除尘范文10篇

时间:2023-04-06 05:00:04

除尘

除尘范文篇1

一、除尘设备的主体构造

除尘设备主要由三大部分构成,其外型见图1、结构部分见图2。

1、设备本体:由金属构架、集尘桶、滤筒、隔膜阀和电磁阀、压差控制面板、压缩空气供给单元等部分构成,是粉尘过滤的核心部分。

2、风机动力系统:包括风机、电机及其启动电路、风机与电机的传动机构、风机房及辅助电气设施等部分构成。

3、其他辅助系统:包括压差报警系统、温度报警系统(公司改造后追加部分)、手动清灰、自动定时清灰系统(公司改造后追加部分)等辅助装置。

二、除尘设备的危险要点

1、烟尘带来的危险焊接作业的粉尘控制,可以说是各汽车厂焊装车间颇为头痛的一个问题。因为焊接烟尘的粒径十分细小,一般只有O.031zm~lOtxm,在除尘装置中主要通过滤筒的过滤作用表面,将粉尘吸附在滤筒的外表面,而清洁的空气从滤筒中排出。如果滤筒的过滤性能不好,粉尘没有吸附在滤筒外,随着清洁的空气散落在车间内外,当遇到焊接火花时,有可能引起爆炸或者导致电气设备接触不良等安全隐患。另一方面,如果漂浮的粉尘被人体吸人,可引发多种疾病,包括焊接尘肺、癌症等重疾。

2、劳保手套磨损带来的危险除尘设备运行一段时间后,我们还发现滤筒的表面有些许絮状物。经调查,这些絮状物的来源是作业人员使用的劳保手套,在手拿工件或焊枪等工具时,由于手套磨损,其细小纤维被除尘设备的抽风系统吸人后附着在滤筒表面。经测试,附着在滤筒表面的劳保手套产生的絮状物属极易燃物质,遇火花即可剧烈燃烧。

3、电气故障带来的危险除尘设备的风机动力系统包括电机、风机及其控制回路。控制回路中有交流接触器、各类继电器、空气开关和熔断器等电器元件。这些电器元件如果配置不当,或因空气中漂浮烟尘造成电器短路,就可能引发火灾事故。另外,电机在运行中也有可能因过载、短路或缺相运转导致电机烧毁从而引发火灾。

三、除尘设备的技术改造

在除尘设备的使用过程中,公司按照“没有最安全,只有更安全”的安全理念,对除尘设备实施了一系列的技术改造,改善了其运行条件,提高了除尘效率。

1、自动定时清灰系统为了保持滤筒表面的清洁,除尘设备原有的清灰系统为手动清灰,即要求设备操作人员在每天生产结束后将手动清灰开关打开实施清灰,清灰10—15分钟后关闭。这种清灰方式主要取决于设备操作人员的主观l生,管理和监督成本较高,而且无法百分之百保证现场生产人员在生产结束后能每天按时完成手动清灰的操作。一旦疏于管理或执行不到位会造成滤筒上的粉尘堆积,除尘效率大为降低,事故隐患也会由此而生。为此,我们专门设计了能够保证每天三次定时强制清灰的PLC控制系统,利用PLC的内部时钟定时触发和关闭清灰开关,这样就避免了操作人员操作手动清灰可能造成的人为遗漏,同时也节约了手动清灰的作业工时,降低了管理成本。系统改造投入使用后,运行状况良好,有效保证了滤筒的及时清灰,防止可燃粉尘堆积,确保了安全生产。

2、温度报警系统为确保除尘设备在一旦发生火警的情况下能够及时被人发现,我们利用温度传感器和报警装置重新设计安装了温度传感报警系统。其工作原理是,在除尘设备的进风口和排风口分别安装高灵敏度的温度传感器,在控制柜增加温度报警面板,设定在任一传感器感知温度超过4O摄氏度或进出风口的温差超过5摄氏度时,除尘设备立即报警,同时自动切断电源,停止设备运转。有了这套系统,我们可以确保即使意外发生起火,也能在第一时间得到情报,可以有效避免火灾的扩大,将火灾消灭在萌芽状态。

四、除尘设备的管理措施

1、对粉尘的管理①对于滤筒上附着的粉尘,通过导人自动定时反吹系统,实现每个工作日三个时间段的自动定时清灰,每次十五分钟。另外,每三个月对滤筒实施一次彻底清扫。②对集尘桶内的粉尘,我们确定最高容量为1/2的桶高,当超过一半粉尘量时就需要将桶内的粉尘清除掉。这样,可以避免粉尘在设备自动清灰时发生的外溢和二次污染。③对于滤筒在集尘桶内回收时容易造成粉尘外泄的问题,我们通过制作集尘袋支架,将集尘袋固定在集尘桶内,使用防火材料的集尘袋对粉尘实施封闭状态下的回收。这样就有效避免了粉尘在回收时所产生的外溢,保护了车间的环境。

除尘范文篇2

关键词:化工;除尘;高压脉冲

随着国家对农业的高度重视和农民对化肥需求的增长,带来了我国化肥工业的快速发展。但在化肥工业生产环境中存在大量的粉尘,既污染空气和环境,又严重影响生产工人的身体健康。为保障工人的身心健康,保护环境,净化空气,有必要采取措施去除或降低生产环境中存在或产生的粉尘。现在很多化肥生产企业也采取了一些措施来清除这些粉尘。这些除尘器或措施具有很多优点,在化肥工业中得到广泛的应用,但也存在许多不足之处,比如系统故障频繁,化肥粉尘容易粘附和堵塞,清理非常麻烦。本文介绍了一种新的除尘技术——高压脉冲除尘技术,并探讨了把高压脉冲除尘技术应用到化肥工业的可行性。

1电除尘技术原理及缺陷

除了机械除尘技术,电除尘器也是一种有效的环保设备,在控制大气污染方面起着重要的作用。常规的电除尘器由直流高压供电形成强电场,并产生电晕放电,使粉尘或空气中微粒在流经强电场区域时带上电荷,再在直流高压强电场的作用下被电极吸附,通过定期振打电极收集粉尘,从而达到除去粉尘的目的。

但是,当粉尘的比电阻较高时,电除尘器内会出现反电晕现象及过频的火花放电,致使其无法正常工作,只能采用降低电压运行,但因此又会导致除尘效率大大下降。

2高压脉冲除尘技术原理及改进措施

如果采用高压脉冲供电(在稍低于起晕电压的直流基压上叠加高压脉冲),就可以克服恒定直流高压供电的缺点,使电除尘器性能大大提高。高压脉冲供电与恒压供电相比,粉尘的排出率可减少90%,能耗可降低80%。故这种高压脉冲除尘技术正逐渐受到越来越大的重视。该技术在国外已实现工业应用。

电除尘器的高压脉冲电源,除直流基压外,对高压脉冲的要求是:应具有足够高的幅值和重复频率,足够小的前沿时间和脉冲宽度。另外为进一步降低能耗,还希望电路具有能量回收功能。

为进一步提高电除尘器的效率,可以再加上一级预电离装置,而这一预电离装置是用高电压快速脉冲(在纳秒数量级)在电极上产生电晕放电,当粉尘或微粒通过电晕放电区时,使其带上电荷,以便在电除尘器中被清除。

3高压脉冲除尘技术用于化肥工业除尘

化肥企业生产过程中会产生大量的粉尘,特别是尿素微粒等化肥粉尘,污染了空气和环境,也影响了化肥产量,还严重损害了生产工人的身心健康。为此有必要采取积极措施去除或降低生产环境中存在或产生的粉尘。采用高压脉冲技术的除尘系统框图如图1所示,主要包括含尘空气收集装置、高压脉冲电源、电晕放电装置、吸尘装置、排气装置、振打聚尘装置等。

化肥生产装置产生的粉尘随空气被含尘空气收集装置收集起来,进入电晕放电装置;高压脉冲电源将高电压脉冲加在电晕放电装置的放电电极上产生电晕放电,产生大量的电荷,含尘空气经过电晕放电区(放电电极之间)时粉尘和微粒将被荷电;荷电粉尘流经吸尘装置时,在吸尘装置中放置有电极,将高压脉冲电源加在电极上时,在电极之间将会形成强电场,荷电粉尘在强电场的作用下被吸向电极,从而被吸附在电极上;通过周期振打吸尘电极,粉尘掉落到聚尘袋中;荷电粉尘除去后,剩下的纯净空气通过排气装置可以直接排向空中,或者送回生产装置循环使用。在整个除尘系统中,空气流动主要由排气装置中的抽风机驱动。由于空气已除尘,空气是清洁的,抽风机不会受到污染,可以延长寿命。化肥粉尘收集起来可以再加工生产化肥,从而降低生产损耗。在本装置中,排气装置的抽风机可以直接用三相市电供电。而高压脉冲电源可以采用图2所示电路。

在图2中,CF、RF为除尘器的等效电容和等效并联电阻(相当于集尘面积为40m2的除尘器)。开始时,C1和C2分别被充电至直流电压(-U10)和U20。这时CF上电压亦为(-U10),即直流基压。闸流管Z阳极电压为U20。耦合电容Cc上的电压则为UC0=U20+U10。

当触发脉冲电路M产生的触发脉冲加到Z的栅极时,Z立即导通,于是Cc经高压二极管D4、闸流管Z及电感L1向CF放电。当CF上电压达峰值后,电流反向,CF又经电感L2、高压二极管D5和电感L2反向向CF放电,直到放电电流为零。在此过程中,CF上就出现了一个迭加在直流基压上的高压脉冲。此后虽然Z的阳极又出现了正高压,但由于Z已恢复正向阻断状态,故它不会导通,直到下个触发脉冲到来为止。

4结论

高压脉冲除尘技术是一种新型的除尘技术,体积小,费用低,除尘效果好。在上述整个除尘装置中,除排气装置的抽风机是机械转动的以及周期振打吸尘电极外,其它部分都是静止的,聚尘袋可以定期更换,因此高压脉冲除尘装置工作可靠性高,其应用范围越来越广泛。在化肥工业除尘系统中,完全可以用高压脉冲除尘装置替代老式除尘器。

除尘范文篇3

除了机械除尘技术,电除尘器也是一种有效的环保设备,在控制大气污染方面起着重要的作用。常规的电除尘器由直流高压供电形成强电场,并产生电晕放电,使粉尘或空气中微粒在流经强电场区域时带上电荷,再在直流高压强电场的作用下被电极吸附,通过定期振打电极收集粉尘,从而达到除去粉尘的目的。

但是,当粉尘的比电阻较高时,电除尘器内会出现反电晕现象及过频的火花放电,致使其无法正常工作,只能采用降低电压运行,但因此又会导致除尘效率大大下降。

2高压脉冲除尘技术原理及改进措施

如果采用高压脉冲供电(在稍低于起晕电压的直流基压上叠加高压脉冲),就可以克服恒定直流高压供电的缺点,使电除尘器性能大大提高。高压脉冲供电与恒压供电相比,粉尘的排出率可减少90%,能耗可降低80%。故这种高压脉冲除尘技术正逐渐受到越来越大的重视。该技术在国外已实现工业应用。

电除尘器的高压脉冲电源,除直流基压外,对高压脉冲的要求是:应具有足够高的幅值和重复频率,足够小的前沿时间和脉冲宽度。另外为进一步降低能耗,还希望电路具有能量回收功能。

为进一步提高电除尘器的效率,可以再加上一级预电离装置,而这一预电离装置是用高电压快速脉冲(在纳秒数量级)在电极上产生电晕放电,当粉尘或微粒通过电晕放电区时,使其带上电荷,以便在电除尘器中被清除。

3高压脉冲除尘技术用于化肥工业除尘

化肥企业生产过程中会产生大量的粉尘,特别是尿素微粒等化肥粉尘,污染了空气和环境,也影响了化肥产量,还严重损害了生产工人的身心健康。为此有必要采取积极措施去除或降低生产环境中存在或产生的粉尘。采用高压脉冲技术的除尘系统框图如图1所示,主要包括含尘空气收集装置、高压脉冲电源、电晕放电装置、吸尘装置、排气装置、振打聚尘装置等。

化肥生产装置产生的粉尘随空气被含尘空气收集装置收集起来,进入电晕放电装置;高压脉冲电源将高电压脉冲加在电晕放电装置的放电电极上产生电晕放电,产生大量的电荷,含尘空气经过电晕放电区(放电电极之间)时粉尘和微粒将被荷电;荷电粉尘流经吸尘装置时,在吸尘装置中放置有电极,将高压脉冲电源加在电极上时,在电极之间将会形成强电场,荷电粉尘在强电场的作用下被吸向电极,从而被吸附在电极上;通过周期振打吸尘电极,粉尘掉落到聚尘袋中;荷电粉尘除去后,剩下的纯净空气通过排气装置可以直接排向空中,或者送回生产装置循环使用。在整个除尘系统中,空气流动主要由排气装置中的抽风机驱动。由于空气已除尘,空气是清洁的,抽风机不会受到污染,可以延长寿命。化肥粉尘收集起来可以再加工生产化肥,从而降低生产损耗。在本装置中,排气装置的抽风机可以直接用三相市电供电。而高压脉冲电源可以采用图2所示电路。

在图2中,CF、RF为除尘器的等效电容和等效并联电阻(相当于集尘面积为40m2的除尘器)。开始时,C1和C2分别被充电至直流电压(-U10)和U20。这时CF上电压亦为(-U10),即直流基压。闸流管Z阳极电压为U20。耦合电容Cc上的电压则为UC0=U20+U10。

当触发脉冲电路M产生的触发脉冲加到Z的栅极时,Z立即导通,于是Cc经高压二极管D4、闸流管Z及电感L1向CF放电。当CF上电压达峰值后,电流反向,CF又经电感L2、高压二极管D5和电感L2反向向CF放电,直到放电电流为零。在此过程中,CF上就出现了一个迭加在直流基压上的高压脉冲。此后虽然Z的阳极又出现了正高压,但由于Z已恢复正向阻断状态,故它不会导通,直到下个触发脉冲到来为止。

4结论

高压脉冲除尘技术是一种新型的除尘技术,体积小,费用低,除尘效果好。在上述整个除尘装置中,除排气装置的抽风机是机械转动的以及周期振打吸尘电极外,其它部分都是静止的,聚尘袋可以定期更换,因此高压脉冲除尘装置工作可靠性高,其应用范围越来越广泛。在化肥工业除尘系统中,完全可以用高压脉冲除尘装置替代老式除尘器。

参考文献

除尘范文篇4

除了机械除尘技术,电除尘器也是一种有效的环保设备,在控制大气污染方面起着重要的作用。常规的电除尘器由直流高压供电形成强电场,并产生电晕放电,使粉尘或空气中微粒在流经强电场区域时带上电荷,再在直流高压强电场的作用下被电极吸附,通过定期振打电极收集粉尘,从而达到除去粉尘的目的。

但是,当粉尘的比电阻较高时,电除尘器内会出现反电晕现象及过频的火花放电,致使其无法正常工作,只能采用降低电压运行,但因此又会导致除尘效率大大下降。

2高压脉冲除尘技术原理及改进措施

如果采用高压脉冲供电(在稍低于起晕电压的直流基压上叠加高压脉冲),就可以克服恒定直流高压供电的缺点,使电除尘器性能大大提高。高压脉冲供电与恒压供电相比,粉尘的排出率可减少90%,能耗可降低80%。故这种高压脉冲除尘技术正逐渐受到越来越大的重视。该技术在国外已实现工业应用。

电除尘器的高压脉冲电源,除直流基压外,对高压脉冲的要求是:应具有足够高的幅值和重复频率,足够小的前沿时间和脉冲宽度。另外为进一步降低能耗,还希望电路具有能量回收功能。

为进一步提高电除尘器的效率,可以再加上一级预电离装置,而这一预电离装置是用高电压快速脉冲(在纳秒数量级)在电极上产生电晕放电,当粉尘或微粒通过电晕放电区时,使其带上电荷,以便在电除尘器中被清除。

化肥生产装置产生的粉尘随空气被含尘空气收集装置收集起来,进入电晕放电装置;高压脉冲电源将高电压脉冲加在电晕放电装置的放电电极上产生电晕放电,产生大量的电荷,含尘空气经过电晕放电区(放电电极之间)时粉尘和微粒将被荷电;荷电粉尘流经吸尘装置时,在吸尘装置中放置有电极,将高压脉冲电源加在电极上时,在电极之间将会形成强电场,荷电粉尘在强电场的作用下被吸向电极,从而被吸附在电极上;通过周期振打吸尘电极,粉尘掉落到聚尘袋中;荷电粉尘除去后,剩下的纯净空气通过排气装置可以直接排向空中,或者送回生产装置循环使用。在整个除尘系统中,空气流动主要由排气装置中的抽风机驱动。由于空气已除尘,空气是清洁的,抽风机不会受到污染,可以延长寿命。化肥粉尘收集起来可以再加工生产化肥,从而降低生产损耗。在本装置中,排气装置的抽风机可以直接用三相市电供电。而高压脉冲电源可以采用图2所示电路。

在图2中,CF、RF为除尘器的等效电容和等效并联电阻(相当于集尘面积为40m2的除尘器)。开始时,C1和C2分别被充电至直流电压(-U10)和U20。这时CF上电压亦为(-U10),即直流基压。闸流管Z阳极电压为U20。耦合电容Cc上的电压则为UC0=U20+U10。

当触发脉冲电路M产生的触发脉冲加到Z的栅极时,Z立即导通,于是Cc经高压二极管D4、闸流管Z及电感L1向CF放电。当CF上电压达峰值后,电流反向,CF又经电感L2、高压二极管D5和电感L2反向向CF放电,直到放电电流为零。在此过程中,CF上就出现了一个迭加在直流基压上的高压脉冲。此后虽然Z的阳极又出现了正高压,但由于Z已恢复正向阻断状态,故它不会导通,直到下个触发脉冲到来为止。

4结论

高压脉冲除尘技术是一种新型的除尘技术,体积小,费用低,除尘效果好。在上述整个除尘装置中,除排气装置的抽风机是机械转动的以及周期振打吸尘电极外,其它部分都是静止的,聚尘袋可以定期更换,因此高压脉冲除尘装置工作可靠性高,其应用范围越来越广泛。在化肥工业除尘系统中,完全可以用高压脉冲除尘装置替代老式除尘器。

参考文献

[1]李志斌.HD-II型脉冲袋式除尘器在尿素除尘中的若干问题[J].第十四届全国大型尿素装置技术年会文集,2006.

除尘范文篇5

关键词:除尘器;自供电电源系统;行走系统

节能减排的原理研究设计出能够智能识别、节能环保、适应性强的多用智能除尘器。首先,对自供电电源系统进行研究,即自己带有太阳能发电、充电以及蓄电的装置,不需要提供外部供电电源,可以根据用户的需要随时启动和停止;其次,对行走控制系统进行研究,通过全覆盖遍历路径规划的实现方案,使除尘器在不同路段自动识别以恒定速度清扫,提高清扫质量;最后,对除尘系统进行研究,对除尘器的设计及其关键部件的结构优化,使除尘器适用于屋顶、大棚、平原、丘陵等多种区域和地形,能够一机多用。

1自供电电源系统

首先,对除尘器的自供电电源系统进行研究,即自带充电以及存蓄电的装置,能够自己供电,不需要提供外部供电电源,以根据用户的需要随时启动和停止,从而达到节能环保的目的。1.1自供电电源系统组成。自供电电源系统是由匹配电路、整流电路、储能电容、控制电路及放电电路组成。1.2实验。在自供电设计研究后,自供电电源系统的实时性和整体数据的丢失率的大小也是自供电系统性能的好坏衡量标准。本次实验根据实际情况测试了数据的丢失率,推导出数据的无线传输距离之间的关系,通过系统整体数据的丢失率、数据的实时性以及自供电电源电压受环境能量变化的影响测试了系统的稳定性及可靠性。1.2.1可靠性测试。表1所示的是在不同距离下,路由节点接收到传感器的节点数据组数的统计情况。从表1可以看出传感器的节点与路由节点之间的距离应该大概在30m以内,如果超过30m,可以在传感器的节点和路由节点之间加入若干个中继节点,达到延拓通信距离的目的。从表2中可以看出整体系统的数据丢失率大约为1%,这主要是由路由节点到服务器间的数据丢失引起的。因此在实际测量过程中如果想及时地了解监测电线的安全状况,可以通过通过观察实时地从服务器上接收到传感节点采集到的电线的相关信息达到目的。1.2.2自供电电源电压测试。传感器节点在工作时会消耗能量,当监测电线有电流通过时,自供电电源的电压会相应变化。随着传感器节点工作时间发生变化的趋势图。图2可以看出,电池电压随着传感器节点工作而上下波动,并且波动幅度小,传感器节点的能耗也比较低。

2除尘器的行走系统及控制系统

除尘器是利用离心力将粉尘从旋转气流中分离出来并进行捕集的一种分离装置,由于该装置结构简单、操作方便、价格低廉、能耗低、耐高温和高压,对于捕5μm以上的颗粒粉尘效率较高。我们所得到的除尘效率公式为:η0=1-escapenumber-tracked()×100%对除尘器内颗粒粒径1.50-15.00μm进行线性回归。最后,对除尘擦的除尘系统进行研究,在保证除尘器高效、稳定运行的基础上除尘器的设计及其关键部件的结构优化,在保证除尘器能够高效、稳定运行的基础上基于优化理论合理的选择除尘的行走路线,对影响除尘器运行的配套系统如除尘方式、储灰系统、降温系统以及电气自动控制系统等进行了分析研究,并提出了改进措施,使除尘器适用于屋顶、大棚、平原、湖面、丘陵、沙漠等多种区域和地形,可全天候工作,达到适应能力强一机多用的目标。

参考文献:

[1]李小川,罗会清,胡海彬,等.自激式除尘器压力波动特性与气液体合研究[J].煤炭学报,2015,40(12):3001-3006.

除尘范文篇6

旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称旋风除尘器)但不加电压的运行工况称为旋风除尘器的“静态”工况,此时的除尘效率称为旋风除尘器的静态除尘效率。为了研究安装电晕极对旋风除尘器除尘效率的影响,对常规旋风除尘器和旋风除尘器两种情况分别进行了各种入口风速下的除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。

常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。

二、旋风除尘器的阻力

由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用。

旋风除尘器阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,即旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了旋风除尘器的阻力特性,与常规旋风除尘器相比,旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。

综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为“降阻增效”)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。

三、电晕极降阻增效的原因分析

切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分离影响了粒子在旋风除尘器内有效分离区域的停留时间,必然对颗粒的除尘效率产生较大的影响。

旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。

可见,旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道旋风除尘器内的流场分布。

为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称旋风除尘器)两种情况在相同的入口流速下进行了流场测试,流场测试仪器为五孔探针,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。

1.切向速度的作用

安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。

2.轴向速度的作用

旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于旋风除尘器的减阻。

3.径向速度及压力分析的作用

径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较大波动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。

就静压而言,旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。

安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起旋风除尘器的降低。

四、结论

在旋风除尘器内的特定位置上安装电晕极,在不加电压的“静态”条件下,能使旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。

旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起旋风除尘器阻力的降低。

【摘要】本文根据旋风除尘器内三维速度分布的测试结果,分析了电晕极的安装对旋风除尘器除尘效率和阻力的影响。在特定的位置上安装电晕极能使旋风除尘器内的速度分布更有利于提高离心力的分离作用,通过测试可知,在安装电晕极但不加电压(称“静态”)的条件下,能使旋风除尘器的除尘效率提高约5%~6%,同时,由于安装了电晕极,改善了旋风分离内的速度分布,使旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ1=4.81)比常规旋风除尘器的阻力系数(ξ2=9.21)降低了47%。

【关键词】旋风除尘器除尘效率阻力电晕极降阻增效原因

参考文献:

[1]张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,11(3):22-27.

除尘范文篇7

通过实验测定了常规旋风除尘器内下降流量沿高度的分布,发现在排气芯管入口断面附近有约24%的短路流量。测定了安装不同类型减阻杆后的下降流量,发现非全长减阻杆下端固定时,有增加减阻杆上方断面下降流量的功效,这将延长含尘气流在除尘器内的停留时间,提高除尘效率。

关键词:旋风除尘器短路流路下降流量减阻杆停留时间

Abstract

PresentsthemeasureddistributionofflowrateatdifferentheightsinanormalcyclonewithandwithoutRepsd,findsthatthereexistsashortcircuitofabout24percentoftotalflowrateinthespaceneartheexitofthecyclone.BasedonthefactthattheshortRepdscanincreasetheflowrateindifferentheightsofthecyclone,andreasonsthatthiskindofRepdscanincreasetheseparationefficiencyofacyclonewhilereducingthepressuredrop.

Keywords:cyclone,shortcircuitflowrate,downwardflowrate,Repds,retentionperiod

1引言

旋风除尘器内不同高度断面上的过流量,对上行流来讲为上升流量,对下行流来讲为下降注量,上升流量和下降流量的忽略漏风因素时应该是相等的。为简单起见,将断面上的过流量简称为下降流量。下降流量是旋风除尘器一个重要性能指标,研究旋风除尘器内沿高度下降流量的分布规律及如何增加断面上的下降流量,是很有实际意义的。

2实验模型及上、下行流区过流量的平衡计算

实验模型为筒体直径D=340mm的Stairmand高效型旋风除尘器[1],实验中控制系统处理风量L=0.1237m3/s,测量断面的划分见图1。以断面1例,由实验所得四方位轴向速度分布的测量计算结果拟合所得轴向速度表达式为

vz=5.67108×107r6-3.04708×107r5+6.33889×106r4-609267r3+22966.6r2-28.6704r-1.91616(1)

式中vz为轴向速度,m/s;r为测量点距轴心的距离,m。

所绘曲线如图2中实线所示,图中散点为拟合前四方位轴向速度平均值。

图1实验模型的断面划分图2常规旋风除尘器断面1处轴向速度分布

因此,从图2可知上升流量Lu为:

(2)

下降流量Ld为:

(3)

将式(1)代入式(2)和式(3)得上、下行流区过流量分别为Lu=0.1821m3/s,Ld=0.1713m3/s

由此可见,由于实验过程中存在的误差以及公式拟合时的误差,积分所得的上、下行流区过流量并不相同,其判别的大小反映了整体误差的大小。此时、上、下行流区地流量的相对误差

由于该相对误差不大,下文将上、下行流区过流量的平均值L=0.1767m3/s作为该断而后下降流量。

3断面1以上短路流量的验算

从上述上、下行流区过流量的计算已经知道,断面1处的下降流量为0.1767m3/s。因此时旋风除尘器的处理流量为0.2317m3/s,所以,其差值0.055m3/s便是断面1以上从下行注区向心流入上行流区的空气流量。这部分流量占除尘器处理风量的23.7%。

在除尘器排气芯管入口断面0至断面1仅30mm的高度范围(占除尘器总高度1360mm的2.2%)内,就有占总处理风量23.7%的空气进入上行流而被排出除尘器,这说明在除尘器入口和排气芯管入口附近存在很大的短路流量(下文中将断面1以上部分进入上行流区的注量统称为短路流量)。尽管这部分含尘空气并不是像管流那样直接从除尘器入口流到排气芯管入口,要经过一定角度的旋转运行,但含尘空气在除尘器内这样短的停留时间,不可能给粉尘提供足够的分离能力。因此笔者认为,旋风除尘器入口附近很大的短路流量,将是提高旋风除尘器效率的一个方向。

旋风除尘器的短路流量理论上还可以通过径向速度对排气芯管入口断面0至断面1的芯管假想处长管壁面积的积分求得。为此,将每一断面处,排气芯管半径r=0.085m时的径向速度进行四个方位的平均,然后将径向速度对高度(这里以测量断面编号代替)的分布进行多项式拟合,其结果如图3所示。

由图3可知芯管入口断面0与断面1之间径向速度的轴向分布,为简便起见,短路流量按平均速度计算:

平均径向速度

流通面积S=2πrh=2π×0.085×0.03=0.01602m2

所以短路流量Ls=

图3常规旋风除尘器内径向速度的轴向分布

这里按径向速度计算所得的短路流量0.0521m3/s比前面按轴向速度计算所得的短路流量0.055m3/s小5.3%。原因是按径向速度计算短路流量时,没有考虑排气芯管与筒壁之间环形空间的二次流问题。从测量所得全流场轴向速度的分布可明显看出,排气芯管外壁附近向下的轴向速度增大,这部分流体沿芯管外壁向下注到芯管入口断面迅速短路排出除尘器。因此,实际情况是在芯管入口断面处有更大的径向速度。而上述计算中(图3)芯管入口断面0的径向速度是通过断面11至断面1的径向速度沿轴向的分布规律外延得到,其量值必然偏小,从而导致计算所得的短路流量偏小。

鉴于上述分析,并考虑到误差并不大的实际情况,笔者认为由轴向速度分布计算所得的短路流量和由径向速度分布计算所得的短路流量是吻合的。因此,无论是从流场测定结果与前人所得结果的对比,还是从上、下行流区过流量的平衡,或者从按不同途径计算所得的短路流量能够较好地吻合,都证明了本文实验方法的可靠、所得实验结果的准确。

4安装减阻杆前后下降流量的比较

按照前面轴向速度对流通面积积分的方法,一并计算常规旋风除尘器安装了不同类型减阻杆[2]后下降流量的变化,并将各种情况下不同断面处下降流量占除尘器总处理流量的百分比绘入图4(为方便起见,以减阻杆型号代替安装减阻杆后除尘器的型号),为表明上、下行流区过流量的平均值即下降流量与实际上、下地流区过流量差别的大小,图4中同时描绘出了误差带。

图4减阻前后下降流量的比较

从图4可看出各模型的短路流量及下降流量沿除尘器高度的变化。与常规旋风除尘器相比,安装全长减阻杆1#和4#后使短路流量增加但安装非全长减阻杆H1和H2后使短路流量减少。安装1#和4#后下降流量沿流程的变化规律与常规旋风除尘器基本相同,呈线性分布,三条线近科平行下降。但安装H1和H2后,分布呈折线而不是直线,其拐点恰是减阻杆从下向上插入所伸到的断面位置。由此还可以看到,非全长减阻杆使得其伸至断面以上各断面的下降流量增加,下降流量比常规除尘器还大,但接触减阻杆后,下降流量减少很快,至锥体底部达到或低于常规除尘器的量值。

短路流量的减少可提高除尘效率,增大断面的下降流量,又能使含尘空气在除尘器内的停留时间增长,为粉尘创造了更多的分离机会。因此,非全长减阻杆虽然减阻效果不如全长减阻杆,但更有利于提高旋风除尘器的除尘效率。

5结论

常规旋风除尘器排气芯管入口断面附近存在高达24%的短路流量,这将严重影响整体除尘效果。如何减少这部分短路流量,将是提高效率的一个研究方向。非全长减阻杆减阻效果虽然不如全长减阻杆好,但由于其减小了常规旋风除尘器的短路流量及使断面下降流量增加、使旋风除尘器的除尘效率提高,将更具实际意义。

6参考文献

除尘范文篇8

关键词:除尘器运转结露

一试运转

在新的袋式除尘器试运行时,应特别注意检查下列各点:

1、风机的旋转方向、转速、轴承振动和温度。

2、处理风量和各测试点压力与温度是否与设计相符。

3、滤袋的安装情况,在使用后是否有掉袋、松口、磨损等情况发生,投运后可目测烟囱的排放情况来判断。

4、要注意袋室结露情况是否存在,排灰系统是否畅通。防止堵塞和腐蚀发生,积灰严重时会影响主机的生产。

5、清灰周期及清灰时间的调整,这项工作是左右捕尘性能和运转状况的重要因素。清灰时间过长,将使附着粉尘层被清落掉,成为滤袋泄漏和破损的原因。如果清灰时间过短,滤袋上的粉尘尚未清落掉,就恢复过滤作业,将使阻力很快地恢复并逐渐增高起来,最终影响其使用效果。

两次清灰时间间隔称清灰周期,一般希望清灰周期尽可能的长一些,使除尘器能在经济的阻力条件下运转。因此,必须对粉尘性质、含尘浓度等进行慎重地研究,并根据不同的清灰方法来决定清灰周期和时间,并在试运转中进行调整达到较佳的清灰参数。

在开始运转的时间,常常会出现一些事先预料不到情况,例如,出现异常的温度、压力、水分等将给新装置造成损害。

气体温度的急剧变化,会引起风机轴的变形,造成不平衡状态,运转就会发生振动。一旦停止运转,温度急剧下降,再重新起动时就又会产生振动。最好根据气体温度来选用不同类型的风机。

设备试运转的好坏,直接影响其是否能投入正常运行,如处理不当,袋式除尘器很可能会很快失去效用,因此,做好设备的试运转必须细心和慎重。

二日常运行

在袋式除尘器的日常运行中,由于运行条件会发生某些改变,或者出现某些故障,都将影响设备的正常运转状况和工作性能,要定期地进行检查和适当的调节,目的是延长滤袋的寿命,降低动力消耗及回收有用的物料。应注意的问题有:

1、运行记录

每个通风除尘系统都要安装和备有必要的测试仪表,在日常运行中必须定期进行测定,并准确地记录下来,这就可以根据系统的压差,进、出口气体温度,主电机的电压、电流等的数值及变化来进行判断,并及时地排出故障,保证其正常运行。

通过记录发现的问题有:清灰机构的工作情况,滤袋的工况(破损、糊袋、堵塞等问题),以及系统风量的变化等。

2、流体阻力

U型压差计可用来判断运行情况:如压差增高,意味着滤袋出现堵塞、滤袋上有水汽冷凝、清灰机构失效、灰斗积灰过多以致堵塞滤袋、气体流量增多等情况。而压差降低则意味着出现了滤袋破损或松脱、进风侧管道堵塞或阀门关闭。箱体或各分室之间有泄漏现象、风机转速减慢等情况。

3、安全

袋式除尘器要特别注意采取防止燃烧、爆炸和火灾事故的措施。在处理燃烧气体或高温气体时,常常有未完全燃烧的粉尘、火星、有燃烧和爆炸性气体等进入系统之中,有些粉尘具有自燃着火的性质或带电性,同时,大多数滤料的材质又都是易燃烧、磨擦易产生积聚静电的,在这样的运转条件下,存在着发生燃烧、爆炸事故的危害,这类事故的后果往往是很严重的。应很好地考虑采取防火、防爆措施,如:

⑴在除尘器的前面设燃烧室或火星捕集器,以便使未完全燃烧的粉尘与气体完全燃烧或把火星捕集下来。

⑵采取防止静电积聚的措施,各部分用导电材料接地,或在滤料制造时加入导电纤维。

⑶防止粉尘的堆积或积聚,以免粉尘的自燃和爆炸。

⑷人进入袋室或管道检查或检修前,务必通风换气,严防CO中毒。

4、停止作业注意事项

当袋式除尘器停止运行前,除必须彻底清灰外,还应注意下列问题:

⑴袋室内往往发生湿气凝结现象,这是含湿气体,特别是燃烧产生的气体冷却后引起的,因此,要在系统冷却之前,把含湿气体排出去,完全换上干燥的空气,也就是在工艺设备停止运转后,袋式除尘器的排风机应运行一段时间后,才停止运行。

⑵在长期停止运转期间,要充分注意风机的清扫、防锈等工作,防止灰尘和雨水进入轴承(注意电动机的防潮)。在停止运转前,应把灰斗内的积灰排除干净。清灰机构与驱动部分要充分注油。

⑶在袋式除尘器停止运转期间,定期的进行短时间的运行(空运转)是保证除尘系统正常运转最好的维护方法。

5维护

5.1要经常检查控制阀、脉冲阀以及定时器等的动作情况。

脉冲阀橡胶膜片的失灵是常见故障,它直接影响清灰效果。该设备属于外滤式,袋内装骨架,要检查固定滤袋的零件是否松驰,滤袋的张力是否合适。支撑框架是否光滑,以防止磨损滤袋。清灰采用压缩空气。因此要求除油雾及水滴,且油水分离器必须经常清洗,以防运动机构失灵及滤袋的堵塞。

5.2防止结露

使用中要防止气体在袋室内冷却到露点以下,特别是在负压下使用袋式除尘器更应注意。由于其外壳常常会有空气漏入,使袋室气体温度低于露点,滤袋就会受潮,致使灰尘不是松散地,而是粘糊地附着在滤袋上,把织物孔眼堵死,造成清灰失效,使除尘器压降过大,无法继续运行,有的产生糊袋无法除尘。

要防止结露,必须保持气体在除尘器及其系统内各处的温度均高于其露点25~35℃(如窑磨一体机的露点温度58℃,运行温度应在90℃以上),以保证滤袋的良好使用效果。,其措施如下:

⑴增设原料堆棚。在水泥生产中各种的原料、燃料及混合材含水量不等,若放在固定的堆棚内,防止雨淋则可大大降低物料的含水量,这是减少物料水份的有效措施。在我国南方的水泥厂这种情况比较普通,但物料堆棚有的过小,有的则无,因此,给袋式除尘器的使用造成了一定的困难。

⑵减少漏风。除尘器本体部分缝隙的漏风,袋式除尘器本体漏风应控制在3.5%以下。在除尘器系统中工艺设备的漏风如球磨机的卸料口的密闭卸灰阀、除尘器下的密闭排灰阀的漏风、管道法兰连接处等,这些都往往被维护管理人员所忽视,因而,增加了不必要的漏风量,恶化了袋式除尘器的运行条件。

⑶含尘气体在除尘器内应均匀分布,防止在边角出现涡流使这里通过的气体量减少形成局部低温而产生结露问题。

⑷做好除尘器、管道等有关各处的保温与防雨。实践证明良好的保温措施,可使袋式除尘器进、出口温度相差很小,这是防止结露的一项有效措施。

⑸采取适当的加温措施。如在除尘器内设远红外电加热器、电热器,或者在袋室内增设暖气片,可以适当提高主机的烟气温度。

⑹加强除尘器和除尘系统的温度监测,以便掌握袋式除尘器的使用条件,防止结露产生。

5.3防止燃烧及爆炸

在水泥厂回转窑尾排出的废气,煤磨制备中排出的废气由于含有CO、煤尘等可燃物质,在其含量、含尘浓度及一定温度条件下则会产生燃烧爆炸事故,不仅烧毁除尘设备,也影响了生产主机的正常运行,所以,必须采取必要的预防措施,主要有:

⑴要防止可燃物质及可燃气体(CO等)在袋式除尘器的管道、袋室内的积聚,对煤粉尘更应特别注意。

⑵加强对袋式除尘器入口温度的控制。

⑶袋式除尘器上装设防爆阀门,做到安全使用。

5.4防止除尘效率降低

除尘范文篇9

关键词:除尘器、种类、原理、系统划分、流速、实际运用

主要内容:

在各类厂房的建筑设计中,都存在不同程度的粉尘污染,包括化工制药、食品加工、冶金、铸造、碳素材料、机械加工、建材等行业,特别是在制药生产线、压片机、制粒机、混合机、配料、拌料、振筛、粉碎机、称量、套胶囊、中药前处理等制药工艺中,都要求对空气进行除尘净化。一个完整的除尘系统应包括以下几个过程:

1、用排尘罩捕集工艺过程产生的含尘气体。

2、捕集的含尘气体在风机的作用下,沿风道输送到除尘设备中。

3、在除尘设备中将粉尘分离出来。

4、净化后的气体排至大气。

5、收集与处理分离出来的粉尘。

因此,工业建筑的除尘系统主要由排尘罩、风管、风机、除尘设备、输粉尘装置等组成。也就是说,除尘系统是由风道将排尘罩、风机、除尘设备连接起来的一个局部机械排风系统。

在制药类厂房的暖通的除尘管道设计中,所选用的除尘器主要是针对工艺设备生产过程中产生粉尘的部分除尘。根据产生粉尘的特性。一般药厂除尘设备选用均为过滤式除尘器,使用中常见的除尘器有以下几种。

1、袋式除尘器

除尘效率高,对微细粉尘效率可达99%以上。

不宜净化含有油雾、凝结水和粉尘粘结度大的含尘气体,以及有爆炸危险或带有火花的烟气。

当含尘浓度大于10g/m3时,宜增设预净化除尘器。

袋式除尘器的推荐流速见。

各种纤维的主要性能见表。

袋式除尘器是一种干式的高效除尘器,它利用多孔的袋状过滤元件的过滤作用进行除尘。由于它具有除尘效率高(对于0.1um的粉尘,效率高达98%~99%)、适应性强、使用灵活、结构简单、工作稳定、便于回收粉尘、维护简单等优点。因此,袋式除尘器在冶金、化学、陶瓷、水泥、食品等不同工业部门中得到广泛的应用,在各种高效除尘器中,是最有竞争力的一种除尘设备。

袋式除尘器的工作原理:袋式除尘器所使用的滤料本身的网孔较大,一般为20~50um,表面起绒的滤料约为5~10um。因此,新滤袋的除尘效率只有40%左右(1um粉尘)。当含尘空气通过滤料时,由于纤维的筛滤、拦截、碰撞、扩散和静电的作用,将粉尘阻留在滤料上,形成初层。同滤料相比,多孔的初层具有更高的除尘效率。因此,袋式除尘器的过滤作用主要是依靠这个初层及以后逐渐堆积起来的粉尘层进行。随着集尘层的变厚,滤袋两侧压差变大,使除尘器的阻力损失增大,处理的气体量减小。同时,由于空气通过滤料孔隙的速度加快,使除尘效率下降。因此除尘器运行一段时间后,因此进行清灰,清除掉集尘层,但不破坏初层,以免效率下降。

2、滤筒式除尘器

滤筒亚微米级过滤,创造洁净空间

自动化离线清灰

就地收集、就地处理

方便的操作维护

适合各种独立或多个产尘点的除尘

滤筒除尘器的工作原理:风机开启后,含尘空气从尘源经由除尘罩、风管、进风口进入箱体,因气流突然扩张,流速骤然降低,大粒经粉末在其自重的作用下从含尘空气中分离而沈降至盛灰抽屉中,其余尘粒由于滤芯的筛滤、碰撞、钩挂、静电等作用被滞留于滤芯外壁,净化后的空气经风机由出口排出。

对于湿式除尘器,电除尘器也可以在药厂的除尘系统中进行应用,但是在很少应用在实际的生产中。所以对于药厂的除尘系统常见采用的就是以上两种除尘器。

除尘系统的划分:

对于药厂来说,可能会遇到对不同物质的除尘,这时就要注意对它们的划分。如在饮片类车间中就可能遇到设置区域划分的毒性饮片车间,这时就要注意将毒性饮片车间的除尘单独的做一个系统,要与其他的车间车间除尘系统划分开来。除尘系统的划分应符合下列要求:

1.同一生产流程、同时工作的扬尘点相距不大时,宜合为一个系统。

2.同时工作但粉尘种类不同的扬尘点,当工艺允许不同粉尘混合回收或粉尘无回收价值时,也可合设一个系统。

3.温湿度不同的含尘气体,当混合后可能导致风管内结露时,应分设系统。

在设计除尘系统时要注意以下几点:

1.除尘系统的排风点不宜过多,以利各支管间阻力平衡,如排点过多,可用大断面集合管连接各支管。集合管流速不宜超过3m/s。

2.为了防止粉尘在风管内沉积,除尘系统风管尽可能要垂直或倾斜敷设,倾斜敷设时,与水平面的夹角最好大于45°,如必须水平敷设时,需设置清扫口。

3.除尘系统风道由于风速较高,通常采用圆形风道,而且直径较小。但是,为了防止风道堵塞,除尘风道的直径不宜小于下列数据;

排送细小粉尘(矿物粉尘)80mm

排送较粗粉尘(如木屑)100mm

排送粗粉尘(如刨花)130mm

排送木片150mm

4.除尘系统风管要求的水力平衡性好。对于并联管路进行水力计算,一般的通风系统要求两支管的压力损失差不超过15%,除尘系统要求两支管的压力损失差不超过10%,以保证各支管的风量达到设计要求。

5.除尘系统风管内风速的大小,出了要考虑对其系统经济性的影响外,还要考虑到风管内风速过大对设备和风道磨损加快;风速过小,又会使粉尘沉积,堵塞管道。为了防止粉尘在管道内沉积和堵塞,管内风速不能低于下表列出的最低空气流速。

除尘系统风管内最低空气流速(m/s)粉尘性质垂直管水平管粉尘性质垂直管水平管

粉状的黏土和沙1113铁和钢(屑)1923

耐火泥1417灰土、砂尘1618

重矿物粉尘1416锯屑、刨屑1214

轻矿物粉尘1214大块干木屑1415

干型砂1113干微尘810

煤灰1012染料粉尘14~1616~18

湿泥(2%以下水分)1518大块湿木屑1820

铁和钢(尘末)1315谷物粉尘1012

棉絮810麻(短纤维粉尘、杂质)812

水泥粉尘8~1218~22

在实际的运用中,除尘系统常见以下的问题:

1.尘相对较多的药厂车间设计中,由于产尘点较多,在布置时除尘管道布置过长,导致了除尘效果受到影响。所以在最初的布置时要尽量的把除尘设备间布置在靠近产尘点的地方。如果受到条件的限制,最好采用其它形式的除尘,如采用移动式除尘器,或直接采用排风系统,将产尘较少的点直接排出室外。

2.为了保障除尘系统的正常运行和防止再次污染环境,应对除尘器收集下来的粉尘妥善处理。其处理原则是减少二次扬尘,保护环境和回收利用,化害为利,变废为宝,提高经济效益。根据生产工艺的条件,粉尘性质,回收利用的价值,以及处理粉尘量等因素,可采用就地回收,集中回收处理和集中废弃等方式。

参考文献:

《洁净厂房设计规范》(GB50073-2001)

《洁净厂房的设计与施工》陈霖新等编著

《暖通空调》陆亚俊主编

《实用供热空调设计手册》陆耀庆主编

除尘范文篇10

旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称旋风除尘器)但不加电压的运行工况称为旋风除尘器的“静态”工况,此时的除尘效率称为旋风除尘器的静态除尘效率。为了研究安装电晕极对旋风除尘器除尘效率的影响,对常规旋风除尘器和旋风除尘器两种情况分别进行了各种入口风速下的除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。

常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。

二、旋风除尘器的阻力

由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用。

旋风除尘器阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,即旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了旋风除尘器的阻力特性,与常规旋风除尘器相比,旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。

综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为“降阻增效”)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。

三、电晕极降阻增效的原因分析

切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分离影响了粒子在旋风除尘器内有效分离区域的停留时间,必然对颗粒的除尘效率产生较大的影响。

旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。

可见,旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道旋风除尘器内的流场分布。

为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称旋风除尘器)两种情况在相同的入口流速下进行了流场测试,流场测试仪器为五孔探针,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。

1.切向速度的作用

安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。

2.轴向速度的作用

旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于旋风除尘器的减阻。

3.径向速度及压力分析的作用

径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较大波动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。

就静压而言,旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。

安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起旋风除尘器的降低。

四、结论

在旋风除尘器内的特定位置上安装电晕极,在不加电压的“静态”条件下,能使旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。

旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起旋风除尘器阻力的降低。

参考文献:

[1]张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,11(3):22-27.

[2]张吉光,李华.旋风分离器流场的实验研究.流体机械,2002,(9).

[3]亢燕铭,沈恒根.高效旋风器降阻条件下的流场特征.西安建筑科技大学学报,1997,29(1):18-21