沉桩范文10篇

时间:2023-04-05 19:45:59

沉桩范文篇1

潍坊港中港区西作业区#24、#25液化品泊位工程位于莱州湾南岸白浪河入海口的西侧,该工程设计为PHC桩高桩码头,PHC桩沉桩自2014年12月27日试桩,2015年7月17日全部完成。中间跨越冬季施工,施工难度较大,该工程目前已投产运营。

2工艺流程及操作要点

2.1工艺流程。施工准备→打桩船就位→运桩船就位→打桩船移船吊桩→桩入龙口→打桩架倾角调整→打桩船船载GPS定位→全站仪校核桩位→稳桩压锤→锤击沉桩→沉桩数据记录→测量验收→验收合格进入下一循环。2.2操作要点。2.2.1打桩船驻位。施工前,要对打桩船的锚机、锚缆进行检验调整,以满足施工要求。施工中用起锚艇辅助下锚布缆,船艏抽心缆放在打桩顺序的下游方向,并采用浮筒等作为锚漂,避免吊桩移船时别桩。2.2.2桩垫及锤垫。为避免PHC管桩在施工时出现桩顶打裂现象,每根PHC管桩打设前均需安放桩垫。桩垫由20cm厚瓦楞纸裁剪压制而成,裁剪压实后用胶带缠满,防止松散及浸水。本工程因地质条件变化较大,锤击数较高,故每根桩都至少放2个桩垫,在锤击数过高桩位在沉桩过程中,会增加桩垫个数。2.2.3PHC桩的起吊、吊立、进龙口。锚缆布设完毕,移船靠近运桩驳取桩。在起吊前,应对照出厂合格证逐根进行桩身检测,确保桩身完整。起吊时,采用四点吊,以降低桩身弯曲失高。为防止起吊时对桩身带来损伤,必须严格按吊点位置捆钢丝绳,捆桩采用自锁压扣法。打桩船吊桩就位时,大小钩水平起吊桩离驳,移船就位,同时掂小钩起大钩,使桩竖直靠在龙口前,解掉小钩,使桩竖直进入龙口,扣牢抱紧器,桩顶放好桩垫带上替打,收紧锚缆吊立后将桩进至龙口,在进龙口前,应将龙口内的桩锤及替打吊至最高位,以满足桩在龙口内的所需高度,严防移船时桩尖拖泥而伤桩。2.2.4沉桩定位。沉桩过程中,应注意以下要点:1)GPS沉桩定位。GPS在打桩船上进行沉桩定位,定位前,要先测量接收机的相互关系尺寸,采用“上海达恒水上GPS沉桩定位系统”,由3台固定在打桩船上的GPS流动站配备工程定位软件,将GPS接收机接收的大地坐标系统转换到施工坐标系统。施工准备阶段提前将基桩定位标高处坐标、高程、斜率、扭角等参数输入定位软件。2)常规方法定位校核。采用1台免棱镜全站仪进行定位校核。施工前,提前布设现场控制网,并在打每根斜桩前设置打设该桩位的临时控制点。打桩船将待沉桩依靠自身定位系统定位完毕后,项目部测量人员将全站仪架设在控制点上,将桩体左切和右切进行角度观测,取2个角度的平均值,然后将仪器转到这个角度,以保证测点和仪器能够对应桩中心位置,这样可以将测点坐标经过现场计算转换为所测标高处桩中心坐标。2.2.5下桩、稳桩、压锤。测量定位后进行基桩下沉,下桩过程中,钢丝绳由下向上逐根解除,若下桩过程中桩身出现小幅度偏位,则要采取纠偏措施,适当调整,但绝不能死拉硬拖。在套桩帽前桩顶垫上桩垫,以防止锤击过程中对桩顶造成损伤,因桩垫在锤击过程中要压缩,因此,在施打时视其程度及时调整桩垫厚度。2.2.6锤击沉桩。各项准备工作做好后准备开锤,本工程设计要求采用D100柴油锤,并采用2挡沉桩,应采取重锤轻击的沉桩方式。若出现溜桩,则二次压锤,避免盲目跟锤施打,进入正常锤击时,按设计要求可将档位调整至3挡。在施打过程中,应通过全站仪观测桩身所画刻度线,边观测边记录锤击数,当桩顶即将达到设计标高且最后10cm锤击数平均每锤贯入度在5~10mm,并连续3阵均达到该贯入度(防止因地质原因有土质夹层影响贯入度),即停止沉桩。

3实践中的经验教训

3.1优化地锚布置,避免缆绳割桩。本工程离岸较近,设计扭角多且较大,沉桩过程中极易造成缆绳割桩。为避免缆绳割桩,本工程根据桩基扭角合理加密布设地锚。为此,在个别桩位加密布设地锚,地锚间距以30m为宜,进而降低割桩概率。在打桩船吊桩定位过程中若出现割桩现象,应及时调缆或移锚,坚决杜绝在割桩情况下强行沉桩。3.2及时更换锤垫,降低桩顶破损率。桩垫与锤垫在沉桩过程中都起到缓冲作用,锤垫一般选用钢丝绳。规范要求锤击数在80000~100000击更换钢丝绳,但应根据现场实际沉桩情况,若单桩锤击数普遍偏高,则锤垫磨损会较大,50000~60000击就应更换。沉桩时也可根据锤垫厚度变化及时更换锤垫。本工程因锤击数普遍偏高,平均在2000锤以上,故锤垫更换频次较高。及时更换锤垫对桩头保护起到较大作用,在后续类似施工中应重点关注[1~3]。3.3科学合理制定停锤标准。通常情况下规范要求停锤标准较为笼统,不同地质条件应根据图层分布督促设计做出较为详细的停锤标准,以保证沉桩质量。本工程中当单桩锤击数高于3000,但距设计标高还相差较多时,应让设计细化最后10m在多少击情况下可以停锤,通常情况下最后10m如果高于1500锤应停止锤击,以保证桩身完整性。

4结语

本文详细叙述了沉桩过程中各个环节的操作要点,针对本工程叉桩多、斜率大、扭角大、锚缆容易割桩、地质条件复杂(中间个别土层标贯击数达42击)、自然条件恶劣以及跨越冬季施工等问题给出了详细的解决方案,通过以上措施,沉桩效率不断提高,在该种地质条件极度恶劣,单桩锤击数均在2000锤以上的情况下,单日沉桩数量为9~10根,提高了沉桩效率;经过加设地锚及变更桩位扭角等措施,有效避免了缆绳割桩等问题,已沉桩质量得到保障;通过桩垫及锤垫的及时更换,降低了桩头破损率,保证了桩身完整性,提高了沉桩质量。

【参考文献】

【1】JTS167-4—2012港口工程桩基规范[S].

【2】JTS167-4—2010高桩码头设计与施工规范[S].

沉桩范文篇2

关键词:桩;基础;施工

一、前言

静压法施工是通过静力压桩机的压桩机构以压桩机自重和机架上的配重提供反力而将桩压人士中的沉桩工艺。由于这种方法具有无噪音、无振动、无冲击力等优点,适应今后对绿色岩土工程的要求}同时压桩桩型一般选用预应力管桩,该桩作基础具有工艺简明,质量可靠,造价低,检测方便的特性。

二、静压桩沉桩机理

沉桩施工时,桩尖“刺入”土体中时原状土的初应力状态受到破坏,造成桩尖下土体的压缩变形,土体对桩尖产生相应阻力,随着桩贯人压力的增大,当桩尖处土体所受应力超过其抗剪强度时,土体发生急剧变形而达到极限破坏。土体产生塑性流动(粘性土)或挤密侧移和下拖(砂土),在地表处,粘性土体会向上隆起,砂性土则会被拖带下沉。在地面深处由于上覆土层的压力,土体主要向桩周水平方向挤开,使贴近桩周处土体结构完全破坏。由于较大的辐射向压力的作用也使邻近桩周处土体受到较大扰动影响,此时,桩身必然会受到土体的强大法向抗力所引起的桩周摩阻力和桩尖阻力的抵抗,当桩顶的静压力大于沉桩时的这些抵抗阻力,桩将继续“刺入”下沉。反之,则停止下沉。

压桩时,地基土体受到强烈扰动,桩周土体的实际抗剪强度与地基土体的静态抗剪强度有很大差异。随着桩的沉人,桩与桩周土体之间将出现相对剪切位移,由于土体的抗剪强度和桩土之间的粘着力作用,土体对桩周表面产生摩阻力。当桩周土质较硬时,剪切面发生在桩与土的接触面上-当桩周土体较软时,剪切面一般发生在邻近于桩表面处的土体内,粘性土中随着桩的沉人,桩周土体的抗剪强度逐渐下降,直至降低到重塑强度。砂性土中,除松砂外,抗剪强度变化不大,各土层作用于桩上的桩侧摩阻力并不是一个常值,而是一个随着桩的继续下沉而显著减少的变值,桩下部摩阻力对沉桩阻力起显著作用,其值可占沉桩阻力的50%~80%,它与桩周处土体强度成正比,与桩的人士深度成反比。

粘性土中,桩尖处士体在扰动重塑、超静孔降水压力作用下,土体的抗压强度明显下降。

一般将桩摩阻力从上到下分成3个区:上部柱穴区,中部滑移区,下部挤压区。施工中因接桩或其它因素影响而暂停压桩的间歇时间的长短虽对继续下沉的桩尖阻力无明显影响,但对桩侧摩阻力的增加影响较大,桩侧摩阻力的增大值与间歇时间长短成正比,并与地基土层特性有关,因此在静压法沉桩中,应合理设计接桩的结构和位置,避免将桩尖停留在硬土层中进行接桩施工。

三、终压力与极限承载力

在静压桩施工完成后,土体中孔隙水压力开始消散,土体发生固结强度逐渐恢复,上部桩柱穴区被充满,中部桩滑移区消失,下部柱挤压区压力减小。这时桩才开始获得了工程意义上的极限承载力。从大量的工程实践看,粘性土中长度较长的静压桩其最终的极限承载力比压桩施工时的终压力要大,在某些土体固结系数较高的软土地区,静压桩最后获得的单桩竖向极限承载力可比终压力值高出一二倍,但是粘性土中的短桩,土体强度经一段时间的恢复,摩阻力虽有提高,但因桩身短。侧摩阻力占桩的极限承载力的比例差异不大,最终极限承载力达不到桩的终压力。因此桩的终压力与极限承载力是两个不同的概念,一些初接触静压桩的设计、施工人员往往将两者混为一谈。两者数值上不一定相等,主要与桩长、桩周土及桩端土的性质有关,但两者也有一定的联系。汕头市总结本地经验提出了自己的做法,对一些设计承载力较高的工程,终压力值宜尽量达到设计取值的1,5~1,7倍,并视土质及布桩情况考虑复压-对于14~21m的中长桩,终压力控制在设计值的1,7~2倍以上,宜复压3次I而小于14m的短桩,终压力控制在设计值的2—2,5倍以上,并复压3—5次。

四、常见质量事故分析及处理

总结土木建筑学会近年对一些静压桩工地质量事故进行咨询处理的一些案例,如白云区萧岗的华建苑工程,中山大学住宅楼工程,农垦公司住宅楼工程,晓港中干警宿舍,世纪广场商住楼工程等等,可以发现一些常见问题。

4.1桩身上拍由于静压桩是挤土桩,在场地桩数量较多,桩距较密的情况下,时常后压的柱会对已压的桩产生挤压上抬,特别对于短桩,易形成所谓的吊脚桩。这种桩在做静载试验时,开始沉降较大,曲线较陡,但当桩尖达到持力层,承载力又有明显增加,沉降曲线又趋于平缓,这是桩身上抬的典型曲线。桩身上抬除了静载沉降偏大外,对桩而言可能会把接头拉断,桩尖脱空,同时大大增加对四周桩的水平挤压力,导致桩倾斜偏位。在处理上施工前合理安排压桩顺序,同一单体建筑物一般要求先压场地中央的桩,后压周边的桩。先压持力层较深的桩,后压较浅的桩。出现桩身上抬后一般采用复压的办法使桩基按正常使用,但对承受水平荷载的基础要慎重。

4.2引孔压桩的问题为了防止桩间的挤土效应太大,或土质太硬而使桩身较短,施工中往往采用引孔压桩的工艺,即先钻比管桩略小规格的直径钻孔,深度是桩长的(2/3~1)L,然后将管桩沿预钻孔压下去。引孔应随引随压。中间间隔时间不宜大长,否则孔内积水,一是会软化桩端土,待水消散后孔底会留有一定空隙。二是积水往桩外壁冒,削弱了桩的侧摩阻力。

对于较硬土质中引孔压桩还会有桩尖达不到引孔孔底的现象,施工完成后孔底积水使土俸软化,使承载力达不到设计要求。

4.3桩端封口不实当桩尖有缝隙,地下水水头差的压力可使桩外的水通过缝隙进人桩管内腔,若桩尖附近的土质是泥质土,遇水易软化,从而直接影响桩的承载力。对于桩靴的焊接质量要求与端板间无间隙、错位,保证焊缝饱满,无气孔。施焊对称进行,焊拉时间控制得当,焊接完成后自然冷却10分钟左右方可施打,因高温焊缝遇水后变脆。容易开裂。工程上比较有效的补救技术措施是采用“填芯混凝土”法,即在管桩施压完毕后立即灌入高度为1,2m左右的C20细石混凝土封底,桩端不漏水,桩端附近水压平衡,桩端土承受三相压力,承载力能保持稳定。

4.4桩顶(底)开裂由于目前压桩机越来越大,最重可达6800KN,对于较硬土质,管桩有可能仍然压不到设计标高,在反复复压情况下,管桩桩身横向产生强烈应力,如果桩还是按常规配箍筋,桩顶混泥土抗拉不足开裂,产生垂直裂缝,为处理带来很大困难。另一种情况就是管桩由软弱土层突然进入硬持力层,没有经过渡层,桩机油压迅速升高,桩身受到瞬间冲击力也容易引起桩顶开裂,如果硬持力层面不平整,桩靴卡不进土引起桩头折断破碎,桩机油压又下降,再压时压力不稳定,吊线测量桩长发现比人士部分短。处理上事前改进桩尖形式(圆锥形桩尖易滑),事后用压力灌浆把桩底破碎混凝土粘结住,适当折减承载力设计值。

4,5基坑开挖由于静压桩逐渐用在高层建筑中,基坑开挖不可避免。应根据开挖深度考虑是否需要先围护开挖再沉桩的方案。边打桩边开挖是不可取的,先打桩后开挖应考虑对称均匀,如在中间开挖把土堆在周围就会造成四周和中心的土体高差悬殊,同时超孔隙水压及震动会使管桩倾斜或折断,所以合理制定基坑开挖方案是必不可少的。

沉桩范文篇3

关键词:桩;基础;施工

1前言

静压法施工是通过静力压桩机的压桩机构以压桩机自重和机架上的配重提供反力而将桩压人士中的沉桩工艺。由于这种方法具有无噪音、无振动、无冲击力等优点.适应今后对绿色岩土工程的要求}同时压桩桩型一般选用预应力管桩,该桩作基础具有工艺简明,质量可靠,造价低,检测方便的特性。

2静压桩沉桩机理

沉桩施工时,桩尖“刺入”土体中时原状土的初应力状态受到破坏,造成桩尖下土体的压缩变形,土体对桩尖产生相应阻力,随着桩贯人压力的增大,当桩尖处土体所受应力超过其抗剪强度时,土体发生急剧变形而达到极限破坏。土体产生塑性流动(粘性土)或挤密侧移和下拖(砂土),在地表处,粘性土体会向上隆起,砂性土则会被拖带下沉。在地面深处由于上覆土层的压力,土体主要向桩周水平方向挤开,使贴近桩周处土体结构完全破坏。由于较大的辐射向压力的作用也使邻近桩周处土体受到较大扰动影响,此时,桩身必然会受到土体的强大法向抗力所引起的桩周摩阻力和桩尖阻力的抵抗,当桩顶的静压力大于沉桩时的这些抵抗阻力,桩将继续“刺入”下沉。反之,则停止下沉。

压桩时,地基土体受到强烈扰动,桩周土体的实际抗剪强度与地基土体的静态抗剪强度有很大差异。随着桩的沉人,桩与桩周土体之间将出现相对剪切位移,由于土体的抗剪强度和桩土之间的粘着力作用,土体对桩周表面产生摩阻力。当桩周土质较硬时,剪切面发生在桩与土的接触面上-当桩周土体较软时,剪切面一般发生在邻近于桩表面处的土体内,粘性土中随着桩的沉人,桩周土体的抗剪强度逐渐下降,直至降低到重塑强度。砂性土中,除松砂外,抗剪强度变化不大,各土层作用于桩上的桩侧摩阻力并不是一个常值,而是一个随着桩的继续下沉而显著减少的变值.桩下部摩阻力对沉桩阻力起显著作用,其值可占沉桩阻力的50%~80%,它与桩周处土体强度成正比,与桩的人士深度成反比。

粘性土中,桩尖处士体在扰动重塑、超静孔降水压力作用下,土体的抗压强度明显下降。

一般将桩摩阻力从上到下分成3个区:上部柱穴区,中部滑移区,下部挤压区。施工中因接桩或其它因素影响而暂停压桩的间歇时间的长短虽对继续下沉的桩尖阻力无明显影响,但对桩侧摩阻力的增加影响较大,桩侧摩阻力的增大值与间歇时间长短成正比,并与地基土层特性有关,因此在静压法沉桩中,应合理设计接桩的结构和位置,避免将桩尖停留在硬土层中进行接桩施工。

3终压力与极限承载力

在静压桩施工完成后,土体中孔隙水压力开始消散,土体发生固结强度逐渐恢复,上部桩柱穴区被充满,中部桩滑移区消失,下部柱挤压区压力减小。这时桩才开始获得了工程意义上的极限承载力。从大量的工程实践看,粘性土中长度较长的静压桩其最终的极限承载力比压桩施工时的终压力要大,在某些土体固结系数较高的软土地区,静压桩最后获得的单桩竖向极限承载力可比终压力值高出一二倍,但是粘性土中的短桩,土体强度经一段时间的恢复,摩阻力虽有提高,但因桩身短。侧摩阻力占桩的极限承载力的比例差异不大,最终极限承载力达不到桩的终压力。因此桩的终压力与极限承载力是两个不同的概念,一些初接触静压桩的设计、施工人员往往将两者混为一谈。两者数值上不一定相等,主要与桩长、桩周土及桩端土的性质有关,但两者也有一定的联系。汕头市总结本地经验提出了自己的做法,对一些设计承载力较高的工程,终压力值宜尽量达到设计取值的1.5~1.7倍,并视土质及布桩情况考虑复压-对于14~21m的中长桩,终压力控制在设计值的1.7~2倍以上,宜复压3次I而小于14m的短桩,终压力控制在设计值的2—2.5倍以上,并复压3—5次。

4常见质量事故分析及处理

总结土木建筑学会近年对一些静压桩工地质量事故进行咨询处理的一些案例,如白云区萧岗的华建苑工程,中山大学住宅楼工程,农垦公司住宅楼工程,晓港中干警宿舍,世纪广场商住楼工程等等,可以发现一些常见问题。

4.1桩身上拍

由于静压桩是挤土桩,在场地桩数量较多,桩距较密的情况下,时常后压的柱会对已压的桩产生挤压上抬,特别对于短桩,易形成所谓的吊脚桩。这种桩在做静载试验时,开始沉降较大,曲线较陡,但当桩尖达到持力层,承载力又有明显增加,沉降曲线又趋于平缓,这是桩身上抬的典型曲线。桩身上抬除了静载沉降偏大外,对桩而言可能会把接头拉断,桩尖脱空.同时大大增加对四周桩的水平挤压力,导致桩倾斜偏位。在处理上施工前合理安排压桩顺序,同一单体建筑物一般要求先压场地中央的桩,后压周边的桩。先压持力层较深的桩,后压较浅的桩。出现桩身上抬后一般采用复压的办法使桩基按正常使用,但对承受水平荷载的基础要慎重。

4.2引孔压桩的问题为了防止桩间的挤土效应太大,或土质太硬而使桩身较短,施工中往往采用引孔压桩的工艺,即先钻比管桩略小规格的直径钻孔,深度是桩长的(2/3~1)L,然后将管桩沿预钻孔压下去。引孔应随引随压。中间间隔时间不宜大长.否则孔内积水,一是会软化桩端土,待水消散后孔底会留有一定空隙。二是积水往桩外壁冒,削弱了桩的侧摩阻力。

对于较硬土质中引孔压桩还会有桩尖达不到引孔孔底的现象,施工完成后孔底积水使土俸软化,使承载力达不到设计要求。

4.3桩端封口不实

当桩尖有缝隙,地下水水头差的压力可使桩外的水通过缝隙进人桩管内腔.若桩尖附近的土质是泥质土,遇水易软化,从而直接影响桩的承载力。对于桩靴的焊接质量要求与端板间无间隙、错位,保证焊缝饱满,无气孔。施焊对称进行,焊拉时间控制得当.焊接完成后自然冷却10分钟左右方可施打,因高温焊缝遇水后变脆。容易开裂。工程上比较有效的补救技术措施是采用“填芯混凝土”法.即在管桩施压完毕后立即灌入高度为1.2m左右的C20细石混凝土封底,桩端不漏水,桩端附近水压平衡,桩端土承受三相压力.承载力能保持稳定。

4.4桩顶(底)开裂

由于目前压桩机越来越大,最重可达6800KN,对于较硬土质,管桩有可能仍然压不到设计标高,在反复复压情况下,管桩桩身横向产生强烈应力,如果桩还是按常规配箍筋,桩顶混泥土抗拉不足开裂,产生垂直裂缝,为处理带来很大困难。另一种情况就是管桩由软弱土层突然进入硬持力层,没有经过渡层,桩机油压迅速升高,桩身受到瞬间冲击力也容易引起桩顶开裂,如果硬持力层面不平整,桩靴卡不进土引起桩头折断破碎,桩机油压又下降,再压时压力不稳定.吊线测量桩长发现比人士部分短。处理上事前改进桩尖形式(圆锥形桩尖易滑),事后用压力灌浆把桩底破碎混凝土粘结住.适当折减承载力设计值。

4.5基坑开挖

由于静压桩逐渐用在高层建筑中.基坑开挖不可避免。应根据开挖深度考虑是否需要先围护开挖再沉桩的方案。边打桩边开挖是不可取的,先打桩后开挖应考虑对称均匀.如在中间开挖把土堆在周围就会造成四周和中心的土体高差悬殊.同时超孔隙水压及震动会使管桩倾斜或折断,所以合理制定基坑开挖方案是必不可少的。

沉桩范文篇4

关键词:桩;基础;施工

一、前言

静压法施工是通过静力压桩机的压桩机构以压桩机自重和机架上的配重提供反力而将桩压人士中的沉桩工艺。由于这种方法具有无噪音、无振动、无冲击力等优点,适应今后对绿色岩土工程的要求}同时压桩桩型一般选用预应力管桩,该桩作基础具有工艺简明,质量可靠,造价低,检测方便的特性。

二、静压桩沉桩机理

沉桩施工时,桩尖“刺入”土体中时原状土的初应力状态受到破坏,造成桩尖下土体的压缩变形,土体对桩尖产生相应阻力,随着桩贯人压力的增大,当桩尖处土体所受应力超过其抗剪强度时,土体发生急剧变形而达到极限破坏。土体产生塑性流动(粘性土)或挤密侧移和下拖(砂土),在地表处,粘性土体会向上隆起,砂性土则会被拖带下沉。在地面深处由于上覆土层的压力,土体主要向桩周水平方向挤开,使贴近桩周处土体结构完全破坏。由于较大的辐射向压力的作用也使邻近桩周处土体受到较大扰动影响,此时,桩身必然会受到土体的强大法向抗力所引起的桩周摩阻力和桩尖阻力的抵抗,当桩顶的静压力大于沉桩时的这些抵抗阻力,桩将继续“刺入”下沉。反之,则停止下沉。

压桩时,地基土体受到强烈扰动,桩周土体的实际抗剪强度与地基土体的静态抗剪强度有很大差异。随着桩的沉人,桩与桩周土体之间将出现相对剪切位移,由于土体的抗剪强度和桩土之间的粘着力作用,土体对桩周表面产生摩阻力。当桩周土质较硬时,剪切面发生在桩与土的接触面上-当桩周土体较软时,剪切面一般发生在邻近于桩表面处的土体内,粘性土中随着桩的沉人,桩周土体的抗剪强度逐渐下降,直至降低到重塑强度。砂性土中,除松砂外,抗剪强度变化不大,各土层作用于桩上的桩侧摩阻力并不是一个常值,而是一个随着桩的继续下沉而显著减少的变值,桩下部摩阻力对沉桩阻力起显著作用,其值可占沉桩阻力的50%~80%,它与桩周处土体强度成正比,与桩的人士深度成反比。

粘性土中,桩尖处士体在扰动重塑、超静孔降水压力作用下,土体的抗压强度明显下降。

一般将桩摩阻力从上到下分成3个区:上部柱穴区,中部滑移区,下部挤压区。施工中因接桩或其它因素影响而暂停压桩的间歇时间的长短虽对继续下沉的桩尖阻力无明显影响,但对桩侧摩阻力的增加影响较大,桩侧摩阻力的增大值与间歇时间长短成正比,并与地基土层特性有关,因此在静压法沉桩中,应合理设计接桩的结构和位置,避免将桩尖停留在硬土层中进行接桩施工。

三、终压力与极限承载力

在静压桩施工完成后,土体中孔隙水压力开始消散,土体发生固结强度逐渐恢复,上部桩柱穴区被充满,中部桩滑移区消失,下部柱挤压区压力减小。这时桩才开始获得了工程意义上的极限承载力。从大量的工程实践看,粘性土中长度较长的静压桩其最终的极限承载力比压桩施工时的终压力要大,在某些土体固结系数较高的软土地区,静压桩最后获得的单桩竖向极限承载力可比终压力值高出一二倍,但是粘性土中的短桩,土体强度经一段时间的恢复,摩阻力虽有提高,但因桩身短。侧摩阻力占桩的极限承载力的比例差异不大,最终极限承载力达不到桩的终压力。因此桩的终压力与极限承载力是两个不同的概念,一些初接触静压桩的设计、施工人员往往将两者混为一谈。两者数值上不一定相等,主要与桩长、桩周土及桩端土的性质有关,但两者也有一定的联系。汕头市总结本地经验提出了自己的做法,对一些设计承载力较高的工程,终压力值宜尽量达到设计取值的1,5~1,7倍,并视土质及布桩情况考虑复压-对于14~21m的中长桩,终压力控制在设计值的1,7~2倍以上,宜复压3次I而小于14m的短桩,终压力控制在设计值的2—2,5倍以上,并复压3—5次。

四、常见质量事故分析及处理

总结土木建筑学会近年对一些静压桩工地质量事故进行咨询处理的一些案例,如白云区萧岗的华建苑工程,中山大学住宅楼工程,农垦公司住宅楼工程,晓港中干警宿舍,世纪广场商住楼工程等等,可以发现一些常见问题。

4.1桩身上拍

由于静压桩是挤土桩,在场地桩数量较多,桩距较密的情况下,时常后压的柱会对已压的桩产生挤压上抬,特别对于短桩,易形成所谓的吊脚桩。这种桩在做静载试验时,开始沉降较大,曲线较陡,但当桩尖达到持力层,承载力又有明显增加,沉降曲线又趋于平缓,这是桩身上抬的典型曲线。桩身上抬除了静载沉降偏大外,对桩而言可能会把接头拉断,桩尖脱空,同时大大增加对四周桩的水平挤压力,导致桩倾斜偏位。在处理上施工前合理安排压桩顺序,同一单体建筑物一般要求先压场地中央的桩,后压周边的桩。先压持力层较深的桩,后压较浅的桩。出现桩身上抬后一般采用复压的办法使桩基按正常使用,但对承受水平荷载的基础要慎重。

4,2引孔压桩的问题为了防止桩间的挤土效应太大,或土质太硬而使桩身较短,施工中往往采用引孔压桩的工艺,即先钻比管桩略小规格的直径钻孔,深度是桩长的(2/3~1)L,然后将管桩沿预钻孔压下去。引孔应随引随压。中间间隔时间不宜大长,否则孔内积水,一是会软化桩端土,待水消散后孔底会留有一定空隙。二是积水往桩外壁冒,削弱了桩的侧摩阻力。

对于较硬土质中引孔压桩还会有桩尖达不到引孔孔底的现象,施工完成后孔底积水使土俸软化,使承载力达不到设计要求。

4.3桩端封口不实

当桩尖有缝隙,地下水水头差的压力可使桩外的水通过缝隙进人桩管内腔,若桩尖附近的土质是泥质土,遇水易软化,从而直接影响桩的承载力。对于桩靴的焊接质量要求与端板间无间隙、错位,保证焊缝饱满,无气孔。施焊对称进行,焊拉时间控制得当,焊接完成后自然冷却10分钟左右方可施打,因高温焊缝遇水后变脆。容易开裂。工程上比较有效的补救技术措施是采用“填芯混凝土”法,即在管桩施压完毕后立即灌入高度为1,2m左右的C20细石混凝土封底,桩端不漏水,桩端附近水压平衡,桩端土承受三相压力,承载力能保持稳定。

4.4桩顶(底)开裂

由于目前压桩机越来越大,最重可达6800KN,对于较硬土质,管桩有可能仍然压不到设计标高,在反复复压情况下,管桩桩身横向产生强烈应力,如果桩还是按常规配箍筋,桩顶混泥土抗拉不足开裂,产生垂直裂缝,为处理带来很大困难。另一种情况就是管桩由软弱土层突然进入硬持力层,没有经过渡层,桩机油压迅速升高,桩身受到瞬间冲击力也容易引起桩顶开裂,如果硬持力层面不平整,桩靴卡不进土引起桩头折断破碎,桩机油压又下降,再压时压力不稳定,吊线测量桩长发现比人士部分短。处理上事前改进桩尖形式(圆锥形桩尖易滑),事后用压力灌浆把桩底破碎混凝土粘结住,适当折减承载力设计值。

4.5基坑开挖

由于静压桩逐渐用在高层建筑中,基坑开挖不可避免。应根据开挖深度考虑是否需要先围护开挖再沉桩的方案。边打桩边开挖是不可取的,先打桩后开挖应考虑对称均匀,如在中间开挖把土堆在周围就会造成四周和中心的土体高差悬殊,同时超孔隙水压及震动会使管桩倾斜或折断,所以合理制定基坑开挖方案是必不可少的。

沉桩范文篇5

关键词:预应力管桩;软基;公路;

1工程概况

绍兴至诸暨高速公路第SZTJ03合同段,起点里程为K8+000,终点里程为K17+000,全长计9.000km。路基大部为填方,并为软土路段,其工程地质条件表部分布软塑—可塑状粉质粘土,俗称“硬壳层”,其下分布海相流塑—软塑状淤泥质粉质粘土、粉质粘土等,性质差-较差,做路基时易引起沉降和不均匀沉降,需进行软基处理。针对本合同段工程特点,结合我单位成熟的施工方法,采用了水泥搅拌桩、塑料排水板、塑料套管桩、预应力管桩、贫混凝土灌注桩五种软基处理方案。本文着重从预应力管桩的应用进行探讨。

2工作机理

在加荷初期,桩间土和桩同时受力并发生变形,由于桩和桩间土的刚度相差较大,桩间土下沉量大于桩基,形成桩顶与软土地基顶面少量的沉降差。该沉降差能够导致桩顶一定范围内路堤填料产生应力重分布。大主应力方向发生偏转,大致平行于相邻两桩帽之间的圆拱形连线,从而将此拱形区域内的路堤填料压实,形成一个个拱状的压密壳体,将一部分桩间土路堤的荷载传递于桩帽上,加上钢塑土工格栅变形的提拉作用,将路堤荷载大部分转移到桩托板上,从而减小了桩间土上部的压力。在加筋垫层的作用下,桩基所分配的荷载逐渐增大,进而桩基下沉,如此往复达到两者变形的协调。其桩间土压力数值应是逐渐增加,而桩帽下的土压力数值呈锯齿状的曲线上升,但始终都小于桩间土的土压力。

3施工方法

3.1概况与设计要求

预应力管桩地基处理适用于软土深度大于8m的结构物路段,管桩在平面上采用平行四边形布置,桩间距及行间距视填土高度为2.2m-2.6m,管桩桩长应穿透软土层,并进入下卧层不小于1m。其桩径40cm,壁厚60cm,桩身用C60混凝土预制,桩顶设有桩帽,桩帽采用C30混凝土现浇。桩帽尺寸采用100*100*35cm正方形。要求钢塑格栅的延伸率≤3%,纵向抗拉强度≥80KN/m,横向抗拉强度≥80KN/m。

3.2施工准备

1)将水源、电源接入现场,因各种条件受限制,打桩时需配120KVA发电机组。

2)桩机组装及组织有关人员进行安装验收,并进行空载运转。

3)组织集中施工及机班等有关人员进行施工进度计划要求及技术交底。

4)根据施工进度计划要求,为保证成品桩质量和制作精度,在开工前向专业工厂提供管桩的数量与计划。

5)桩机选用DD63锤击打桩机。该型号桩机性能稳定,使用便利,同时能满足设计要求。

3.3管桩验收与起吊、堆放

3.3.1管桩外观质量及尺寸检查、抗弯试验和检验规则。

外观质量尺寸允许偏差均按GB13476-1999的规定执行。粘皮、麻面面积不得大于桩总外表面积的0.5%;磕损深度不得大于10mm;不得出现环向和纵向裂缝;不允许出现露筋、断筋、脱头现象,若预应力为钢丝,断丝和滑脱钢丝数量不得大于总量的3%;不允许有空洞和蜂窝;桩端面应平整。

3.3.2管桩的起吊方法有两点及四点捆绑法,参见示意图:

施打前吊立吊点位置参见示意图:

3.3.3装卸时轻起轻放,严禁抛掷、碰撞、滚落,吊运过程保持平稳。

运输过程中支点必须满足两点法的位置(支点距离桩端0.207L)处,并垫以楔形木,防止滚动,保证层与层间垫木与桩端的距离相等。运输车辆底层设置垫枕,并保持同一平面,参见示意图:

管桩的堆放根据桩的规格、长度和使用先后及远近安排,堆放场地选择在平整坚实的地方,使桩堆放后不会产生过大的沉陷,最下层与地面接触的垫木加宽加高。

3.3.4堆放时,桩下垫木设置两道,支承点的位置就在两点吊的吊点位置处,同层的两道垫木顶面保持在同一水平面上;当重叠堆放时,各层均设置垫木,并保证各层垫木上下对齐;堆放层数不超过三层;垫木选用耐压的木枋。

3.4施工工艺

放样处理范围→平整场地、铺设20cm厚清宕渣→放线布置桩位→桩机就位→插桩并检查→沉桩→接桩→收锤→移机→安装盖板模板→放置盖板钢筋网→浇注混凝土→铺设剩余清宕渣和第二层格栅(若有)。

3.4.1平整场地

路基两侧排水沟位置挖设临时水沟,排除地表积水,并铺设20cm厚的含泥量小于15%的宕渣。

3.4.2定位放样

放出需处理的施工范围,然后放出定位轴线和控制点,控制点尽量设置在远离沉桩区域不受干扰的地方,并加以固定保护。钻机就位。

3.4.3探桩

管桩入土前,应先清理桩位处工作垫层中的石块,防止桩入土时偏位。桩位放样后,先人工进行探桩,在桩位处用钢管探测地下有无障碍物。发现地下障碍物及时排除,以防因其造成桩偏位,管塞及桩压不下去等施工质量事故。

3.4.4吊桩

先将管桩从堆放点用吊车,水平吊运到桩架附近,再利用桩机上专门设置的起桩重钩及卷扬机吊桩就位。管桩吊起时要控制其速度,严禁快速吊起使管桩与桩机碰撞,损坏管桩。

3.4.5吊车平吊运移管桩采用两头勾头法或2点邦扎法。

采用2点邦扎法其邦扎起吊点位置离桩端0.207L(L:桩管长度)。机架上附设起重钩吊桩就位时,采用一点邦扎法,其邦扎起吊点位置离桩端0.31L(L:桩管长度)。

3.4.6插桩(植桩)

桩起吊提升到垂直状态后,将桩上头套入锤头下部固有送桩器,然后将桩尖准确地放在桩位上,缓缓施工将桩插入土中1.5m左右位置,停止施压。在机架前,侧呈90°的两个方向,各距机架25m左右处,架设经纬仪,检查调直桩身垂直度。控制植桩桩身垂直度偏差在0.5%以内。

3.4.7打(沉)桩

沉桩前应选用15cm厚的直纹木垫作为锤垫,桩垫用麻袋、木夹板,压缩后厚度不小于12cm,锤击过程中经常检查及时更换。沉桩时,继续用两台经纬仪交叉检查桩身垂直度,边校正桩身垂直度边往下沉桩,避免由于桩身倾斜产生管桩损坏。不得采用顶拉桩头、桩身等强行纠偏方法。桩身倾斜率超过0.8%时,应找出原因并进行纠正。初打时关闭供油泵油门,使锤冷打。当贯入度小于100mm/击时,再开启油门正常打桩,正常打桩采用重锤轻击。锤落距控制在1.5m以内。打桩应连续施打不宜停歇时间过长,防止桩周土固结,增大沉桩阻力。

打桩过程中,遇到下列情况应该停止打桩,经分析研究并采取措施后,方可以继续施工:

1)贯入度发生急剧变化或者震动打桩机的振幅异常;

2)桩身突然倾斜移位或者锤击时有严重回弹;

3)桩头破碎或桩身开裂;

4)附近地面有严重隆起现象;

5)打桩架发生倾斜或晃动。

3.4.8接桩

将下段桩顶距离地面0.8~1.0m处(但应避免桩尖接近硬持力层或桩尖处于硬持力层中),可进行接桩,采用焊接法。因本工程场地上部地基土较为松软,第一节桩压沉时,原起吊桩时邦扎在桩身上的钢丝绳不宜拆解,以防止桩在自重作用下下滑。当桩沉入到接桩位置(顶端高出地面1.0m左右)仍有下滑趋势时,则采用钢夹板将桩夹持住后再进行下道接桩工序。在接桩前一定要将上下段桩端用钢刷清洗干净,加上定位板,同时利用经纬仪使上下节桩轴线一致。下桩段的中心线偏差不大于5mm,节点弯曲矢高不得大于桩段的0.1%。

所用电焊条要有出厂检验单和质保书,并要按规定要求。如果上下桩接头处间隙较大,则先用楔形铁片填实,然后进行焊接,接桩铁件应做防腐处理。拼接处坡口槽电焊分3次对称焊接,焊缝连续饱满(满足二级焊缝),焊后清除焊渣,检查焊缝饱满程度。施焊完毕,自检合格后,请监理、工区等有关人员进行检查。合格后,自然冷却5分钟以上再施打。待桩沉入到距地面1.0米左右时,停止沉桩,吊上第三节桩,采用同样工艺将上下段桩焊接完毕后,继续沉桩至桩身设计标高。

3.4.9收锤标准

打入桩采用桩长和贯入度双控制,以设计桩长为主,贯入度为辅。最后贯入度的确定需根据试验桩的结果,用水准仪测量桩顶标高,确定最后1m每10击的下沉量和总锤击数。

3.4.10沉桩施工记录

沉桩时详细、准确地填写沉桩记录。记录每米的锤击数,距设计标高2~3m时则以30cm为单位记录锤击数,最后连续锤击3阵,每阵10击的贯入度及桩顶标高。

3.4.11质量检测

在达到设计或规范规定的“修止”时间后,进行桩基承载力检测,需满足设计要求单桩承载力。

1)小应变测试法

施工结束后按桩总数的10%进行小应变测试,以检测桩的完整性与承载力。

传感器的安装:传感器安装时,必须确保传感器的轴线与桩身的纵轴线平行;传感器与桩必须粘接良好,尽可能减少粘接材料厚度,并在粘接材料完全固化后进行检测;传感器应安装在基桩平面中心位置,在桩中心距(或半径)的1/2处锤击激发。

现场数据采集:检测前对设备进行检查,性能正常方可使用;选择能产生低频的力锤(如尼龙锤),要在现场进行激振方式和接收条件的选择试验;锤击要选用有实践经验丰富的熟练技术工人操作;每一根被检测单桩最少应进行三次以上重复测试。

2)桩基静载试验

根据设计要求随机选择5‰桩进行桩基静载试验,以确定单桩承载力。静载试验一般采用慢速维持荷载法,若设计无特殊要求,用单循环加载试验。

试验加载装置根据现场实际条件及设计要求选用压重平台装置、锚桩承载梁反力装置或锚桩压重联合反力装置。

测量仪表必须精确,支承仪表的基准架要有足够的刚度和稳定性,基准梁的一端在其支承上可以自由移动,不受温度影响引起上拱或下挠,基准桩埋入地基中一定深度。

加载方法:加载重心与试桩轴线相一致,加载时分级进行,使荷载传递均匀,无冲击。加载过程中,不使荷载超过每级的规定值,每级加载量为预估最大荷载的1/10~1/15。最大荷载采用设计荷载的2倍。

沉降观测:每级加载的观测时间规定为每级加载完毕后,每隔15min观测一次,累计1h后,每30min观测一次。下沉未达到稳定,不得进行下一级加载。

稳定标准:在下列时间内,每级加载的下沉量不大于0.1mm时,即可认为稳定。桩端下为巨粒土、砂类土、硬粘土,最后30min;桩端下为半坚硬和细粒土,最后1h。

根据有关规范确定静载试验终止条件和试桩的极限荷载值。

3.4.12混凝土桩帽施工

沉桩完成并经检测合格后,按设计要求绑扎桩帽钢筋,浇筑桩帽C30砼。桩帽混凝土采用现场拌制,除试桩外,其余各桩桩帽随沉桩速度及时浇筑,并根据施工进度需要在混凝土中掺入早强剂。施工中留置好砼试块,未达到设计强度不得在其上填筑路基。

沉桩范文篇6

关键词:路基工程深层搅拌桩沉桩喷浆法

一、前言:

深层搅拌桩经过近二十年的发展,由于施工技术和施工机械的成熟已经被广泛地用于软土地基加固、边坡支护、基坑及堤坝防渗等方面。深层搅拌桩可以增加软土地基的承载力,减少沉降量,提高边坡的稳定性,以及具有快速、经济、有效等特点,而被应用在公路桥头软土地基上,以加快公路的施工进度,消除或缓解桥头跳车等问题。其施工方法分为喷粉和喷浆两种方法。设计人员在地基天然含水量大于60%的情况下,从降低地基含水量考虑,常常选用喷粉法。由于地质条件千变万化,其中若存在淤泥含水量过大,采用喷粉法则可能出现沉桩问题。以下通过对采用喷粉法出现沉桩工程问题分析及提出处理方法与同行探讨。

二、工程实例

1、工程简况

某高等级公路在K9+753~K10+836桥头186m采用水泥喷粉桩处理,水泥喷粉桩按正三角形布置,桩径采用50cm,桩距1.5m,平均桩长10m,水泥掺入比15%,即每延米50kg水泥,标号425#。施工单位在施工配套设备进行标定、试桩方案经过监理单位和业主单位同意的情况下采用喷粉法进行试桩试验,共试59根,其中的21根桩发生沉桩,沉桩深度一般为1.1m~4.5m不等。

2、沉桩原因分析

水泥深层搅拌桩加固机理是通过水泥的水解和水化反应、水泥水化物与土颗粒之间的离子交换和团粒化作用、凝硬作用、碳酸化作用等一系列化学反应而成为具有整体性、水稳定性和一定强度的水泥土桩体。因此,可从地质、施工工艺两方面来分析沉桩原因。

地质方面,由于各地质层土质的差异而产生水泥加固土的效果不同,一般认为含有高岭石、多水高岭石、蒙脱石等粘土矿物的软土加固效果较好,而含有伊里石、氯化物和水铝英石等矿物的粘性土以及有机质含量高、酸碱度(PH值)较低的粘性土加固效果较差。各地质层的含水量的不同,也是引起水泥和土一系列化学反应而形成强度的速度不同的原因。

施工工艺方面,水泥与土搅拌不均匀,甚至水泥与土无法混合。这与施工机械的各施工参数有关,如钻进速度、钻头转速、提升速度、喷粉压、水泥用量等有关。必须通过试验桩根据不同地质层、不同土质、不同土压力找到合适的施工参数,加以严格控制,使桩体均匀,防止缩颈、断颈等现象。

1)地质方面

在第一次试桩的一排7根桩中,靠路线前进方向右侧有4根桩沉桩。在试桩后第七天对其中两根进行抽芯检测,发现桩体上均有两段水泥明显不凝固。在试桩后第十天对发生沉桩的地质进行补勘,具体地层由上至下为:

①填砂:河砂,层厚为0.5m.

②粉质粘土:灰黄、灰褐色,可塑,稍湿~湿,随深度增加渐变为软塑状,层厚为1.2m。

③淤泥:深灰、灰黑色,软塑~流塑,饱和,粘性强,滑腻,岩性均一,底部0.5m含腐殖物,层厚为6.0m。

④淤泥质粘土:灰、青灰色,软塑,饱和,粘性较强,均匀,层厚为1.8m。

⑤淤泥夹砂:灰、青灰色,软塑,含较多中粗砂,含量在30%~50%,松散状,层厚为1.5m。

⑥砂层:浅灰色,稍密~中密,饱和,以粗砂为主,含粘性土,级配良好,层厚为1.9m。

⑦粉质粘土夹砂:灰黄、棕黄色,软塑,湿,含量在20%~50%,岩性不均,层厚为2.6m。

⑧砂层:以中粗砂为主,灰白、灰黄色,中密,饱和,含粘性土,级配良好,层厚为0.3m。

软土物理力学指标很差,淤泥平均含水量为90%,天然孔隙比2.51,直快剪C=6.79Kpa,φ=7.36。

从以上地质补勘分析,主要有以下原因:

(1)由于该段淤泥含水量为90%,而喷粉(50~60kg/m)后水泥在桩体内吸水是有限的,参照相近项目试验结果可知,短期内水泥加固土含水量减少量低于水泥掺入比,也就是该段淤泥经水泥加固土的含水量仍为75%以上,搅拌时的土和水泥还是处于流塑~软塑状,压缩模量小,抗剪强度低;喷50~60kg/m水泥9m后增加4500~5400KN自重力。处于流塑~软塑状水泥加固土压缩模量小,自身自重引起桩压缩量就大;水泥加固土抗剪强度低自身自重引起侧向挤出量大;

(2)桩身周围土受扰动土体下沉后,土对桩侧表面产生向下的负摩阻力。当土和水泥还是处于流塑~软塑状、压缩模量小、抗剪强度低时,在负摩阻力的作用下发生沉桩。

(3)该段淤泥的灵敏度大,灵敏度是原状试样的无侧限抗压强度与相同含水量重塑试样的无侧限抗压强度之比。从试桩现场,试桩桩位砂垫层表面挤压出来的淤泥很稀,表明其重塑后强度很低,灵敏性高。

(4)喷粉在桩体内吸水,引起桩体周围土体孔隙压力消散、产生下沉,短时间增加对桩体的负摩阻力,而此时水泥加固土的强度很低且增长慢。

总的来说,是在喷粉初期,水泥加固土的强度承受不了水泥加固土的自重力和负摩阻力的作用而发生沉桩。

2)施工工艺方面

在施工工艺方面,针对沉桩问题,结合地质情况较差的实际,在施工工艺上找沉桩的原因。试桩时各施工参数(钻进速度、钻头转速、提升速度、喷粉压、水泥用量等)作了有效控制。在第二次试桩52根桩中,采用不同钻进速度、不同钻头转速、不同提升速度、不同喷粉压、不同水泥用量进行严格控制。试桩中虽然采用加大喷粉量至75kg/m,仍未解决沉桩问题。

察看试桩现场,试桩桩位砂垫层表面存在大量淤泥,据分析软塑~流塑状淤泥是在喷粉施工时风压气流的作用下,搅拌过程中因受扰动发生液化,液化的淤泥上涌至地表面,造成桩体范围内淤泥质的减少而沉桩。

增加喷粉量解决不了沉桩问题的原因在于:

(1)增加喷粉量即增加桩体自重力;

(2)增加喷粉量导致喷粉在桩体内吸水量增加,引起桩体周围土体孔隙压力消散加快、产生下沉,短时间对桩体的负摩阻力增大,因增加喷粉量水泥加固土的强度提高不显著,在喷粉初期,水泥加固土的强度仍承受不了水泥加固土的自重力和负摩阻力的作用而发生沉桩。

3、处理方法

通过以上分析,沉桩是由于在喷粉初期,土体受扰动,水泥加固土的强度承受不了水泥加固土的自重力和负摩阻力的作用而发生沉桩。改用在水泥浆液中加入适量的早强剂喷浆法施工可以解决喷粉法施工成桩初期水泥加固土的强度承受不了水泥加固土的自重力和负摩阻力发生沉桩问题。主要原因:

(1)早强剂可以使水泥加固土的强度迅速提高,而早强剂在水泥浆中搅拌可以较均匀;

(2)水泥浆液注入土体发生水泥的水解和水化反应、水泥水化物与土颗粒之间的离子交换和团粒化作用、凝硬作用、碳酸化作用等一系列化学反应而成为具有整体性、水稳定性和一定强度的水泥土桩体时,浆液本身存在足够水,不需吸收天然地基的水,并未引起桩体周围土体孔隙压力消散、产生对桩体的负摩阻力。

因此,改用喷浆法施工并在水泥浆液中加入适量的早强剂,以解决喷粉法施工成桩初期水泥加固土的强度承受不了水泥加固土的自重力和负摩阻力的作用而发生沉桩的问题。

喷浆施工参数:

成桩直径:50㎝

钻进速度:控制在2~3档(30~50cm/min)

电流表读数:进入持力层I≥60A

桩底持续喷浆搅拌时间:≥30s

提升喷浆速度:≤30cm/min

喷浆压力:0.6~1.0Mpa

水泥浆水灰比:0.5

早强剂掺量(水泥掺比):0.8%

水泥浆搅拌时间:≥30min(每拌)

喷浆搅拌桩施工工艺按中华人民共和国交通部《公路软土地基路堤设计与施工技术规范》JTJ017-96关于加固土桩技术规范进行。全部穿过淤泥进入持力层50㎝。

以上施工参数进行现场试桩,试桩七天后进行桩体抽芯检测,从桩体抽芯结果来看,成桩连续性与完整性均较好,无沉桩问题。由业主组织设计单位、监理单位和施工单位召开软基处理技术专题会议,决定K9+753~K10+836桥头186m原采用喷粉法施工搅拌桩改为喷浆法施工,原合同单价不变。该段在改用喷浆法施工后,无出现沉桩问题,证明采用喷浆法施工的搅拌桩解决沉桩问题是有效的。工程造价变化不大,经济上是可行的。

沉桩范文篇7

关键词:高桩码头;管柱桩;施工质量

近年来,随着我国经济的发展与进步,有效的促进了我国水运工程的发展,码头工程的建设也受到了越来越多的关注。在码头工程项目建筑施工的过程中,高桩码头因为适用性强、波浪放射小以及对水流影响小等一系列优点得到了十分广泛的应用。随着我国水运工程的进一步发展,码头货物的吞吐量也在不断的增大,这给码头建筑提出了更高的要求。本文分析了管桩施工中的质量控制要点并结合实际案例分析了钢管桩和PHC管桩的施工工艺。

1.高桩码头常用桩基形式

根据相关的港口工程桩基施工规范,在进行高桩码头的桩基施工时,根据成桩施工工艺的不同可以将其分为预制桩以及灌注桩两种。而预制桩根据其材料的不同又可以分为预制钢管桩以及预制混凝土桩,混凝土桩又可以具体的分为预应力混凝土桩以及非预应力混凝土桩。预制钢管桩根据其焊接的形式不同可以将其分为两种,一种是直焊缝预制钢管桩还有一种是螺旋焊缝预制钢管桩,通常情况下码头施工中应用更多的是螺旋焊缝预制钢管桩。而灌注桩根据其施工时成孔的工业差别,可以将其分为钻孔灌注桩与挖孔灌注桩两种。在进行码头施工的过程中,预制管桩通常都是在工厂进行预先定制,然后在施工中直接应用,因为预制速度快并且施工方便,工艺简单等特点被广泛的应用。目前还有在码头施工中钢管桩以及PHC管桩的应用十分广泛。

2.管柱桩施工过程的质量控制要点

2.1管桩制作的质量控制要点

在进行管柱的制作时,首先要确保管柱的制作材料质量符合要求,水泥中C3A含量要小于10%,黄砂的细度模数要求在2.8~3.1之间,石子粒径控制在5~20mm。混凝土搅拌必须均匀,浇筑要求连续,入模工作度控制在25~35s,超过要求的不得使用。此外,管桩拼接质量也是关键所在,拼接是混凝土强度必须大于60Mpa,龄期大于14t,管节的端面要经过端磨,缺损严重的不得使用。

2.2管柱桩沉设的质量控制要点

管柱桩沉桩施工的质量直接关系着整个项目的整体施工质量,因此一定要加强对沉桩施工过程的而控制,确保项目的施工质量。在实际的施工中,施工人员应当加强对施工过程的管控,要求施工人员严格的按照相关的规范要求进行施工。在沉桩施工的过程中,一旦桩体打入土层,就不可以再利用船体对桩体的位置进行强行的移动。在沉桩的过程中,如果发现桩尖接触到了障碍物,应当立刻停止下桩,对于当前的情况进行分析,找到相应的解决方法,解决问题以后才能够继续施工。在码头施工的过程中,如果刚刚浇筑了混凝土,那么在浇筑施工区域的30m范围以内不允许进行任何的沉桩施工,否则会因为沉桩施工而导致混凝土浇筑的质量受到影响。如果需要在斜坡上进行沉桩施工,施工人员应当在进行桩定位时向岸侧留下一定的提前量。在沉桩施工的过程中,施工人员一定要注意桩体的贯入度以及桩身的位移情况,如果发现存在异常情况,应当及时的停止沉桩,查明原因后及时的进行处理,然后才能够继续进行施工。预制桩运至施工现场以后现场管理人员要及时的对桩体质量进行检查,如果发现桩体存在质量问题,一定要立刻退回,避免任何存在质量缺陷的桩体进入施工现场。在施工的过程中,一定要严格的规定好打桩船施工的时间段,根据天气预报情况提前做好风浪的避让,尽量选择风浪小的天气进行施工,确保沉桩施工的质量。

3.高桩码头PHC管桩和钢管桩施工实例分析

3.1工程概况及主要结构形式

某码头扩建工程是在原有码头的基础上,向江侧推进,扩建成3万吨级的码头泊位。码头工作平台采用高桩梁板结构,排架间距8m,局部为7.5m,共12榀排架。工作平台设计为一个结构段。上部结构采用现浇横梁、预制纵梁、预制现浇叠合面板的型式。系缆墩采用高桩墩式结构,上部结构为现浇墩台,桩基采用Φ1000mm钢管桩。引桥采用高桩梁板结构,桥面采用大跨空心板结构。该工程主要工程量集中在码头的工作平台、引桥部分,另外还有系缆墩和防撞设施,主要水工结构实物工程量汇总表。

3.2桩基工程

该工程桩基有二种类型,主要为高强度预应力管桩(PHC管桩)和钢管桩,采用打入方式沉桩。(1)PHC管桩和钢管桩的制作该工程PHC管桩主要集中在引桥和码头工作平台部分,钢管桩主要集中在防撞设施和系缆墩部门,在进行管桩的制作施工时注意从以下几个步骤进行:在进行管桩的预制施工时首先要进行管节成型施工,在进行管桩的制作时通常都需要专业的生产工艺,并且在制作时需要用张拉机进行管桩的张拉,而管桩的螺旋箍筋则要用缠丝机进行缠绕,然后要用离心机进行混凝土成型,最后用高压釜进行高压蒸养,从而确保混凝土的强度。在正式的出厂之前检测人员要对于每一根管桩进行质量检查,对于质量合格的印上相应的合格标记,并且附上相关的出厂质量保证资料。PHC管桩在工厂内就需要完成拼接,在拼接施工的过程中,施工人员需要采用固定胎模以及接桩架等来进行接桩施工。在接桩之前一定要先进行桩体的清理,确保状体表面的整洁,保证桩体焊接施工的质量。子啊进行焊接施工的过程中一定要确保焊缝的充实与饱满,满足三级焊缝的需求,并且在焊接完成后应当及时的对焊渣进行清理。为了避免在打桩施工中水锤作用对桩体产生影响,在施工的过程中往往会在桩身距离顶部1.2m处开两个小孔,这样能够有效的避免桩芯空气的压缩,排出桩体内部的气体,在完成了沉桩施工后需要用混凝土对于孔洞进行封堵。在进行钢管桩的制作时采用Q235钢板,通过专业切割机下断切割,由大功率卷板机卷制螺旋状通过自动焊接成型,焊接要求经过X光损伤检测,确保焊接的合格。在完成焊接施工后还要进行相应的防腐防锈施工,确保钢管桩的质量。(2)PHC桩和钢管桩的打设PHC管桩和钢管桩的打设在现场具备相应的条件后进行,根据施工总体流程,引桥的PHC管桩和防撞设施的钢管桩穿插打设,引桥桩基施工完成后,再进行码头工作平台的PHC管桩和系缆墩钢管桩的打设。①桩位控制在进行正式的沉桩施工之前施工人员需要先对于沉桩的坐标进行确定,具体的坐标需要根据工程的设计内容来进行具体的计算,然后再将其换算为GPS定位坐标,通过定位系统来确定桩体的坐标位置。②打桩设备选型在进行打桩设备的选择时考虑到了该区域的底层结构以及地质状况,再综合分析了打桩船的稳定性以及起重量,最终决定了选用三航奔腾桩1#打桩船进行打桩施工。③沉桩顺序沉桩施工分成二个阶段,第一阶段沉桩施工时,打桩船顺流驻位,按照先岸侧后江侧,先打设现有引桥上游侧的防撞钢管桩,然后打设新建引桥平行码头岸线段PHC管桩。第二阶段沉桩施工时,打桩船横流作业,先打设新建引桥垂直于岸线段的结构PHC管桩,要求穿插完成两侧防撞设施钢管桩的打设,然后打设码头工作平台部分的PHC管桩和两侧系缆墩的钢管桩。④沉桩沉桩开始时,发动打桩船主机,通过松紧锚缆将桩船移向运桩方驳,同时,起生桩锤和替打,俯架子,下放大小吊钩,从方驳上将桩吊起,桩船水平吊桩,在打桩船配置的GPS桩位控制系统的指引下,移船至沉桩区域,放小钩,起大钩,缓慢地将桩吊至垂直状态。进行桩船的初定位下桩,打开抱桩器,桩进入龙口,并套好背板,向桩顶套替打,解下吊索的小钩扣,进行精确定位,完成后,继续下桩,在桩尖入土2~3m后,暂停下桩,对桩体进行进一步的校正,然后继续下桩,直至在桩体自重作用下,桩不在下沉为止。

4.结论

文章重点分析了钢管桩和PHC管桩在高桩码头施工中的质量控制方法及施工工艺,在研究时主要是结合实际的工程案例来进行分析,在分析时必然存在一定的局限性,对此相关的研究人员应当拓宽思路,加强对高桩码头钢管桩和PHC管桩施工工艺的研究,以期促进我国高桩码头施工技术的进一步提升。

作者:刘栋 王海峰 单位:中交水运规划设计院有限公司 上海长升工程管理有限公司

参考文献:

[1]费建华.高桩码头钢管桩和PHC管桩施工质量控制[J].交通与港航,2016,3(2):61-64.

沉桩范文篇8

关键词:地基基础端承桩摩擦桩静力压桩振动沉桩射水沉桩

1桩基施工的安全要求

1.1打混凝土预制桩的安全要求利用桩机吊桩时,桩与桩架的垂直方向距离不应大于4m,偏吊距离不应大于2.5m:吊桩时要慢起,桩身应在两个以上不同方向系上缆索,由人工控制使桩身稳定。吊桩前应将锤提升到一定位置固定牢靠,防止吊桩时桩锤坠落。起吊时吊点必须正确,速度要均匀,桩身要平稳,必要时桩架应设缆风绳。桩身附着物要清除干净,起吊后禁止人员在桩下通过。吊桩与运桩发生干扰时,应停止运桩。

插桩时,严禁手脚伸入桩与龙门架之间。用撬棍或板舢等工具矫正桩时,用力不宜过猛。打桩时应采取与桩型、桩架和桩锤相适应的桩帽及衬垫,发现损坏应及时修整或更换。锤击不宜偏心,开始落距要小,如遇贯入度突然增大,桩身突然倾斜、位移,桩头严重损坏,桩身断裂,桩锤严重回弹等应停止锤击,采取措施后方可继续作业。套送桩时,应使送桩、桩锤和桩三者中心在同一轴线上

拔送桩时应选择合适的绳扣,操作时必须缓慢加力,随时注意桩架、钢丝绳的变化情况。送桩拔出后,地面孔洞必须及时回填或加盖。

1.2沉管灌注桩施工的安全要求桩管沉入到设计深度后,应将桩帽及桩锤升高到4m以上锁住,方可检查桩管或浇筑混凝土。耳环及底盘上骑马弹簧螺丝应用钢丝绳绑牢,防止折断时落下伤人。耳环落下时必须用控制绳,禁止让其自由落下。沉管灌注桩拔管后如有孔洞,孔口应加盖板封闭,防止事故发生。

1.3冲、钻孔灌注桩施工的安全要求钻孔灌注桩浇筑混凝土前,孔口应加盖板,附近不允许堆放重物。冲抓锥或冲孔锤操作时,严禁任何人进入落锤区范围内。各类成孔钻机操作时,应安放平稳,以防止钻机突然倾倒或钻具突然下落而发生事故。

2人工挖孔灌注桩施工的安全要求

2.1一般安全要求人工挖孔灌注桩(简称挖孔桩)适用于工程地质和水文地质条件较好且持力层埋藏较浅、单桩承载力较大的工程。如果没有可靠的技术和安全措施,不得在地下水位高的沙土或厚度较大的淤泥质土层中进行挖孔桩施工。挖孔桩的孔深一般不宜超过40m。挖孔桩护壁混凝土的强度等级应不低于C15。在岩溶地区或风化不均、有夹层、软硬变化较大的岩层中采用挖孔桩时,宜在每桩或每柱位处钻一个勘探钻孔。钻孔深度一般应达到挖孔桩孔底以下3倍桩径,以判别该深度范围内的基岩中有无孔洞、破碎带或软弱夹层存在。场地邻近的建(构)筑物,施工前应会同有关单位和业主进行详细检查,并将建(构)筑物原有裂缝及其他情况记录备查。对挖孔和抽水可能危及的邻房,应事先采取加固措施。场地及四周应设置排水沟、集水井,并制定泥浆和废渣的处理方案。施工现场的出土路线应畅通。

2.2施工安全措施从事挖孔桩作业的工人以健壮男性青年为宜,并需健康检查合格,经过井下、高空、用电、吊装及简单机械操作等安全作业培训且考核合格后,方可进入施工现场。

为防止孔壁坍塌,应根据桩径大小和地质条件采取可靠的支护孔壁的施工方法。孔口操作平台应自成稳定体系,防止在护壁下沉时被拉垮。施工现场所有设备、设施、安全装置、工具及其配件以及个人劳保用品等必须经常进行检查,以确保完好和使用安全。工作人员上下桩孔必须使用钢爬梯,不得用人工拉绳子的方法运送工作人员或脚踩护壁凸缘上下桩孔。桩孔内壁设置尼龙保险绳,并随挖孔深度增加放长至工作面,作为救急之备用。

桩孔开挖后,现场人员应注意观察地面和建(构)筑物的变化。桩孔如靠近旧建筑物或危房时,必须在对旧建筑物或危房采取加固措施后才能施工。还应加强对孔壁土层涌水情况的观察,发现异常情况,应及时采取处理措施。挖出的土石方应及时运走,孔口四周2m范围内不得堆放淤泥杂物。机动车辆通行时,应作出预防措施和暂停孔内作业,以防因挤压而塌孔。当桩孔开挖深度超过5m时,每天开工前应用气体检测仪进行有毒气体的检测,确认孔内气体正常后,方可下孔作业。

3沉井和地下连续墙施工的安全技术

3.1沉井施工安全技术沉井下沉时,在四周的影响区域内,不应有高压电线杆、地下管道、固定式机具设备和永久性建筑物,否则应采取安全措施。沉井的制作高度不宜使重心离地太高,以不超过沉井短边或直径的长度为宜。一般不应超过12m。特殊情况需要加高时,必须有可靠的计算数据,并采取必要的技术措施。

抽承垫木时,应有专人统一指挥,分区域、按规定顺序进行。在抽承垫木及下沉时,严禁人员从刃脚、底梁和隔墙下通过。

沉井的内外脚手,如不能随同沉井下沉时,应和沉井的模板、钢筋分开。井字架、扶梯等设施均不得固定在井壁上,以防沉井突然下沉时被拉倒发生事故。沉井顶部周围应设防护栏杆。井内的水泵、水力机械管道等设施,必须架设牢固,以防坠落伤人。

空压机的贮气罐应设有安全阀,输气管道应编号,供气控制应有专人负责,在有潜水员工作时,应有滤清器,进气口应设置在能取得洁净空气处。

沉井下沉前应把井壁上的拉杆螺栓和圆钉割掉。特别是在不排水下沉时,应全部清除井内障碍和插筋,以防割破潜水员的潜水服而酿成事故。当沉井面积较大,采用不排水下沉时,在井内隔墙上应设有供潜水员通行的预留孔。井内应搭设专供潜水员使用的浮动操作平台。浮运沉井的防水围壁露出水面的高度,在任何情况下均不得小于血。公务员之家

采用抓斗抓土时,井孔内的人员和设备应事前撤出。如不能撤出,应采取有效的安全措施进行妥善保护。采用人工挖土机械运输时,土斗装满后,待井下工人躲开,并发出信号,方可起吊。采用水力机械时,井内作业面与水泵站应建立通信联系。水力机械的水枪和吸泥机应进行试运转,各连接处必须严密不漏水。

沉井在淤泥质粘土或亚粘土中下沉时,井内的工作平台应用活动平台,严禁固定在井壁、隔墙和底梁上。沉井发生突然下沉,平台应能随井内涌土上升。采用井内抽水强制下沉时,井上人员应离开沉井。不能离开时,应采取安全措施。沉井如由不排水下沉转换为排水下沉时,抽水后应经过观测,确认沉井已经稳定后才允许下井作业。沉井下沉采用加载助沉时,加载平台应经过计算,在加载或卸载作业范围内,应停止其他作业。沉井水下混凝土封底时,工作平台应搭设牢固,导管周围应有栏杆。平台周围应有栏杆。平台的荷载除考虑人员、机具重量外,还应考虑漏斗和导管堵塞后,装满混凝土时的悬吊重量。

沉桩范文篇9

关键词:海上风电;自升式平台;大直径单桩

目前我国大直径无过渡段单桩施工传统工艺流程是:①主起重船抛锚驻位,钢桁架结构稳桩平台及辅助桩运输船靠泊;②挂钩起吊稳桩平台吊放调平,起吊插入辅助桩(4根)开始振沉;③提升辅助平台,采用反吊焊接等方式进行加固稳定,打开龙口(抱桩器);④起吊大直径工程桩翻身植桩,自沉结束后加锤(包括替打法兰或替打段),将管桩沉至设计标高,过程中测量控制垂直度,如有高应变检测,遵照设计要求及检测规范执行[1-5]。许多学者对稳桩平台沉桩施工工艺进行研究[6-10]。但是,传统式钢桁架结构稳桩平台依然存在下列问题:①传统钢桁架稳桩平台自重较大,需起重船舶吊放驻位,调平及施工难度较大,运输成本较高;②传统辅助稳桩平台配套辅助桩需逐根振沉,提升平台加固作业等施工时间较长;③辅助桩使用频次达到一定程度后容易出现管口卷边等情况,需进行桩身切割及加长处理。而自升式稳桩平台有着如下优点:①通过优化平台吊放转运工序,能够提高工效,且机动性强;②调平效率高,辅助稳桩平台水平度调整数字化,确保工程桩垂直度控制;③机位平面定位精度高,减小施工难度,降低测量工作量。因此,对海上风电自升式辅助稳桩平台大直径单桩基础施工技术研究有一定意义。结合江苏启东海上风电工程,对自升式辅助稳桩平台大直径单桩基础沉桩技术进行研究,为类似工程提供参考。

1工程概况

H3号海上风电场区中心离岸距离约37km,海底地形变化较为平缓,水深在10~16m之间。H3号场区形状呈梯形,东西长约16km,南北宽约2.7km,规划场区面积约43km2,本项目共布置50台风力发电机组,规划装机容量300MW。配套建设1座220kV海上升压站,与H1号、H2号风电场共用1座陆上集控中心,风电场由12回35kV海底电缆汇流至海上升压站,经2台220/35kV变压器(180MVA)升压后由2回220kV海底电缆登陆接至风电场220kV陆上集控中心。

2施工流程

大直径单桩基础施工工艺流程:施工准备→测量定位→自升式稳桩平台驻位→施工船舶驻位→运桩船靠泊→钢管桩起吊翻身→吊装入龙口→自沉及压锤→锤击沉桩→内平台安装→高应变检测及无损检测→自升式平台降船→到下一机位施工。

3施工方案

3.1自升式辅助稳桩平台驻位

自升式辅助平台采用驳船搭载GPS锚泊定位系统,至机位旁5m左右开始下锚,前后均采用八字锚且垂直向外45°进行下锚,将机位理论坐标输入GPS定位系统,之后通过绞锚的方式进行精确定位,并进行调整,船舶定位平面偏差控制在300mm以内。经测量人员复核误差在设计要求范围内(小于等于500mm),则利用液压顶升系统进行桩腿顶升,顶升过程依次调整桩腿行程,防止造成顶升困难或结构损坏。以设计钢管桩标高(+13m)为参照,上层抱桩器顶标高设置为+21.0m。当整体平台提升到位后,通过操作桩腿液压系统顶升承载力以及顶升高度进行平台水平度精确调平,四角高差不大于10mm。

3.2施工船舶驻位

施工现场为外海无掩护作业,海况条件恶劣,首先采用浮漂确定施工机位位置,以确保钢桩平面位置在允许偏差范围内。自升式稳桩平台定位完成后,施工船舶驻位示意图见图1。主起重船驻位与稳桩平台左前方船间平行距离约为20m,前后均采用八字锚且前锚垂直向外60°,后锚垂直向外45.

3.3运桩船靠泊

施工船舶驻位完成后,运桩船逆水流情况下沿既定抛锚定位路线驶入,通过拖轮或锚艇协助完成方位调整,船艏通过缆绳与主起重船连接,平行布置,靠泊在主吊船下风区域,随后使用锚艇为船艉抛两口8字锚,完成运桩船驻位。

3.4钢管桩起吊翻身

主起重船2个主钩负责主吊任务,索具挂钢管桩上吊耳,副钩负责抬吊辅助翻转立桩,索具挂钢管桩下吊耳,通过主钩起副钩落的操作实现钢管桩翻转竖立,起吊之前在吊耳外边缘缠绕多层土工布,避免在吊装过程中破坏吊耳外边缘的防腐涂料,并连接缆风绳,有利于钢丝绳的摘除和保护,将副钩钢丝绳和卡环连接完毕后,通过卡环连接桩底翻身吊耳,主副钩协同作业,将钢管桩平吊离开甲板面。当桩完全离开运桩驳甲板10cm且呈水平状态时,暂停起吊,检查钢丝绳受力情况,无异常后继续起吊,待钢管桩抬起离运桩方驳约1m后,运桩驳起锚并离开吊桩施工范围。然后将钢管桩缓缓放到水面附近,并利用水深进行翻桩。期间,钢管桩仍应保持水平状态,主起重船主钩逐渐上升副钩逐渐放低直至不受力。翻桩过程中,84桩底距离海床面应留有2m左右的安全距离,避免钢管桩突然触底导致主钩脱钩,待钢管桩呈竖直状态后,解除副钩约束,完成翻桩。

3.5钢管桩吊装入龙口

在钢管桩翻身直立后,主起重船通过人工将卸扣销轴拉出的方式,使副钩抬吊的索具脱离桩管吊耳,并通过绞锚使主起重船移到与自升式稳桩平台同一中轴线上,然后再通过船首八字锚绞锚调整主起重船与稳桩平台的距离,使钢管桩进入龙口,然后抱桩器进行抱合。翻桩完成后,主起重船吊住钢管桩,通过松紧锚链调整桩身平面位置并同时调整桩身方向。移桩期间,起重船应与导向架保持至少2m的安全距离。入龙口前,将8台千斤顶伸缩量调至最小,以保证钢管桩能顺利进入龙口,进入龙口后,在抱桩器上的经纬仪观察架立点处分别布设1台经纬仪,并在两个约成80°的方向上观测钢管桩桩身垂直度,通过升降主钩、扒杆转动及调节千斤顶,将钢管桩的垂直度调整至1‰以内,最后调整千斤顶的伸缩量,完成钢管桩桩身预抱紧工作。

3.6自沉及压锤

钢管桩垂直度调整至设计值以内后,主钩缓慢下放,钢管桩开始自沉。应注意的是,在钢管桩接触泥面的过程中,如下沉速度过快,易造成钢管桩受土阻力影响而提前脱钩,故自沉过程中,应时刻观察起重船的起重量变化不应过快。自沉过程中持续使用2台经纬仪对钢管桩桩身垂直度进行实时观测。如自沉过程中,桩身垂直度超出设计允许值,则通过提升、下降主钩及调节千斤顶重新将钢管桩垂直度调整至设计值内并继续自沉。如偏差过大(超出1‰),则将钢管桩抬离泥面,待钢管桩桩身处于自由垂直状态后,再重新下放。钢管桩自沉无进尺后,主钩慢慢减少受力直至完全不受力时,静置观察5min以上,如无异常,则下放主钩并解除吊索具约束。桩自沉完毕后,主钩用钢丝绳配卡环连接冲击锤顶吊点,将锤套好,然后吊至桩顶并开始压锤。压锤及沉桩时将吊锤钢丝绳完全下方,需使用克令吊及吊袋辅助托吊冲击锤油管,油管下安装移动万向滑轮,防止油管磨损。

3.7内平台安装

沉桩完成后,起重船吊机将内平台及相关物料(螺栓、喷锌、密封胶等)吊至桩顶并进行安装,4名施工人员通过爬梯进入内平台,根据钢管桩出场标记的内平台安装线与内平台上的标记对齐,拧紧内平台螺栓,涂抹密封胶。内平台脱钩后,使用相同吊索具将替打法兰挂钩并吊回至船甲板。替打法兰拆除后,施工人员喷涂喷锌,2~3名测量员进入内平台进行桩顶法兰水平度测量。

4结语

为解决传统钢桁架稳桩平台自重较大,运输成本较高,施工时间较长等问题,提出一种海上风电自升式辅助稳桩平台大直径单桩基础施工技术。首先,总结我国目前海上风电大直径无过渡段单桩施工传统工艺流程,并总结传统式钢桁架结构稳桩平台依然存在的问题。其次,提出自升式辅助稳桩平台大直径单桩基础施工工艺流程。最后,提出自升式辅助稳桩平台驻位、施工船舶驻位、运桩船靠泊、钢管桩起吊翻身、钢管桩吊装入龙口、自沉及压锤、内平台安等7项关键施工技术。本工法成功运用于江苏华威启东H1号海上风电场项目和启东华尔锐启东H3号海上风电场项目,克服了海上风电项目“抢装潮”严峻形势下船机设备紧张、传统辅助稳桩平台工序繁杂、工期紧张等施工难点,逐步成为单桩基础施工主要工艺方法,施工质量、安全、进度效益明显,具有广阔的推广应用前景。

参考文献:

[1]胡雪扬.海上风电桩基导管架基础灌浆段设计与应用[J].水电与新能源,2021,35(10):34-38

[2]韩鑫.定向钻施工在海上风电工程中的应用[J].水电与新能源,2020,34(8):75-78

[3]宋云峰,王小合,逯鹏,等.海上风电场单桩基础施工关键技术研究[J].工程技术研究,2021,6(23):24-26

[4]毛以雷,杜瑞刚,田博宇.海上风电大直径嵌岩单桩双护筒钻孔施工技术[J].中国港湾建设,2021,41(10):55-59

[5]王海波.海上风电场工程钻机单桩施工技术[J].工程机械与维修,2020(6):78-79

[6]张智博,卢浩,邱屿,等.海上风电多桩稳桩平台的施工设计与安全性分析[J].交通科技,2021(4):155-160

[7]王国平.独立式单桩定位稳桩平台的优化与应用[J].船舶工程,2021,43(z1):90-93,100

[8]毛金锐.外海超大型钢管桩沉桩稳桩平台设计与应用[J].铁道建筑技术,2021(6):85-89

[9]王俊杰,黄艳红,张成芹.自升式稳桩平台单桩施工技术研究与应用[J].中国港湾建设,2020,40(5):70-74

沉桩范文篇10

1.摩擦型桩

1.1摩擦桩外部荷载主要通过桩身侧表面与土层之间的摩擦阻力传递给周围的土层,桩端只承受部分荷载,一般不超过10%。

1.2端承摩擦桩在外部荷载作用下,桩的端阻力和侧摩阻力都同时发挥作用。

2.端承型桩

2.1端承桩外部荷载通过软弱土层,由桩身直接传给桩端的基岩,桩的承载力由桩端基岩提供,一般不考虑桩侧摩擦阻力的作用。

2.2摩擦端承桩桩顶荷载主要由桩端承受,如通过软弱土层桩端嵌入基岩的桩,由于桩的长细比很大,在外部荷载作用下,桩侧摩擦阻力也起到部分作用,但桩侧阻力小于桩端阻力。

3.按桩身材料分类

3.1砼桩

①预制砼桩可在工厂集中生产,也可在场地附近预制。一般为400×400或500×500,单节长7m~11m.。10米左右,现广泛使用的预应力砼薄壁管桩,外径为Φ300~Φ500,壁厚70~125,管长5m~15m等。在小高层建筑中已被广泛应用。

②灌注砼桩是用桩机设备在施工现场就地成孔或采用人工挖孔,在孔内放置钢筋笼,其深度和直径根据工程地质勘察报告,由设计单位确定。

3.2钢桩主要采用型钢和钢管两大类,作临时支挡结构或永久性的码头工程。H型钢和I型钢

二、预制桩的施工工艺

2.1沉桩阻力

首先根据桩型、沉桩深度、接头形式以及工程地质条件、对沉桩阻力作出分析,选用合适的静压桩机设备。沉桩阻力的影响因素主要是由土质结构、埋入持力层深度、桩数、桩距、施工顺序等组成,分析实测资料表明,沉桩阻力是由桩侧阻力和桩尖阻力组成。通常情况下,两者沉桩阻力的比例是个变值。应该根据不同情况分析沉桩阻力。

2.2桩顶垫材

合理选用垫材能提高打桩效率和沉桩精度,保证桩帽免遭损坏,压桩时,垫材起着缓和并均匀传递桩机对桩头的压力,并均匀地传递于桩帽上。一般采用橡木、桦木等硬木按纵纹受压使用,并根据情况及时更换。

2.3桩的起吊、运输和堆放

2.3.1管桩应达到砼强度等级的80%以后放可倒运,达到100%才能出厂;

2.3.2管桩吊运应轻吊轻放,严防碰撞;

2.3.3管桩堆放、吊运支点需按计算要求进行,起吊时,绳索与桩的夹角应≥45°;

2.3.4堆放场地应压实平整,并有排水措施;

2.3.5管桩应分规格堆放,堆放层数,应根据其强度,地面承载力、垫木及堆垛稳定性确定,一般管径直径:350应≤7层,400~450应≤6层,500应≤5层;

2.4压桩程序和接桩方法

2.4.1静压法沉桩一般采取分段压入,逐节接长的方法。接桩有焊接法和浆锚法。在接桩时,应先检查下节桩的顶部,如有损伤应予修复,并清除桩顶上的杂物。在上节桩就位前,要清除接头处附着的污染物。有变形的桩,应修理合格经监理单位签证同意后再使用;

2.4.2沉桩应连续施打,避免长时间中断;

2.4.3压桩顺序应结合工程要求综合考虑各种因素和客观条件,选用打桩效率高、对环境危害影响小的合理打桩顺序。

三、灌注桩的适用条件及施工工艺

3.1准备工作

3.1.1资料准备。根据施工图、地质报告和水文地质资料、地下管线图、临近建、构筑物等情况制定施工组织设计。

3.1.2场地准备。迁移场地内妨碍施工的高架线路、地下管线等,地下构筑物应先挖除。确保施工现场的三通一平和设置场地排水、搭建临设和其他准备工作(如水钻孔桩所用的泥浆循环池和沉淀池等)、设置基准轴线的控制点和水准点。对各种施工机械进行检查调试。

3.2施工工艺

3.2.1根据设计桩型,采用相应成孔工艺,并使之符合设计和规范要求;

3.2.2钢筋笼制作与安放

①钢筋笼制作,钢筋的种类、钢号、规格、搭接、焊接、间距等均应符合设计和施工验收规范要求。对于大直径的钢筋笼,为确保搬运、吊放时不变形,应在笼内设置支撑。钢筋笼下部应加设砼保护层垫块;

②钢筋笼的安放与连接,安放时要垂直缓慢地放人孔内,避免碰撞孔壁。当钢筋笼较长时,应采用逐节接长放人孔内。主筋接头必须不在同一平面内。安放完毕,应检查笼顶标高。

3.3清孔钢筋笼入孔前,需进行清孔

3.4砼灌注

砼所用材料和配合比必须根据材料试验室提供的配合比,施工过程中,现场应制作砼试块,同条件养护。砼灌注方法:

3.4.1孔内水下灌注宜用导管法;

3.4.2孔内无水或渗水量很小时,灌注宜用串筒法,用插入式振动棒分层捣实;

3.4.3孔内无水或孔内虽有水,但能疏干时,宜用短护筒直接投料法;

3.4.4大直径桩砼浇灌宜用砼泵;

3.5砼灌注质量控制

3.5.1成孔通过验收合格后,应尽快灌注砼。并检查砼坍落度;