传动技术范文10篇

时间:2023-03-26 21:22:13

传动技术

传动技术范文篇1

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的润滑泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质润滑和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和润滑轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行润滑。润滑流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的润滑冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术范文篇2

1.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

1.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

1.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的润滑泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

1.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质润滑和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

2新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

2.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和润滑轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

2.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行润滑。润滑流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

2.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

3先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的润滑冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

[3]AnsimagInc.AcidicPumpagePlaysHavocwithRotaryLobeUnits[J].WorldPumps,1997,(5):26

[4]MichaelSmith.SideChannelPumpSolvesMethanolTransferProblem[J].WedPage,2001.

作者简介

传动技术范文篇3

关键词:机械传动技术;改进;发展方向

机械传动技术作为机械系统在运作过程中的基础内容,同时还是决定机械在运动过程当中的整体运作效率技术,尤其在当前社会经济发展背景下,运用机械传动技术的机械传动系统的不断进步正在起到重要的催化剂作用,但是根据我国工业化发展现状来看,针对机械设备的运作稳定性提出了较高要求,因此,这就需要机械传动技术能够和现代社会做到与日俱进,进一步促进机械传动技术的发展,及机械系统的完善。

1机械传动技术的工作原理

机械传动系统在运用机械传动技术之前,需要相关工作人员能够针对系统的组成部分和实际情况展开深入分析,一般来讲,机械传动系统主要是由原动机、传动机构和执行结构等多个方面进行组建而成,而在机械传动系统中的原动机是机械传动系统进行开展工作的关键因素,不同的机械传动系统由于具备不同的功能和使用目的,所以将呈现在执行结构的功能方面。与此同时,在机械传动系统中的原动机虽然结构相对于简单,但是执行机构相对于复杂些,因此,为了能更好的适应于单一的动力来源之下实现复杂执行功能,就需要在实际工作中运用复杂的传动机构进行实现。只有运动部位具备传动机构,这样才可以跟随机械设备进行发展和整改,就能整改齿轮传动等接触式的传动方式,同时还会在该基础上实现优化,进而提升机械传动系统的运作效率。

2机械传动技术的应用优势

在工作中运用机械传动技术主要体现在以下几点:首先,能够在减少生产周期的基础上,提升生产效率。相比较传统的机械设计制造主要是以人力资源为核心,所以导致工作人员在日常工作中需要面临巨大的工作量,由于工作量的加大,难免会在生产中出现失误等现象。而且最为严重的内容是工作人员个人劳动效率有限,很难在规定时间内完成大量工作,一旦工作周期的延长,就会加大机械制造业的生产成本。[1]若是借助于机械自动化,不仅能解决人力资源工作效率低等问题,还会实现自动化的生产与管理,从而有效在减少生产周期的基础上,提升生产效率,完善产品质量;其次,有效创新产品,提升经济效益。传统机械设计制造行业并没有在生产的过程当中高度重视产品更新工作,导致整体产品质量都没能得到有效提升。而借助于机械自动化,不仅能实现自动化生产要求,还能让工作人员在短时间内针对产品创新加大研究力度,通过完善产品质量,进而获取到更多的经济效益。

3机械传动技术的改进及发展方向

3.1创设柔性自动化管理。创设柔性自动化管理要求,能够针对机械制造所涉及到的生产产品实现综合性管理。而且柔性自动化系统还是属于在柔性生产的基础下,依照管理要求和自动化管理要求,从而创设生产信息的管理系统。运用该系统能够有效结合计算机管理职能和自动化管理职能的主要内容,避免由于外界因素的产生所造成的严重影响。同时,在工作当中工作人员还可以在个别生产环节中进行干预,这样一来不仅有效提升了机械制造流程对外界因素的抵抗力,更是提升了生产质量。3.2实现更高性能的蜗轮。在机械传动体系中蜗轮作为主要组成部分,针对蜗轮的改进方向可以从以下几点实现发展:第一,针对蜗轮材料实现有效改进,能够有效减少蜗轮和蜗杆之间的摩擦,进而实现降低齿面工作温度和提升运行效率。依照当前具有较高性能的工程塑料进行替换传统蜗轮材料而言,所含有聚酰亚胺等材料都具有较高的机械性能和耐磨能力,并且相对于传统的蜗轮材料更加适应于蜗轮的制造中;第二,可以针对蜗轮实现改进的方向就是在现有的蜗轮产品基础上,运用填充整改的方式把不同材料都实现综合运用,然后在通过已经综合混合的复合材料应用,有效提升现有蜗轮产品的机械性能和耐摩擦能力,不断提升蜗轮产品的使用寿命。3.3磁力传动技术的应用。根据机械传动技术发展现状来看,应当针对机械运动系统中存在磨损寿命等问题实现改进,运用磁力传动技术针对磨损寿命及疲劳寿命等问题进行解决,将借助于无接触的传动方式减少在传动过程中所遭受的磨损问题,从而提升机械传动结构的使用寿命。同时,还需要在针对磁力传动技术中存在的退磁问题进行合理规避,进一步促进磁力传动技术的发展。[2]

4结语

综上所述,在当前我国科技水平的飞速发展背景下,机械传动技术正在机械设计制造中得到了广泛应用,而我国的机械自动化水平也会步入到全新的发展阶段,所以,这就需要针对传统的机械传动模式加大研究力度,并且还将在原有的机械传动机构基础上实现整改与创新,将从创设柔性自动化管理、实现更高性能的蜗轮等多个方面,实现机械传动技术的改进和发展,从而有效降低传动机构中的磨损和运行成本,最终实现预期的战略目标。

参考文献:

[1]张春源.探讨机械传动技术的改进与发展[J].时代农机,2018,v.45;No.308(06):200.

传动技术范文篇4

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的润滑泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质润滑和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和润滑轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行润滑。润滑流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的润滑冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术范文篇5

关键词:永磁传动技术材料结构应用

Abstract:Newdevelopmentonmagneticdrivinginforeigncountryissyntheticallyreviewed.

Applicationsfieldisbecomewideandtechnicalpropertyisimproved;Newtechnique,

technologyandconstructionappear;Magneticdrivepumpsbecomehighefficiency,

rliabilityandlonglifebyusingadvancedmanufacturetechniqueandmanagement.

Keywords:magneticdrive;Mag-drivepumps;newtechnique.

[中图分类号]TM351[文献标识码]B文章编号1561-0330(2003)07-00

1引言

1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。永磁传动技术主要应用于化学工业、石油化工、医药、食品工业中的泵和压缩机、搅拌机与阀门等。目前我国流体机械大量使用的传统机械密封在国外的这些部门已逐渐被永磁传动所取代。

2应用领域拓宽、技术性能提高

2.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

2.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

2.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的润滑泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

2.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质润滑和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

3新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

3.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和润滑轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行润滑。润滑流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

3.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

4先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的润滑冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

传动技术范文篇6

1.1磁力传动是密封领域最有效最安全的解

永磁传动即永磁联轴器对于需要密封的机械,对有害、有毒、污染、危险、纯净、贵重的产品和生产过程是一最安全解,它的应用范围很宽。石油化工、医药、电影、电镀、核动力等行业中的液体大都具有腐蚀性、易燃、易爆、有毒、贵重,泄漏会带来工作液体的浪费与环境污染;真空、半导体工业要防止外界气体的侵入:饮食、医药要保证介质的纯净卫生。永磁传动技术在这些领域找到了用武之地。英国Howard机械发展有限公司(HMD)从1946年就致力于无密封泵的制造,至今在全世界37个国家已销售近7万台,每年销售额达28百万英镑[1]。美国一家制药厂有上百个装有机械密封的离心泵,处理各种酸类,这些泵由于设计问题常常干运转,仅能使用2~3个月就自行破坏,换用了Ansimag公司生产的K1516系列磁传动泵,自1993年投入运行(每天操作4.8小时每年365天)至1998年还在运行[2]。美国中西部的容器板厂,合成苛性纳是回转叶片泵密封的极大问题,这里的工程师称这些泵是“维护黑夜里的天”安装了Ansimag公司的ETFE衬里无密封磁力泵,运行11个月没有停机[3]。美国一大型化工厂面临着输送甲醇的严重困难。因甲醇易燃,60℃接近沸腾,流量仅7m3/h,压差高达250m。问题的解决靠的是Dickow磁传动多级端吸泵,它的流量是15m3/h,压差400m,确保了甲醇的零泄漏,保证操作人员与工厂的安全,并解决了甲醇中含有气泡输送问题[4]。

1.2磁力泵在技术性能上向微型,大型化发展

为满足国内外市场需要,石油化工公司成套设备向大型化发展,我国必须有一批年产千万吨级的炼油厂、百万吨级的乙烯装置。机械装备要满足重负荷、长周期、低能耗,并符合环保要求。我国在仿制国外产品中发现,制造磁力泵的材质和工艺要求是很高的。即使11~13kW的中小功率泵,其可靠性制造成本也无法让用户接受。对于耐强腐蚀、高压、高温的大功率泵尚属空白。目前磁力泵的发展极限应由HMD公司的产品来描述:流量由1m3/h到681m3/h,压差由10m到500m,温度范围由-100℃到450℃,系统压力从真空到400bar,原动机功率达350kW。微型泵是专门为某些部门研究开发出来的,例如激光器的冷却、分析仪器的供料、化学剂的补充、生物工程、冷却循环,以至于打印机的喷嘴等。齿轮泵与电机一体化封闭联接,适用24V、36V直流电源,速度人工自动控制。最低流量为10ml/min,压差7bar。日本Iwaki公司为电镀、冷却循环用的MD系列微型磁力传动齿轮泵的流量范围是7.5~288L/min,传动功率1/25~1/3马力。

1.3各种类型的泵均可改造为磁力传动泵

离心泵是磁力泵的主导产品,磁传动回转位移泵虽有25年的历史,仅近七八年在设计制造水平以及大扭矩能力方面才有广泛的基础。重点是磁力传动齿轮泵与螺杆泵,最大传动能力达400Nm,转速3500r/min时功率为150kW。地处美国边界犹地州气体动力厂,透平压缩机的润滑泵是常轨的外啮合齿轮泵。油泵因高压差平均每两个月便过度磨损而报废,造成压缩机关闭。1992年改用磁传动三螺杆泵后,一直连续运转,不用任何维护。英国Tuthill成功地应用了它的磁传动齿轮泵为Scottish公司的过程水系统中泵入添加剂,该泵取代了螺杆泵,符合卫生安全条例。

1.4磁力传动压缩机

磁力传动的内轴承位于所密封的空间内,它用密封的介质润滑和冷却。鉴于我国材料制造水平,磁力传动在气体输送机械中尚未应用。加拿大Nova磁有限公司生产的超压风机,在170bar氦气压力下,泄漏率小1cm3/h,轴承寿命超过10000h。另一系列的加压风机,自由排放流量750m3/h,在400m3/h流量时系统压差35MPa,实现了零泄漏。此外,磁传动的特殊性能同样应用于无泄漏的搅拌器、阀门等设备。在冷冻机中的应用还未得到相关信息,笔者为实现将磁力传动应用于冷冻压缩机正在作探索工作,因冷冻剂尤其是氟里昂的外泄会造成严重的环境问题。

2新技术、新工艺、新结构

磁力传动技术并非只是简单的利用磁体的同性相斥、异性相吸作用,它是传动技术、材料技术、制造技术的集成。世界一流的专业生产厂,他们的产品在世界享有声誉,以至于我们无法仿制,其原因就在如此。现在这些“老手”还在进行效率和质量的改进,减少成本,延长两次检修之间的平均时间。

2.1新材料、新工艺

磁性材料的选用各国基本认识统一,NdFeB材料工作温度低于150℃,SmCo材料工作温度低于250℃,对于微型泵可选用钡铁氧体。泵体材料分金属、非金属两大类。金属不锈钢不意味着对一切液体都是不锈的,它主要用于与其兼容的过程液体、贵重液体、超纯净液体。非金属是专门为腐蚀性应用而研制的。它又分为2种情况。其一是纯塑料泵,用纯聚丙稀或乙烯氟化物热塑铸模。如英国VantonCGM泵流量为136m3/h,扬程84m(温度135℃),电机功率32kW。其二是衬里泵,是目前流行的耐腐蚀泵内衬塑料的一种方法。一般泵体可用可锻铸铁制造,FEP、PP、PFA、PVDF、ETFE无缝衬里。Magnetix新的MTA系列无密封泵与其它衬里泵的关键优势是应用了它的先进PFA氟聚合物衬里,PFA以它独特的广泛的耐化学剂腐蚀的能力,比ETFE,PVDF或其它非金属材料而闻名。采用专利技术:浇铸压膜工艺,联接的PFA衬里厚而均匀,与旋转模铸相竞争。应用于高纯度和高温流体更为理想。ISO泵PTFE衬里最小厚度3mm,用榫槽压入泵壳,泵壳用硼硅玻璃制造。隔离罩是密封的关键部件,它的破裂会导致流体泄漏发生灾难性的危害。单层金属封罩应用范围很广,尽管涡流会产生热量有能量损失,若采用高强度、高电阻材料可以限制到最小损失,如:哈氏合金C-4(2.4610)。由Taiani发明的金属叠层隔离罩取得5国专利,在许多设计中已被应用,它的效率可达99%,传动功率150马力。单层陶瓷ZrO2(氧化锆)隔离罩,耐苛性溶液,酸的腐蚀,具有高硬度和良好的滑动性能,及高的机械强度和弹性(E=2×105N/mm2),已用于工作压力250bar。但陶瓷罩壁厚较大,不能塑性加工。1999年初获得美国专利的IMO泵,新的隔离罩用碳纤维与环氧树脂制造,厚度小于2.8mm,与不锈钢法兰相联。适于操作压力31bar、温度232℃,传动扭矩407Nm,在3600r/min下功率达149kW。双层隔离罩提供了双保险和可供检测的空间。日本IWAKIMDE系列泵双层罩由玻璃纤维增强塑料制造。AnSimag双层环氧树脂隔离罩磁传动泵为造纸厂输送氧化铝,运转2年没有更换任何部件。隔离罩焊接是结构的薄弱点和腐蚀的敏感源,先进的制造方法是塑性成型,如深拉、旋压、延伸旋压。轴与滑动轴承由高耐磨性SiC制造。干运转按惯例是无密封磁力泵的凶兆。精心的流体平衡设计,后部密封圈与叶轮孔联合作用,平衡液体轴向推力减小叶轮的压力。入口调整阀防止低流量时的预旋,减小湍流,保证低流量操作。两个烧结SiC轴承优化设计支承点,轴套中的螺旋槽帮助冲洗和润滑轴径,提供干运转30min的保证,可使操作者有时间调整系统,恢复正常运转,避免灾难性破坏。德国ITTRichter公司的MNKA系列泵的纯SiC轴承,在2900r/min下可以干运转1h。

3.2新技术

以最优的物理尺寸保证经济有效地利用磁体的体积,静磁脱开扭矩与温度的相关性通过有限元计算和广泛的试验。轴向与径向轴承由泵送介质来进行润滑。润滑流道提供必须的流量。新的自动调节轴承可承受大的轴向推力和径向力。具有超群的抗腐蚀和耐磨能力的SiC或碳石墨制造的滑动轴承,它缩装在金属外壳内,保证机械运转的稳定性,即使轴肩破坏,仍保持轴承的可靠性和可维修性。另一技术是流体平衡,使轴承所受的力限制到最小。目前内轴承的寿命可达到10000h。高温问题:KSB热油泵用环形冷却器来包围联轴器室,保持磁体附近的温度在材料最大允许温度之下,尽管介质平均温度是350℃。HMD的涡流型联轴器具有独特的“扭矩圈”设计,扩大温度范围至450℃不需要冷却。专利技术—风机自动冷却:在各种速度范围内磁联轴器可自动冷却,不需要外部冷却系统,仅用环形气室传动子自动完成。完全可靠性:在磁联轴器上装有摩檫圈以保护磁体;为防止干运转,流量传感器可以安装在用户管线上,确定断流或低流;国外机组随机装备数字式功率控制监控器来确定超载条件,泄漏传感器、温度传感器,使用PLC(可编程控制器)实时监控磁传动的工作情况。连续监视外轴承的运转间隙,监视任一球轴泵的磨损,使轴泵在损坏前及时更换。

2.3新结构

几乎所有的磁力传动泵均采用“后拉出”结构。整个联轴器部件、轴承部件分别作为一个单元,拆卸时不必从管路、底坐上拆出泵壳,益于检修服务。例如日本富士山胶片化学公司以前使用双机械密封离心泵,由于化学品的腐蚀磨损,轴封至少一个?????????更换一次。该密封的更换是很昂贵的,通常占泵总价值的25%,更换时间要花费5个小时。改用Global磁传动泵后,运行了2年完全成功。与双机械密封相比,检修周期增加了1倍,装拆一次减少到15min。1997年年内全部输送泵均更换为磁力泵,并将泵的预期寿命(不用任何服务)规定为5年。ALLweiler理智的提出无叶轮轴设计,叶轮安装在SiC轴承中间,标准间隙正在申报专利。风机应用分开式电马达,插入式套筒内轴承,无论是检修马达还是风机轴承均可在30min内完成。零部件大范围的与EN22858/ISO2858、ANSIB73.1、API610、DIN、BS等标准泵互换。平衡按API/ISO实施。

3先进制造技术与管理

为适应全球化竞争与合作,世界泵业都在发展自已的技术优势,扩大产品范围以适应世界大市场的多样性、个性化需求。产品在满足功能要求的同时,毫无疑问应充分满足严格的安全性、可靠性和生态环保要求。先进制造技术是产品先进的主题。磁传动泵的先驱者HMD三年前推出了长远生产方式和完全的研究计划,最后重新设计它的装配设备。投资100万英镑来扩充HMD的产品能力,又花费70万用于新的高速加工系统,购买了6套加工中心。然而不单是用先进的机器来增加产量,重要的是建立挠性加工,减少循环时间。以往扭矩圈要围绕工厂传送540m,在制造链上要花费8~9周时间,今天,制造是家庭式的组织,许多机器均连于公司的CAD/CAM系统,工程师根据用户迅速对标准件做出创造性改革,直接上载到加工中心。同一扭矩圈运行30m,在线上仅需要花2天时间。由于快速制造,材料泵可以很迅速交货,某种情况下少许3天。按他们的话说“竞争优势将使我们代入下世纪,开创更多商机”。[1]先进的产品来自先进的设计与严格的试验,3D设计与模拟,无图纸加工,虚拟制造、快速成形都在进行。高强度合金材料的冶金学试验制作,泵体、叶轮及隔离套受强腐蚀作用确保长寿命:非磨损的SiC轴泵的润滑冷却系统在化学过程工业中进行广泛的试验,包括高的系统压力345bar,自吸和热套设计。每一部件、组件和系统都周密地检查和评定。HMD认为制造与需求的原则是:超前战略性原材料;发展关键的供应关系;通过组织制造循环,减少制造周期;减少排队,加速进程。笔者在网上查询了20几家著名的磁传动公司,发现他们在世界各地均有子公司及销售网。质量设计和制造由全世界技术精湛的泵发行者来决定,才能对市场战略性地迅速作出反应。服务包括解答用户遇到的应用问题,泵的选择,特种泵专门设计,每天24小时为用户技术咨询。21世纪制造技术不但将继续制造常轨条件下运行的机器与设备,而且将制造出极端环境下运行的机械设备。21世纪制造的产品应是符合生态环保,与人友好的绿色产品,磁力传动技术正是适应这一发展态势,让我们借鉴国外先进经验推动这一技术的发展吧!

参考文献

[1]HMDSeamless.PumpManufacture,atMaximumVelocity[J].WorldPumps,1999,(7):33-36.

[2]EquipmentNews[J].WorldPumps,1998(4):36.

[3]AnsimagInc.AcidicPumpagePlaysHavocwithRotaryLobeUnits[J].WorldPumps,1997,(5):26

[4]MichaelSmith.SideChannelPumpSolvesMethanolTransferProblem[J].WedPage,2001.

传动技术范文篇7

关键词:水利工程;机电设备;安装与维修

1异步电动机的运行性能和工作特性

高压三相异步电动机的定子,从电力网吸收电能,并将电能转换成机械能。最后,机械能通过杆轴输出到给水泵,使水泵完成传动的过程。通过分析,异步电动机的性能优势由下述参数决定。1.1电动机效率参数。效率=P2/P1×100%(即,输出功率P2和输入功率P1的比)。同样的负荷条件,电动机的效率越高,能源的利用率越高,越省电。因此,电动机的效率是需要在固定负荷条件下,在符合相关规定和要求前提下,发挥电动机更大的效率。1.2电动机功率参数。设备功率对于电气设备的利用率有着非常重要的影响。电动机运转时,它不仅能够从电源吸收有功功率,而且还吸收了无功功率。所谓低功率,就表示设备运行中从电源吸收更多的无功功率,增加电力网的负荷,降低机器的利用率。水利枢纽的电动机的力率约为0.8,未能满足相关标准和要求,所以,选择使用了并联高电压电容器的无功补偿技术,以此提升功率。1.3电动机启动扭矩参数。初期的启动扭矩,它直接与电动机的正常启动相关。1.4电动机启动电流参数。太大的启动电流,可能会导致电源线的电压下降过大,降低电压,影响电动机的使用寿命以及正常运转。1.5电动机最大与最小扭矩。由上可知,相关技术指标是在电动机设计时的综合考察以及计算来获得的。当电动机实际运行时,还应测试以及检查。就异步电动机的运行特性来分析,当异步电动机在额定电压下运行能够得到各项性能指标与输出功率之间存在的关联性,我们称其为工作特性,并通过对电动机的实际运转状况进行判定。泵站的启动会使得电压下降,在相关规定中,要求此时电压下降不应该大于定格値的10%,同时,启动电流不能够大于输电网的过载。在泵站启动时,需要能够满足电动机本身的特性需求。如果能够满足这些前提,那么高压的异步电动机通常会选择运用全压启动,并通过机械手段对其进行制动。在某种情况下,水利枢纽泵站也会选择使用同步电动机,然而,需要注意的是,同步电动机传动系统中涉及到非常复杂的励磁装置。

2机电传动装置稳定运行的条件

在水利泵站的传动装置中,为了保证相关设备和装置的正常运转,首先必须要确保电动机与水泵保持统一的机械特性,保障其正常运行。第一,系统要实现匀速运行;第二,系统如果受到外部干扰,导致其运转速度发生变动时,要在去除这些因素的影响后,确保其能够依旧保持正常运转。电动机与水泵系统能够实现稳定运行,有如下基础条件。2.1水泵的扬程曲线以及机械效率特性曲线水泵的扬程曲线和水泵的机械效率特性曲线有交点,如图1所示。图1异步电动机的运行性能以及工作特性2.2速度比与平衡点如果速度比与平衡点对应的速度较大的时候,也就是说,当外部干扰导致速度增加时,速度比应该小于平衡点对应值。如果去除外部因素影响,速度比小于平衡点对应值,当速度小于与平衡点相对的速度时,速度比大于平衡点对应值,即当外部干扰因素导致转速出现下降,这种干扰消除之后,速度比应该大于平衡点对应值,这种特性调整是电气机械传输系统的最佳工作状态。

3水泵的运行调节

某水利枢纽泵站中包含3台竖井式贯流泵,各个泵进行单列设置,泵距离机组中心的距离为8.2m,电动机和水泵之间经由齿轮来实现动力传动。水泵依赖于液体的旋转阻塞的动态作用,将能量连续地传递给液体,增加其运动能量,然后,将一部分运动能量转换成压出室的压力能量,并使得液体实现排出。基本参数为:一是,流量,指的是单位时间内经由水泵的水的总量,其计量单位通常为m3/s,在该水利枢纽中其流量为20m3/s;二是,扬程,指的是单位重量液体流经泵站期间所能够获取的能量;三是,转动速度,指在泵轴的部分的旋转数,单位r/min;四是,有功功率,指每秒为单位液体流过水泵所能够获取的能量;五是,效率,有功功率和轴功率的比。在水泵实际的运转过程中,如果需要的流量发生变化的话,那就必须要被调节。由于水利泵站是用异步电动机驱动的,因此,为了使泵的速度变化而改变特性曲线,经常使用可变速度调整,改变其动作点,达到使流量变化的目的,这样就能够节约电能。

4机电传动装置的运行维护及保养

为保证机械和相关设备长期处于最好的工作状态,长期的设备维保非常有必要。在长期工作和日常检查之后,相关工作人员总结了以下的工作经验。4.1需要保持电动机周围环境优异性。电动机的外壳应该是处于无尘无垢状态,严格防水,避免其粘结油和灰尘,保持其运转的流畅度。另外,接线盒要进行防潮处理,螺栓要处于紧固状态,一旦发现零部件出现损坏,须及时进行维护和更换。4.2定期检查电源的电压和电流的变化。一般来说,电动机的动作电压是定格电压(+5%),三相电压的差不超过5%,各相电流的不平衡不超过10%,应该严格地防止相位切断动作。4.3定期检查电动机的温度上升状况。一般的温度计测量的温度上升,不能超过最大的允许值。4.4杂音和气味的监测。正常的电动机运行必须处于平衡状态,没有其他杂音,外部的轴承应处于很好的密封状态,工作期间,其声音、气味、振动和传达装置必须被监测和分析。4.5将卷线的绝缘。电阻用欧姆表定期测量卷线的绝缘电阻有必要在0.5MΩ以下进行干燥处理。在卷线的隔热性恶化的情况下,使用隔热性涂料,通过干燥或交换绕组来提升其绝缘性能。4.6轴承监测。轴承需要定期交换,定子和转子之间的间隙必须均匀。如果轴承松紧而出现疲劳,那就必须定期更换(一般来说,滑头轴承不可超过1000h,转型轴承不可超过500h)。4.7电机操作电动机的合理操作,安全性、可靠性和寿命长是重要的条件。任务人员,必须每天的检查记录。4.8水泵维护。泵的维护是很重要的。如果泵在运行中出现振动,那么必须要找出原因,泵的振幅减少必须根据需要调整。寒冷期泵配件的冻结,也应该要注意。4.9加强水利工程机电设备安装。与工程土木建设的协。调实施在施工前,须制定科学的安装组织实施方案,从而对机电设备安装与土建之间的矛盾进行有效地解决和处理,设计人员与施工人员应加强沟通与交流,使设计与施工之间更好的契合,实现水利工程机电设备安装与土建的协调实施,最终提升水利工程项目建设的整体效率和质量。4.10促进水利工程基础施工阶段的有效配合。促进水利工程基础施工阶段的有效配合,需要机电设备的设计工作者与安装人员加强设计与管理方面的工作,并且全面而系统地规划和计划水利机电设备安装的高度和位置。例如,水利工程中离心泵的安装高度,可按照以下公式来计算:△安装=△动+H实吸式中,△安装为离心泵安装海拔高度,m;△动为井中动水位海拔高度,m;H为水泵实际吸水高度,m。水泵的实际吸水高度H,可按照H实吸=Hs×H吸损×v2进/(2g)×k的公式计算,式中,Hs为离心泵允许吸上的真空高度,m;H为进水管路损失扬程,m;v为水泵进口处流速,m/s;g为中立加速度,m/s;k为安全系数。此外,水利工程建设单位应提升基础施工环节的准确性与系统性,为后期机电设备的安装提供有力保障,从而提升机电设备安装和管理的质量。

5结语

综上所述,机电传动装置在水利枢纽运行多年来,已经展现出了其本身非常显著的优越性能,对于保障水利枢纽的健康、可靠运行具有重要意义。

参考文献:

传动技术范文篇8

关键词:电力电子技术;电力机车;牵引电传动系统

随着电力电子技术的快速发展,电力机车牵引电传动系统发生了巨大的变化。20世纪中后期,采用交直传动系统的韶山型电力机车在我国铁路交通运输中占主导地位,但随着现代科学与技术的快速发展,采用交直交传动系统的和谐系列电力机车,在生产实际中得到广泛的应用,并逐渐取代了韶山型电力机车。在电力机车牵引电传动系统的发展历程中,电力电子技术承担着举足轻重的作用,因此,电力电子技术在电力机车牵引电传动系统中的应用研究具有重要意义。

1电力电子技术的发展

1947年,第一只晶体管的研制成功,开创了半导体固态电子学,20世纪50年代功率半导体二极管的出现,提高了整流电路的效率。1957年美国通用电气公司研制出第一只可控型电力电子器件———晶闸管,次年得以商业化,标志着对电能变换与控制的电力电子技术诞生。电力电子技术是一门新型技术,但是发展快速,其原因有两个:一是:人类电气化时代,电能在国民工业中的应用比重已成为衡量一个国家发展水平的重要指标,电力电子技术适应了当今世界人们对电能的巨大需求以及能源利用效率的不断追求,利用电力电子技术可以实现交流到直流(AC/DC)、直流到交流(DC/AC)、交流到交流(AC/AC)、直流到直流(DC/DC)等多形式的能量变换,这为太阳能、风能等清洁能源的利用,高效的交流传动,以及高压直流输电等各领域的应用打开了广阔的前景。二是:电力电子器件的发展极大地扩展了电力电子技术应用的功率范围,微处理器的出现实现了控制数字化,快速推进了电力电子技术的应用发展。1.1传统电力电子技术。晶闸管的发明扩展了半导体器件的功率控制范围,在二十世纪60年代得到快速推广,主要应用于大功率整流器。二十世纪60年代普遍较大功率的工业用电由工频交流发电机产生,其中有近20%的电力是给直流用电负载使用,而大功率硅整流器实现了将工频交流电转换成直流电。晶闸管具有体积小、功耗小、效率高、可控等特点,用它构成的变流装置具有寿命长、易维护等优点。因此,晶闸管的开发与应用在上世纪六、七十年代得到了快速发展。由于晶闸管的关断不可控,需要依靠外加电路或外加反向电压来实现关断,这就限制了晶闸管的应用。随着科技的发展,多种多样的负载不断涌现,对需求的电能提出了更高的要求,在二十世纪70年代,全控型器件出现了,并逐渐占据主导地位,如快速晶闸管、门极可关断晶闸管。全控型器件具有自身可关断性能和较高开关速度,在整流、逆变、斩波、变频电路中得到了广泛应用,电力电子技术得到突飞猛进的发展。但是快速晶闸管、门极可关断晶闸管工作频率不高,只能在中低频的范围内应用。1.2现代化电力电子技术。20世纪80年代初期,大功率绝缘栅双极晶体管(IGBT)的出现把电力电子技术的应用带入高频及中大功率领域。IGBT具有较高综合性能,开关频率方面,一般可达10kHz至20kHz,小功率的甚至高达100kHz;电压等级方面,最高电压已达到6500V,该电压下的电流可达750A,1700V电压等级的电流可达2400A;温度方面,最高可达175℃。开关器件的高频化也促进了电感器件体积的成倍缩小。大中型功率高频IGBT的发展持续促进着电力电子设备朝轻重量、小体积、高效能方面发展,再结合日益进步的微处理芯片技术,现代电力电子技术已实现了全控化、集成化、高频化、控制技术数字化和电路形式弱电化,应用场合越来越广泛。由于负载对供电电能的质量要求越来越高,科研工作者还在不断进行IGBT改型研究。经过多年应用发展Si器件为基础的电力电子技术相当成熟,Si器件在开关频率、通态压降以及结温等性能指标上难以继续提升,发展空间较小。新一代宽禁带半导体材料(如碳化硅)的电力电子器件具有比硅器件高得多的耐受高电压的能力、低得多的通态电阻、更好的导热性能和热稳定性以及更强的耐受高温和射线辐射的能力等。当前宽禁带半导体器件的发展一直受制于材料的提炼、制造以及半导体的制造工艺水平,尚处于起步阶段。目前,我国在应用宽禁带半导体方面也进行了初步的研究。宽禁带半导体在照明中应用已形成一定规模,2017年我国氮化物半导体照明产业的产值突飞猛进,突破了5000亿。同时,微波毫米波器件已开始应用于通讯、卫星通信、对抗、雷达等领域。未来,宽禁带半导体将在新能源汽车、电力转换等行业有着越来越广泛的应用。由此可见,宽禁带半导体技术是我们从事电力电子技术研究的一个重要方面。

2电力电子技术在我国电力机车牵引电传动系统中的应用

我国电力机车牵引电传动系统的发展是一个持续改进、不断进步的过程。随着电力电子技术的不断更新换代,我国电力机车牵引电传动系统主要经历两个阶段,依次为交直传动系统和交直交传动系统。2.1在交直传动电力机车中的应用。株洲电力机车厂于1958年试制成功6Y1电力机车,这是我国第1台电力机车。1968年,株洲电力机车厂成功研制SS1型电力机车。SS1型电力机车采用了有极调压、交直传动系统,从此我国电力机车电传动技术进入到交直传动时期。随着晶闸管的问世,电力机车传动系统上升了一个新的台阶,1978年株洲电力机车厂和电力机车研究所合作研制成功SS3型电力机车,此机车采用晶闸管级间相控调压与牵引变压器低压侧调压开关分级相结合的平滑调压调速技术,因此该机车调速性能得到极大的改善,标志着我国电力机车牵引电传动系统进入相控无极调压的时期。我国于1985年成功开发的SS4型机车,此机车采用相控无级调压、交直传动,是我国相控机车的典型代表,意味着我国相控技术成熟应用到机车电传动领域,与后续开发的SS5、SS6、SS7、SS8及SS9型电力机车等一起组成了系列电力机车。此系列机车采用相控整流调压、交直传动系统,标志我国交直传动系统电力机车已达到相当成熟的时期。2.2在交直交传动电力机车中的应用。随着新型电力电子器件应用及控制技术不断创新,我国电力机车经历技术探索、消化吸收、自主开发等几个阶段,完成了多种交流传动电牵引传动系统的开发,如大功率GTO牵引变流器、IGBT牵引变流器。1995年,我国完成了第一台1000kW交直交传动地面试验系统的核心部件变流器的研制,其采用了门极可关断晶闸管,为我国交流传动机车的研制提供了技术准备。2001年株洲电力机车研究所与株洲电力机车厂研制成功我国第一种拥有自主知识产权的交流传动电力机车———“奥星”号客运电力机车,采用我国自主研制的GTO水冷牵引变流器。IGBT自1982年问世起经历了30年的不断升级与优化,在高耐压、大电流、低饱和压降、高频化及可靠性等方面得到了很大提升,电力机车交流传动系统性能及可靠性随之也得到极大提升。在轨道交通领域,IGBT已逐步取代GTO。IGBT在我国和谐系列电力机车的应用实现了多频率的交流电牵引驱动,实现了铁路机车牵引动力的优化升级。由于和谐系列电力机车牵引变流器采用PWM技术,其功率因数接近于1.0,明显高于韶山型电力机车。PWM技术在和谐电力机车的牵引电传动系统中的应用大幅度地减少了变流器谐波电流对电网的污染,使接触网的供电品质更好,优化铁路机车牵引与制动之间的关系。由于SiC功率器件发明,SiC功率器件在电力机车牵引电传动系统的应用研究越来越受到重视。研究表明:与传统硅基功率器件相比,SiC功率器件提升系统多方面性能,如体积和重量的改善,提高系统整体性能;系统谐波的改善,提升系统效率。

3结语

电力电子技术与电力机车牵引电传动系统关系密切,两者是相互支撑和相互促进的协同关系。电力电子器件的发展支撑着机车牵引电传动新技术的应用,同时,电力机车牵引电传动技术会促进IGBT的优化与新型半导体器件的开发。与硅基半导体相比,宽禁带半导体具有高耐压、低通态电阻、更好的导热性能和热稳定性等。但是,宽禁带半导体器件的材料的提炼、制造以及半导体制造工艺的困难,宽禁带半导体的开发是亟待解决的问题。由于电力机车技术的不断发展,电力机车牵引电传动系统在大容量、高频化、集成化等方面提出了更高的要求,这也将大力推动电力电子器件快速发展。优化改型IGBT和SiC功率器件在电力机车上的应用研究是未来研究的趋势。

参考文献:

[1]张大勇.电力电子技术发展与电气牵引创新[J].机车电传动,2014(5):1-5.

[2]关国华.SiC功率器件在电力牵引系统的应用研究[J].现代城市轨道交通,2018(08):1-4.

[3]杨易.电力电子技术与铁路机车牵引动力的发展[J].科技创新与应用,2016(16):71.

[4]钱照明,张军明,盛况.电力电子器件及其应用的现状和发展[J].中国电机工程学报,2014,34(29):5149-5161.

传动技术范文篇9

关键词:机械设计制造;液压传动控制系统;应用

液压机械传动控制系统是一种流体传动与控制技术有效结合的先进技术,其主要包括动力元件、液压元件、控制元件和液压辅助元件[1]。该系统采用液体作为能量传动以及控制的有效介质,并由元件回路控制对能量进行传递。目前该系统已在诸多领域得到广泛应用,特别是机械设计制造领域已离不开液压机械传动控制系统的大量使用,其也促使机械设计制造领域的不断发展,因此研究液压机械传动控制系统在机械设计制造中的实际应用情况意义重大。

一、液压机械传动控制系统的优缺点

1.液压机械传动控制系统的优点

液压机械传动控制系统的优点可以归纳为以下4点:首先是功率高,液压机械传动控制系统主要由动力元件、液压元件、控制元件和液压辅助元件等组成。与传统的液压传动和机械传动相比,这种系统的液压机械传动功率相对较大,同时这种系统引入了微电子技术,使得该系统的功能集成化程度高,可在较小空间内达到功率有效控制。其次是小型化,这是由于液压机械传动控制系统的各元件高度集成化的特点,使得该系统小型化、轻质化发展。同时由于系统内部各元件的相互协作性较好,也使得该系统可操作程度高,可针对不同的工作要求进行有效的液压机械传动。接下来是稳定性好。这种液压机械传动控制系统实际应用可将机械工作过程中产生的热量通过液压油流动传递,可有效降低系统温度,避免系统局部过热的情况,进而保证机械的使用稳定性。同时由于上述原因,该系统也可用于低速重载条件的液压机械传动。最后是自动换挡功能,为了使得操作人员根据相关要求对机械进行简便灵活操作,提高机械工作效率,可使用这种液压机械传动系统。该系统具有自动换挡功能,可根据实际工作条件和机械运行要求的不同进行有效的挡位自动调节,方便操作人员进行工作装置的操作,不要考虑挡位操作的问题,可降低机械工作中的操作失误概率,进而实现整体机械的工作效率。

2.液压机械传动控制系统的缺点

液压机械传动控制系统的缺点主要包括以下5个方面:首先是液压系统漏油问题,这是液压机械传动控制系统的重要缺点之一,其严重影响整个传动控制系统的稳定性和正确性。这种液压系统漏油问题使得液压机械传动的传动比率波动性大,达不到相关液压机械传动控制要求,严重影响液压传动系统的稳定运行和传动控制的正确性,该缺点也会对整个机械工作状态造成不利效果,使得机械工作效率低,同时由于这种原因,该系统不适宜长距离传动。其次是温度变化问题,通常系统内的温度变化会直接影响到系统的运动特性。这种液压机械运动控制系统对温度要求较高,当系统温度升高时,系统内的液体粘度发生变化,使得系统的运动特性也随之改变,进而影响机械的工作稳定性。因此该系统运行过程中应对温度变化进行重点监控,防止机械运行因温度变化造成的偏差问题。再次是故障的检查和排除难度大,液压机械传动控制系统的故障检查和排除工作量和难度较大。该系统正常运行时,液压元件运行产生的金属粉末容易引起机械设备故障问题,而系统外的粉尘的大量附着到机器设备上,也会对系统的运行稳定性造成严重影响。对于系统而言,这些金属粉末和粉尘通常是不可避免,其也增加了故障的检查和排除工作量和难度。最后是清扫工作,实际运行时,液压机械运动控制系统容易由于一些外界因素干扰,使得系统的稳定性和运行结果得不到保障,因此需要在系统实际运行前进行全面的清扫工作,尽可能的避免外界因素对系统的干扰。

二、液压机械传动控制系统在机械设计及制造中的具体应用

1.液压机械传动控制系统的应用特点

根据液压机械传动控制系统的高度集成化特点,其可有效满足不同行业对机械设计及制造的规模、功率、精度和工作效率的严格要求。而小型化、轻质化的特点也使得该系统可应用在不同施工环境和施工条件。在机械设计和制造领域,液压机械运动控制系统可以根据自身特点有效弥补传统传动系统的不足,同时该系统的大量应用可降低机械设计和制造的难度,提高机械制造精度和缩短制造周期。液压机械传动控制系统将自动化控制技术实际应用到机械设计和制造领域,其可加快机械设计和制造的自动化进程,同时自动化也是未来机械设计和制造的研究开发的重要方向[2]。这种应用可有效控制产品质量以及提高生产效率,实际满足机械产品的行业需求。目前液压机械传动控制系统也广泛应用在国防、农业、冶金和煤矿等众多行业。

2.液压传动无级变速器

机械设计制造中,可采用液压机械传动控制系统来实现对其速度的有效控制,也就是无级变速技术。一般而言,该液压系统正常运行需要使用变量泵以及定量马达。当系统工作时,通过发动机将动力分离,其中一部分顺着离合器传送给行星架,而另一部分则是经过液压系统到达太阳轮,这两部分动力通过差动轮系部分进行有效合成后,再通过差动轮系的齿圈对外输出。通常实际机械工作前需要断开离合器C1,同时闭合C2,使得发动机的全部动力进入液压系统,从而保证机械的正常启动。而机械实际工作时,离合器C1闭合而C2断开,采用控制系统将液压马达的转速降至0,此时发动机的所有动力通过机械系统进行有效传递,其可提高机械工作过程中的动力传递效率,并对系统马达转动方向进行合理调整,进而调节机械工作的输出速度,保证系统在不同速度下的正常运行,进而实现这个机械系统的无级变速。目前这个液压传动无级变速器已实际应用在装载机和推土机上,该装置运行效果良好,可大量应用在工程机械领域。

3.纯水液压机械传动控制系统

目前机械制造业领域中,纯水液压机械传动控制系统是液压传动技术的重要发展方向之一,该系统是科技进步和环境保护的结合产物,其是一种新型的液压传动技术,其采用纯水作为能量传动以及控制的有效介质,这是该系统的最大特点。与液压油相比,纯水价格便宜、制备简单以及来源广泛,可有效降低企业的运营成本,从而提升企业的经济效益。冶金、煤矿等特殊行业,对液压机械传动控制系统要求较高,常规的液压油泄漏容易引起火灾,这严重威胁着企业的安全运营,而纯水具有良好的阻燃性,可防止液压机械传动控制系统液压油泄漏引发的安全问题。与矿物型的液压油相比,纯水的压缩系数较低,使得纯水的压缩损失相对较少。同时常规液压机械传动控制系统的液压油泄漏问题,会对水体和土壤造成严重的污染,这也制约着冶金、煤矿等行业绿色化、可持续化发展,而采用纯水液压机械传动控制系统,其可造成的环境污染程度较低。目前纯水液压机械传动控制系统已在一些行业得到实际应用,该系统污染小、成本低等特点符合我国相关行业环境保护要求,其也是常规液压机械传动控制系统的代替技术,因此纯水液压机械传动控制系统作为机械制造业领域中的热点研究对象,该系统的研究开发以及实际应用前景广阔。

三、液压机械传动控制系统实际应用存在的问题

液压机械传动控制系统采用的技术成熟度的不断提高,也促使着该系统在诸多领域得到广泛的应用,尤其是在机械设计制造领域,其不仅可以降低人工劳动强度,同时也可有效控制相应的企业运行成本。但是当前系统的实际应用还存在一些问题,其中较为突出的问题是当前我国液压机械传动控制系统使用的各种元件基本需从国外进口,如动力元件、液压元件、控制元件和液压辅助元件等[3]。与发达国际相比,我国制造的元件在强度和精度方面均较为落后,而系统正常运行时,系统需要这些元件的相互协作才能完成相关工作,因此这些元件的质量严重影响着整个液压机械传动控制系统的完善性和功能性。如这些元件的质量达不到相关要求,可能造成系统运行的不稳定和低功能性。因此为了实现液压机械传动控制系统在各领域的大规模应用,需要对液压机械传动控制系统的各种元件实现国产化,并通过国外技术引进和自主创新,保证相关元件的强度和精度达到系统要求,有效提升相关元件的功能性和适应性,优化和改善液压机械运动控制技术,实现液压机械运动控制系统运行的稳定性,从而带动机械设计制造领域和相关领域的深入发展。

四、结语

通过本文对液压机械传动控制系统优缺点的阐述,以及该系统的实际应用情况和存在的问题的分析来看。液压机械传动控制系统作为一种新型的液压传动技术,其可有效的提高机械的工作效率和能源利用率,保证机械工作质量以及实现企业经济效益的有效提升。目前该系统已在诸多领域得到广泛应用,但是应用过程中仍存在一些问题,随着液压传动技术的不断完善以及这些问题的及时处理,液压机械传动控制系统应用前景将会更加广阔。

作者:岑名熹 单位:西京学院

参考文献:

传动技术范文篇10

关键词:数控液压伺服系统数控改造

一、引言

液压控制技术是以流体力学、液压传动和液力传动为基础,应用现代控制理论、模糊控制理论,将计算机技术、集成传感器技术应用到液压技术和电子技术中,为实现机械工程自动化或生产现代化而发展起来的一门技术,它广泛的应用于国民经济的各行各业,在农业、化工、轻纺、交通运输、机械制造中都有广泛的应用,尤其在高、新、尖装备中更为突出。随着机电一体化的进程不断加快,技术装各的工作精度、响应速度和自动化程度的要求不断提高,对液压控制技术的要求也越来越高,文章基于此,首先分析了液压伺服控制系统的工作特点,并进一步探讨了液压传动的优点和缺点和改造方向。

二、液压伺服控制系统原理

目前以高压液体作为驱动源的伺服系统在各行各业应用十分的广泛,液压伺服控制具有以下优点:易于实现直线运动的速度位移及力控制,驱动力、力矩和功率大,尺寸小重量轻,加速性能好,响应速度快,控制精度高,稳定性容易保证等。

液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。

综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。

在液压伺服控制系统中,控制信号的形式有机液伺服系统、电液伺服系统和气液伺服系统。机液伺服系统中系统的给定、反馈和比较环节采用机械构件,常用于飞机舵面操纵系统、汽车转向装置和液压仿形机床及工程机械。但反馈机构中的摩擦、间隙和惯性会对系统精度产生不利影响。电液伺服系统中误差信号的检测、校正和初始放大采用电气和电子元件或计算机,形成模拟伺服系统、数字伺服系统或数字模拟混合伺服系统。电液伺服系统具有控制精度高、响应速度高、信号处理灵活和应用广泛等优点,可以组成位置、速度和力等方面的伺服系统。

三、液压传动帕优点和缺点

液压传动系统的主要优点液压传动之所以能得到广泛的应用,是因为它与机械传动、电气传动相比,具有以下主要优点:

1液压传动是由油路连接,借助油管的连接可以方便灵活的布置传动机构,这是比机械传动优越的地方。例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。由于液压缸的推力很大,且容易布置。在挖掘机等重型工程机械上已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。

2液压传动装置的重量轻、结构紧凑、惯性小。例如相同功率液压马达的体积为电动机的12%~13%。液压泵和液压马达单位功率的体积目前是发电机和电动机的1/10,可在大范围内实现无级调速。借助阀或变量泵、变量马达可实现无级调速,调速范围可达1:2000,并可在液压装置运行的过程中进行调速。

3传递运动均匀平稳,负载变化时速度较稳定。因此,金属切削机床中磨床的传动现在几乎都采用液压传动。液压装置易于实现过载保护,使用安全、可靠,不会因过载而造成主件损坏:各液压元件能同时自行润滑,因此使用寿命长。液压传动容易实现自动化。借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易的实现复杂的自动工作循环,而且可以实现遥控。液压元件己实现了标准化、系列化、和通用化,便于设计、制造和推广使用。

液压传动系统的主要缺点:1液压系统的漏油等因素,影响运动的平稳性和正确性,使液压传动不能保证严格的传动比:2液压传动对油温的变化比较敏感,温度变化时,液体勃性变化引起运动特性变化,使工作稳定性受到影响,所以不宜在温度变化很大的环境条件下工作:3为了减少泄漏以及满足某些性能上的要求,液压元件制造和装配精度要求比较高,加工工艺比较复杂。液压传动要求有单独的能源,不像电源那样使用方便。液压系统发生的故障不易检查和排除。

总之,液压传动的优点是主要的,随着设计制造和使用水平的不断提高,有些缺点正在逐步加以克服。

四、机床数控改造方向

(一)加工精度。精度是机床必须保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个极为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置检测元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈检测元件的精度对系统的精度常常起着决定性的作用。在设计数控机床、尤其是高精度或太中型数控机床时,必须精心选用检测元件。所选择的测量系统的分辨率或脉冲当量,一般要求比加工精度高一个数量级。总之,高精度的控制系统必须有高精度的检测元件作为保证。公务员之家

(二)先局部后整体。确定改造步骤时,应把整个电气设备部分改造先分成若干个子系统进行,如数控系统、测量系统、主轴、进给系统、面板控制与强电部分等,待各系统基本成型后再互联完成全系统工作。这样可使改造工作减少遗漏和差错。在每个子系统工作中,应先做技术性较低的、工作量较大的工作,然后做技术性高的、要求精细的工作,做到先易后难、先局部后整体,有条不紊、循序渐进。

(三)提高可靠性。数控机床是一种高精度、高效率的自动化设备,如果发生故障其损失就更大,所以提高数控机床的可靠性就显得尤为重要。可靠度是评价可靠性的主要定量指标之一,其定义为:产品在规定条件下和规定时间内,完成规定功能的概率。对数控机床来说,它的规定条件是指其环境条件、工作条件及工作方式等,例如温度、湿度、振动、电源、干扰强度和操作规程等。这里的功能主要指数控机床的使用功能,例如数控机床的各种机能,伺服性能等。