的代谢成分。

与分离一样,定量能力也是代谢组学研究中的重要因素,其取决于各分析系统的线性范围。傅立叶转换核磁共振(FTNMR)、傅立叶红外光谱(FTIR)以及近场红外光谱法(NIR)等技术由于敏感性低,重复性受共洗脱现象影响较小也被用于检测中。近年来,FTNMR技术常被用于植物代谢组的指纹图谱研究[18],但由于NMR分析需要样品量较大,分析结果易受污染,GriffinJL[19]发现将统计模式识别与FTNMR相结合可以对代谢物进行全面分析。除FTNMR之外,FTIR通过对有机成分的结构进行常规光谱测定,也可适用于代谢组学的研究,特别是应用于构建代谢组学的指纹图谱。尽管它不能对代谢物进行全面分析,但对具有特定功能的组分却有很好的定量效果,对从工业及食品原材料中分离的代谢混合物也可以进行全面分析,目前,已有学者将其成功地应用于拟南芥[20]和番茄[21]代谢产物指纹图谱的研究中。

1.5数据转换

为阐明代谢物复杂的线性或非线性关系,需要进行多变量分析,将原始的色谱图数据转换为数字化的矩阵数据,通过对色谱峰鉴定和整合从而进行多变量分析。由于环境等因素的干扰,光谱数据需要通过适当的数据加工方法进行校正,包括:①降低噪声;②校正基线;③提高分辨率;④数据标准化。JonssonP等[22]报道了一种关于GCMS色谱图数据处理的方法,可以对大量代谢产物样品进行有效的识别。

2代谢组学中的数据分析方法

2.1主成分分析法(PCA)

主成分分析法,将实测的多个指标用少数几个潜在的相互独立的主成分指标线性组合来表示,反映原始测量指标的主要信息。使得分析与评价指标变量时能够找出主导因素,切断其他相关因素的干扰,作出更为准确的估量与评价。PCA数据矩阵通常来自于GCMS,LCMS或CEMS,因此将目标代谢产物作为自变量,而相应的代谢产物含量作为因变量,定义与最大特征值方向一致的特征向量为第一主成分,依此类推,PCA便能通过对几个主要成分的分析,从代谢组中识别出有效信息。主成分分析有助于简化分析和多维数据的可视化,但是该方法可能导致一部分有用信息的丢失。

2.2层次聚类分析法(HCA)

层次聚类分析法也常用于代谢组学的研究中,它是将n个样品分类,计算两两之间的距离,构成距离矩阵,合并距离最近的两类为一新类,计算新类与当前各类的距离。再合并、计算,直至只有一类为止。进行层次聚类前首先要计算相似度(similarity),然后使用最短距离法(NearestNeighbor)、最长距离法(FurthestNeighbor)、类间平均链锁法(BetweengroupsLinkage)或类内平均链锁法(WithingroupsLinkage)四种方法计算类与类之间的距离。该方法虽然精确,但计算机数据密集,对大量数据点进行分析时,更适合选用K均值聚类法(KMC)或批次自组织映射图法(BLSOM),而HCA适合将数据转换为主成分后使用。

2.3自组织映射图法(SOM)

神经网络中邻近的各个神经元通过侧向交互作用相互竞争,发展成检测不同信号的特殊检测器,这就是自组织特征映射的含义。其基本原理是将多维数据输入为几何学节点,相似的数据模式聚成节点,相隔较近的节点组成相邻的类,从而使多维的数据模式聚成二维节点的自组织映射图。除PCA和HCA外,SOM同样也可应用于包括基因组和转录组等组学研究中[23]。最初SOM计算时间长,依靠数据输入顺序决定聚类结果,近年来SOM逐渐发展成为不受数据录入顺序影响的批次自组织映射图法(BLSOM)。由于BLSOM可以对类进行调整,且有明确的分类标准,优化次序优于其他聚类法,已在基因组学和转录组学数据分析中得到广泛的应用。

2.4其他数据采矿方法

除PCA、HCA和SOM外,很多变量分析方法都可用于植物代谢组学的分析。软独立建模分类法(SIMCA)是利用主成分模型对未知样品进行分类和预测,适合对大量样本进行分析;近邻分类法(KNN)和K平均值聚类分析法(KMN)也可用于样品分类;主成分回归法(PCR)或偏最小二乘回归法(PLS)在某些情况下也可使用。然而到目前为止由于还没有建立一个标准的数据分析方法,代谢组学仍然是一门有待完善的学科。

3代谢组学在药用植物中的实践

植物药材来源于药用植物体,而药用植物体的形态建成是其体内一系列生理、生化代谢活动的结果。植物代谢活动分为初生代谢和次生代谢,初生代谢在植物生命过程中始终都在发生,其通过光合作用、柠檬酸循环等途径,为次生代谢的发生提供能量和一些小分子化合物原料。次生代谢往往发生在植物生命过程中的某一阶段,其主要生物合成途径有莽草酸途径、多酮途径和甲瓦龙酸途径等。植物药材含有的生物碱、胺类、萜类、黄酮类、醌类、皂苷、强心苷等活性物质的绝大多数属于次生代谢产物,因此探讨次生代谢产物在药用植物体内的合成积累机制及其影响因素,对于提高活性物质含量、保证药材质量、稳定临床疗效等具有重要意义。孙视等[24]通过对银杏叶中黄酮类成分积累规律的研究,提出了选择具有一定环境压力的次适宜生态环境解决药用植物栽培中生长和次生产物积累的矛盾。王昆等[25]以人参叶组织为材料,总结了构建人参叶cDNA文库过程中存在的一些关键问题和应采取的对策,为今后关于人参有效成分如人参皂苷的生物合成途径及其调控的基础研究提供技术参考和理论指导。最近,美国加利福尼亚大学伯克利分校的Keasling等[26]采用一系列的转基因调控方法,通过基因工程酵母合成了青蒿素的前体物质——青蒿酸,其产量超过100mg/L,为有效降低抗疟药物的成本提供了机遇。经过长期的研究积累,人们对代谢途径的主干部分(为次生代谢提供底物的初生代谢途径)已经基本了解,例如酚类的莽草酸途径,萜类的异戊二烯二磷酸(IPP)途径等。被子植物中一些相对保守的次生代谢途径也得到了很好的研究,如黄酮类、木质素的生物合成与调控。然而,对次生代谢最丰富最神奇的部分——特定产物合成与积累的过程,还所知甚少[27]。

4展望

近年来,代谢组学正日益成为研究的热点,越来越多的人已加入到代谢组学的研究中。随着代谢组学积累的数据和信息量的增大,其在药用植物学各个领域的应用价值也与日俱增。它将不仅能对单个代谢物进行全方面的分析,更能寻找其代谢过程中的关键基因、通过代谢指纹分析对药用植物进行快速分类、进一步研究药用植物有效成分代谢途径以及环境因子对植物代谢和品质的影响与调控机制。

然而依据传统中医药学和系统生物学的指导思想,目前急待解决的是中药种质资源的代谢组学研究和中药体内作用的代谢组学研究。同时,代谢组学在分析平台技术、方法学手段和应用策略等方面相对于其他组学技术还需要进一步发展和完善,还需要其他学科的配合和介入。相信随着更有力的成分分析设备的使用及代谢组数据库的建立,药用植物代谢组学将对中医药学产生深远的影响。

【参考文献】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孙视,刘晚苟,潘福生,等.生态条件对银杏叶黄酮含量积累的影响[J].植物资源与环境,1998,7(3):1-7.

[25]王昆,王颖,鲍永利,等.人参叶cDNA文库构建中的问题与对策[J].人参研究,2005,17(4):2-4.

代谢组学范文篇3

论文摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式。本文在介绍代谢组学基本含义的基础之上,对代谢组学的研究方法及其在环境微生物领域的研究进展进行了评述。

一、代谢微生物概述

代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。化学分析技术中最常用的是1H核磁共振(1HNMR)以及色谱(毛细管电泳)-质谱联用(X-MS)。目前代谢组数据处理的主要方法是:应用主成分分析(PCA)等将从原始图谱信息或预处理后的信息进行归类,并采用相应的可视化技术直观地表达出来;建立类别间的数学模型,使各类样品间达到最大的分离,并利用建立的多参数模型对未知的样本进行预测;最终建立可利用的该领域的应用数据库和专家系统。应用代谢组学可进行疾病诊断、对药物进行毒性评价和研究植物细胞代谢等。

二、代谢组学的研究方法

代谢物组学分析中,对于不同类型的代谢产物,往往要采取不同的分析方法进行研究。目前,代谢物组学通常采用红外光谱法(infraredspectroscopy,IR)、核磁共振(nuclearmagneticresonance,NMR)、质谱(massspectrometry,MS)、高效液相色谱(highperformanceliquidchromatography,HPLC)以及各种技术的耦联,如气象色谱耦联质谱(gaschromatography2massspectrometry,GC/MS)和液相色谱耦联质谱(liquidchromatography2massspectrometry,LC/MS)来分析研究代谢物并为其绘制图谱。这些技术的耦联可以提高对样品的分辨率、敏感性及选择度,有利于对更多的生物体系内的代谢物绘制图谱。一般来说,选择代谢物组学分析方法时,其原则是要同时考虑仪器和技术的检测速度、选择性和灵敏度,找到一种最适合目标化合物的方法。

三、代谢组学在微生物领域的研究进展

(一)微生物分类,突变体筛选以及功能基因研究

经典的微生物分类方法多根据微生物形态学以及对不同底物的代谢情况进行表型分类。最近,随着分子生物学的突飞猛进,基因型分类方法如16SrDNA测序,DNA杂交以及PCR指纹图谱等方法得到了广泛应用。然而,某些菌株按照基因型与表型两类方法分类会得出不同的结果。因此,根据不同的分类目的联合应用这两类方法已成为一种趋势。BIOLOG等方法在表型分类中应用较为广泛,但是,代谢谱分析方法(metabolicprofiling)异军突起,逐渐成为一种快速、高通量,全面的表型分类方法。采用代谢组分类时,可以通过检测胞外代谢物来加以鉴别。常用的胞外代谢物检测方法为样品衍生化后进行GC2MS分析、薄层层析或HPLC2MS分析,最后通过特征峰比对进行分类。Bundy等采用NMR分析代谢谱成功地区分开临床病理来源以及实验室来源的不同杆菌(bacilluscereus)。除了表型分类外,代谢组学数据可以应用于突变体的筛选。在传统研究中的沉默突变体(即未发生明显的表型变化的突变体)内,突变基因可能导致了某些代谢途径发生变化,通过代谢快照(metabolicsnapshot)可以发现该突变体并研究相应基因的功能。

(二)发酵工艺的监控和优化

发酵工艺的监控和优化需要检测大量的参数,利用代谢组学研究工具可以减少实验数量,提高检测通量,并有助于揭示发酵过程的生化网络机制,从而有利于理性优化工艺过程。Buchholz等采用连续采样的方法研究了大肠杆菌在发酵过程中的代谢网络的动力学变化。他们在葡萄糖缺乏的培养液培养的大肠杆菌中加入葡萄糖,并迅速混匀,按每秒4~5次的频率连续取样。利用酶学分析、HPLC/LC2MS等手段监测样品中多达30种以上的代谢物、核苷以及辅酶,从而解析了葡萄糖以及甘油的代谢途径和底物摄取体系。通过统计学分析建模,发现在接触葡萄糖底物后的15~25s范围内,大肠杆菌体内发生的葡萄糖代谢物变化与经典生化途径相符,但随后的过程则与经典途径不符,推测可能存在新的未知调控步骤。Takors认为,通过上述代谢动力学研究,掌握代谢途径及网络中的关键参数,将直接有利于代谢工程的优化,包括菌株的理性优化以及发酵参数的调控。

(三)环境微生物研究

微生物降解是环境中去除污染物的主要途径。深入了解污染物在微生物内的代谢途径,将有助于人们优化生物降解的条件,从而实现快速的生物修复。这些代谢中间体大都通过萃取、分析方法进行逐个研究,并借助专家经验拟合出代谢途径,其动力学过程亦很少触及。代谢组学方法的采用有可能改变这一现状。Boersma等采用代谢组学方法研究氟代酚的微生物降解途径。氟代化合物具有特殊的19F核磁共振属性,19F的核磁共振灵敏度与1H核相近;由于生物体内无内源性19F核磁信号,因而无本底干扰。所有19F核磁信号均可归结于异生素及其代谢物。19F核的化学位移值宽,约为700ppm(1H为15ppm,13C为250ppm)。较宽的化学位移导致19F在不同取代物的峰图不易产生重叠。因此,借助核磁共振技术可以更方便地研究含氟化合物的代谢中间体。Boersma等根据总代谢物的核磁共振图谱,推测出红球菌内羟化酶在不同的取代位(1,2,3三种不同的取代数量)羟基化氟代酚,然后再通过儿茶酚内位双加氧酶开环形成氟代粘糠酸的代谢过程。此外,他们还首次检测到开环后的下游代谢物,即通过氯粘糠酸异构酶生成氟代粘糠酸内酯以及氟代马来酸等中间代谢物。根际(rhizosphere)空间在植物2微生物相互作用中发挥着重要的作用。Narasimhan等利用根际代谢物组(rhizospheremetabolomics)方法,阐释了植物分泌物对根际微生物降解多氯代酚(PCB)的作用机制。然而,在采用拟南芥突变体(产生较少的phenylpropanoids)的对照组中,降解菌的数量较低,降解率也仅达50%。结果表明植物根际分泌的次级代谢物促进降解菌的繁衍增殖,从而促进了污染物的降解。

此外,微生物代谢组学还应研究如何改进样品的制备方法。例如,在代谢组研究中,为了中止细胞代谢反应采用冷淬火(coldquenching)方法,将细胞样品迅速置于低温(液氮或-70℃甲醇中),这会导致许多微生物发生冷休克(cold2shock),释放出大量的胞内物质,引起代谢组学定量研究发生偏差。

参考文献:

[1]周宏伟,谭凤仪,钟音,栾天罡.代谢组学及其在微生物领域的研究进展[J].分析化学.2007(2).

代谢组学范文篇4

关键词:灵芝代谢产物;TNF-α;肿瘤;羟基

灵芝是我国医学宝库中的灵芝属药、食两用真菌。其在自然界生长过程中必然要与细菌等自然界其他微生物争夺营养,而灵芝作为一种真菌,生长速度要远慢于细菌,所以作为灵芝能获胜的法宝之一可能就是其代谢产物,而真菌代谢产物的开发早已被证明是非常有价值的,比如历史上青霉素的发现就是例证,在这方面我国的发展步伐却比较慢,灵芝代谢产物药理作用的开发也将丰富我国中药的用途。对于灵芝代谢产物的研究目前并不多而且主要集中在其中灵芝多糖的测定上[1]。但灵芝的代谢产物是否能够对肿瘤细胞有所作用?为解决这个问题,我们进行了如下实验。

1材料与仪器

1.1试剂环磷酰胺(CTX)注射液由上海华联制药有限公司生产(生产批号为071002)。TNF-αELISA试剂盒购于渤海生物公司。肝功能检测试剂盒购于上海荣盛公司。

1.2含灵芝的代谢产物培养基取生长于斜面固体培养基上的灵芝菌泥(约1cm2)接种于100ml液体培养基(含2%黄豆粉,2%蔗糖,0.075%的磷酸二氢钾,0.03%的硫酸镁),25℃100r/min条件下培养5d,用滤纸过滤后得到含灵芝的代谢产物培养基。将这些培养基在-20℃条件下保存待用。

1.3抗血清制备使用李丽华等[2,3]报道的琥珀酸酐法将含灵芝的代谢产物培养基中所有成分的羟基与小牛血清白蛋白(BSA)连接。使用连接后的化合物免疫昆明小鼠,制备抗血清。经琼脂双向扩散法测定该抗血清的效价是1∶16。

1.4肿瘤细胞株S180购自河北医科大学动物中心。

1.5动物昆明小鼠(由河北医科大学动物中心提供)146只,体质量为18~22g,雌雄各半。

1.6仪器微量加样器(SOCOREX,瑞士);电热恒温培养箱(上海福玛实验设备有限公司),离心机(国产),Humalyzer2000型全自动生化仪,德国豪迈公司生产等。

2方法

2.1建立肿瘤模型选择6只昆明小鼠腹腔接种S180,接种5d后的小鼠,消毒腹部皮肤,用无菌空针抽吸腹水放入无菌容器内,置冰块保存。用0.4%台盼蓝染色后计数,在倒置式显微镜下计数,计算存活率,,用Hank''''s液稀释细胞悬液使活细胞数达到1×109个·ml-1,随机选取120小鼠,每只小鼠左前腋皮下注射0.2ml(活细胞数达到1×109个·ml-1)细胞悬液,另外20只小鼠不做任何处理作为正常组。

2.2动物分组将120只已经注射了S180的小鼠随机分为6组,每组动物各20只,分为阴性对照组、腹腔注射含灵芝代谢产物培养基组(注射产物组)、环磷酰胺(CTX)组、腹腔注射含灵芝代谢产物培养基加抗血清组(注射产物加血清组)、口服含灵芝代谢产物培养基组(口服产物组)和抗血清组。阴性对照组和正常组胃饲生理盐水0.2ml/(kg·d);环磷酰胺组腹腔注射环磷酰氨0.075g/(kg·d);腹腔注射含灵芝代谢产物培养基组给予腹腔注射灵芝代谢产物2ml/(kg·d),抗血清组给予腹腔注射抗血清2ml/(kg·d),腹腔注射含灵芝代谢产物培养基加抗血清组给予腹腔注射灵芝代谢产物2ml/(kg·d)同时腹腔注射抗血清2ml/(kg·d),口服含灵芝代谢产物培养基组给予口服含灵芝代谢产物培养基2ml/(kg·d)。

2.3动物处理以上各组在接瘤24h后开始给药,连续给药7d后,处死动物,取出肿瘤和肝脏,用电子天平称出肿瘤质量。同时取血放入肝素抗凝素管内分离血清备用。

2.4ELISA法测定各组血清TNF-α水平应用TNF-αELISA试剂盒(购于渤海生物公司)按说明书测定保存血清中的TNF-α水平。

2.5使用全自动生化分析仪测定测量血清中谷草转氨酶(AST)和谷丙转氨酶(ALT)。

2.6统计学方法均采用SPSS10.0软件,进行t检验。

3结果

3.1各组肿瘤质量如表1所示,阴性对照组与抗血清组肿瘤质量无差异(P>0.05);注射产物与血清组和环磷酰胺组无差异(P>0.05);阴性对照组与所有组均有差异(P<0.05);注射产物组与口服产物组有差异(P<0.05),注射产物组与口服产物组有差异(P<0.05)。

3.2各组血清中谷草转氨酶(AST)和谷丙转氨酶(ALT)如表1所示,谷草转氨酶(AST)的结果中只有正常组与其他组有差异(P<0.05),其余各组间谷草转氨酶(AST)的结果均无差异;谷丙转氨酶(ALT)的结果中只有正常组与其他组有差异(P<0.05),口服产物组、环磷酰胺组与注射产物与血清组之间无差异(P>0.05);环磷酰胺与注射产物组有差异(P<0.05),口服产物组与阴性对照组有差异(P<0.05)。

3.3TNF-α水平如表1所示,环磷酰胺组TNF-α的水平与注射产物与血清组之间无差异(P>0.05),正常组、阴性对照组与血清组无差异(P>0.05),环磷酰胺组与阴性对照组有差异(P<0.05);注射产物与血清组与阴性组有差异(P<0.05)。表1各组肿瘤质量、肝功能和细胞因子水平(略)

4讨论

有的文献报道[4,5]灵芝具有对抗肿瘤的作用,这次实验结果显示,含灵芝代谢产物的培养液也具有抗肿瘤的作用,在我们的实验结果中不论口服与腹腔注射含灵芝代谢产物的培养液肿瘤的质量均缩小,其结果具有统计学差异。但作为阳性组的环磷酰胺组其肿瘤的质量要小于口服含灵芝代谢产物的培养液组,这说明可能经口服后存在首关消除,而肝功能的指标也显示口服含灵芝代谢产物的培养液组的谷丙转氨酶要低于阴性对照组和正常组。而在培养液中到底是何种化学集团起到抗肿瘤作用呢?我们根据刘文泰等人报道的琥珀酸酐法用小牛血清白蛋白封闭了代谢产物中的羟基后,用它作为免疫原免疫老鼠产生对抗除羟基外其他化学集团的抗血清,我们用这些抗血清封闭了含灵芝代谢产物的培养液的其他化学集团,只保留了部分羟基,实验结果显示用抗血清封闭的含灵芝代谢产物的培养液的抗肿瘤活性增强,这说明可能灵芝代谢产物中的羟基在对于抗肿瘤起了很大作用。而腹腔注射的作用强于口服的作用说明,这些代谢产物中的羟基可以被肝脏清除。

我们的结果还显示同时含灵芝代谢产物的培养液与抗血清组与注射环磷酰胺组的小鼠血清TNF-α水平都很高。而环磷酰胺对肿瘤细胞有直接的杀伤作用,而这些死亡的肿瘤细胞可能刺激了小鼠血清TNF-α水平的升高。而同时含灵芝代谢产物的培养液与抗血清组的TNF-α水平也同样升高说明,这些灵芝代谢产物中可能有直接杀伤肿瘤细胞的物质存在。

【参考文献】

[1]单卫华,张玲,时延增,等.灵芝菌发酵液制剂中灵芝多糖及总糖含量测定[J].时珍国医国药,2000,11(9):797.

[2]李丽华,刘文泰.抗中药成分的特异性抗体在中药质量检测中的应用探讨[J].中国中医基础理论杂志,2008,14(9):686.

[3]YamazakiM,SatoA,SaitoK,etal.MolecularphylogenybasedonRFLPanditsrelationwithalkaloidpatternsinLupinusplants[J].BiolPharmBull,1993,16(2):1182.

代谢组学范文篇5

摘要:瘦素;肿瘤坏死因子α;胰岛素反抗;代谢综合征

EffectsofleptinandTNFαonmetabolicsyndrome

Abstract摘要:ObjectiveTodiscovertheeffectsoftheleptinandTNFα(tumornecrosisfactoralpha)inthecauseofmetabolicsyndrome.MethodsTheresearchincludestestingonthelevelofleptinandTNFαinthebloodofresidentsofalocalcommunity,analyzingthecauseofmetabolicsyndromeinrelationtoleptinandTNFαthroughLogisticregressionanalysisbyadjustingageandgender.ResultsThehighertheleptinlevelswere,thehigherriskmetabolicsyndromewas.Therelationshipbetweenleptinlevelsandmetabolicsyndromewasaffectedbyageandgender.Malesweremoresensitivetoleptinthanfemales.Theeffectofleptinonmetabolicsyndromeincreasedwiththeage.ThelowerthelevelofTNFαwas,thehigherriskmetabolicsyndromewas.ThechancesforresidentswithhigherlevelofTNFαtosufferfromdiseasewas0538timesofthoswithlowerlevel.ConclusionObesitywithhighlevelleptinaffectsmetabolicsyndrome,especiallymalesobsity.Leptinlevelcanbeusedasanindicatorinpredictingmetabolicsyndrome.Thismethodisespeciallyeffectivetooldmalepatients.Itisnecessarytodofurtherresearchonthdbiologicalmechanismofmetabolicsyndrome.

Keywords摘要:leptin;tumornecrosisfactoralpha;insulinresistance;metabolicsyndrome

代谢综合征(metabolicsyndrome,MS)是心血管疾病和糖尿病发病的主要危险因素,这些疾病正日益威胁着人类生命健康,不同地区代谢综合征的患病情况及影响因素存在很大差异。有探究表明,我国60岁~人群代谢综合征患病率达20%〔1〕。目前代谢综合征的发病机制尚不完全清楚,脂肪分泌多种脂肪激素可能参和其中。本探究旨在探索脂肪细胞因子瘦素(leptin)及肿瘤坏死因子α(tumornecrosisfactoralpha,TNFα)在代谢综合征发病机制中的功能,为代谢综合征的防治提供科学依据。

1对象和方法

11对象采用整群抽样方法,于2001年8月对哈尔滨市道里区通江社区和香坊区红旗社区20~74岁常住居民(在本地区居住2年及2年以上),按所在社区实际年龄别构成比例进行分层,随机选取455人。其中,代谢综合征患者162人(男62人,女100人);非代谢综合征者293人(男130人,女163人)。

12方法采用自行设计的调查表,记录被调查者的基本情况,包括性别、职业、文化程度、疾病既往史、家族史、吸烟和饮酒情况等,同时进行身高、体重、腰围、臀围、血压和脉搏的测量。

13血清学检测在受检者8h内未进食的情况下,采用拜安易血糖仪(德国拜耳公司)测量空腹血糖,同时常规静脉采血5ml,4500r/min离心5min,取血清分装后,冻存于-20℃冰箱中,待测定血清学指标。胰岛素、瘦素、肿瘤坏死因子α均采用放射免疫分析法进行检测,试剂盒(中国原子能科学探究所)。按百分位数将连续变量转换为分类变量,定义瘦素水平(ng/ml)%26lt;201为低水平,201~1487为中水平,≥1487为高水平;肿瘤坏死因子α水平(ng/ml)%26lt;012为低水平,≥012为高水平。

14判定标准

141代谢综合征的诊断标准依据国际糖尿病联盟(InternationalDiabetesFederation,IDF)判定代谢综合征的标准〔2〕,确认代谢综合征必须具备以下条件摘要:(1)中心性肥胖摘要:男性腰围≥90cm,女性腰围≥80cm;(2)另加下列4因素中任意2项摘要:①甘油三酯(triglyceride,TG)%26gt;17mmol/L,或已接受针对此脂质异常的非凡治疗;②高密度脂蛋白胆固醇(highdensitylipoproteincholesterol,HDLC)男性%26lt;103mmol/L,女性%26lt;129mmol/L,或已接受针对此脂质异常的非凡治疗;③收缩压≥130mmHg或舒张压≥85mmHg,或此前已被诊断为高血压而接受治疗;④空腹血糖(fastingplasmaglucose,FPG)≥56mmol/L,或已被诊断为2型糖尿病。假如空腹血糖≥56mmol/L,则强烈推荐行口服葡萄糖耐量试验(oralglucosetolerancetest,OGTT),但葡萄糖耐量试验在诊断代谢综合征时并非必需。

142胰岛素反抗的判定采用稳态模型评估指数(HOMAIR)作为评价胰岛素反抗的指标。HOMAIR=空腹血浆胰岛素(FINS,mu/L)×空腹血糖(FPG,mmol/L)/225〔3〕,按百分位数将其由连续变量转换为分类变量,定义HOMAIR水平%26lt;218为低水平,218~422为中水平,≥422为高水平。水平高者易出现胰岛素反抗。

15统计分析采用SASS91软件进行分析,运用Logistic回归分析,探索瘦素、肿瘤坏死因子α、HOMAIR等和代谢综合征的关系。

2结果

212组各项指标比较(表1)瘦素、肿瘤坏死因子α、空腹血糖、空腹胰岛素和HOMAIR2组间差异均有统计学意义(P%26lt;005),表现为代谢综合征组瘦素和HOMAIR水平高于非代谢综合征组,代谢综合征组肿瘤坏死因子α水平低于非代谢综合征组。

表12组各项指标的比较(略)

注摘要:2组间比较,*P%26lt;005

22不同性别、年龄瘦素水平比较代谢综合征组男性瘦素水平为(391±396)ng/ml,女性为(751±751)ng/ml;非代谢综合征组男性瘦素水平为(269±251)ng/ml,女性为(650±150)ng/ml。男性代谢综合征组的瘦素水平高于非代谢综合征组,差异有统计学意义(P%26lt;005);女性2组差异无统计学意义。不同年龄组瘦素水平比较,高年龄(60岁~)代谢综合征组水平(728±734)ng/ml高于非代谢综合征组(442±410)ng/ml,差异有统计学意义(P%26lt;005);其他年龄组2组比较,差异无统计学意义。

23各项指标和代谢综合征的关系

231单因素分析结果(表2)在考虑年龄和性别功能的基础上,首先对瘦素、肿瘤坏死因子α、HOMAIR和代谢综合征的关系进行单因素分析,HOMAIR中水平和高水平的患病危险性分别是低水平的5179倍和9010倍,肿瘤坏死因子α高水平的患病危险性是低水平的0538倍,瘦素高水平的患病危险性是低水平的2859倍。

表2瘦素、肿瘤坏死因子α、HOMAIR和代谢综合征关系的单因素分析结果(略)

232多因素分析结果(表3)在单因素分析结果差异有统计学意义(P%26lt;005)的基础上进行多因素分析。结果显示,对调整年龄和性别后,HOMAIR、瘦素、肿瘤坏死因子α和代谢综合征发生的关系表现为HOMAIR水平增高、瘦素水平增高、肿瘤坏死因子α水平降低,代谢综合征发生的危险性增大。

表3瘦素、肿瘤坏死因子α、HOMAIR和代谢综合征关系的多因素分析结果(略)

3讨论

探究表明,HOMAIR水平愈高发生代谢综合征的危险性愈大,Logistic单因素分析结果表明,中水平和高水平的患病危险性分别是低水平的5179倍和9010倍,说明出现胰岛素反抗轻易发生代谢综合征,证实在国际糖尿病联盟的诊断标准中,胰岛素反抗仍为代谢综合征发生的重要环节。本探究结果显示,高年龄组(60岁~)和男性的代谢综合征组瘦素水平高于非代谢综合征组,瘦素和代谢综合征的关系受性别和年龄的影响。瘦素水平愈高发生代谢综合征的危险性愈大,男性比女性对瘦素水平的变化更为敏感,随年龄增长瘦素对代谢综合征发生的危险性增大。提示高瘦素性肥胖对代谢综合征的影响,男性表现得更为明显。因此,瘦素水平可以作为猜测代谢综合征的指标,尤其在老年男性中更为有效。探究结果显示,代谢综合征组和非代谢综合征组组间肿瘤坏死因子α分布的差异具有统计学意义(P=00076),代谢综合征组肿瘤坏死因子α水平偏低者的比例高于非代谢综合征组,随着肿瘤坏死因子α水平的升高,发生代谢综合征的危险性减小,高水平的患病危险性是低水平的0538倍。这可能是由于国际糖尿病联盟的诊断标准将正常空腹血糖切点下调至56mmol/L,从而使代谢综合征患者血糖水平随之下移,而血糖是影响血清肿瘤坏死因子α水平的重要因素〔4〕。另外,代谢综合征患者存在着瘦素反抗,降低了促进单核细胞分泌肿瘤坏死因子α的功能。所以肿瘤坏死因子α对代谢综合征的影响机制需要进一步证实。

参考文献

〔1〕项坤三.代谢综合征的流行病学和病因学[J].国外医学摘要:内分泌学分册,2002,22(5)摘要:280-281.

〔2〕宋秀霞.IDF代谢综合征全球共识定义[J].中华糖尿病杂志,2005,13(3)摘要:178-180.

代谢组学范文篇6

关键词:药用植物;代谢组学;功能基因组学

代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础。

图1系统生物学研究的四个层次略

目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。

1代谢组学研究的技术步骤

代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。

1.1植物栽培

对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考

表1代谢组学的分类及定义略

虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,FukusakiE[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。

1.2样本制备

为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。MaharjanRP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱质谱联用(GCMS)和毛细管电泳质谱(CEMS)联用都是分析亲水小分子的重要技术。FiehnO等[6]使用GCMS对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。

1.3衍生化处理

对目标代谢产物的衍生化处理取决于所使用的分析设备,GCMS系统只适合对挥发性成分进行分析,高效液相色谱法(HPLC)一般则使用紫外或荧光标记的方法对样本进行衍生处理,BlauK[7]对酯化、酰化、烷基化、硅烷化、硼烷化、环化和离子化等衍生方法进行了详细的说明。然而离子化抑制常使得质谱分析过程中目标代谢产物的离子化效率降低,这主要是由于分离过程中污染物与目标代谢物难以完全分离开所引起的,优化色谱分离时间可有效缓解离子化抑制,然而在实际操作中不可能对上百种代谢产物的分离时间进行优化,利用非放射性同位素稀释法进行相对定量可以很好的解决该问题。HanDK等[8]应用同位素编码的亲和标记(ICAT),根据经诱导分化的微粒蛋白及其同位素标记物的峰面积比,对该蛋白的相对含量进行分析。ZhangR等[9]发现同位素标记技术也可用于代谢组学的研究,但是却存在许多困难。活体的同位素标记方法对于同位素的洗脱是一种非常有潜力的技术,目前关于使用34s的研究已有报道[10]。

图2代谢组学研究技术步骤略

1.4分离和定量

分离是代谢组学研究中的重要步骤,与质谱联用的色谱和电泳分析技术都是使用紫外或电化学检测的方法进行定量,其对代谢组数据的分辨率与定量能力都有一定的影响。TomitaM等[11]总结了各种色谱分离法中经常遇到的技术问题,认为毛细管电泳和气相色谱法由于具有较高的分辨率,已成为代谢组学研究的常规技术手段之一,液相色谱因其适用范围广,应用也相当广泛。

TanakaN等[12]用高效液相色谱对样品进行分离,认为使用硅胶基质填充毛细管整体柱的高效液相色谱系统具有用量少、灵敏性高、低压降高速分离等优势;同时,TolstikovV等[13]也使用硅胶填充的毛细管液相色谱方法对聚戊烯醇类异构体进行了有效分离,获得了很好的分辨率。TanakaN等[14]发现二维毛细管液相色谱法的分辨率比传统的高效液相法高10倍。相对于其他色谱方法而言,超临界流体色谱(SFC)是分离疏水代谢物最具潜力的技术之一,特别适用于分离那些传统HPLC难以分析的疏水聚合物,BambaT等[15]通过SFC对聚戊烯醇进行分析,证明其具有较好的分离能力。针对质谱中存在的共洗脱现象,HalketJM等[16]发明了一种适用于GCMS的反褶积系统,对共洗脱的代谢产物进行分离与识别。AharoniA等[17]使用傅立叶变换离子回旋共振质谱(FTICRMS)对非目标代谢物进行分析,快速扫描植物突变样品,获得了一定量的代谢成分。

与分离一样,定量能力也是代谢组学研究中的重要因素,其取决于各分析系统的线性范围。傅立叶转换核磁共振(FTNMR)、傅立叶红外光谱(FTIR)以及近场红外光谱法(NIR)等技术由于敏感性低,重复性受共洗脱现象影响较小也被用于检测中。近年来,FTNMR技术常被用于植物代谢组的指纹图谱研究[18],但由于NMR分析需要样品量较大,分析结果易受污染,GriffinJL[19]发现将统计模式识别与FTNMR相结合可以对代谢物进行全面分析。除FTNMR之外,FTIR通过对有机成分的结构进行常规光谱测定,也可适用于代谢组学的研究,特别是应用于构建代谢组学的指纹图谱。尽管它不能对代谢物进行全面分析,但对具有特定功能的组分却有很好的定量效果,对从工业及食品原材料中分离的代谢混合物也可以进行全面分析,目前,已有学者将其成功地应用于拟南芥[20]和番茄[21]代谢产物指纹图谱的研究中。

1.5数据转换

为阐明代谢物复杂的线性或非线性关系,需要进行多变量分析,将原始的色谱图数据转换为数字化的矩阵数据,通过对色谱峰鉴定和整合从而进行多变量分析。由于环境等因素的干扰,光谱数据需要通过适当的数据加工方法进行校正,包括:①降低噪声;②校正基线;③提高分辨率;④数据标准化。JonssonP等[22]报道了一种关于GCMS色谱图数据处理的方法,可以对大量代谢产物样品进行有效的识别。

2代谢组学中的数据分析方法

2.1主成分分析法(PCA)

主成分分析法,将实测的多个指标用少数几个潜在的相互独立的主成分指标线性组合来表示,反映原始测量指标的主要信息。使得分析与评价指标变量时能够找出主导因素,切断其他相关因素的干扰,作出更为准确的估量与评价。PCA数据矩阵通常来自于GCMS,LCMS或CEMS,因此将目标代谢产物作为自变量,而相应的代谢产物含量作为因变量,定义与最大特征值方向一致的特征向量为第一主成分,依此类推,PCA便能通过对几个主要成分的分析,从代谢组中识别出有效信息。主成分分析有助于简化分析和多维数据的可视化,但是该方法可能导致一部分有用信息的丢失。

2.2层次聚类分析法(HCA)

层次聚类分析法也常用于代谢组学的研究中,它是将n个样品分类,计算两两之间的距离,构成距离矩阵,合并距离最近的两类为一新类,计算新类与当前各类的距离。再合并、计算,直至只有一类为止。进行层次聚类前首先要计算相似度(similarity),然后使用最短距离法(NearestNeighbor)、最长距离法(FurthestNeighbor)、类间平均链锁法(BetweengroupsLinkage)或类内平均链锁法(WithingroupsLinkage)四种方法计算类与类之间的距离。该方法虽然精确,但计算机数据密集,对大量数据点进行分析时,更适合选用K均值聚类法(KMC)或批次自组织映射图法(BLSOM),而HCA适合将数据转换为主成分后使用。2.3自组织映射图法(SOM)

神经网络中邻近的各个神经元通过侧向交互作用相互竞争,发展成检测不同信号的特殊检测器,这就是自组织特征映射的含义。其基本原理是将多维数据输入为几何学节点,相似的数据模式聚成节点,相隔较近的节点组成相邻的类,从而使多维的数据模式聚成二维节点的自组织映射图。除PCA和HCA外,SOM同样也可应用于包括基因组和转录组等组学研究中[23]。最初SOM计算时间长,依靠数据输入顺序决定聚类结果,近年来SOM逐渐发展成为不受数据录入顺序影响的批次自组织映射图法(BLSOM)。由于BLSOM可以对类进行调整,且有明确的分类标准,优化次序优于其他聚类法,已在基因组学和转录组学数据分析中得到广泛的应用。

2.4其他数据采矿方法

除PCA、HCA和SOM外,很多变量分析方法都可用于植物代谢组学的分析。软独立建模分类法(SIMCA)是利用主成分模型对未知样品进行分类和预测,适合对大量样本进行分析;近邻分类法(KNN)和K平均值聚类分析法(KMN)也可用于样品分类;主成分回归法(PCR)或偏最小二乘回归法(PLS)在某些情况下也可使用。然而到目前为止由于还没有建立一个标准的数据分析方法,代谢组学仍然是一门有待完善的学科。

3代谢组学在药用植物中的实践

植物药材来源于药用植物体,而药用植物体的形态建成是其体内一系列生理、生化代谢活动的结果。植物代谢活动分为初生代谢和次生代谢,初生代谢在植物生命过程中始终都在发生,其通过光合作用、柠檬酸循环等途径,为次生代谢的发生提供能量和一些小分子化合物原料。次生代谢往往发生在植物生命过程中的某一阶段,其主要生物合成途径有莽草酸途径、多酮途径和甲瓦龙酸途径等。植物药材含有的生物碱、胺类、萜类、黄酮类、醌类、皂苷、强心苷等活性物质的绝大多数属于次生代谢产物,因此探讨次生代谢产物在药用植物体内的合成积累机制及其影响因素,对于提高活性物质含量、保证药材质量、稳定临床疗效等具有重要意义。孙视等[24]通过对银杏叶中黄酮类成分积累规律的研究,提出了选择具有一定环境压力的次适宜生态环境解决药用植物栽培中生长和次生产物积累的矛盾。王昆等[25]以人参叶组织为材料,总结了构建人参叶cDNA文库过程中存在的一些关键问题和应采取的对策,为今后关于人参有效成分如人参皂苷的生物合成途径及其调控的基础研究提供技术参考和理论指导。最近,美国加利福尼亚大学伯克利分校的Keasling等[26]采用一系列的转基因调控方法,通过基因工程酵母合成了青蒿素的前体物质——青蒿酸,其产量超过100mg/L,为有效降低抗疟药物的成本提供了机遇。经过长期的研究积累,人们对代谢途径的主干部分(为次生代谢提供底物的初生代谢途径)已经基本了解,例如酚类的莽草酸途径,萜类的异戊二烯二磷酸(IPP)途径等。被子植物中一些相对保守的次生代谢途径也得到了很好的研究,如黄酮类、木质素的生物合成与调控。然而,对次生代谢最丰富最神奇的部分——特定产物合成与积累的过程,还所知甚少[27]。

4展望

近年来,代谢组学正日益成为研究的热点,越来越多的人已加入到代谢组学的研究中。随着代谢组学积累的数据和信息量的增大,其在药用植物学各个领域的应用价值也与日俱增。它将不仅能对单个代谢物进行全方面的分析,更能寻找其代谢过程中的关键基因、通过代谢指纹分析对药用植物进行快速分类、进一步研究药用植物有效成分代谢途径以及环境因子对植物代谢和品质的影响与调控机制。

然而依据传统中医药学和系统生物学的指导思想,目前急待解决的是中药种质资源的代谢组学研究和中药体内作用的代谢组学研究。同时,代谢组学在分析平台技术、方法学手段和应用策略等方面相对于其他组学技术还需要进一步发展和完善,还需要其他学科的配合和介入。相信随着更有力的成分分析设备的使用及代谢组数据库的建立,药用植物代谢组学将对中医药学产生深远的影响。

【参考文献】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孙视,刘晚苟,潘福生,等.生态条件对银杏叶黄酮含量积累的影响[J].植物资源与环境,1998,7(3):1-7.

[25]王昆,王颖,鲍永利,等.人参叶cDNA文库构建中的问题与对策[J].人参研究,2005,17(4):2-4.

代谢组学范文篇7

药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间关系的学科。

基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的作用。

基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。

苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。

吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。

神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。

镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。

局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2的基因多态性主要是C734T和G2964A,可能影响药物代谢速度。

一直以来麻醉科医生较其它专业的医疗人员更能意识到不同个体对药物的反应存在差异。麻醉药的药物基因组学研究将不仅更加合理的解释药效与不良反应的个体差异,更重要的是在用药前就可以根据病人的遗传特征选择最有效而副作用最小的药物种类和剂型,达到真正的个体化用药。

能够准确预测病人对麻醉及镇痛药物的反应,一直是广大麻醉科医生追求的目标之一。若能了解药物基因组学的基本原理,掌握用药的个体化原则,就有可能根据病人的不同基因组学特性合理用药,达到提高药效,降低毒性,防止不良反应的目的。本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。

一、概述

二十世纪60年代对临床麻醉过程中应用琥珀酰胆碱后长时间窒息、硫喷妥钠诱发卟啉症及恶性高热等的研究促进了药物遗传学(Pharmacogenetics)的形成和发展,可以说这门学科最早的研究就是从麻醉学开始的。

药物基因组学(Phamacogenomics)是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间的关系。它是以提高药物的疗效及安全性为目标,研究影响药物吸收、转运、代谢、消除等个体差异的基因特性,以及基因变异所致的不同病人对药物的不同反应,并由此开发新的药物和用药方法的科学。

1959年Vogel提出了“药物遗传学”,1997年Marshall提出“药物基因组学”。药物基因组学是药物遗传学的延伸和发展,两者的研究方法和范畴有颇多相似之处,都是研究基因的遗传变异与药物反应关系的学科。但药物遗传学主要集中于研究单基因变异,特别是药物代谢酶基因变异对药物作用的影响;而药物基因组学除覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节,所以研究领域更为广泛[1,2,3]。

二、基本概念

1.分子生物学基本概念

基因是一个遗传密码单位,由位于一条染色体(即一条长DNA分子和与其相关的蛋白)上特定位置的一段DNA序列组成。等位基因是位于染色体单一基因座位上的、两种或两种以上不同形式基因中的一种。人类基因或等位基因变异最常见的类型是单核苷酸多态性(single-nucleotidepolymorphism,SNP)。目前为止,已经鉴定出13000000多种SNPs。突变和多态性常可互换使用,但一般来说,突变是指低于1%的群体发生的变异,而多态性是高于1%的群体发生的变异。

2.基因多态性的命名法:

(1)数字前面的字母代表该基因座上最常见的核苷酸(即野生型),而数字后的字母则代表突变的核苷酸。例如:μ阿片受体基因A118G指的是在118碱基对上的腺嘌呤核苷酸(A)被鸟嘌呤核苷酸(G)取代,也可写成118A/G或118A>G。

(2)对于单个基因密码子导致氨基酸转换的多态性编码也可以用相互转换的氨基酸的来标记。例如:丁酰胆碱酯酶基因多态性Asp70Gly是指此蛋白质中第70个氨基酸-甘氨酸被天冬氨酸取代。

三、药物基因组学的研究内容

基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道及基因本身作为药物作用的靶,是药物基因组学研究的关键所在。这些基因编码蛋白大致可分为三大类:药物代谢酶、药物作用靶点、药物转运蛋白等。其中研究最为深入的是麻醉药物与药物代谢酶CYP45O酶系基因多态性的相关性[1,2,3]。

基因多态性可通过药物代谢动力学和药物效应动力学改变来影响药物作用,对于临床较常用的、治疗剂量范围较窄的、替代药物较少的麻醉药物尤其需引起临床重视。

(一)基因多态性对药物代谢动力学的影响

基因多态性对药物代谢动力学

的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面[3,4,5,6]。

1、药物代谢酶

与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。

(1)细胞色素P-450(CYP45O)

麻醉药物绝大部分在肝脏进行生物转化,参与反应的主要酶类是由一个庞大基因家族编码控制的细胞色素P450的氧化酶系统,其主要成分是细胞色素P-450(CYP45O)。CYP45O组成复杂,受基因多态性影响,称为CYP45O基因超家族。1993年Nelson等制定出能反应CYP45O基因超家族内的进化关系的统一命名法:凡CYP45O基因表达的P450酶系的氨基酸同源性大于40%的视为同一家族(Family),以CYP后标阿拉伯数字表示,如CYP2;氨基酸同源性大于55%为同一亚族(Subfamily),在家族表达后面加一大写字母,如CYP2D;每一亚族中的单个变化则在表达式后加上一个阿拉伯数字,如CYP2D6。

(2)丁酰胆碱酯酶

麻醉过程中常用短效肌松剂美维库铵和琥珀酰胆碱,其作用时限依赖于水解速度。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是水解这两种药物的酶,它的基因变异会使肌肉麻痹持续时间在个体间出现显著差异。

2、药物转运蛋白的多态性

转运蛋白控制药物的摄取、分布和排除。P-糖蛋白参与很多药物的能量依赖性跨膜转运,包括一些止吐药、镇痛药和抗心律失常药等。P-糖蛋白由多药耐药基因(MDR1)编码。不同个体间P-糖蛋白的表达差别明显,MDR1基因的数种SNPs已经被证实,但其对临床麻醉的意义还不清楚。

(二)基因多态性对药物效应动力学的影响

麻醉药物的受体(药物靶点)蛋白编码基因的多态性有可能引起个体对许多药物敏感性的差异,产生不同的药物效应和毒性反应[7,8]。

1、蓝尼定受体-1(Ryanodinereceptor-1,RYR1)

蓝尼定受体-1是一种骨骼肌的钙离子通道蛋白,参与骨骼肌的收缩过程。恶性高热(malignanthyperthermia,MH)是一种具有家族遗传性的、由于RYR1基因异常而导致RYR1存在缺陷的亚临床肌肉病,在挥发性吸入麻醉药和琥珀酰胆碱的触发下可以出现骨骼肌异常高代谢状态,以至导致患者死亡。

2、阿片受体

μ-阿片受体由OPRM1基因编码,是临床使用的大部分阿片类药物的主要作用位点。OPRM1基因的多态性在启动子、内含子和编码区均有发生,可引起受体蛋白的改变。吗啡和其它阿片类药物与μ-受体结合而产生镇痛、镇静及呼吸抑制。不同个体之间μ-阿片受体基因的表达水平有差异,对疼痛刺激的反应也有差异,对阿片药物的反应也不同。

3、GABAA和NMDA受体

γ-氨基丁酸A型(GABAA)受体是递质门控离子通道,能够调节多种麻醉药物的效应。GABAA受体的亚单位(α、β、γ、δ、ε和θ)的编码基因存在多态性(尤其α和β),可能与孤独症、酒精依赖、癫痫及精神分裂症有关,但尚未见与麻醉药物敏感性有关的报道。N-甲基-D-天门冬氨酸(NMDA)受体的多态性也有报道,但尚未发现与之相关的疾病。

(三)基因多态性对其它调节因子的影响

有些蛋白既不是药物作用的直接靶点,也不影响药代和药效动力学,但其编码基因的多态性在某些特定情况下会改变个体对药物的反应。例如,载脂蛋白E基因的遗传多态性可以影响羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶抑制剂(他汀类药物)的治疗反应。鲜红色头发的出现几乎都是黑皮质素-1受体(MC1R)基因突变的结果。MC1R基因敲除的老鼠对麻醉药的需求量增加。先天红发妇女对地氟醚的需要量增加,热痛敏上升而局麻效力减弱。

四、苯二氮卓类药与基因多态性

大多数苯二氮卓类药经肝脏CYP45O代谢形成极性代谢物,由胆汁或尿液排出。常用的苯二氮卓类药物咪唑安定就是由CYP3A代谢,其代谢产物主要是1-羟基咪唑安定,其次是4-羟基咪唑安定。在体实验显示不同个体咪唑安定的清除率可有五倍的差异。

地西泮是另一种常用的苯二氮卓类镇静药,由CYP2C19和CYP2D6代谢。细胞色素CYP2C19的G681A多态性中A等位基因纯合子个体与正常等位基因G纯合子个体相比,地西泮的半衰期延长4倍,可能是CYP2C19的代谢活性明显降低的原因。A等位基因杂合子个体对地西泮代谢的半衰期介于两者之间。这些基因的差异在临床上表现为地西泮用药后镇静或意识消失的时间延长[9,10]。

五、吸入麻醉药与基因多态性

到目前为止,吸入麻醉药的药物基因组学研究主要集中于寻找引起药物副反应的遗传方面的原因,其中研究最多的是MH。药物基因组学研究发现RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。

与MH不同,氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应,但其发生机制还不十分清楚[7,11]。

六、神经肌肉阻滞药与基因多态性

神经肌肉阻滞药如琥珀酰胆碱和美维库铵的作用与遗传因素密切相关。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是一种水解这两种药物的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,其第70位发生点突变而导致一个氨基酸的改变,与应用肌松剂后长时间窒息有关。如果丁酰胆碱酯酶Asp70Gly多态性杂合子(单个等位基因)表达,会导致胆碱酯酶活性降低,药物作用时间通常会延长3~8倍;而丁酰胆碱酯酶Asp70Gly多态性的纯合子(2个等位基因)表达则更加延长其恢复时间,比正常人增加60倍。法国的一项研究表明,应用多聚酶链反应(PCR)方法,16例发生过窒息延长的病人中13例被检测为A变异体阳性。预先了解丁酰胆碱酯酶基因型的改变,避免这些药物的应用可以缩短术后恢复时间和降低医疗费用[6,12]。

七、镇痛药物与基因多态性

μ-阿片受体是临床应用的阿片类药的主要作用部位。5%~10%的高加索人存在两种常见μ-阿片受体基因变异,即A118G和G2172T。A118G变异型使阿片药物的镇痛效力减弱。另一种阿片相关效应—瞳孔缩小,在118G携带者明显减弱。多态性还可影响阿片类药物

的代谢。

阿片类药物的重要的代谢酶是CYP2D6。可待因通过CYP2D6转化为它的活性代谢产物-吗啡,从而发挥镇痛作用。对33名曾使用过曲马多的死者进行尸检发现,CYP2D6等位基因表达的数量与曲马多和O-和N-去甲基曲马多的血浆浓度比值密切相关,说明其代谢速度受CYP2D6多态性的影响。除CYP2D6外,美沙酮的代谢还受CYP3A4的作用。已证实CYP3A4在其它阿片类药如芬太尼、阿芬太尼和苏芬太尼的代谢方面也发挥重要作用。

有报道显示儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。COMT是儿茶酚胺代谢的重要介质,也是痛觉传导通路上肾上腺素能和多巴胺能神经的调控因子。研究证实Val158MetCOMT基因多态性可以使该酶的活性下降3~4倍。Zubieta等报道,G1947A多态性个体对实验性疼痛的耐受性较差,μ-阿片受体密度增加,内源性脑啡肽水平降低[13~16]。

八、局部麻醉药与基因多态性

罗哌卡因是一种新型的酰胺类局麻药,有特有的S-(-)-S对应体,主要经肝脏代谢消除。罗哌卡因代谢产物3-OH-罗哌卡因由CYP1A2代谢生成,而4-OH-罗哌卡因、2-OH-罗哌卡因和2-6-pipecoloxylidide(PPX)则主要由CYP3A4代谢生成。CYP1A2的基因多态性主要是C734T和G2964A。Mendoza等对159例墨西哥人的DNA进行检测,发现CYP1A2基因的突变率为43%。Murayama等发现日本人中CYP1A2基因存在6种导致氨基酸替换的SNPs。这些发现可能对药物代谢动力学的研究、个体化用药具有重要意义[17,18,19]。

九、总结与展望

代谢组学范文篇8

关键词:细胞色素P450酶;肝微粒体;肝细胞培养;肝组织切片;离体肝灌流

药物代谢(drugmetabolism)一般是指药物的生物转化(drugbiotransformation)。药物经生物转化后,可引起药物的药理活性或∕和毒理活性的改变。因此,研究药物的生物转化,明确其代谢过程,对新药开发、新剂型设计及制定合理的临床用药方案等方面都具有重要的指导意义。肝脏是药物生物转化的重要器官,含有参与药物代谢重要的酶系(细胞色素P450酶,cytochromeP450,CYP450),该酶系参与药物及各种内源性和外源性化合物在体内的代谢过程。CYP450酶系由三十多种同工酶(亚型)组成,主要有CYP1、CYP2、CYP3三大家族[1]。本文所介绍的各种体外代谢系统均含有一种或多种CYP450酶的同工酶,为研究药物体外代谢提供了研究的对象和基础。动物肝体外代谢研究可以较好地排除体内因素干扰,直接观察酶对底物代谢的选择性,为整体试验提供可靠的科学依据。以肝脏为基础的体外代谢系统主要包括肝微粒体、基因重组CYP450酶系、肝细胞、肝组织切片及离体肝灌流。

1肝微粒体

1.1肝微粒体的制备

多数采用差速离心法[2],通过高速离心使微粒体与其他成分分离,操作简单,无需其他试剂辅助。但较耗时,设备要求高,使该法的普及和深入研究受到一定的限制。针对这些情况,可采用试剂辅助分离的方法[3],在离心前额外加入一定比例的PEG6000或CaCl2,促进微粒体沉降。此法对设备要求降低,并缩短了实验周期。肝微粒体的制备过程均应在4℃下进行。正确、合理地选择缓冲液,能起到良好介质的作用,按比例加入后进行肝组织的破碎和匀浆,才可有效分离肝微粒体和避免细胞器受损。

1.2肝微粒体的主要应用

1.2.1测定CYP450酶活性

测定原理是在特定酶催化下,底物在辅助因子以及适合的温度、时间作用下反应,借助仪器测定生成的特定产物量。由于反应可控和周期短,目前大多数P450酶以肝微粒体作为反应体系进行酶活性的测定[2]。各种酶活性测定的步骤基本相同,差别主要在于酶对应的底物和检测仪器的选择。一般以底物及代谢途经来命名各种酶,如7乙氧基试卤灵O脱乙基酶(CYP1A1)[4]、氯唑沙宗羟化酶(CYP2E1)[5]等。根据底物特性选择检测仪器,常用的有紫外∕荧光分光光度计,或联用HPLC系统。

1.2.2考察药物对肝药酶活性的影响

某些药物在体内不同程度地诱导或抑制肝药酶活性,这将影响到同时服用的其他药物的代谢,如抑制CYP3A活性的药物(如红霉素等),若与其他经这一家族酶代谢的药物(如西尼地平等)同时服用,则可能减慢其代谢,从而增强药效或毒副作用[6]。近年来,关于考察中药成分对肝药酶活性影响的报道增多,从体外分子水平来评价它们对肝代谢的影响,可为中药配伍提供依据。如代方国等[7]考察给以甘草、甘遂、甘遂甘草配伍药液的大鼠的肝微粒体中CYP2E1的活性,发现甘草组和配伍组对CYP2E1活性的诱导作用显著高于甘遂组;甘遂可能通过诱导肝脏CYP2E1的表达与活性上升;甘遂甘草配伍使用时,甘草对CYP2E1活性的诱导能力更强,故两者配伍时,可促进甘遂所含前致癌物质和前毒物转化成为致癌物和毒物的过程,并导致对机体毒性作用的增强。

1.2.3进行药物体外代谢途径研究

将药物加入肝微粒体中进行孵育后,利用质谱检测离子碎片来鉴定代谢物的结构,包括药物不同位点上的羟化物或去烷基产物,从而确定代谢途径。有报道指出[8],新型抗焦虑药AF5加入人肝微粒体中进行孵育,经GCMS分析,鉴定出两种主要代谢产物:4羟基AF5(Ⅰ)及4羰基AF5(Ⅱ)。AF5在肝微粒体中代谢的主要产物为Ⅰ,Ⅰ在人肝微粒体中,可进一步转化为Ⅱ,后者不再被代谢。

1.2.4考察手性药物的代谢立体选择性

周权等[9]把手性药物与大鼠肝微粒体相结合,对其立体选择性代谢作了详细的考察。作者把R/S普罗帕酮(propafenone,PPF)加入经地塞米松或β萘黄酮诱导的大鼠肝微粒体中孵育,经提取及手性拆分后,进入HPLC系统分析。结果显示,与对照组相比,在经诱导的肝微粒体中,PPF的Ⅰ相代谢呈显著的立体选择性。

总之,改进后的体外肝微粒体法耗时少,重现性好,易大量操作。适用于酶活性及体外代谢清除等方面的研究,在实际工作中应用较广。但同其他体外肝代谢方法相比,需要的原材料较多,且与体内情况的一致性方面存在不足,因而其结果是否有利预测体内情况仍需进一步研究。

2基因重组人肝微粒体CYP450酶系

利用基因工程及细胞工程,将调控CYP450酶系表达的基因整合到大肠杆菌或昆虫细胞,再经培养可表达高水平的CYP450酶系,纯化后还可获得较单一的CYP450同工酶。在明确某些药物经特定酶代谢后,即以此酶进行单一代谢,更准确地观察代谢结果,避免受其他酶共同参与此代谢途径的干扰。Ching等[10]通过在酵母中克隆方法,得到高表达的人CYP1A1和CYP1A2,用于测定普萘洛尔对映体的去烃基化和环羟化反应的立体选择性和酶动力学参数,明确了CYP1A2均参与了2种途径,但CYP1A1只参与了去烃化反应。有学者进一步运用重组人肝微粒体,应用酶抑制剂对普萘洛尔对映体的代谢途径进行对照实验[11-13]。其中Yoshimoto等[12]应用基因重组的及人肝微粒体中的CYP酶系同工酶进行研究,发现α萘黄酮对普萘洛尔R/S对映体的N脱异丙基化(desisopropylation)抑制作用分别为20%和40%;奎尼丁对其2种对映体的4环羟化代谢的抑制作用较完全;而其他酶抑制剂对其对映体的影响较小。

基因重组CYP450酶系与前述的肝微粒体在研究药物代谢方面具有一定的相关性。但前者在药酶诱导特异性和选择性研究上优于其他的体外方法,并可在分子水平上,为药物与酶在结合位点的相互作用研究提供更多的信息。尽管该方法先进性较为突出,但由于受到设备条件和技术的限制,通过基因工程获得的酶量与种类仍较有限,纯化程度有待进一步提高,故其作为研究代谢的体外系统的地位仍有待进一步提高。

3肝细胞培养

3.1体外培养技术与细胞活性的维持

体外培养包括肝细胞株的培养和原代肝细胞的分离与培养。根据细胞来源于不同,经重复筛选可制备出不同型号的肝细胞株,满足各种实验需要。肝细胞株容易贴壁存活,在相对稳定的培养条件下,传20~30代不会出现明显衰老现象。原代细胞需经过从器官中分离的过程,存在分离难度大、体外培养要求条件高、存活时间短、增殖及传代困难等问题。多数研究者采用改良的Seglen两步胶原酶灌注法。但此法操作繁琐,设备及实验技术要求高,影响因素较多[14],包括灌注液的种类和速度、肝脏灌洗是否充分、分离消化的酶、培养液的组成和肝细胞悬液的离心清洗等。鉴于上述原因,刘友平[15]等采用肝组织块贴壁法原代培养,即只把组织块剪碎,不用胶原酶消化,直接按肝细胞的培养方法进行贴壁培养,在传代时加胰酶消化,只取上层细胞悬液继续培养。该法简单快捷,无需灌注、离心,所得肝细胞活力高。

为了解决肝细胞活性体外维持时间短的问题,Hengstler[16]等研究优化肝细胞冷冻技术。同新鲜肝细胞相比,经过该技术冷冻储藏的肝细胞活性为新鲜肝细胞的80%以上,而其Ⅰ相、Ⅱ相代谢酶的活性>60%,可用于反应时间不超过8h的代谢研究,亦可用于药酶的诱导研究,但该技术仍需进一步优化。

3.2肝细胞培养的主要应用

3.2.1进行药物体外代谢途径与体内相关性研究

Nakagawa等[17]将BPA[2,2bis(4hydroxyphenyl)propane,2,2双(4羟苯基)丙烷]加于大鼠肝细胞中,经质谱检测,BPA很快代谢为单葡萄糖醛酸结合物及2个次要代谢物(单硫酸结合物和3OHBPA)。在BPA体内代谢研究中发现,约20%~30%的BPA从尿中排泄,主要为首过效应中生成的葡萄糖醛酸结合物,其中硫酸结合物占尿液中总代谢物的2%~3%[18]。因此BPA肝细胞体外温孵与体内过程很相似,具有一定的代表性。

3.2.2进行药物体外代谢清除研究

Shibata[19]等人运用冷藏保存的人肝细胞混悬于100%的人血浆中,将预测的肝利用度及清除率与14种临床常用的药物的生物利用度和血浆清除率进行比较时,发现不同的细胞来源,内在清除率存在极大的个体差异性。同时在基础的生物定标系数(3.1×109个/kg)下,用外推法将体外实验结果应用于体内实验的预测,往往会出现明显的偏低现象,因此计算的定标系数应比基础生物大3~5倍。为获得更可靠的定量预测结果,通过预试验来确定校正的定标系数是至关重要的环节。

由于在新鲜分离的肝细胞中,介导药物代谢的CYP450酶系存在时间依赖性衰减的现象,所以一般的肝细胞培养都要求在肝细胞生存时间跨度内进行。Griffin和Houston[20]对体外单层肝细胞培养的内在清除能力(CLint)与新鲜游离肝细胞悬液的清除能力进行比较,发现其内在的清除能力与代谢速度有关,单层肝细胞体外实验更适合于代谢速度慢的药物。

总之,用肝细胞培养方法作为评价药物代谢的体外系统,存在一定的偏差。其结果与体内的情况相近程度,很大程度上取决于研究者的经验。

3.2.3参与新型多器官共培养的研究

在很长一段时间内,研究者都只是单纯考察药物代谢在某一种器官(如肝脏)中的作用情况。而实际上,药物在体内的过程是多因素综合作用的。根据最新报道[21],肝细胞参与整体非连续性多器官共培养体系(IdMOC),即把肝细胞和来自于其他多个器官的非肝原代细胞一起培养,为在药物代谢和毒副效应方面评价多器官之间的相互作用提供可能性。

肝细胞同肝微粒体相比,在代谢物生成、体外代谢清除等研究方面有许多相似性,但针对代谢物种类、主要代谢物及所反映的代谢特性上存在着质或量的差异。随着肝细胞冷冻技术的发展,因其体外活性维持时间短而造成的应用限制会不断得到改善。4肝组织切片

在各种器官组织切片中以肝切片的应用最多,可在较长的孵育时间内保持代谢活性。据报道,小鼠肝切片可培育3~5d[22]。组织切片的实验与培育条件使得其重现性比灌注器官的重现性容易得多。切片制备相对快捷而简便。但其缺点为切片机的大量使用受限,而且价格昂贵。DeKanter[23]等利用利多卡因、睾酮及7乙氧基香豆素为探针药物,进行了器官切片实验,结果表明,该系统具有多相代谢途径,且易于比较不同器官组织的代谢差别。研究发现不同种属及不同器官间代谢类型及速度不同。

Vickers[24]用肝組织切片研究环孢素A(CSA)的代谢,CSA本身是CYP3A4的底物,但在人肝切片中加入1~10mol/LCSA培育24h,使CYP3A4活性降低了25%,说明在CSA高浓度时可减少本身的清除率而提高血药浓度。若用某些疾病的标记物加入肝组织切片中培育,也可研究药物的不良反应如对肝的损害(以GSP或核基质蛋白Numa为标记物)或对脂质代谢的影响(以Lp(a)为标记物)等。

组织切片完整地保留了所有的肝药酶及细胞器的活性,而且保留了一定的细胞间质。这些特点相比于分子水平和细胞水平,更具宏观性与整体性,更能反映药物在体内生理情况下的实际代谢过程,为分子理论与离体器官之间,乃至临床应用架起了桥梁。

5离体肝灌流

5.1肝脏灌注的特点

肝脏灌流技术作为一种与在体肝脏最具可比性的体外系统,有其突出的优点是可以在接近生理状况的条件下进行肝功能研究,保持完整细胞的天然屏障和营养液的供给,能排除其他组织、脏器的干扰及便于动态定量分析受试物及其代谢产物。因而离体器官灌注处于体内与体外的临界点。然而肝脏灌流技术亦存在缺陷,如受时间的限制、易受其他因素的干扰(如手术操作、灌流液组成、流速等),手术及插管操作技术极复杂。

5.2离体肝灌流的主要应用

5.2.1持续考察药物代谢

利用离体肝的生理活性进行持续性的药物代谢考察及某些生命物质与药物之间的相互作用,以此有效预测体内-体外的相关性。Wang等[25]运用大鼠肝灌流,测定美托洛尔的Vmax和KM、代谢物的增加量和氨基酸的减少量,以此考察氨基酸对美托洛尔的抑制作用。结果显示:氨基酸可逆地减少了母药及代谢物的Vmax约50%,而对KM则影响不明显。氨基酸可能直接抑制了代谢美托洛尔的酶。因此估计多种类似代谢机制可有效影响人体内食物与高首过效应的药物。应用离体肝脏灌注,定性和定量检测灌流液中的母体药物及代谢产物浓度,可了解受试化学物质在肝脏内所发生的代谢变化及反应类型。

5.2.2药物首过效应的研究

首过效应明显的药物,生物利用度低,这在临床合理用药中受到重视。在药物研究过程中,应用分离肝细胞、肝匀浆、肝微粒体等体外方法虽可揭示药物肝脏代谢的机制和相关代谢酶系,但不能提供关于体内首过代谢程度的信息。Lau等[26]利用离体灌注大鼠肝模型,研究利福平对阿托伐他汀及其代谢物的生物转化的影响,认为口服阿托伐他汀生物利用度极低与首过效应有关,尤其是存在明显的肠道首过效应。

5.2.3药物相互作用的研究

Lucas[27]等应用一过式离体大鼠肝脏灌流模型研究了植物雌激素异黄酮对硫酸干扰乙酰氨基酚在肝脏形成及处置的影响,结果发现l0μmol的异黄酮混合物能减少硫酸对乙酰氨基酚的形成,减少对乙酰氨基酚的肝清除。

6结语

肝体外代谢系统广泛应用于药物代谢研究的各个方面,在不同研究背景下互相补足。肝微粒体代谢快,易大量操作,近年来在大量文献中用于酶活性及体外代谢清除等方面的研究,在实际工作中应用较广。基因重组CYP450酶系在分子水平上的“单一性”为深入研究药酶诱导的“特异性”和“选择性”提供了技术支持。肝细胞所保持的完整微观结构,针对代谢特性及多种细胞共同作用等方面,均有较好的研究空间。而组织切片所保留的细胞器和细胞间质,以及离体肝灌注所保持的正常生理活性,可更全面地在“体外”这个层面上,为前3种微结构系统与体内一致性方面所存在的不足进行补充和完善。因此,根据各系统的特性,不同的要求和目的,分别选择应用,才能正确解释实验的结果,才能更好地接近临床实践。

【参考文献】

[1]孙忠实,朱珠.药物代谢性相互作用研究进展[J].药物不良反应杂志,2000,2(1):6.

[2]朱曼,王睿,张永青,等.大鼠肝微粒体细胞色素P450酶系检测方法学研究[J].中国临床药理学与治疗学,2004,9(5):500.

[3]郑英,张捷,楼宜嘉.大鼠肝微粒体谷胱甘肽S转移酶简易制备法对活性影响[J].浙江大学学报:医学版,2002,31(6):429.

[4]马璟,钱蓓丽,顾性初,等.人肝细胞色素P450含量及其同工酶1A1、2A6活性的测定[J].中国医药工业杂志,1999,30(10):449.

[5]马璟,钱蓓丽,顾性初,等.人肝细胞色素P4502C8/9、2E1比活性测定[J].中国药理学通报,2002,18(1):36.

[6]孟群,柳晓泉,王广基.人肝微粒体内红霉素等药物对西尼地平代谢的影响[J].中国药科大学学报,2004,35(6):524.

[7]代方国,罗仁,王宇光,等.甘遂配伍甘草对大鼠肝脏CYP2E1表达及活性的影响[J].第三军医大学学报,2005,27(8):742.

[8]张金兰,周同惠.抗焦虑新药AF5及其代谢物在人肝微粒体体外温孵体系中代谢研究[J].药学学报,2001,36(7):528.

[9]周权,姚彤炜,曾苏.手性衍生化-反相高效液相色谱法测定大鼠肝微粒体中盐酸普罗帕酮对映体及其在代谢研究中的应用[J].药学学报,2000,35(5):370.

[10]CHINGMS,BICHARAN,BLAKECL,etal.Propranonol4and5hydroxylationandNdesisopropylationbyclonedhumancytochromeP4501A1andP4501A2[J].DrugMetabDispos,1996,24(6):692.

[11]BICHARAN,CHINGMS,BLAKECL,etal.PropranololhydroxylationandNdesisopropylationbycytochromeP4502D6:studiesusingtheyeastexpressedenzymeandNADPH/O2andcumenehydroperoxidesupportedreactions[J].DrugMetabDispos,1996,24(1):112.

[12]YOSHIMOTOK,ECHIZENH,CHIBAK,etal.IdentificationofhumanCYPisoformsinvolvedinthemetabolismofpropranololenantiomersNdesisopropylationismediatedmainlybyCYP1A2[J].BrJClinPharmacol,1995,39(4):421.

[13]MASUBUCHIY,HOSOKWAS,HORIET,etal.CytochromeP450isozymesinvolvedinpropranololmetabolisminhumanlivermicrosomes.TheroleofCYP2D6asringhydroxylaseandCYP1A2asNdesisopropylase[J].DrugMetabDispos,1994,22(6):909.

[14]韩聚强.体外肝细胞培养技术新进展[J].河北医科大学学报,2002,23(3):184.

[15]刘友平,丁慧荣,何涛,等.一种简单、经济、高效的大量肝细胞培养方法[J].生物学通报,2005,40(1):47.

[16]HENGSTLERJG,UTESCHD,STEINBERGP,etal.Cryoperservedprimanyhepatocytesasaconstantlyavaibleinvitromodelfortheevaluationofhumanandanimaldrugmetabolismandenzymeinduction[J].DrugMetabReview,2000,32(1):81.

[17]NAKAGAWAY,SUZUKIT.MetabolismofbisphenolAinisolatedrathepatocytesandoestrogenicactivityofahydroxylatedmetaboliteinMCF7humanbreastcancercells[J].Xenobiotica,2001,3(3):113.

[18]POTTENGER,DOMORADZKILH,MANKHAMJY,etal.TherelativebioavilabilityandmetabolismofbisphenolAinratsisdependentupontherouteofadministration[J].ToxicolSci,2000,54(1):3.

[19]SHIBATAY,TAKAHASHIH,CHIBAM,etal.Predictionofhepaticclearanceandavailabilitybycryopreservedhumanhepatocytes:anapplicationserumincubationmethod[J].DrugMetabDispos,2002,30(8):892.

[20]GRIFFINSJ,HOUSTONJB.Predictionofinvitrointrinsicclearancefromhepatocytes:comparisonofsuspensionsandmonolayercultures[J].DrugMetabDispos,2005,33(1):115.

[21]LIAP.Humanhepatocytes:Isolation,cryopreservationandapplicationsindrugdevelopment.[J]ChemBiolInteract,2007,9[Epubaheadofprint].

[22]CERVENKOVAK,BELEJOVAM,VESELYJ,etal.Cellsuspensions,cellculture,andtissueslices?importantmetabolicinvitrosystems[J].BiomedPapMedFacUnivPalackyOlomoucCzechRepub,2001,145(2):57.

[23]DeKANTERR,OLINGAP,anslicesasinvitrotestsystemfordrugmertabolisminhumanliver,lungandkidney[J].ToxicolinVitro,1999,13(45):737.

[24]VICKERSAE.Useofhumanorganslicestoevaluatethebiotransformationanddruginducedsideeffectsofpharmaceuticals[J].CellBiolToxicol,1994,10(5-6):407.

[25]WANGBO,SEMPLEHA.Inhibitionofmetoprololmetabolismbyaminoacidsinperfusedratlivers[J].DrugMetabDispos,1997,25(3):287.

代谢组学范文篇9

关键词:细胞色素P450酶;肝微粒体;肝细胞培养;肝组织切片;离体肝灌流

药物代谢(drugmetabolism)一般是指药物的生物转化(drugbiotransformation)。药物经生物转化后,可引起药物的药理活性或∕和毒理活性的改变。因此,研究药物的生物转化,明确其代谢过程,对新药开发、新剂型设计及制定合理的临床用药方案等方面都具有重要的指导意义。肝脏是药物生物转化的重要器官,含有参与药物代谢重要的酶系(细胞色素P450酶,cytochromeP450,CYP450),该酶系参与药物及各种内源性和外源性化合物在体内的代谢过程。CYP450酶系由三十多种同工酶(亚型)组成,主要有CYP1、CYP2、CYP3三大家族[1]。本文所介绍的各种体外代谢系统均含有一种或多种CYP450酶的同工酶,为研究药物体外代谢提供了研究的对象和基础。动物肝体外代谢研究可以较好地排除体内因素干扰,直接观察酶对底物代谢的选择性,为整体试验提供可靠的科学依据。以肝脏为基础的体外代谢系统主要包括肝微粒体、基因重组CYP450酶系、肝细胞、肝组织切片及离体肝灌流。

1肝微粒体

1.1肝微粒体的制备

多数采用差速离心法[2],通过高速离心使微粒体与其他成分分离,操作简单,无需其他试剂辅助。但较耗时,设备要求高,使该法的普及和深入研究受到一定的限制。针对这些情况,可采用试剂辅助分离的方法[3],在离心前额外加入一定比例的PEG6000或CaCl2,促进微粒体沉降。此法对设备要求降低,并缩短了实验周期。肝微粒体的制备过程均应在4℃下进行。正确、合理地选择缓冲液,能起到良好介质的作用,按比例加入后进行肝组织的破碎和匀浆,才可有效分离肝微粒体和避免细胞器受损。

1.2肝微粒体的主要应用

1.2.1测定CYP450酶活性

测定原理是在特定酶催化下,底物在辅助因子以及适合的温度、时间作用下反应,借助仪器测定生成的特定产物量。由于反应可控和周期短,目前大多数P450酶以肝微粒体作为反应体系进行酶活性的测定[2]。各种酶活性测定的步骤基本相同,差别主要在于酶对应的底物和检测仪器的选择。一般以底物及代谢途经来命名各种酶,如7乙氧基试卤灵O脱乙基酶(CYP1A1)[4]、氯唑沙宗羟化酶(CYP2E1)[5]等。根据底物特性选择检测仪器,常用的有紫外∕荧光分光光度计,或联用HPLC系统。

1.2.2考察药物对肝药酶活性的影响

某些药物在体内不同程度地诱导或抑制肝药酶活性,这将影响到同时服用的其他药物的代谢,如抑制CYP3A活性的药物(如红霉素等),若与其他经这一家族酶代谢的药物(如西尼地平等)同时服用,则可能减慢其代谢,从而增强药效或毒副作用[6]。近年来,关于考察中药成分对肝药酶活性影响的报道增多,从体外分子水平来评价它们对肝代谢的影响,可为中药配伍提供依据。如代方国等[7]考察给以甘草、甘遂、甘遂甘草配伍药液的大鼠的肝微粒体中CYP2E1的活性,发现甘草组和配伍组对CYP2E1活性的诱导作用显著高于甘遂组;甘遂可能通过诱导肝脏CYP2E1的表达与活性上升;甘遂甘草配伍使用时,甘草对CYP2E1活性的诱导能力更强,故两者配伍时,可促进甘遂所含前致癌物质和前毒物转化成为致癌物和毒物的过程,并导致对机体毒性作用的增强。

1.2.3进行药物体外代谢途径研究

将药物加入肝微粒体中进行孵育后,利用质谱检测离子碎片来鉴定代谢物的结构,包括药物不同位点上的羟化物或去烷基产物,从而确定代谢途径。有报道指出[8],新型抗焦虑药AF5加入人肝微粒体中进行孵育,经GCMS分析,鉴定出两种主要代谢产物:4羟基AF5(Ⅰ)及4羰基AF5(Ⅱ)。AF5在肝微粒体中代谢的主要产物为Ⅰ,Ⅰ在人肝微粒体中,可进一步转化为Ⅱ,后者不再被代谢。

1.2.4考察手性药物的代谢立体选择性

周权等[9]把手性药物与大鼠肝微粒体相结合,对其立体选择性代谢作了详细的考察。作者把R/S普罗帕酮(propafenone,PPF)加入经地塞米松或β萘黄酮诱导的大鼠肝微粒体中孵育,经提取及手性拆分后,进入HPLC系统分析。结果显示,与对照组相比,在经诱导的肝微粒体中,PPF的Ⅰ相代谢呈显著的立体选择性。

总之,改进后的体外肝微粒体法耗时少,重现性好,易大量操作。适用于酶活性及体外代谢清除等方面的研究,在实际工作中应用较广。但同其他体外肝代谢方法相比,需要的原材料较多,且与体内情况的一致性方面存在不足,因而其结果是否有利预测体内情况仍需进一步研究。

2基因重组人肝微粒体CYP450酶系

利用基因工程及细胞工程,将调控CYP450酶系表达的基因整合到大肠杆菌或昆虫细胞,再经培养可表达高水平的CYP450酶系,纯化后还可获得较单一的CYP450同工酶。在明确某些药物经特定酶代谢后,即以此酶进行单一代谢,更准确地观察代谢结果,避免受其他酶共同参与此代谢途径的干扰。Ching等[10]通过在酵母中克隆方法,得到高表达的人CYP1A1和CYP1A2,用于测定普萘洛尔对映体的去烃基化和环羟化反应的立体选择性和酶动力学参数,明确了CYP1A2均参与了2种途径,但CYP1A1只参与了去烃化反应。有学者进一步运用重组人肝微粒体,应用酶抑制剂对普萘洛尔对映体的代谢途径进行对照实验[11-13]。其中Yoshimoto等[12]应用基因重组的及人肝微粒体中的CYP酶系同工酶进行研究,发现α萘黄酮对普萘洛尔R/S对映体的N脱异丙基化(desisopropylation)抑制作用分别为20%和40%;奎尼丁对其2种对映体的4环羟化代谢的抑制作用较完全;而其他酶抑制剂对其对映体的影响较小。

基因重组CYP450酶系与前述的肝微粒体在研究药物代谢方面具有一定的相关性。但前者在药酶诱导特异性和选择性研究上优于其他的体外方法,并可在分子水平上,为药物与酶在结合位点的相互作用研究提供更多的信息。尽管该方法先进性较为突出,但由于受到设备条件和技术的限制,通过基因工程获得的酶量与种类仍较有限,纯化程度有待进一步提高,故其作为研究代谢的体外系统的地位仍有待进一步提高。

3肝细胞培养

3.1体外培养技术与细胞活性的维持

体外培养包括肝细胞株的培养和原代肝细胞的分离与培养。根据细胞来源于不同,经重复筛选可制备出不同型号的肝细胞株,满足各种实验需要。肝细胞株容易贴壁存活,在相对稳定的培养条件下,传20~30代不会出现明显衰老现象。原代细胞需经过从器官中分离的过程,存在分离难度大、体外培养要求条件高、存活时间短、增殖及传代困难等问题。多数研究者采用改良的Seglen两步胶原酶灌注法。但此法操作繁琐,设备及实验技术要求高,影响因素较多[14],包括灌注液的种类和速度、肝脏灌洗是否充分、分离消化的酶、培养液的组成和肝细胞悬液的离心清洗等。鉴于上述原因,刘友平[15]等采用肝组织块贴壁法原代培养,即只把组织块剪碎,不用胶原酶消化,直接按肝细胞的培养方法进行贴壁培养,在传代时加胰酶消化,只取上层细胞悬液继续培养。该法简单快捷,无需灌注、离心,所得肝细胞活力高。

为了解决肝细胞活性体外维持时间短的问题,Hengstler[16]等研究优化肝细胞冷冻技术。同新鲜肝细胞相比,经过该技术冷冻储藏的肝细胞活性为新鲜肝细胞的80%以上,而其Ⅰ相、Ⅱ相代谢酶的活性>60%,可用于反应时间不超过8h的代谢研究,亦可用于药酶的诱导研究,但该技术仍需进一步优化。

3.2肝细胞培养的主要应用

3.2.1进行药物体外代谢途径与体内相关性研究

Nakagawa等[17]将BPA[2,2bis(4hydroxyphenyl)propane,2,2双(4羟苯基)丙烷]加于大鼠肝细胞中,经质谱检测,BPA很快代谢为单葡萄糖醛酸结合物及2个次要代谢物(单硫酸结合物和3OHBPA)。在BPA体内代谢研究中发现,约20%~30%的BPA从尿中排泄,主要为首过效应中生成的葡萄糖醛酸结合物,其中硫酸结合物占尿液中总代谢物的2%~3%[18]。因此BPA肝细胞体外温孵与体内过程很相似,具有一定的代表性。

3.2.2进行药物体外代谢清除研究

Shibata[19]等人运用冷藏保存的人肝细胞混悬于100%的人血浆中,将预测的肝利用度及清除率与14种临床常用的药物的生物利用度和血浆清除率进行比较时,发现不同的细胞来源,内在清除率存在极大的个体差异性。同时在基础的生物定标系数(3.1×109个/kg)下,用外推法将体外实验结果应用于体内实验的预测,往往会出现明显的偏低现象,因此计算的定标系数应比基础生物大3~5倍。为获得更可靠的定量预测结果,通过预试验来确定校正的定标系数是至关重要的环节。

由于在新鲜分离的肝细胞中,介导药物代谢的CYP450酶系存在时间依赖性衰减的现象,所以一般的肝细胞培养都要求在肝细胞生存时间跨度内进行。Griffin和Houston[20]对体外单层肝细胞培养的内在清除能力(CLint)与新鲜游离肝细胞悬液的清除能力进行比较,发现其内在的清除能力与代谢速度有关,单层肝细胞体外实验更适合于代谢速度慢的药物。

总之,用肝细胞培养方法作为评价药物代谢的体外系统,存在一定的偏差。其结果与体内的情况相近程度,很大程度上取决于研究者的经验。

3.2.3参与新型多器官共培养的研究

在很长一段时间内,研究者都只是单纯考察药物代谢在某一种器官(如肝脏)中的作用情况。而实际上,药物在体内的过程是多因素综合作用的。根据最新报道[21],肝细胞参与整体非连续性多器官共培养体系(IdMOC),即把肝细胞和来自于其他多个器官的非肝原代细胞一起培养,为在药物代谢和毒副效应方面评价多器官之间的相互作用提供可能性。

肝细胞同肝微粒体相比,在代谢物生成、体外代谢清除等研究方面有许多相似性,但针对代谢物种类、主要代谢物及所反映的代谢特性上存在着质或量的差异。随着肝细胞冷冻技术的发展,因其体外活性维持时间短而造成的应用限制会不断得到改善。4肝组织切片

在各种器官组织切片中以肝切片的应用最多,可在较长的孵育时间内保持代谢活性。据报道,小鼠肝切片可培育3~5d[22]。组织切片的实验与培育条件使得其重现性比灌注器官的重现性容易得多。切片制备相对快捷而简便。但其缺点为切片机的大量使用受限,而且价格昂贵。DeKanter[23]等利用利多卡因、睾酮及7乙氧基香豆素为探针药物,进行了器官切片实验,结果表明,该系统具有多相代谢途径,且易于比较不同器官组织的代谢差别。研究发现不同种属及不同器官间代谢类型及速度不同。

Vickers[24]用肝組织切片研究环孢素A(CSA)的代谢,CSA本身是CYP3A4的底物,但在人肝切片中加入1~10mol/LCSA培育24h,使CYP3A4活性降低了25%,说明在CSA高浓度时可减少本身的清除率而提高血药浓度。若用某些疾病的标记物加入肝组织切片中培育,也可研究药物的不良反应如对肝的损害(以GSP或核基质蛋白Numa为标记物)或对脂质代谢的影响(以Lp(a)为标记物)等。

组织切片完整地保留了所有的肝药酶及细胞器的活性,而且保留了一定的细胞间质。这些特点相比于分子水平和细胞水平,更具宏观性与整体性,更能反映药物在体内生理情况下的实际代谢过程,为分子理论与离体器官之间,乃至临床应用架起了桥梁。

5离体肝灌流

5.1肝脏灌注的特点

肝脏灌流技术作为一种与在体肝脏最具可比性的体外系统,有其突出的优点是可以在接近生理状况的条件下进行肝功能研究,保持完整细胞的天然屏障和营养液的供给,能排除其他组织、脏器的干扰及便于动态定量分析受试物及其代谢产物。因而离体器官灌注处于体内与体外的临界点。然而肝脏灌流技术亦存在缺陷,如受时间的限制、易受其他因素的干扰(如手术操作、灌流液组成、流速等),手术及插管操作技术极复杂。

5.2离体肝灌流的主要应用

5.2.1持续考察药物代谢

利用离体肝的生理活性进行持续性的药物代谢考察及某些生命物质与药物之间的相互作用,以此有效预测体内-体外的相关性。Wang等[25]运用大鼠肝灌流,测定美托洛尔的Vmax和KM、代谢物的增加量和氨基酸的减少量,以此考察氨基酸对美托洛尔的抑制作用。结果显示:氨基酸可逆地减少了母药及代谢物的Vmax约50%,而对KM则影响不明显。氨基酸可能直接抑制了代谢美托洛尔的酶。因此估计多种类似代谢机制可有效影响人体内食物与高首过效应的药物。应用离体肝脏灌注,定性和定量检测灌流液中的母体药物及代谢产物浓度,可了解受试化学物质在肝脏内所发生的代谢变化及反应类型。

5.2.2药物首过效应的研究

首过效应明显的药物,生物利用度低,这在临床合理用药中受到重视。在药物研究过程中,应用分离肝细胞、肝匀浆、肝微粒体等体外方法虽可揭示药物肝脏代谢的机制和相关代谢酶系,但不能提供关于体内首过代谢程度的信息。Lau等[26]利用离体灌注大鼠肝模型,研究利福平对阿托伐他汀及其代谢物的生物转化的影响,认为口服阿托伐他汀生物利用度极低与首过效应有关,尤其是存在明显的肠道首过效应。

5.2.3药物相互作用的研究

Lucas[27]等应用一过式离体大鼠肝脏灌流模型研究了植物雌激素异黄酮对硫酸干扰乙酰氨基酚在肝脏形成及处置的影响,结果发现l0μmol的异黄酮混合物能减少硫酸对乙酰氨基酚的形成,减少对乙酰氨基酚的肝清除。

6结语

肝体外代谢系统广泛应用于药物代谢研究的各个方面,在不同研究背景下互相补足。肝微粒体代谢快,易大量操作,近年来在大量文献中用于酶活性及体外代谢清除等方面的研究,在实际工作中应用较广。基因重组CYP450酶系在分子水平上的“单一性”为深入研究药酶诱导的“特异性”和“选择性”提供了技术支持。肝细胞所保持的完整微观结构,针对代谢特性及多种细胞共同作用等方面,均有较好的研究空间。而组织切片所保留的细胞器和细胞间质,以及离体肝灌注所保持的正常生理活性,可更全面地在“体外”这个层面上,为前3种微结构系统与体内一致性方面所存在的不足进行补充和完善。因此,根据各系统的特性,不同的要求和目的,分别选择应用,才能正确解释实验的结果,才能更好地接近临床实践。

【参考文献】

[1]孙忠实,朱珠.药物代谢性相互作用研究进展[J].药物不良反应杂志,2000,2(1):6.

[2]朱曼,王睿,张永青,等.大鼠肝微粒体细胞色素P450酶系检测方法学研究[J].中国临床药理学与治疗学,2004,9(5):500.

[3]郑英,张捷,楼宜嘉.大鼠肝微粒体谷胱甘肽S转移酶简易制备法对活性影响[J].浙江大学学报:医学版,2002,31(6):429.

[4]马璟,钱蓓丽,顾性初,等.人肝细胞色素P450含量及其同工酶1A1、2A6活性的测定[J].中国医药工业杂志,1999,30(10):449.

[5]马璟,钱蓓丽,顾性初,等.人肝细胞色素P4502C8/9、2E1比活性测定[J].中国药理学通报,2002,18(1):36.

[6]孟群,柳晓泉,王广基.人肝微粒体内红霉素等药物对西尼地平代谢的影响[J].中国药科大学学报,2004,35(6):524.

[7]代方国,罗仁,王宇光,等.甘遂配伍甘草对大鼠肝脏CYP2E1表达及活性的影响[J].第三军医大学学报,2005,27(8):742.

[8]张金兰,周同惠.抗焦虑新药AF5及其代谢物在人肝微粒体体外温孵体系中代谢研究[J].药学学报,2001,36(7):528.

[9]周权,姚彤炜,曾苏.手性衍生化-反相高效液相色谱法测定大鼠肝微粒体中盐酸普罗帕酮对映体及其在代谢研究中的应用[J].药学学报,2000,35(5):370.

[10]CHINGMS,BICHARAN,BLAKECL,etal.Propranonol4and5hydroxylationandNdesisopropylationbyclonedhumancytochromeP4501A1andP4501A2[J].DrugMetabDispos,1996,24(6):692.

[11]BICHARAN,CHINGMS,BLAKECL,etal.PropranololhydroxylationandNdesisopropylationbycytochromeP4502D6:studiesusingtheyeastexpressedenzymeandNADPH/O2andcumenehydroperoxidesupportedreactions[J].DrugMetabDispos,1996,24(1):112.

[12]YOSHIMOTOK,ECHIZENH,CHIBAK,etal.IdentificationofhumanCYPisoformsinvolvedinthemetabolismofpropranololenantiomersNdesisopropylationismediatedmainlybyCYP1A2[J].BrJClinPharmacol,1995,39(4):421.

[13]MASUBUCHIY,HOSOKWAS,HORIET,etal.CytochromeP450isozymesinvolvedinpropranololmetabolisminhumanlivermicrosomes.TheroleofCYP2D6asringhydroxylaseandCYP1A2asNdesisopropylase[J].DrugMetabDispos,1994,22(6):909.

[14]韩聚强.体外肝细胞培养技术新进展[J].河北医科大学学报,2002,23(3):184.

[15]刘友平,丁慧荣,何涛,等.一种简单、经济、高效的大量肝细胞培养方法[J].生物学通报,2005,40(1):47.

[16]HENGSTLERJG,UTESCHD,STEINBERGP,etal.Cryoperservedprimanyhepatocytesasaconstantlyavaibleinvitromodelfortheevaluationofhumanandanimaldrugmetabolismandenzymeinduction[J].DrugMetabReview,2000,32(1):81.

[17]NAKAGAWAY,SUZUKIT.MetabolismofbisphenolAinisolatedrathepatocytesandoestrogenicactivityofahydroxylatedmetaboliteinMCF7humanbreastcancercells[J].Xenobiotica,2001,3(3):113.

[18]POTTENGER,DOMORADZKILH,MANKHAMJY,etal.TherelativebioavilabilityandmetabolismofbisphenolAinratsisdependentupontherouteofadministration[J].ToxicolSci,2000,54(1):3.

[19]SHIBATAY,TAKAHASHIH,CHIBAM,etal.Predictionofhepaticclearanceandavailabilitybycryopreservedhumanhepatocytes:anapplicationserumincubationmethod[J].DrugMetabDispos,2002,30(8):892.

[20]GRIFFINSJ,HOUSTONJB.Predictionofinvitrointrinsicclearancefromhepatocytes:comparisonofsuspensionsandmonolayercultures[J].DrugMetabDispos,2005,33(1):115.

[21]LIAP.Humanhepatocytes:Isolation,cryopreservationandapplicationsindrugdevelopment.[J]ChemBiolInteract,2007,9[Epubaheadofprint].

[22]CERVENKOVAK,BELEJOVAM,VESELYJ,etal.Cellsuspensions,cellculture,andtissueslices?importantmetabolicinvitrosystems[J].BiomedPapMedFacUnivPalackyOlomoucCzechRepub,2001,145(2):57.

[23]DeKANTERR,OLINGAP,anslicesasinvitrotestsystemfordrugmertabolisminhumanliver,lungandkidney[J].ToxicolinVitro,1999,13(45):737.

[24]VICKERSAE.Useofhumanorganslicestoevaluatethebiotransformationanddruginducedsideeffectsofpharmaceuticals[J].CellBiolToxicol,1994,10(5-6):407.

[25]WANGBO,SEMPLEHA.Inhibitionofmetoprololmetabolismbyaminoacidsinperfusedratlivers[J].DrugMetabDispos,1997,25(3):287.

代谢组学范文篇10

关键词:灵芝代谢产物;TNF-α;肿瘤;羟基

灵芝是我国医学宝库中的灵芝属药、食两用真菌。其在自然界生长过程中必然要与细菌等自然界其他微生物争夺营养,而灵芝作为一种真菌,生长速度要远慢于细菌,所以作为灵芝能获胜的法宝之一可能就是其代谢产物,而真菌代谢产物的开发早已被证明是非常有价值的,比如历史上青霉素的发现就是例证,在这方面我国的发展步伐却比较慢,灵芝代谢产物药理作用的开发也将丰富我国中药的用途。对于灵芝代谢产物的研究目前并不多而且主要集中在其中灵芝多糖的测定上[1]。但灵芝的代谢产物是否能够对肿瘤细胞有所作用?为解决这个问题,我们进行了如下实验。

1材料与仪器

1.1试剂环磷酰胺(CTX)注射液由上海华联制药有限公司生产(生产批号为071002)。TNF-αELISA试剂盒购于渤海生物公司。肝功能检测试剂盒购于上海荣盛公司。

1.2含灵芝的代谢产物培养基取生长于斜面固体培养基上的灵芝菌泥(约1cm2)接种于100ml液体培养基(含2%黄豆粉,2%蔗糖,0.075%的磷酸二氢钾,0.03%的硫酸镁),25℃100r/min条件下培养5d,用滤纸过滤后得到含灵芝的代谢产物培养基。将这些培养基在-20℃条件下保存待用。

1.3抗血清制备使用李丽华等[2,3]报道的琥珀酸酐法将含灵芝的代谢产物培养基中所有成分的羟基与小牛血清白蛋白(BSA)连接。使用连接后的化合物免疫昆明小鼠,制备抗血清。经琼脂双向扩散法测定该抗血清的效价是1∶16。

1.4肿瘤细胞株S180购自河北医科大学动物中心。

1.5动物昆明小鼠(由河北医科大学动物中心提供)146只,体质量为18~22g,雌雄各半。

1.6仪器微量加样器(SOCOREX,瑞士);电热恒温培养箱(上海福玛实验设备有限公司),离心机(国产),Humalyzer2000型全自动生化仪,德国豪迈公司生产等。

2方法

2.1建立肿瘤模型选择6只昆明小鼠腹腔接种S180,接种5d后的小鼠,消毒腹部皮肤,用无菌空针抽吸腹水放入无菌容器内,置冰块保存。用0.4%台盼蓝染色后计数,在倒置式显微镜下计数,计算存活率,,用Hank''''s液稀释细胞悬液使活细胞数达到1×109个?ml-1,随机选取120小鼠,每只小鼠左前腋皮下注射0.2ml(活细胞数达到1×109个?ml-1)细胞悬液,另外20只小鼠不做任何处理作为正常组。

2.2动物分组将120只已经注射了S180的小鼠随机分为6组,每组动物各20只,分为阴性对照组、腹腔注射含灵芝代谢产物培养基组(注射产物组)、环磷酰胺(CTX)组、腹腔注射含灵芝代谢产物培养基加抗血清组(注射产物加血清组)、口服含灵芝代谢产物培养基组(口服产物组)和抗血清组。阴性对照组和正常组胃饲生理盐水0.2ml/(kg?d);环磷酰胺组腹腔注射环磷酰氨0.075g/(kg?d);腹腔注射含灵芝代谢产物培养基组给予腹腔注射灵芝代谢产物2ml/(kg?d),抗血清组给予腹腔注射抗血清2ml/(kg?d),腹腔注射含灵芝代谢产物培养基加抗血清组给予腹腔注射灵芝代谢产物2ml/(kg?d)同时腹腔注射抗血清2ml/(kg?d),口服含灵芝代谢产物培养基组给予口服含灵芝代谢产物培养基2ml/(kg?d)。

2.3动物处理以上各组在接瘤24h后开始给药,连续给药7d后,处死动物,取出肿瘤和肝脏,用电子天平称出肿瘤质量。同时取血放入肝素抗凝素管内分离血清备用。

2.4ELISA法测定各组血清TNF-α水平应用TNF-αELISA试剂盒(购于渤海生物公司)按说明书测定保存血清中的TNF-α水平。

2.5使用全自动生化分析仪测定测量血清中谷草转氨酶(AST)和谷丙转氨酶(ALT)。

2.6统计学方法均采用SPSS10.0软件,进行t检验。

3结果

3.1各组肿瘤质量如表1所示,阴性对照组与抗血清组肿瘤质量无差异(P>0.05);注射产物与血清组和环磷酰胺组无差异(P>0.05);阴性对照组与所有组均有差异(P<0.05);注射产物组与口服产物组有差异(P<0.05),注射产物组与口服产物组有差异(P<0.05)。

3.2各组血清中谷草转氨酶(AST)和谷丙转氨酶(ALT)如表1所示,谷草转氨酶(AST)的结果中只有正常组与其他组有差异(P<0.05),其余各组间谷草转氨酶(AST)的结果均无差异;谷丙转氨酶(ALT)的结果中只有正常组与其他组有差异(P<0.05),口服产物组、环磷酰胺组与注射产物与血清组之间无差异(P>0.05);环磷酰胺与注射产物组有差异(P<0.05),口服产物组与阴性对照组有差异(P<0.05)。

3.3TNF-α水平如表1所示,环磷酰胺组TNF-α的水平与注射产物与血清组之间无差异(P>0.05),正常组、阴性对照组与血清组无差异(P>0.05),环磷酰胺组与阴性对照组有差异(P<0.05);注射产物与血清组与阴性组有差异(P<0.05)。表1各组肿瘤质量、肝功能和细胞因子水平(略)

4讨论

有的文献报道[4,5]灵芝具有对抗肿瘤的作用,这次实验结果显示,含灵芝代谢产物的培养液也具有抗肿瘤的作用,在我们的实验结果中不论口服与腹腔注射含灵芝代谢产物的培养液肿瘤的质量均缩小,其结果具有统计学差异。但作为阳性组的环磷酰胺组其肿瘤的质量要小于口服含灵芝代谢产物的培养液组,这说明可能经口服后存在首关消除,而肝功能的指标也显示口服含灵芝代谢产物的培养液组的谷丙转氨酶要低于阴性对照组和正常组。而在培养液中到底是何种化学集团起到抗肿瘤作用呢?我们根据刘文泰等人报道的琥珀酸酐法用小牛血清白蛋白封闭了代谢产物中的羟基后,用它作为免疫原免疫老鼠产生对抗除羟基外其他化学集团的抗血清,我们用这些抗血清封闭了含灵芝代谢产物的培养液的其他化学集团,只保留了部分羟基,实验结果显示用抗血清封闭的含灵芝代谢产物的培养液的抗肿瘤活性增强,这说明可能灵芝代谢产物中的羟基在对于抗肿瘤起了很大作用。而腹腔注射的作用强于口服的作用说明,这些代谢产物中的羟基可以被肝脏清除。

我们的结果还显示同时含灵芝代谢产物的培养液与抗血清组与注射环磷酰胺组的小鼠血清TNF-α水平都很高。而环磷酰胺对肿瘤细胞有直接的杀伤作用,而这些死亡的肿瘤细胞可能刺激了小鼠血清TNF-α水平的升高。而同时含灵芝代谢产物的培养液与抗血清组的TNF-α水平也同样升高说明,这些灵芝代谢产物中可能有直接杀伤肿瘤细胞的物质存在。

参考文献:

[1]单卫华,张玲,时延增,等.灵芝菌发酵液制剂中灵芝多糖及总糖含量测定[J].时珍国医国药,2000,11(9):797.

[2]李丽华,刘文泰.抗中药成分的特异性抗体在中药质量检测中的应用探讨[J].中国中医基础理论杂志,2008,14(9):686.

[3]YamazakiM,SatoA,SaitoK,etal.MolecularphylogenybasedonRFLPanditsrelationwithalkaloidpatternsinLupinusplants[J].BiolPharmBull,1993,16(2):1182.