沉井法施工范文10篇

时间:2023-04-03 22:30:13

沉井法施工

沉井法施工范文篇1

1.1布设测量控制网

按照设计图纸的平面位置要求设置测量控制网和水准点,进行定位放线,定出沉井中心轴线和基坑轮廓线,作为沉井制作和下沉定位的依据。

2.沉井制作

2.1首先做地基处理,用粗、中砂垫层做地基的传力层,使沉井第一次制作时的重量通过混凝土垫层扩散后的荷载值小于下卧层地基土的承载力特征值。

为防止由于地基不均匀下沉引起井身开裂,对粗、中砂垫层基底夯压密实。并在上铺设C10砼垫层一道。

2.1.1砂垫层设计尺寸计算方法如下:

a.砂垫层厚度,根据沉井重量和地基土承载力确定

G/(ι+hs)≤fa

得hs≥G/fa-ι

式中:G--沉井的单位长度重量(KN/m)

fa--地基承载力设计值(KN/m2)

hs--砂垫层的厚度(m)

ι--刃脚垫层宽度

b.砂垫层宽度:

B≥b+2ι

2.1.2砼垫层的厚度计算:

h砼=(G/R1-b)/2

h--砼垫层厚度(m)

G--沉井第一节单位长度重量(KN/m)

R1--砂垫层的承载力设计值一般取(100KN/m2)

b--刃脚踏面宽度

2.2模板支设:根据设计图纸,在基底混凝土垫层上放线,刃脚内侧模采用MU10砖、MU7.5水泥砂浆砌筑,内抹1:3水泥砂浆找平压光。井壁模板采用加工订制木质多层板,一次支设至比施工缝略高100mm处,为保证砼浇筑外观效果,下一次支模板前,不允许拆前一次所支模板。待砼强度达到设计要求和施工要求后,再依次拆除。

2.3钢筋绑扎:池壁墙体钢筋净距控制采用钢筋排架,排架采用Ф14钢筋制作,架间距1000mm设置。钢筋交叉点均逐点绑扎,绑丝头一律扣向里侧,严防出现因保护层过薄而侵蚀钢筋的现象。钢筋连接宜采用直螺纹机械连接,用挂线法控制垂直度,用水平仪测量控制水平度,用木卡尺控制间距,用与结构同强度的细石混凝土垫块控制钢筋保护层厚度。在施工缝位置安装300mm宽钢板止水带。

2.4混凝土浇筑:沿沉井周围搭设脚手架,周围设布料管分布均匀下灰,每层厚500mm。注意对称均匀,防止造成地基不均匀下沉和倾斜。振捣时,振捣棒应插入下层混凝土50mm,保证层间结合紧密。混凝土养护采用浇水养护,两侧覆无纺布,养护14天。为防止出现冷缝,应具备足够的混凝土熟料供应能力。

3.沉井下沉

3.1准备与验算:检查混凝土强度和抗渗等级,刃脚、筒壁、底梁混凝土强度达到设计强度100%后方可进行第一次下沉。其余各节应达到设计强度的70%方可下沉,根据勘测报告验算下沉系数,当下沉系数较小时,应采取增加配重,或注入触变泥浆,减小下沉摩阻力等措施;当下沉系数较大时,可沿井壁回填土方,增大总摩擦力。采取不排水下沉时还需克服水的浮力。因此,为使沉井能够顺利下沉,应进行分阶段下沉系数的计算,作为确定下沉施工方法和采取技术措施的依据。

下沉系数按下式计算:

K0=(G-B)/Tf

式中G-井体自重;

B-下沉过程中地下水的浮力;

Tf、-井壁总摩擦力;

K0-下沉系数,宜为1.05-1.25,位于淤泥质土中的沉井取小值,位于其它土层中取大值。

当下沉系数较大,或在软弱土层中下沉,沉井有可能发生突沉时,除在挖土时采取措施外,宜在沉井中加设或利用已有的隔墙或横梁等作防止突沉措施,并按下式验算下沉稳定性:

K0’=(G-B)/(Tf+R)

式中R-沉井刃脚、隔墙和横梁下地基土反力之和B-下沉过程中地下水的浮力;

K0’-沉井下沉过程中的下沉稳定系数,取0.8-0.9

当下沉系数不能满足要求时,可在基坑中停止取土,减少下沉深度;或在井壁顶部堆放钢、铁、砂石等材料以增加附加荷重;或在井壁与土壁间注入触变泥浆,以减少下沉摩阻力等措施。

3.2下沉挖土:刃脚部位采用跳仓破土,使沉井均匀下称。由沉井中间开始逐渐向四周扩展,每层挖土厚度500mm,沿刃脚周围保留0.5~1.5m土堤,然后沿沉井壁,每2~3m一段向刃脚方向逐层、对称、均匀的削薄土层,每次50~100mm,当土层受刃脚挤压破裂后,沉井在自重作用下均匀垂直下沉,使不产生过大倾斜。

3.3按确保沉井稳定的需要掌握临界挖深。对沉井下沉过程中的基底隆起、管涌或承压水引起的不透水层穿破,下沉前要有预计,下沉时应严格掌握。

3.4按勤测勤纠偏的原则进行沉井下沉。在终沉阶段,刃脚的标高差和平面轴线偏差,要始终控制在规范容许的范围内。

3.5当沉井为多次制作多次下沉时,每次接高都须满足沉井的稳定要求;即传送至刃脚下土层的荷载,应小于该层土的极限承载力。必要时须在井周回填砂土或向井内灌水,保持刃脚下土层的稳定性。

4.沉井干封底

4.1封底条件:当沉井下沉距设计标高200mm时,停止挖土和抽水,使其靠自重下沉至设计标高,沉井达到终沉标高后8小时的累积下沉量≤1cm时,可进行混凝土干封底;

4.2干封底可采用分格浇筑方法,其浇筑顺序和每次浇筑格数,要根据下沉终止时的刃脚高差及井格内涌土情况而定;

4.3封底前将锅底整平,与封底混凝土接触的刃脚和井壁须凿毛并洗干净;

4.4设置集水井,其四周应设反滤层,并与排水沟相连;

4.5集水井在混凝土达到设计强度后方可封堵。

5.测量控制与观测

5.1沉井平面位置、标高的控制:在沉井外部地面及井壁顶部四面设置纵横十字中心控制线、水准基点,以控制其平面位置和标高。

5.2沉井垂直度控制:在井筒内按8等分标出垂直轴线,各吊线锤对准下面的标板来控制,并定时用两台经纬仪进行垂直偏差观测。挖土时,随时观测垂直度,当线锤偏离墨线50mm,或四周标高不一致时,应立即纠正。

5.3沉井下沉控制:在井壁周围弹水平线用水准仪来观测沉降。

5.4观测:沉井下沉过程中应加强位置、垂直度和标高(沉降值)的观测,每班测量两次(于班中和每次下沉后检测);接近设计标高时,每2h观测一次,严防超沉。由专人负责并做好记录,发现倾斜、位移或扭转,应及时纠正。

6.注意事项

6.1沉井开始下沉的5m以内,要特别注意保持平面位置和垂直度的正确,以免继续下沉,不易调整。

6.2为减少下沉的摩阻力和以后的清淤工作,在沉井的外壁采取随下沉随填砂的方法,以减轻下沉难度。

沉井法施工范文篇2

1.1布设测量控制网

按照设计图纸的平面位置要求设置测量控制网和水准点,进行定位放线,定出沉井中心轴线和基坑轮廓线,作为沉井制作和下沉定位的依据。

2.沉井制作

2.1首先做地基处理,用粗、中砂垫层做地基的传力层,使沉井第一次制作时的重量通过混凝土垫层扩散后的荷载值小于下卧层地基土的承载力特征值。

为防止由于地基不均匀下沉引起井身开裂,对粗、中砂垫层基底夯压密实。并在上铺设C10砼垫层一道。

2.1.1砂垫层设计尺寸计算方法如下:

a.砂垫层厚度,根据沉井重量和地基土承载力确定

G/(ι+hs)≤fa

得hs≥G/fa-ι

式中:G--沉井的单位长度重量(KN/m)

fa--地基承载力设计值(KN/m2)

hs--砂垫层的厚度(m)

ι--刃脚垫层宽度

b.砂垫层宽度:

B≥b+2ι

2.1.2砼垫层的厚度计算:

h砼=(G/R1-b)/2

h--砼垫层厚度(m)

G--沉井第一节单位长度重量(KN/m)

R1--砂垫层的承载力设计值一般取(100KN/m2)

b--刃脚踏面宽度

2.2模板支设:根据设计图纸,在基底混凝土垫层上放线,刃脚内侧模采用MU10砖、MU7.5水泥砂浆砌筑,内抹1:3水泥砂浆找平压光。井壁模板采用加工订制木质多层板,一次支设至比施工缝略高100mm处,为保证砼浇筑外观效果,下一次支模板前,不允许拆前一次所支模板。待砼强度达到设计要求和施工要求后,再依次拆除。

2.3钢筋绑扎:池壁墙体钢筋净距控制采用钢筋排架,排架采用Ф14钢筋制作,架间距1000mm设置。钢筋交叉点均逐点绑扎,绑丝头一律扣向里侧,严防出现因保护层过薄而侵蚀钢筋的现象。钢筋连接宜采用直螺纹机械连接,用挂线法控制垂直度,用水平仪测量控制水平度,用木卡尺控制间距,用与结构同强度的细石混凝土垫块控制钢筋保护层厚度。在施工缝位置安装300mm宽钢板止水带。

2.4混凝土浇筑:沿沉井周围搭设脚手架,周围设布料管分布均匀下灰,每层厚500mm。注意对称均匀,防止造成地基不均匀下沉和倾斜。振捣时,振捣棒应插入下层混凝土50mm,保证层间结合紧密。混凝土养护采用浇水养护,两侧覆无纺布,养护14天。为防止出现冷缝,应具备足够的混凝土熟料供应能力。

3.沉井下沉

3.1准备与验算:检查混凝土强度和抗渗等级,刃脚、筒壁、底梁混凝土强度达到设计强度100%后方可进行第一次下沉。其余各节应达到设计强度的70%方可下沉,根据勘测报告验算下沉系数,当下沉系数较小时,应采取增加配重,或注入触变泥浆,减小下沉摩阻力等措施;当下沉系数较大时,可沿井壁回填土方,增大总摩擦力。采取不排水下沉时还需克服水的浮力。因此,为使沉井能够顺利下沉,应进行分阶段下沉系数的计算,作为确定下沉施工方法和采取技术措施的依据。

下沉系数按下式计算:

K0=(G-B)/Tf

式中G-井体自重;

B-下沉过程中地下水的浮力;

Tf、-井壁总摩擦力;

K0-下沉系数,宜为1.05-1.25,位于淤泥质土中的沉井取小值,位于其它土层中取大值。

当下沉系数较大,或在软弱土层中下沉,沉井有可能发生突沉时,除在挖土时采取措施外,宜在沉井中加设或利用已有的隔墙或横梁等作防止突沉措施,并按下式验算下沉稳定性:

K0’=(G-B)/(Tf+R)

式中R-沉井刃脚、隔墙和横梁下地基土反力之和;

B-下沉过程中地下水的浮力;

K0’-沉井下沉过程中的下沉稳定系数,取0.8-0.9

当下沉系数不能满足要求时,可在基坑中停止取土,减少下沉深度;或在井壁顶部堆放钢、铁、砂石等材料以增加附加荷重;或在井壁与土壁间注入触变泥浆,以减少下沉摩阻力等措施。

3.2下沉挖土:刃脚部位采用跳仓破土,使沉井均匀下称。由沉井中间开始逐渐向四周扩展,每层挖土厚度500mm,沿刃脚周围保留0.5~1.5m土堤,然后沿沉井壁,每2~3m一段向刃脚方向逐层、对称、均匀的削薄土层,每次50~100mm,当土层受刃脚挤压破裂后,沉井在自重作用下均匀垂直下沉,使不产生过大倾斜。

3.3按确保沉井稳定的需要掌握临界挖深。对沉井下沉过程中的基底隆起、管涌或承压水引起的不透水层穿破,下沉前要有预计,下沉时应严格掌握。

3.4按勤测勤纠偏的原则进行沉井下沉。在终沉阶段,刃脚的标高差和平面轴线偏差,要始终控制在规范容许的范围内。

3.5当沉井为多次制作多次下沉时,每次接高都须满足沉井的稳定要求;即传送至刃脚下土层的荷载,应小于该层土的极限承载力。必要时须在井周回填砂土或向井内灌水,保持刃脚下土层的稳定性。

4.沉井干封底

4.1封底条件:当沉井下沉距设计标高200mm时,停止挖土和抽水,使其靠自重下沉至设计标高,沉井达到终沉标高后8小时的累积下沉量≤1cm时,可进行混凝土干封底;

4.2干封底可采用分格浇筑方法,其浇筑顺序和每次浇筑格数,要根据下沉终止时的刃脚高差及井格内涌土情况而定;

4.3封底前将锅底整平,与封底混凝土接触的刃脚和井壁须凿毛并洗干净;

4.4设置集水井,其四周应设反滤层,并与排水沟相连;

4.5集水井在混凝土达到设计强度后方可封堵。

5.测量控制与观测

5.1沉井平面位置、标高的控制:在沉井外部地面及井壁顶部四面设置纵横十字中心控制线、水准基点,以控制其平面位置和标高。

5.2沉井垂直度控制:在井筒内按8等分标出垂直轴线,各吊线锤对准下面的标板来控制,并定时用两台经纬仪进行垂直偏差观测。挖土时,随时观测垂直度,当线锤偏离墨线50mm,或四周标高不一致时,应立即纠正。

5.3沉井下沉控制:在井壁周围弹水平线用水准仪来观测沉降。

5.4观测:沉井下沉过程中应加强位置、垂直度和标高(沉降值)的观测,每班测量两次(于班中和每次下沉后检测);接近设计标高时,每2h观测一次,严防超沉。由专人负责并做好记录,发现倾斜、位移或扭转,应及时纠正。

6.注意事项

6.1沉井开始下沉的5m以内,要特别注意保持平面位置和垂直度的正确,以免继续下沉,不易调整。

6.2为减少下沉的摩阻力和以后的清淤工作,在沉井的外壁采取随下沉随填砂的方法,以减轻下沉难度。

6.3在沉井开始下沉和接近设计标高时,周边开挖深度应小于300mm,避免发生倾斜。在离设计标高200mm左右停止取土,靠其自重下沉至设计标高。

沉井是修筑深基础和地下构筑物的一种施工工艺,可在场地狭窄的情况下施工较深的地下工程,且对周围环境影响较小;可在地质、水文条件复杂地区施工;施工不需复杂的机具设备;与大开挖相比,可减少开挖、运输和回填的土方等工程量。

沉井法施工范文篇3

关键词:沉井施工工程应用

引言

沉井是修建深基础和地下深构筑物的主要基础类型,它具有结构截面尺寸和刚度大,承载力高,抗渗,耐久性好,内部空间可有效利用等特点,施工时不需要复杂的机具设备,对地质较复杂的状况下均可施工。缺点是施工工序较多,施工工艺较为复杂,技术要求高,质量控制要求严。下面对某工程采用沉井施工方法进行简单介绍。

1沉井施工工艺

基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。

2基坑测量放样

根据沉井设计图纸和工程地质报告所揭示的地质情况,沉井基坑开挖深度取2米,沉井刃脚外侧面至基坑边的工作距离取2米,基坑边坡采用1:1。整平场地后,根据沉井的中心座标定出沉井中心桩、纵横轴线控制桩及基坑开挖边线。施工放样结束后,须复核准确无误后方可开工。

3基坑开挖

基坑开挖边线确定后,即可进行挖土工序的施工。挖土采用1米3的单斗挖掘机,并与人工配合操作。基坑底面的浮泥应清除干净并保持平整和干燥,在底部四周设置排水沟与集水井相通,集水井内汇集的雨水及地下水及时用水泵抽除,防止积水而影响刃脚垫层的施工。

4刃脚垫层施工

刃脚垫层采用砂垫层和混凝土垫层共同受力。

4.1砂垫层厚度的确定

砂垫层厚度H可采用如下计算公式计算:

N/B+γ砂H≤〔σ〕

根据计算结果,无论是工作井还是接收井,砂垫层厚度H均为60(厘米)。砂垫层采用加水分层夯实的办法施工,夯实工具为平板式振捣器。

4.2混凝土垫层厚度的确定

混凝土垫层厚度可按下式计算公式计算:

h=(G0/R-b)/2

根据计算结果,混凝土垫层厚度h为10~15厘米(工作井为15厘米,接收井为10厘米)。混凝土垫层表面应用水平仪进行校平,使之表面保持在同一水平面上。

5立井筒内模及支架

由于顶管沉井高度达8米左右,因此,井身混凝土分三节浇捣,内模同样分三节按装。井筒模板采用组合钢模与局部木模互相搭配,以保证内模的密封性。刃脚踏脚部分的内模采用砖砌结构,宽度与刃脚同宽。井身内模支架采用空心钢管支撑。钢管支架必须架设稳固,如有必要,可采用对撑支架,增加内模的稳定性。

6钢筋绑扎

钢筋的表面应洁净,使用前将表面油渍、鳞锈等清理干净;钢筋应平直,无局部弯折,成盘的钢筋均应调直;预制构件中的主钢筋均采用对焊、焊接并按照有关规定抽样送检;钢筋接头应互相错开,并严格按照国家标准《混凝土结构工程施工及验收规范》(GB50204—92)中的有关规定执行;现场钢筋绑扎时,其交叉点应用21#铁丝绑扎结实,必要时用电焊焊牢。钢筋规格、尺寸应符合设计图纸要求和规定,绑扎钢筋时应采用撑件将二层钢筋位置固定,保证钢筋设计间距。为了保证保护层的厚度,应在钢筋与模板之间设置同强度标号的水泥砂浆垫块,垫块应与钢筋扎紧并互相错开。钢筋绑扎完成后,应上报监理工程师进行隐蔽验收。隐蔽验收合格后,方可进行立外模。

7立外模和支架

钢筋绑扎验收后,应进行架立外模和支架。井壁内外模用串心螺丝固定,串心螺丝采用φ16的圆钢,中间设置止水片,两端设置铁片控制井壁厚度尺寸,圆钢两端头上铰成螺纹,用定制钢螺帽固定,拆模时拆去钢螺帽,割去外露部分,再用同标号防水砂浆二度抹平,确保不渗水。外模支架必须稳、牢、强,保证在浇捣混凝土时,模板不变形,不跑模。

8浇捣混凝土

模板和支架工序完成后,必须经监理工程师进行验收。验收合格后,方可进行混凝土的浇捣。为缩短施工周期和保证工程质量,采用泵送商品混凝土。泵送混凝土可将输送管的软管直接放入浇捣段,距离浇捣面1米左右,保证混凝土不离析。混凝土浇捣前应严格检查各种预留孔、预留管和预埋件的位置和几何尺寸,严禁漏放和错放。混凝土振捣采用插入式振捣器振捣,振捣棒插入时应离开钢筋,但应防止混凝土振捣不匀和振捣过密而产生混凝

土离析现象的发生。混凝土在捣振时应注意和随时检查模板受力和钢筋受力的情况,防止模板因混凝土振捣的原因而跑模。

井身浇捣混凝土分三段施工:

工作井——总高度为8.43米,分三次浇捣完成,一次下沉。第一次浇捣刃脚部分,高度2.4米,标高-5.73~-3.33米;第二次浇捣高度3米,标高-3.33~-0.33米;第三次全部浇捣完成,浇捣高度3.03米,标高-0.33~+2.70米。

接收井——总高度为7.85米,分三次浇捣完成,一次下沉。第一次浇捣刃脚部分,高度2.0米,标高-5.15~-3.15米;第二次浇捣高度2.9米,标高-3.15~-0.25米;第三次全部浇捣完成,浇捣高度2.95米,标高-0.25~+2.70米。

采用分段浇捣混凝土时,严格按规范要求做好施工缝。施工缝做成凸缝,并在后浇时将连接处的混凝土凿毛,并用水清洗干净,浇捣时先用12%的UEA砂浆座浆,然后轻倒第一层混凝土并振捣密实,以免形成蜂窝,影响沉井的质量。

在混凝土浇捣过程中,还应做好混凝土的试块工作,保证质保资料的完善。

9混凝土养护及拆模

混凝土浇捣完成后应及时养护,养护方法可采用自然养护和塑料膜覆盖法。在养护过程中,对混凝土表面需浇水湿润,严禁用水泵喷射而破坏混凝土。养护时应确保混凝土表面不发白,至少养护七天以上。养护期内,不得在混凝土表面加压、冲击及污染。

在拆模时,应注意时间和顺序。拆模时间控制在混凝土浇捣后的3~4天内进行,过早或过晚的拆模对混凝土的养护都是不利的;拆模顺序一般是先上后下,小心谨慎,以免对混凝土表面造成破坏。对于分段浇捣混凝土部位,应保留最后一排模板,利于向上接模。

10封砌预留孔

严格按照设计图纸的要求,设置和封砌各种预留孔,并保证在沉井下沉过程中,预留孔内不渗水。

11井点安装及降水

为确保沉井平稳下沉,采用排水下沉法施工。用井点抽除地下水,降低地下水位,井点在基坑外周布置,并至少预抽七天后,方可开始挖土。公务员之家:

12凿除垫层挖土下沉

沉井下沉需待混凝土强度达到设计要求后,方可开始挖土下沉。下沉时,应先凿除刃脚下的混凝土垫层及砖砌内模。挖土工具采用蟹斗挖机挖土吊出井外。沉井挖土顺序应中间稍低于四周,沉井内的挖土高差控制在1米以内,禁止深锅底挖土,防止沉井突沉造成沉井倾斜的危险。另外,井壁外的灌砂必须均匀充实,使沉井下沉时四周摩阻力相近,均匀下沉。沉井下沉时,应防止倾斜,发现问题及时纠偏,若沉井下沉有困难时应另外想办法,不准大量挖深,造成突沉。沉井挖土三班制连续作业,中途不停顿,确保沉井连续、安全地下沉就位。当刃脚距离设计标高在1.5米时,沉井下沉速度应逐渐放缓,挖土高差控制在50cm内,当沉井接近标高时,应预先做好止沉措施。止沉措施可采用在刃脚四周间隔挖出设计标高的槽,填入方木,并应注意抛高系数,禁止超沉和超挖。

13沉降观测

沉井在下沉过程中,必须随时测定沉井标高,确保均匀下沉,并做好沉井下沉记录。沉井下沉至设计标高(包括抛高)后,应先清除表面浮泥等杂物,超挖的土方必须用碎石夹砂填实,不得用土填,井内不得有积水,并确保井点的正常工作,不允许发生停泵,同时加强对水位的观测,保证降水要求,地下水位必须距离垫层50cm以下。底板与刃脚的接触面,必须将表面混凝土全部凿毛并露出石子,便于新老混凝土的结合。当沉井在8小时内的累计下沉量不大于10mm时,方可浇捣底板碎石垫层。

14铺设混凝土垫层

在铺筑碎石层时,应确保井底内无积水、无流砂、无翻浆等现象。20cm的碎石层应做到平整,无坑塘,必须时应用水平仪抄平,保证碎石层的水平。碎石层铺筑完成后,即可在其上浇捣素混凝土垫层。在铺筑素混凝土垫层后,应保证表面平整,无地下水上冒现象。

15绑扎底板,浇捣底板混凝土

沉井法施工范文篇4

关键词:矿区;生态环境治理;大口井;沉井

我国地大物博,矿产资源丰富,各种矿区众多,但由于缺乏整体规划,乱挖乱弃的废弃土随处可见,致使大量的土地资源被占用和破坏,不仅使所占土地无法利用,也使得周围土地资源的合理开发受到了限制。因此,进行矿山地质环境综合治理势在必行。在进行矿区生态环境治理时,应根据治理区的实际情况,因地制宜,合理规划,分步实施。设计目的主要是场地平整后恢复土地使用功能,并进行相应的辅助措施。主要治理工程包括:大口井工程、固体废弃物整平工程、设置泄洪明渠、覆土、平整、植树、种草及设置标志牌等。本文结合某大口井工程案例进行探讨。

1结构要求

本案例中设计的大口井为圆形水井(见图1),外径6m、内径4m,深度为水位以下5m,井壁为钢筋混凝土结构,厚度为1.0m;井底封底采用砂石料填塞形成反滤层,先填塞砂卵石,填塞厚度为0.5m,然后填塞碎石,填塞厚度为0.5m,为了保证井壁的透水性,混凝土使用无砂混凝土。从安全的角度考虑,大口井井壁上顶高出平整后地表0.5m。要求混凝土强度等级为C20无砂混凝土,采用沉井法施工,人工挖土排水下沉,井壁分段浇筑。

2施工工艺

2.1施工工艺流程

大口井工程的施工工艺流程为:施工预备→基坑开挖→垫层制造→沉井刃脚施工→立井壁内膜和支架→钢筋绑扎→立外模和支架→浇捣混凝土→混图1大口井示意图凝土养护及拆模下沉→施工缝处置→进行其他井壁施工→下沉到位、观测→沉井封底。

2.2基坑开挖

采用人工挖、装,卷扬机调运的方式开挖基槽,边挖边沉井,随时校正。利用离心水泵采用排水法人工施工,井内的水位随井筒下沉而下降,基坑底面的浮泥应铲除干净并保持平整和干燥,避免因积水而影响刃脚垫层的施工,水位控制在开挖面以下0.5~1.0m。人工挖土每次开挖深度为0.3m。基坑坑壁与井筒外壁的间距为0.75m,设计大口井为圆形,内径为4m,井壁厚度为1.0m,基坑开挖直径为7.5m,每1m深度开挖工程量为44.17m3。设计大口井井底回填滤料厚度为1.0m。

2.3推运整平

大口井基槽开挖产生的废石土,待沉井完成后利用推土机将其推运回填至井壁与基槽的空隙,剩余的平整于井口周边,使其与周围地形地貌相吻合。

2.4封底

采用砂石料填塞,包括漏斗和套管的安装、拆除、封底填塞。将砂卵石填塞于底部,厚度为0.5m,然后填塞碎石,厚度为0.5m。

2.5沉井

沉井的工作内容主要包括刃脚制作、安装,模板制作、安装、拆除,钢筋绑扎,C20无砂混凝土拌制、浇筑、养护,最终形成井壁厚度为1.0m,边挖边沉井,井筒下沉时应保持平稳,当发现位移或倾斜时及时纠正,并在下沉过程中填写记录。沉井分两次浇筑,第一节从沉井至刃脚上皮,沉井高度为5m,第二段沉井高度为4/5m,沉井接高的各节竖向内壁应与前一节的内壁笔直;分节制造的沉井在第一节混凝土达到设计强度的70%后,方可浇筑其上一节混凝土;在沉井接高浇筑混凝土过程中,要加强对沉井的沉降观测,并做好较详细的记录。在沉井下沉过程中,采用挖土下沉的方法,沉井内设一台水泵进行不间断地排水,使水位控制在开挖面以下0.5~1.0m。(1)刃脚垫层施工。砂垫层选用颗粒级配较好的粗砂或中砂,粒径为1~3cm。为了提高砂垫层的密实度,采用逐层振捣法进行振实,层数为两层,每层厚度为0.25m,宽1.6m。每层摊铺振实时,逐层洒水并控制砂的最佳含水量,并及时扫除集水井中的积水。支撑稳固后,即可浇捣垫层混凝土,垫层采用C20素混凝土,外表应平整压光,标高误差<8mm。振捣应密实,以确保质量。(2)刃脚制作。刃脚上端宽度为1.4m,下端宽度为0.8m,高度为1.0m,刃脚斜面与水平面夹角为60°,刃脚模板采用钢模板。刃脚应浇筑在坚实的土层上,刃脚混凝土强度达到设计强度的70%时,方可在刃脚上浇砌井筒,待刃脚混凝土达到设计强度的100%、井壁混凝土达到设计强度的70%时,方可开始下沉。在浇筑上部混凝土前,将施工缝用清水冲刷干净,并先均匀地铺一层厚2cm左右、与混凝土强度等级相同的水泥砂浆,使接缝紧密结合。(3)井壁施工。井壁厚度为1m,井壁模板采用竹胶板、组合钢模板、卡扣件及联杆组装而成。井壁制作分为两段,第一节从沉井至刃脚上皮,沉井高度为5m,第二段沉井高度为4/5m,各接缝中心处均设一道钢板止水带(宽300mm、厚3mm),钢板接头满焊,防止各段交接处的水平施工缝渗水。(4)混凝土养护。结构混凝土浇筑完毕,在混凝土表面及时包裹塑料布及土工布,并进行洒水养护。高温养护时要注意养护的水温,避免由于温差过大而引起混凝土开裂。养护方案可根据实际情况适时调整。在混凝土带模养护期间,应采取带模包裹、喷淋洒水、保持潮湿,保证模板接缝处不至于失水干燥。为了保证顺利拆模,可在混凝土浇筑48h后略微松开模板螺栓,混凝土强度超过设计强度的75%时可进行拆模。沉井混凝土拆模后,应对混凝土采用蓄水、浇水或覆盖洒水等措施进行潮湿养护,保证混凝土表面湿润。在冬季和炎热季节拆模后,应采取适当的保温或隔热措施,防止混凝土产生过大的温差应力而使其表面产生裂缝。

3结语

通过本技术的应用及项目的实施,有利于改善生态环境和局部小气候,减少风力,提高土壤贮水保土能力,增加土壤有机质含量,改善土壤团粒结构,遏制土地沙化、水土流失,改善生态环境和人居环境。但大口井工程的投资较大,施工周期长,其间存在很多不稳定因素,需要严格的施工管理及后期维护。

作者:刘双英 单位:山西建筑职业技术学院

参考文献:

[1]武中刚.沉井施工技术在某工程中的应用[J].山西建筑,2005,31(3):86-87.

沉井法施工范文篇5

由于泵房尺寸较大,埋置深度较大,且上部荷载较小,当地下水位较高时,抗浮设计往往是设计控制因素之一。目前,工程中较常用的抗浮方式有:自重抗浮、配重抗浮、锚固抗浮、抗浮桩等。可根据实际情况同时采用一种或多种抗浮方式。

(1)自重抗浮

自重抗浮荷载计算时不包括设备重、使用荷载及安装荷载。自重加大后,泵房体积也随之加大,浮力相应增加。因此自重抗浮只能在不具备其他抗浮条件或自重加大不多即可满足抗浮要求时采用。

(2)配重抗浮

配重抗浮也有一定的局限性。由于泵房埋于地下,常用的配重方法是在泵房底板外挑部分的填土,底板向外延伸会使支护范围加大,且当泵房较深时,基坑回填压实难度较大,不易满足设计要求。也可在泵房顶板增加配重,但会加大结构承载量,对抗震不利。

(3)锚固抗浮

锚固抗浮是一种有效的技术手段,锚杆灵活布置、锚固效率高、适应性较广,易于施工。在许多条件下优于自重抗浮和配重抗浮。由于抗浮锚杆的工作环境和受力特点,锚杆受拉后杆体周围灌浆开裂,使杆体极易受地下水侵蚀,影响其耐久性。同时,抗浮锚杆与底板的节点可能成为防水的薄弱环节。

(4)抗浮桩

抗浮桩是一种主动抗浮设计,前期施工费用较高,但后期维护简单,结构受力合理,不影响泵房的使用功能。当地下水位较高,泵房平面尺寸较大,基础埋置较深时多采用此种抗浮方法。此外,工程中还有其他抗浮方法。例如通过改变结构形式,泵房池壁与土体的黏结抗剪力抗浮。实际工程中,应根据泵房的尺寸大小,水位高低,埋置深度选用合理的抗浮方式,以达到设计要求。

2抗滑移、抗倾覆验算

当采用嵌固或锚固抗浮时,泵房周围填土较深且土面大体一致时,可不做抗滑移、抗倾覆验算。当泵房建造在软弱土层上,有可能出现连同地基土一起滑动而失去稳定时,尚应采用圆弧滑动条分法进行整体稳定验算。

3施工方法选择

当泵房埋深较浅,地下水位较低,且土质较好时,可选择开挖基坑。当泵房埋深较深,地下水位较高,且土质较差时,可选择沉井施工。基坑开挖较为简单,本文重点介绍沉井施工方法。沉井的施工方法对沉井的设计计算有着直接关系,应根据场地的地质条件结合施工条件决定。

(1)排水下沉

当地下水位不高,或是虽有地下水但沉井周边的土层渗水性不强,涌入井内的水量不大且排水不困难时,可采用排水下沉法,此种方法施工费用较低,工期较短。

(2)不排水下沉

在下沉深度范围内存在粉土、砂土或其他强透水层而排水下沉有可能造成流砂或补给水量很大而排水困难时,可采用不排水下沉。当沉井场地附近有已建建构筑物及其他设施,排水施工可能导致其沉降及倾斜而难以采取其他有效措施防止时,也可采用不排水下沉。

(3)分次下沉

根据沉井的高度,地基承载力、施工条件和设计需要,沉井可沿高度方向一次浇筑下沉,或分段浇筑一次下沉,或分段浇筑分次下沉。

4结构设计中应注意的问题

(1)池壁厚度的选择

当泵房较浅、采用开挖施工方法时,池壁厚度只要满足受力要求、防水要求即可。当泵房较深,采用沉井施工时,应优先考虑沉井依靠自重克服土层的摩擦力下沉,因此,池壁要有适当的厚度。反之,当池体过重时,下沉系数过大或地基承载力不足时,应适当减小池壁厚度。当地下水位较高时,沉井必须满足抗浮要求,因此依靠自重沉井的泵房各部分也要有适当的厚度。

(2)变形缝的设置

沉井法施工范文篇6

关键词:桥梁

1、跨径不断增大

目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为270m,拱桥已达420m,斜拉桥为530m。

2、桥型不断丰富

本世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。所有这一切,使桥梁技术得到空前的发展。

3、结构不断轻型化

悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻颖;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、板件减薄等,这些都使桥梁上部结构越来越轻型化。

以下分别就各种桥型,进行简述。

梁桥

梁桥仍然是最常用的一种桥型,目前,国外跨径在15m以下,用钢筋混凝土梁桥;以上则用预应力混凝土梁桥;跨径25-40m,往往用结合梁桥或预弯预应力梁桥。从50年代德国首次采用平衡悬臂施工法修建跨径114.2m的Worms桥以后,混凝土梁桥也用于大跨径桥梁。最大的混凝土梁桥,国外是跨径270m的巴拉圭Asuncion桥。

钢梁桥一般用于大跨径,尤其是桁架梁,用于特大跨径。最大的钢桁梁桥,是跨径549m的加拿大魁北克桥,为悬臂梁桥,公铁两用。

1、混凝土连续梁和连续刚构桥有了快速发展。

交通运输的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构已经不能满足要求,因而连续梁和连续刚构得到了迅速发展。

连续梁的不足之处是需用大吨位的盆式橡胶支座,养护工作量大。连续刚构的结构特点是梁保持连续,梁墩固结。既保持了连续梁行车平顺舒适的优点,又保持了T型刚构不设支座减少养护工作量的优点。

2、预应力应用更加丰富和灵活

部分预应力在公路桥梁中得到较广泛的采用。不仅允许出现拉应力,而且允许在极端荷载时出现开裂。其优点是,可以避免全预应力时易出现的沿钢束纵向开裂及拱度过大;刚度较全预应力为小,有利于抗震;并可充分利用钢筋骨架,减少钢束,节省用钢量。

体外预应力得到了应用与发展。体外预应力早在本世界20年代末就开始应用,70年代后应用多了起来。体外配索,可以减小截面尺寸,减轻结构恒载,提高构件的施工质量;力筋的线型更适合设计要求,其更换维修也较方便。加固桥梁时用体外索更是方便。著名的美国Longkey桥,跨径36m,即是采用了体外索。

大吨位预应力应用增加。现在不少桥梁中已采用每束500t的预应力索。预应力索一般平弯,锚固于箱梁腋上,可以减小板件的厚度,减轻自重,局部应力也易于解决。

无粘结预应力得到了应用与发展。无粘结预应力在国外50年代中期广泛用于建筑业,美国目前楼板中,99%采用现浇无粘结预应力。无粘结预应力结构施工方便,无需孔道压浆,修复容易,可以减小截面高度;荷载作用下应力幅度比有粘结的预应力小,有利于抗疲劳和耐久性能。

双预应力,即除用预张拉预应力外,还采用了预压力筋,使梁的载面在预拉及预压力筋作用下工作。简支梁双预应力梁端部的局部应力较大,后来日本将预压力筋设在离端部一定距离的上缘预留槽中,而不是锚在梁端部,使局部应力问题趋于缓和。

国外还较多应用预弯预应力梁。预弯预应力梁是在钢工字梁上,对称加两集中力,浇筑混凝土底板,卸除集中力,这样底板混凝土受到预压,然后再浇筑腹板和顶板混凝土。有的国家如日本已有浇筑好底板的梁体作为商品供应。

3、箱梁内力计算更切合实际

对于箱梁,必要时需考虑约束扭转、翘曲、畸度、剪滞的内力。由于剪滞的影响,箱梁顶底板在受弯情况下,其纵向应力是不均匀的,靠箱肋处大,横向跨中处小。配筋时要用有效宽度。目前已按试验结果,将纵向应力按多次抛物线分布,得出实用结果。

箱梁温差应力的计算。箱梁由于架设方向及环境的不同,会承受不同的温差。温差应力必须考虑,在特定的情况下,温差应力很大,甚至超过荷载应力。因此,必须按照现场可能出现的温差,计算内力,加以组合,进行配筋。

按施工步骤计算恒载内力。按结构的最终体系计算恒载内力,往往并不是实际的内力。必须按照施工顺序,逐阶段地进行计算,在计算中考虑混凝土龄期不同的徐变收缩影响。这样,既得到了各施工阶段的控制内力,又得到了结构形成时的内力和将来的内力。同样,也必须考虑施工顺序步骤计算挠度,并反算得到预拱度。

4、施工方法丰富先进

近年来悬臂施工法中悬拼的应用有所增加。各节段间带有齿槛,涂环氧,使连接良好,并增大抗剪能力。可以缩短工期,特别是利用吊装能力大的浮吊时,可加大节段长度,则更能加快施工进度。国外悬拼最大的桥为跨径182.9m的澳CaptainCook桥。顶推施工法也处在不断发展过程,一开始是集中顶推,两则各用一个千斤顶推动,而且用竖向千斤顶以使水平千斤顶回程。以后发展成为多点顶推,使顶推力与摩阻力平衡,使顶推法可用于柔性墩,同时也不使用竖向千斤顶。在这以后,又有下列发展:

(1)用环形滑道,不必喂氟板。

(2)支座设在梁上,不需顶推后重行设置。

(3)拉索锚具可自动开启或闭锁。梁前进时锚定,千斤回程时自动开启。

(4)在横向中央设一个滑道,避免两侧滑道时必须两侧同步,特别适用于平曲线梁的顶推。

目前,顶推施工法不仅用于直线梁,而且用于竖曲线上的梁,以及平曲线上的梁。香港曾把顶推法成功地使用在处在切线、缓和曲线和R=430m圆曲线的梁上,把线形用最接近的圆曲线来模拟,其差值藉调整箱顶板的悬臂长度来补偿。同时因为超高的不同,箱梁腹板的高度也是变化的;在处于3%纵坡和竖曲线的梁,则使板底保持同一个纵坡而改变箱高。因此,箱梁几何尺寸、浇筑平台的模板系统大为复杂,但胜利建成,为顶推法提供了新的经验。

80年代,逐跨拼装法在国外得到较多的应用。美国LongKey桥101孔,每孔36m,用可移动桁架,用浮吊将梁块件放在桁架上就位,一次张拉,完成整孔,每周完成三孔。

斜拉桥

自1955年瑞典建成第一座现代斜拉桥--跨径186.2m的Stromsund桥以来,至今已有40多年了,斜拉桥的发展,方兴未艾,具有强烈的势头,并开始出现多跨斜拉桥。结构不断趋于轻型化;从初期的钢斜拉桥,发展为混凝土梁、结合梁和混合式斜拉桥。跨径不断增大:已建成最大跨径斜拉桥为跨径856m法国Normandy桥,跨径890m的日本多多罗桥正在建设中,跨径1000m以上的斜拉桥在不久的将来即会出现。

1、斜拉桥的发展阶段

斜拉桥的发展,经历了以下三代:

(1)用环形滑道,不必喂氟板。

(2)支座设在梁上,不需顶推后重行设置。

(3)拉索锚具可自动开启或闭锁。梁前进时锚定,千斤回程时自动开启。

(4)在横向中央设一个滑道,避免两侧滑道时必须两侧同步,特别适用于平曲线梁的顶推。

目前,顶推施工法不仅用于直线梁,而且用于竖曲线上的梁,以及平曲线上的梁。香港曾把顶推法成功地使用在处在切线、缓和曲线和R=430m圆曲线的梁上,把线形用最接近的圆曲线来模拟,其差值藉调整箱顶板的悬臂长度来补偿。同时因为超高的不同,箱梁腹板的高度也是变化的;在处于3%纵坡和竖曲线的梁,则使板底保持同一个纵坡而改变箱高。因此,箱梁几何尺寸、浇筑平台的模板系统大为复杂,但胜利建成,为顶推法提供了新的经验。

80年代,逐跨拼装法在国外得到较多的应用。美国LongKey桥101孔,每孔36m,用可移动桁架,用浮吊将梁块件放在桁架上就位,一次张拉,完成整孔,每周完成三孔。

桥梁基础

基础尤其是大跨径桥梁的深水基础,往往需要解决施工技术上的许多难点,也往往是控制整个桥梁工程进度的关键工程,其费用也占桥梁造价相当大的比重。

近年来,国外都修建了不少跨越大江大河、甚至跨越海湾的深水基础,取得了很大的成绩与不少新经验:大直径钢管桩、大直径混凝土灌注桩和空心桩、复合基础均得到较广泛的采用,地下连续墙已开始在桥梁基础中采用,超大的沉井也已经出现并顺利设置或下沉。这一切都标志着,桥梁基础工程技术已取得了很大的发展。

下面按基础的主要类型进行介绍。

1、大直径钢管桩、柱

具有施工工艺简便、速度快,可沉入很深土层等优点,近年来发展很快,日本大量采用。

大直径钢管桩用作摩擦桩,经历两个阶段:初期一般在管内浇筑混凝土,以防止钢管的锈蚀。这样做也会带来一些不利影响:需在管内取土,而对提高桩的承载能力作用不大;增大了桩的刚度,在地震时使桩顶受力增大;增加了施工难度与造价。

以后逐渐倾向于管内不填混凝土,由于管内土存在闭塞效应,因此钢管桩的承载能力比钢管外壁土壤摩阻力要增大不少。而闭塞效应的机理目前还不很清楚,因此往往通过静载试验来确定其承载力。具体实例如,日本跨径240m的滨名大桥每主墩采用49根直径1.6m钢管桩,组成水上承台。在冲刷深、复盖层较薄时,往往将钢管桩沉至岩面钻孔嵌岩,成为管柱基础。这时往往用混凝土填实。如日本主跨为220m及185m的内海大桥,水中四个深水墩均采用直径2m的钢管柱基础

2、大直径钻孔灌注桩

大直径灌注桩具有承载力大、刚度大、施工快、造价省的优点。国外很多采用直径2~4m的大直径钻孔桩;而且往往采用扩孔方法,直径可达3~4m,而在日本横滨港横断大桥-跨径460m的钢斜拉桥的基础中,将多柱基础嵌岩扩孔至直径10m,是目前世界最大的嵌岩直径。

在连续结构、尤其是连拱或连续斜拉桥设计中,刚度起关键作用,以减少下部构造的水平位移,减少由此引起的附加内力。这时桩基水平向承载力不控制设计,而是刚度控制设计,大直径灌注桩具有非常明显的优势。

3、沉井

沉井基础承载能力大,刚度大,可以适用于深水,但体积庞大,随着桩基的广泛采用,沉井的应用范围有所减少。不过在特大跨径的桥梁中,沉井仍为主要基础型式之一。

在大跨径桥梁的深水基础中,底节多采用浮式钢壳沉井,用双壁空心结构,浮运至墩位,灌水落床,再浇筑混凝土,接高下沉,直至设计标高。日本明石海峡大桥,最大施工水深60m,两主塔分别采用直径80m和78m、高70m和67m的浮式钢壳沉井,壁厚12m,分为16个舱,是目前规模最大的桥梁沉井基础。其特点是设置沉井,用大型抓斗挖泥船开挖至海底支承地基,整平岩基,再用切削机磨平,然后设置沉井,在其周围抛石进行冲刷防护,最后沉井内进行水下混凝土施工。日本濑户大桥也用同样方法施工。

4、复合基础

将桩或管柱与沉井组合的一种深水基础。沉井下到一定深度,封底,然后钻孔,将沉井内的桩嵌岩,沉井封底与桩或柱共同受力。

其优点是:

i)可以降低承台的高度。

ii)可提供桩的施工场地。

iii)适应性强,尤其适应在岩面标高差异很大以及落差较大的河流。

沉井法施工范文篇7

1工程概况

兴无矿下组煤进风立井井筒设计深度为293􀆰7m,井筒永久锁口标高+912􀆰7m,井底水窝底板标高+619m。其中,井颈段58􀆰65m,井身段224􀆰2m,1号壁座1􀆰85m,2号壁座1m,井底连接处8m。井筒净直径6m,单层井壁,0~60􀆰5m表土及基岩风化带采用钢筋混凝土单层井壁,井壁厚度为800mm,混凝土强度为C40;基岩段采用素混凝土井壁结构,井壁厚度400mm,混凝土强度为C30。进风立井井筒担负矿井下组煤进风任务,兼做安全出口。根据野外钻探揭露的地层和堆积物沉积韵律特征,结合室内土工试验结果及区域地质资料综合分析,立井场地地基土自上而下岩性依次为:素填土、粉质黏土、全风化泥岩、强风化砂岩、中风化砂岩、中风化泥岩。立井场地地基土参数见表1。综上分析,立井场地表土层为复杂不稳定的回填土层,其表土层具有复杂性、不均匀性、结合度低、受力分布不均等特性。

2“吊挂井壁+井圈+钢板桩”综合施工法

吊挂井壁施工法是适用于稳定性较差的土层中的一种短段掘砌施工方法,为保持土的稳定性,减少土层的裸露时间,段高一般取0􀆰5~1􀆰5m,按土层条件,段高内还可分别采用台阶式或分段分块,并配以超前小井降低水位的挖掘方法。此种施工方法可适用于渗透系数大于5m/d、流动性小、水压不大于0􀆰2MPa的砂层和透水性强的卵石层,以及岩石风化带。井圈背板普通施工法是指采用人工或抓岩机(土硬时可放震动炮)出土,下掘一小段后,即用井圈、背板进行临时支护,掘进一长段后,再由下向上拆除井圈、背板,然后砌筑永久井壁,该施工法适用于较稳定的土层。板桩施工法是对于厚度不大的不稳定表土层,在开挖之前,可先用人工或打桩机在工作面或地面沿井筒荒径打入一圈木板桩或金属板桩,形成一个四周密封的圆筒,用以支承井壁,并在其保护下进行掘进。木板桩适用于厚度为3~6m的不稳定土层,金属板桩适用于厚度为8~10m的不稳定土层。根据已勘察的井筒表土段地质情况,井筒表土段主要为深厚、不稳定回填土层及风化基岩,综合了吊挂井壁法、井圈背板法、板桩法等常用的表土段施工法,拟采用“吊挂井壁+井圈+钢板桩加固”综合施工法,短段掘砌单行作业,以保证表土段安全、快速施工。

3“吊挂井壁+井圈+钢板桩”施工方案

3􀆰.1总体施工方案。“吊挂井壁+井圈+钢板桩”总体施工方案如下:井筒从回填地坪+910􀆰1m开挖4􀆰7m→由下向上绑扎钢筋5􀆰8m及绑扎环形梁→支模→由下向上浇筑混凝土至临时锁口标高+911􀆰2m→临时锁口→开挖0􀆰8m→打设井圏钢板桩→开挖0􀆰8m→打设井圏钢板桩→编筋、支模、浇筑混凝土(1􀆰6m)→开挖0􀆰8m→打设井圏钢板桩→开挖0􀆰8m→打设井圏钢板桩→编筋、支模、浇筑混凝土(1􀆰6m),依次循环向下施工,直至稳定岩土层。“吊挂井壁+井圈+钢板柱”综合施工示意图如图1所示。3􀆰.2吊挂井壁法施工方案。3􀆰.2􀆰.1基坑开挖1)施工前测量人员依据设计将井筒中心线放出,用白灰撒出需开挖基坑轮廓线。2)基坑开挖采用挖掘机配合人工进行,按照换填基础坑所在位置、尺寸开挖,开挖基础坑时先中心后外圈依次进行,开挖面积为132􀆰66m2,开挖深度约为2m。3)基础坑开挖后,技术人员对基础坑进行尺寸校正,对基础坑凹凸部分进行处理,确保基坑尺寸符合设计要求。3􀆰2􀆰2钢筋绑扎1号和2号环形梁尺寸1000mm×1500mm,四周对称布置4道3号连接梁,尺寸为1500mm×800mm×1200mm,其余部分用筏板连接,筏板尺寸为1500mm×600mm。钢筋绑扎按照图纸设计进行,如图2所示。3.􀆰2􀆰.3环形倒挂式基础与井颈段混凝土浇筑为保证井筒井颈段开挖施工顺利进行,井筒井颈段端部开口设环形混凝土倒挂式基础,最大直径为13m;梁及筏板均采用钢筋混凝土浇筑,混凝土强度为C30。钢筋编制完成后,待检验合格后,井筒倒挂式基础与井筒井颈段第一段打灰同步进行。井筒倒基础环形梁浇筑混凝土强度为C30。井筒环形倒挂式基础与井颈段施工示意图如图3所示。3􀆰.3“井圈+钢板桩”。法施工方案为保证井筒表土段开挖施工安全有序进行,表土段采用“井圏+钢板桩”法超前支护,保证土体稳定性且满足设计规格,表土采用人工铁锹配合挖掘机作业,待临时锁口后逐段向下掘进。1)开挖按0􀆰8m一段,先挖中间部分,段高符合要求后再刷扩到设计规格,采用“井圏+钢板桩”法进行超前临时支护。2)首段开挖后,上层井圏利用临时锁口预留钢筋及锚杆固定在设计井筒断面上,下层与上层井圏利用挂钩连接,挂钩采用Φ20mm的HRB400螺纹钢加工而成,每层挂钩8个。3)“井圏+钢板桩”法:先用螺栓连接井圏,并用挂钩与上段井圏相连,再按要求连续打设10#槽钢钢板桩加固土体进行超前支护,并用方木充填空隙。钢板桩长1500mm,采用10#槽钢加工,外露100mm,打入土体1400mm,与井帮夹角30°。每段待井圏板桩施工完毕后,方可进行下段0􀆰8m土体开挖。井圈外径7700mm,18#槽钢加工,共6节,锚栓连接。井圈加工示意图如图4所示。4)掘进过程中遇大块岩石不能用风镐掘进时,可用Φ15􀆰5mm绳扣锁捆后直接用钩头提至地面处理,尽量避免井下放炮崩大块,防止放炮震动诱发片帮现象发生。5)施工过程中,应先挖出罐窝,利于出渣;井中挖出超前集水坑,及时用风泵排出。6)若土体松散或与井壁接触面有空洞,必须进行壁后注浆充填密实。

4结语

沉井法施工范文篇8

关键词:高边坡抗滑结构锚固减载排水治理水利水电工程

边坡稳定问题是水利水利和水电工程中经常遇到的问题。边坡的稳定性直接决定着工程修建的可行性,影响着工程的建设投资和安全运行。

我国曾有几十个水利水电工程在施工施工中发生过边坡失稳问题,如天生桥二级水电站厂区高边坡、漫湾水电站左岸坝肩高边坡、安康水电站坝区两岸高边坡、龙羊峡水电站下游虎山坡边坡等等。为治理这些边坡不但耗去了大量的资金,还拖延了工期,成为我国水利水电工程施工中一个比较严峻的问题,有的边坡工程甚至已经成为制约工程进度和成败的关键。我国正在建设和即将建设的一批大型骨干水电站,如三峡、龙滩、李家峡、小湾、拉西瓦、锦屏等工程都存在着严重的高边坡稳定问题。其中三峡工程库区中存在10几处近亿立方米的滑坡体,拉西瓦水电站下游左岸存在着高达700m的巨型潜在不稳定山体,龙滩水电站左岸存在总方量1000万m3倾倒蠕变体等。这些工程的规模和所包含的技术难度都是空前的。因此,加快水利水电边坡工程的科研步伐,开发出一套现代化的边坡工程勘测、设计、施工、监测技术,已经成为水利水电科研攻关的重大课题。

高边坡的地质构造往往比较复杂,影响滑坡的因素也很多,因此,我国广大水电科技人员在与滑坡灾害作斗争的过程中,不断总结经验教训,积极开展科技攻关,总结出了一整套水电高边坡工程勘测、设计和施工新技术,成功地治理了天生桥二级、漫湾、李家峡、三峡、小浪底等工程的高边坡问题。本文仅就水利水电工程岩质高边坡的加固与整治措施作一简要介绍。

一、混凝土抗滑结构结构的应用

1.1混凝土抗滑桩

我国在50年代曾在少量工程中试用混凝土抗滑桩技术。从60年代开始,该项技术得到了推广,并从理论上得到了完善和提高。到80年代,高边坡中的抗滑桩应用技术已达到了一定的水平。

抗滑桩由于能有效而经济地治理滑坡,尤其是滑动面倾角较缓时,其效果更好,因此在边坡治理工程中得到了广泛采用。如:天生桥二级水电站于1986年10月确定厂房下山包坝址后,11月开始在厂房西坡进行大规模的开挖,加上开挖爆破和施工生活用水的影响,诱发了面积约4万m2、厚度约25~40m、总滑动量约140万m3的大型滑坡体。初期滑动速度平均每日2mm,到次年2月底每日位移达9mm。如继续开挖而不采取任何工程处理措施,预计雨季到来时将会发生大规模的滑坡,为此,采取了抗滑桩等一整套治理措施。

抗滑桩分成两排布置在厂房滑坡体上,在584m高程上设置1排,在597m高程平台上设置1排,桩中心距6m,桩深为25~39m,其中心深入基岩的锚固深度为总深度的1/4,断面尺寸为3m×4m,设置15kg/m轻型钢轨作为受力筋,回填200号混凝土,每根抗滑桩的抗剪强度为12840kN,17根全部建成后,可以承受滑坡体总滑动推力218280kN。

第一批抗滑桩从1987年3月上旬开工,5月下旬开始浇筑,6月1日结束。第二批抗滑桩施工是在1987~1988年枯水期内完成的。

抗滑桩开挖深度达3~4m后,在井壁喷30~40cm厚的混凝土。对岩体较好的井壁采用打锚杆、喷锚挂网的方法进行支护,喷混凝土厚度10~15cm。对局部塌方部位增设钢支撑。抗滑桩开挖到设计要求深度后,进行钢筋绑扎和钢轨吊装。

混凝土浇筑采用水下混凝土的配合比,由拌和楼拌和,混凝土罐车运输直接入仓,每小时浇筑厚度控制在1.5m内,特别是在滑动面上下4m部位,还需下井进行机械振捣。在浇到离井口5~7m时,要求分层振捣。每个井口设两个溜斗,溜管长度为10~14m,管径25cm。

抗滑桩的建成,对桩后坡体起到了有效的阻滑作用。

天生桥二级水电站厂房高边坡采用打抗滑桩、减载、预应力锚杆、锚索、排水、护坡等综合治理措施后,坡体的监测成果表明:下山包滑坡体一直处于稳定状态,而且有一定的安全储备。

安康水电站坝址区两岸边坡属于稳定性极差的易滑地层,由于对两岸进行了大规模的开挖施工,所形成的开挖边坡最大高度达200余m,单坡段一般高度在30~40m。大量的开挖造成边坡岩体的应力释放,断面暴露,再加上雨水的侵入,破坏了边坡的稳定,致使边坡开挖过程中发生十几处大小不等的工程滑坡,严重地影响了工程的施工,成为电站建设中的重大技术难题。

采用抗滑桩是稳定安康溢洪道边坡的主要手段,在263m高程平台上共设置了9根直径1m的钢筋混凝土抗滑桩,每根桩都贯穿几个棱体,最深的达35m,桩顶嵌入溢洪道渠底板内。为了不干扰平台外侧基坑的施工,桩身用大孔径钻机钻成,孔壁完整,进度较快,两个月就全部完成。这9根抗滑桩按两种工作状态考虑:在溢洪道未形成时,抗滑桩按弹性基础上的悬臂梁考虑,不考虑桩外侧滑面上部岩体的抗力;在溢洪道建成后抗滑桩桩顶嵌入溢洪道底板,此时按滑坡的下滑力考虑。

抗滑桩混凝土标号为R28250号,钢筋为φ40Ⅱ级钢。抗滑桩于1982年1月施工,3月完成后,基坑继续下挖,边坡上各棱体的基脚相继暴露。同年11月,在Fb75与F22断层构成的棱体下面坡根爆破开挖后,发现在263m高程平台上沿Fb75、F22断层及7号抗滑桩外侧近南北向出现小裂缝,且裂缝不断扩大,21天后7号抗滑桩外侧的Fb75~F22棱体下滑,依靠7号抗滑桩的支挡,桩内侧山体得以保存。

1.2混凝土沉井

沉井是一种混凝土框架结构,施工中一般可分成数节进行。在滑坡工程中既起抗滑桩的作用,有时也具备挡土墙的作用。

天生桥二级水电站首部枢纽左坝肩下游边坡,在二期工程坝基开挖浇筑过程中,曾于1986年6月和1988年2月两次出现沿覆盖层和部分岩基的顺层滑动。滑坡体长80m,宽45m,高差35m,最大深度9m,方量约2万m3。

为了避免1988年汛后左导墙和护坦基础开挖过程中滑体再度复活,确保基坑的安全施工,对左岸边坡的整体进行稳定分析后,决定在坡脚实施沉井抗滑为主和坡面保护、排水为辅的综合治理措施。

沉井结构设计根据沉井的受力状态、基坑的施工条件和沉井的场地布置等因素决定,沉井结构平面呈“田”字形,井壁和横隔墙的厚度主要由满足下沉重量而定。井壁上部厚80cm,下部厚90cm;横隔墙厚度为50cm,隔墙底高于刃脚踏面1.5m,便于操作人员在井底自由通行。沉井深11m,分成4、3、4m高的3节。

沉井施工包括平整场地、沉井制作、沉井下沉、填心4个阶段。

下沉采用人工开挖方式,由人力除渣,简易设备运输,下沉过程中需控制防偏问题,做到及时纠正。合理的开挖顺序是:先开挖中间,后开挖四边;先开挖短边,后开挖长边。沉井就位后清洗基面,设置φ25锚杆(锚杆间距为2m,深3.5m),再浇筑150号混凝土封底,最后用100号毛石混凝土填心。

沉井工程建成至今,已经受了多年的运行考验。目前,首部边坡是稳定的,沉井在边坡稳定中的作用是明显的。

1.3混凝土框架和喷混凝土护坡

混凝土框架对滑坡体表层坡体起保护作用并增强坡体的整体性,防止地表水渗入和坡体的风化。框架护坡具有结构物轻,材料用量省,施工方便,适用面广,便于排水,以及可与其他措施结合使用的特点。

天生桥二级水电站下山包滑坡治理采用混凝土护面框架,框架分两种型式。滑面附近框架,其节点设长锚杆穿过滑面,为一设置在弹性基础上节点受集中力的框架系统;距滑面较远的坡面框架,节点设短锚杆,与强风化坡面在一定范围内形成整体。

下山包滑坡北段强风化坡面框架采用50×50cm、节点中心2m的方形框架,节点处设置两种类型锚杆:在550~560m高程间坡面,滑面以上节点垂直于坡面设置φ36及φ32、长12m砂浆锚杆,在565~580m高程间坡面则设垂直于坡面的φ28、长6m的砂浆锚杆,相应地框架配筋为8φ20和4φ20。框架要求在坡面挖30cm深,50cm宽的槽,部分嵌入坡面内,表层填土并掺入耕植上,形成草本植被的永久护坡。

在岩性较好的部位可采用锚杆和喷混凝土保护坡面。

1.4混凝土挡墙

混凝土挡墙是治坡工程中最常用的一种方法,它能有效地从局部改变滑坡体的受力平衡,阻止滑坡体变形的延展。

在1986年6月,天生桥二级水电站工程下山包厂址未定之前,由于连降大雨(其降雨量达91.2mm),550m高程夹泥层上面的岩体滑动10余cm,584m高程平台上出现3条裂缝,其中最长一条55m长,2.2cm宽,下错2cm。为此采取了在550m高程浇筑50余m长的混凝土挡墙和打锚杆等措施。

天生桥二级水电站厂房高边坡坡顶设置了混凝土挡土墙,以防止古滑坡体的复活,部分坡面采用浆砌块石护面加固,坡脚680m高程设置混凝土防护墙。

在漫湾水电站边坡工程中也采取了浇混凝土挡墙及浆砌石挡墙、混凝土防掏槽等措施,综合治理边坡工程。

1.5锚固洞

在漫湾水电站边坡工程中,采用各种不同断面的锚固洞64个,形成较大的抗剪力。在左岸边坡滑坡以前,已完成2m×2m断面小锚固洞18个,每个洞可承受剪力9000kN。此外,还利用地质探洞回填等增加一部分剪力。由于锚固洞具有一定的倾斜度,防止了混凝土与洞壁结合不实的可能性,同时采取洞桩组合结构的受力条件远较传统悬臂结构合理,可望提供较大的抗力。

二、锚固技术的应用

采用预应力锚索进行边坡加固,具有不破坏岩体,施工灵活,速度快,干扰小,受力可靠,且为主动受力等优点,加上坡面岩体抗压强度高,因此,在天生桥二级、漫湾、铜街子、三峡、李家峡等工程的边坡治理中都得到大量应用。

在漫湾水电站边坡工程中,采用了1000kN级锚索1371根、1600kN级锚索20根、3000kN级锚索859根、6000kN级锚索21根,均为胶结式内锚头的预应力锚索,采取后张法施工。预应力锚索由锚索体、内锚头、外锚头三部分组成。内锚头用纯水泥浆或砂浆作胶结材料,其长度1000kN级为5~6m,3000kN级为8~10m,6000kN级为10~13m;外锚头为钢筋混凝土结构,与基岩接触面的压应力控制在2.0MPa以内。

为提高锚索受力的均匀性,漫湾工程施工单位设计了一种小型千斤顶,采用“分组单根张拉”的方法,如3000kN锚索19根钢绞线,每组拉3根,7次张拉完;6000kN锚索37根,10次张拉完,既简化操作程序,又提高锚索受力均匀性。锚索在补偿张拉时可以用大千斤顶整体张拉(如3000kN锚索),也可继续用分组单根张拉方法(如6000kN锚索),都不会影响锚索受力的均匀性。

在小浪底工程中大规模采用的无粘结锚索具有明显的优点,其大部分钢绞线都得到防腐油剂和护套的双重保护,并且可以重复张拉。由于在施工时内锚头和钢铰线周围的水泥浆材是一次灌入的,浆材凝固后再张拉,因此减少了一道工序,提高了工效,但其价格相对较高。

在高边坡施工过程中为保证开挖与锚固同步施工,必须缩短锚索施工时间,及早对岩体施加预应力,以达到加快工程进度,确保边坡稳定的目的。为此,结合八五科技攻关,在李家峡水电站高边坡开挖过程中,成功将1000kN级预应力锚索快速锚固技术应用于工程中。室内和现场试验表明,采用N-1注浆体和Y-1型混凝土配合比可以满足1000kN级预应力锚索各项设计技术指标,而施加预应力的时间由常规的14~28d缩短到3~5d。该项成果对及时加固高边坡蠕变和松弛的岩体具有重要的现实意义,充分体现了“快速、经济、安全”的原则。

三峡永久船闸主体段高边坡工程规模之大、技术难度之高均为国内外边坡工程所罕见,其加固过程中,采取了喷混凝土、挂网锚杆、系统锚杆、打排水孔、设置排水洞、采用3000kN级预应力锚索等综合治理措施,其中,3000kN对穿锚束1924束,在国内尚属首例。系统设计3000kN级预应力对穿锚束1229束,孔深22.1~56.4m,主要分布在南北坡直立墙和中隔墩闸首及上下相邻段。南北坡直立墙布置两排,水平排距10~20m,孔距3~5m,第一排距墙顶8~10m,第二排距底板高20m左右,均于两侧山体排水洞对穿。中隔墩闸首布置3排,排距10m,孔距3.5~6.4m,第一排距墙顶10m。此外,动态设计3000kN级预应力对穿锚束695束,孔深16~66m,主要布置在中隔墩闸室和竖井部位。对穿锚束分为无粘结和有粘结两种型式,其结构主要由锚束束体和内外锚头组成。由于锚索采取对拉锚索的形式,将内锚头放在山体内的排水廊道中,因此,内锚头不再是灌浆锚固端,而是置于廊道内的墩头锚或双向施加张拉的预应力锚。这类加固方式将排水和锚固结合起来,减少了约占锚索长度1/3~1/4的内锚固段,是一种理想的加固形式。

预应力锚杆也是常见的一种加固形式,如天生桥二级水电站厂房高边坡工程中实施了减载、排水、抗滑桩等技术后,滑坡位移速度虽有明显减小,可未能完全停止。为了确保雨季在滑坡体前方的施工安全,稳定抗滑桩到滑坡体前缘的约20~40m长,10余万m3的滑坡体,决定在565m高程马道上设置300kN预应力锚杆。锚杆分两排,孔距2m、孔径90mm,孔与水平成60°夹角,用36的钢筋,共实施了152根预应力锚杆,保证了工程的安全。

三、减载、排水等措施的应用

3.1减载、压坡

在有条件的情况下,减载压坡应是优先考虑的加固措施。如天生桥二级水电站厂房高边坡稳定分析结果表明,滑坡体后缘受倾向SE的陡倾岩层影响,将向S(24°~71°)E方向滑动。该方向与滑坡前缘滑移方向有近20°~60°的夹角,将部分下滑力传至滑坡体前缘及治坡建筑物上,对滑坡整体的稳定不利,因此能有效控制后坡滑移也就能减缓整体滑坡。

在滑坡体后缘覆盖层最厚的部位,在保证施工道路布置的前提下,尽量在后缘减载。第一次减载14万余m3,至610m高程,第一次减载后,滑动速度明显降低。紧接着再减载12万余m3,至600m高程。两次减载共26万余m3,滑坡抗滑稳定安全系数提高约10%。

乌江渡水电站库区左岸岸坡距大坝约400m,有一石灰岩高悬陡坡构成的小黄崖不稳定岩体。滑坡下部软弱的页岩被库水淹没,地表上部见有多条陡倾角孔缝状张开裂隙,最大的水平延伸长度达200m,纵深切割190m。4年多的变形观测结果表明,裂隙顶部最大累计沉陷量达171.1mm,最大累计水平位移量达56.0mm,估计可能滑动的体积约50~100万m3。为保证大坝的安全,对小黄崖不稳定岩体先后进行了两次有控制的洞室大爆破,共爆破石方20.8万m3。从处理后的变形资料可以看出,已达到了削头、压脚、提高岩体稳定性的目的。

3.2排水、截水

地表水渗入滑坡体内,既增加滑坡体的重量,增加滑动力,又降低了滑动面上岩层的内摩擦力,对滑坡体的稳定是不利的。对于滑坡体以外的山坡上的地表水,采取层层修建拦水沟、排水沟的方法排水。在坡体范围内的地表水,对开裂的地方用黄土封堵,低洼积水地方用废碴填平,顺地表水集中的地方设排水沟排走地表水。如天生桥二级水电站厂房边坡工程治理中总共修建拦水沟、排水沟近10km。地下水的排除采取在滑坡体的后缘开挖总长384m的两条排水洞(距滑动面以下5~10m),并相联通,形成一个∪形环,在排水洞内再设排水孔,把滑动体内地下水引入排水洞。公务员之家

沉井法施工范文篇9

关键词:电力顶管,沉井,下穿高速公路

1概述

顶管施工技术是继盾构施工之后发展起来的一种非开挖技术,被广泛应用于穿越公路、铁路、河流、闹市区等不具备开挖条件的各种管道铺设,可有效降低综合成本、缩短施工工期、减少对环境及交通等的影响、提高工程施工的安全性,在市政地下管线中应用广泛。太原某110kV电缆线路工程,线路全长2.72km,与环城高速公路G2001交叉1次。经现场踏勘,G2001太原环城高速公路为双向六车道,穿越高速里程K6+000km处,东侧与本工程新建24孔电缆排管相接,西侧与已建市政隧道相接。整个线路位于城市规划区内,受路网规划及现有建筑的限制,施工场地紧张。经综合技术比较,该段下穿高速公路推荐采用内径2800mm顶管方案,长度110m。

2顶管工程

2.1顶管的特点

顶管施工属于非开挖施工技术,不需要进行大量的挖方作业,施工工作面较小,可在繁华市区内施工。顶管施工首先在两侧分别设顶进工作井、接收井。顶进工作井内安装后座墙、主千斤顶及铺设管道,作为顶管工作的主要工作空间。接收井主要用于工具机头设备的接收。工作原理是利用主顶油缸产生的推力,把工具管、管道和掘进机推向接收工作井,通过接收井的预留口穿出,形成电力管道(见图1)。

2.2顶管施工方法分类及其使用条件

2.2.1按管径大小分类1)大口径是指2000mm以上的顶管,人员能够自由通行。2)中口径是指1200mm~1800mm的顶管,人员能够半通行。3)小口径是指500mm~1000mm的顶管,这种管径的顶管人员无法通行。4)微型顶管口径很小,通常在400mm以下,最小的只有75mm。本工程顶管尺寸选型根据电力需求容量,选用内径2800mm,为大口径顶管。2.2.2开挖距离分类通常把顶进长度超过400m并设置中继间的顶管称为长距离顶管,小于400m的为普通顶管,超过1000m的为超长距离顶管。本工程顶管作业长度为110m,属于短距离顶管。

2.3顶管施工方法

顶管施工方法主要有:泥水平衡式、土压平衡式、挤压式和人工顶管。针对具体工程,不同地质条件及施工要求等,在确保质量及安全的条件下,选择合理的施工方法(见表1)。2.3.1泥水平衡式顶管以全断面切削土体,将适当压力的泥浆注入到装置隔板的密封舱内,在开挖土体表面形成一层致密的泥膜,利用泥水的压力来平衡周围土体压力及地下水压力,保证工作挖掘面的稳定性,泥水同时也作为输送弃土的介质的机械顶管施工方法。2.3.2土压平衡式顶管以切制轮开挖的流料作为支撑介质,刀盘通过旋转来开挖土层,挖下的土体流料经切制轮的开口,压入开挖腔内与塑性土浆混合,通过压力舱壁将推力传递到土浆上,以此来保护未开挖地层土体进入开挖腔内的机械顶管施工方法。2.3.3挤压式顶管在掘进机下部安装有螺旋输送装置,施工中将进入喇叭口形破碎室的泥土通过压力墙破碎,然后再通过砂石泵排出至地表。2.3.4人工顶管人工顶管是一种以人工作业为主的施工方法。在施工时,人通过借助辅助工具进行开挖作业及输送作业。常用的开挖类辅助工具有镐、锹以及冲击锤等,输送类辅助工具有传送带、手推车或轨道式的运输矿车等。2.4顶管机选型顶管机的结构形式的选择一般由土的稳定系数Nt的计算、对地面沉降的控制要求以及控制技术措施共同确定,其计算公式为:Nt=γ·h+qSu·n。其中,γ为土的重度;h为机头中心至地面的高度,m;q为地面荷载;n为折减系数,一般取1.0;Su为土的不排水抗剪强度。一般情况下:当Nt≥6,且地面沉降控制要求很高时,因正面土体流动性很大,需选用封闭式顶管机。当4<Nt<6,且地面沉降控制要求不是很高时,可考虑采用挤压式或网格式顶管机。当Nt≤4,且地面沉降控制要求不高时,可考虑采用手掘式顶管机。根据现场勘查以及以往施工经验,本工程对地面沉降量要求很高,故采用封闭式顶管机头,采用土压平衡式结合人工手掘式两种方法进行顶管作业。

3管材

3.1顶管管材的材料分类

按顶管管材的材料类型分为如下几类:1)钢筋混凝土管道;2)钢管,包括有缝钢管和无缝钢管;3)玻璃纤维加强管;4)球墨铸铁管道;5)陶土管;6)塑料管(PVC管);7)石棉水泥管道。

3.2管材选用

目前顶管法施工中使用最多的就是钢筋混凝土管。一般单根管节的长度不宜超过顶管机或微型隧道掘进机的机身长度,管道长度通常以2.0m~3.0m为宜。根据调查,目前太原地区生产的最大顶管内径3000mm,壁厚300mm,采用C40混凝土。单节长度2.5m,参考重量18.3t。根据国标,顶管分为Ⅰ级、Ⅱ级、Ⅲ级三种荷载级别。Ⅱ级管用于覆土小于6m时,Ⅲ级管用于6m~9m覆土。

3.3管道的许用顶力

结合本工程各项设计指标,顶管选用钢筋混凝土管。钢筋混凝土管道断面的允许顶力,对顶管顶进长度、成功与否起着决定性作用,管材本身强度、顶进作业时的加压方式、顶铁与管道端面的接触状态以及受力面积等因素均不同程度影响着管道的实际允许顶力。其中,[Fr]为管道许用顶力值,kN;σc为管体本身抗压强度,kN/m2;A为受压面积,m2;S为安全系数,一般取2.5~3.0。本工程采用2800mm钢筋混凝土管,管长度为2.0m,管壁厚为300mm,Ⅰ级荷载C50预制混凝土管道,管道端面垂直度的允许误差应不大于5mm,管道水平方向的偏差最大值应不大于10mm,管道外径的允许误差不大于12mm。

3.4接口形式

常用的顶管接口形式有平接口、企口、柔性接头钢承口、柔性接头双插口。本工程采用柔性接头钢承口。钢承口管接口形式又称为F型管接口,主要是在接口处设一个橡胶止水圈,材质采用遇水膨胀橡胶,在吸收水分以后体积会膨胀1倍~3倍,可有效防止钢套环与混凝土管结合面产生渗漏。

4顶进工作井设计

4.1管道顶部覆盖厚度

根据顶管的施工要求,以及参考《顶管施工技术及验收规范》(试行)、CECS246:2008给水排水工程顶管技术规程,管顶覆土层厚度宜大于管外径的1.5倍,并不小于3m。否则顶管时,顶管机头会向上漂移。本工程管道内径2800mm,壁厚300mm,覆土层厚度应不小于5100mm,根据地质资料及现场地形高差因素,最终高速公路路面到顶管顶部的距离确定为15m。

4.2地面沉降计算

本工程需穿越高速公路,在施工时应保证高速路面安全,应尽量减少施工对道路正常通行的影响,故需要对该处高速路面沉降量控制提出要求。目前,工程界常采用的理论主要为Peck提出的地面沉降槽理论。由于Peck假定施工引起的地面沉降是在不排水情况下发生的,所以地表沉降槽的体积应等于地层损失的体积,地面沉降可视土质情况、覆土深度、采用的掘进机类型、操作水平等因素而不同,并根据这个假定给出了地面沉降量的横向分布估算公式:其中,δx为x位置的地面沉降量,mm;δmax为管道轴线上方的最大地面沉降量,mm;x为离顶管轴线的水平距离,m;i为地面沉槽宽度系数;θ为土壤内摩擦角,本工程为22°;Vi为管道单位长度的土体损失量,m3/m;D为顶管外径,本工程为3.4m;η为土体损失百分率,本工程采用5%;H为顶管埋深,高速公路到顶管顶部的距离为15m。参考CECS246:2008给水排水工程顶管技术规程中规定,顶管造成的公路地面沉降应不大于20mm。经试算,路面沉降小于20mm则管覆土深度应不小于15m,故本工程顶管覆土按15m考虑,并采取相关技术措施控制路面沉降。

4.3工作井型式及尺寸确定

工作井坑形状一般有矩形、圆形、腰圆形、多边形等几种,其中矩形工作坑最为常见。本工程受地形限制,永临结合考虑后期做电缆井用,同时兼顾降低施工支模难度、减少工程量,选用矩形工作井坑(见图2)。1)矩形工作坑的底部尺寸参考下式确定:工作坑底部宽度:B=D1+S。其中,D1为顶管管道外径,本工程为3.4m;S为施工作业操作两侧预留宽度,一般取2.4m~3.2m,本工程取2.6m。综上,本工程顶进工作井宽度为6m。工作坑的底部长度:L=L1+L2+L3+L4+L5。其中,L1为顶管机机体长度,本工程为5m;L2为千斤顶长度,约为2.5m;L3为后座墙、顶铁、安装余度,约为1.5m。综上,本工程顶进工作井长度为9.0m。2)工作坑深度应符合下列公式要求:H1=h1+h2+h3。其中,H1为工作坑地面至坑底的深度,m;h1为地面至管道底部外缘的深度,覆土深度为1.5D=5m,顶管外径为3.4m,地面至管道底部外边缘的深度为8.37m,为满足公路地面沉降要求,最终确定顶管在高速公路下方的覆土厚度为15.0m,现施工地面顶管覆土厚度为10.5m,地面至管道底部外缘的深度为13.8m;h2为管道外缘底部至导轨底面的高度,取0.25m;h3为基础及其垫层的厚度(不应小于该处井室的基础及垫层厚度),取0.25m。综上,顶进工作井的深度为14.5m(如图3所示)。顶进工作井底部宽度为6.0m,长度为9m,深度为14.5m。接收井的尺寸根据实际地形,顶管在地下按水平顶进考虑,尺寸确定如下:a.底部宽度为5.5m(顶管机直径为3.4m,考虑施工余度2.1m);b.底部长度为6m(顶管机长度为5m,考虑1m的施工操作余度空间);c.深度为12.0m。

4.4顶进工作井及接收井开挖方式选择

本工程受场地限制,顶进工作井位于东环高速与道路之间,宽约30m;接收井位于东环高速与市政公路之间,宽约25m,均不满足放坡开挖条件。同时顶进工作井及接收井较深,为了确保房屋及公路的安全,开挖需采取支护措施,考虑本期顶管施工和后期用作电缆竖井,采用沉井法修筑工作井坑。

4.5地质条件

1)穿越高速公路地下廊道岩土工程地质条件。线路管道穿越既有东环高速公路工程,穿越段管道长度约为110.0m,管道材质为钢筋混凝土预制管,高速路面较两侧井位处地面高5m~8m,地质勘探场地位于两侧工作井,故提出工作井处地层深度20m以内的地基土地层参数,自上而下划分为三大层,分别为①层杂填土、②层(黄土)粉土、③层粉土层。2)穿越高速公路天然地基土抗剪强度标准值与建议值(见表2)。3)场地稳定性、适宜性评价。据本次勘察结果及区域地质资料,穿越地段场地属稳定场地,未发现不良地质作用。可在②层,③层黄土状粉土中进行此次穿越。本次勘探深度范围(20m)内未揭露地下水,结合区域地质地貌资料进行综合分析,可不考虑地下水对本工程的影响。

4.6沉井

沉井是由侧壁、刃脚、内壁(隔墙)、竖向框架、底板、井盖等构成的。

5后座墙

5.1后座墙的重要性

后座墙主要在顶进管道时提供反作用力。在顶管施工过程中,后座墙不仅要求达到一定的强度,同时还要稳定,施工中一旦发生破坏,顶管施工就要停工,可见后座墙设计的重要性。

5.2后座墙设计要求

后座墙设计首先在强度上要满足设计顶进力作用下不被破坏,不变形,卸荷后能恢复原态并保证完整,其次应安装方便,便于施工,安装在垂直管道顶进轴线上,避免偏心受压,引起倾斜变形发生事故。

5.3后座墙形式

常用的后座墙一般有现浇混凝土式、装配式。本工程使用现场浇筑的混凝土后座墙。5.4后座墙反作用力的计算假设顶进作业时,作用在工作坑后的土体上的力是均匀的。一般为确保在顶进过程中后座的安全,后座能承受的反作用力或土抗力R应为总顶进力P的1.2倍~1.6倍。其中,R为总推力之反作用力,kN;α为系数,取1.5~2.5;B为后座墙的宽度,m;γ为土的容重,kN/m3;H为后座墙的高度,m;KP为被动土压系数,粉土取2.66;c为土的内聚力,kPa;h为地面到后座墙顶部土体的高度,m。本工程工作井采用沉井结构,为钢筋混凝土浇筑结构,故后座墙采用现浇混凝土形式,是比较理想的受力模型。根据顶进力的大小,对混凝土后座墙的弯拉区应设置网格钢筋,混凝土墙的一般厚度应根据管道直径大小确定,一般为0.8m~1.0m。混凝土的强度为C20以上,在达到其强度的80%以上时才可以承受顶进力。

6结语

沉井法施工范文篇10

关键词:铁路桥梁;技术进步

从修建万里长江第一桥武汉长江大桥开始,新中国桥梁建造技术飞速发展,取得了举世瞩目的成就。铁路桥梁建设以武汉长江大桥、南京长江大桥、九江长江大桥、芜湖长江大桥为主要标志,桥梁跨径不断提高,结构形式不断创新,从勘测设计、工程材料、施工工艺及技术装备等诸多方面体现出铁路桥梁建造技术的不断进步。

武汉长江大桥是京广线上的重要桥梁,1957年建成通车,为双层式结构,上层4线公路、下层双线铁路,全桥总长1670m,正桥长1156m。正桥钢梁计9孔,为3联3*128m连续钢桥梁,是国内首座采用连续桁梁的现代化桥梁;钢材为苏联进口的3号桥梁钢,铆接结构;构件采用胎具组拼,机器样板钻孔,钢梁制造精度很高。公路面行车道为混凝土板与钢纵梁结合共同受力的结合梁,是我国采用结合梁的开端。桥梁深水基础首次采用钢板桩围堰管桩基础,钢筋混凝土管桩直径155cm,振动打桩机振动下沉,是我国深水基础结构形式的第一次飞跃,该深水基础施工技术曾全面推广。武汉长江大桥的建成,标志着我国自力更生建设现代化大跨度铁路钢桥的开端。

京沪线南京长江大桥1968年建成通车。全桥铁路部分长6772m,公路部分长4588m,正桥长1576m;主跨为3联3*160m连续钢桥梁,另加1孔128m简支桥梁。该桥应用了许多新材料、新结构和新工艺,钢桥梁在支点处加高,下弦呈曲线形,上弦平直;主桁材质为新开发的国产16锰桥梁钢,铆接结构;但公路纵梁为焊接,铁路纵横梁采用高强度螺栓连接,对我国栓焊梁的发展起到了重要的推动作用;公路行车道板为陶粒轻质混凝土,铁路面首次铺设长钢轨。正桥基础根据不同的水文地质条件,有4种类型:筑岛重型混凝土沉井基础(沉入土面以下约55m)、深水浮式钢筋混凝土沉井基础、钢板桩围堰管柱基础、沉井加管柱基础,后2种基础是武汉长江大桥管柱基础的发展,管柱直径由155cm加大到360cm,并引进了预应力技术,由普通混凝土管柱发展成预应力混凝土管柱。南京长江大桥建桥新技术,获1985年全国科学技术进步特等奖,是我国现代化铁路桥梁发展的又一个里程碑。

1995年竣工的孙口黄河铁路大桥,其跨度108m的连续钢桁梁首次采用了整体节点新技术,改变了过去惯用的拼装式节点施工方法,减少高强度螺栓的用量,节约了钢材,方便架设施工,缩短了工期。

建成于1994年的九江长江大桥,是京九铁路大动脉上跨长江的关键工程,其主要技术成果为:(1)首创“双壁钢围堰大直径钻孔桩基础施工法”,此种新型施工技术,可在长江中全年进行基础施工,荣获国家优秀设计金质奖;(2)首次将“触变泥浆套”和“空气幕”工艺用于下沉深度达50m的正桥和引桥沉井基础,创造了巨大的经济效益;(3)铁路引桥首次采用当时国内最大跨度的整体式40m无碴无枕预应力钢筋混凝土箱梁;(4)首次在国内采用最大跨径216m的三跨连续刚性梁柔性拱结构,首创216m大跨跨中合拢及柔性拱合拢工艺;(5)研制并成功运用屈服强度不小于412Mpa的新钢种15MnVNq,最大板厚达到56mm,且很好地解决了其焊接技术问题,使国产高强度桥梁用钢进入了世界先进行列;(6)研制成功材质为35VB的M27、M30大直径高强度螺栓,并制订了相应的施拧工艺;(7)自行设计制造吊重300t的双臂走行式架桥机,在当时为我国起重量最大的架桥机;(8)首次采用双层吊索塔架全悬臂架设跨度180m钢梁,为国内全悬臂架设钢梁达到的最大跨度;(9)在国内首次采用抑制吊杆振动的新型“质量调谐阻尼器”(TMD)技术,解决了三大拱中吊杆的风激涡振问题。九江长江大桥在设计、施工中采用了大量的先进技术,创造了多项全国第一,代表着当时我国桥梁建设技术水平和科持发展水平,被誉为公铁两用桥梁建设的一座新的里程碑,并荣获国家科技进步一等奖、建筑工程“鲁班奖”。

1995年竣工的攀枝花铁路单线桥,采用主跨跨度168m的预应力混凝土连续刚构,为当时我国同类型铁路桥梁中最大跨度。

1998年建成的石长铁路长江湘江大桥,正桥为62m+7*96m+62m跨的预应力混凝土连续箱梁;该连续梁采用特制的造桥机以预制节段拼装的方式进行施工,预制节段梁块重量150t;这是我国首次采用大跨度造桥机进行铁路预应力连续梁架设施工。

1999年建成的长东黄河铁路二桥,全桥长13.01km,采用了国产新钢种14MnNbq钢及整体节点新技术;该桥实际施工工期为12个月,月成桥进度超过一公里,创下新的建桥速度。

2000年建成通车的芜湖长江大桥,其技术创新的主要成就体现在:(1)主要跨采用180m+312m+180m板桁结合结构低塔斜拉桥新桥型,是我国第一座公铁两用低斜拉桥,第一次在正桥采用钢梁与公路桥面混凝土板结合的板桁组合结构,主孔312m也是国内目前公铁两用桥梁的最大跨度;(2)研制开发了高性能14Mbq钢,该种强度适度﹑厚板效应不明显﹑可焊性好﹑韧性和抗断裂性好,为我国大跨度桥梁用钢提供了一个优良的国产新钢种:(3)正桥钢梁采用厚板(50mm)组成的全焊箱型杆件和整体节点构造,推动了我国桥梁焊接技术的发展;(4)312m主跨采用跨中合拢新技术,实现跨中精确合拢;(5)主塔墩采用30.5m双壁钢围堰钻孔桩低承台基础,抽水水头差达42m;副跨采用吊箱围堰大直径钻孔桩高承台基础,为国内首次。芜湖长江大桥工程建设,在桥梁结构、工程材料及施工工艺等多方面取得的创新成果具有广泛的推广应用价值;该桥5项科研成果被鉴定为国际先进水平、3项为国内领先水平,多项成果填补了国内空白,并纳入相关的规范和工艺;它的建成在总体上把我国桥梁建造技术提高到了一个新水平,被誉为继武汉长江大桥、南京长江大桥、九江长江大桥后,我国铁路桥梁建设的第四个里程碑,并荣获国家科技进步一等奖、建筑工程“鲁班奖”和詹天佑土木工程大奖。

2001年竣工的水柏铁路北盘江大桥,其主跨是世界上同类桥梁最大跨度的上承式推力铁路钢管混凝土拱桥,桥位于V形的山谷中,一岸直立并倒悬、另一岸呈71°角度,主跨236m、桥长468.2m,采取平面转体法施工,单铰半跨转体自重约为10400t。该桥设计新颖、技术含量高、施工难度极大,其单铰转体重量居全球之冠。

秦沈客运专线是我国自行设计建造的第一条客运专线铁路,2002年全线贯通。沿线月牙河大桥桥长7840.61m,上部结构为双线简支箱型梁,箱梁现场整体预制,梁体重达540t,以JQ600下导梁轮轨式架桥机运架一体化施工法进行安装,架桥机和运梁车在吊装及运输能力上从过去的160t飞跃至500t级,较常规的架设方式有了新的突破;小凌河大桥采用移动模架造桥机整孔原位施工32m双线简支箱梁(梁体重750t),该施工方案不需要占用大量土地,不需要建设大型预制场及存梁场,不需要重型运梁设备和大吨位起吊架梁机械,也不需要对施工场地进行加固处理,有效地解决了工地条件和运架设备能力方面的限制,并大大降低了工程成本。

2005年建成通车的宣杭铁路东苕溪奉口大桥,主桥跨度112m,为国内第一座铁路尼尔森体系钢管混凝土提篮型拱桥。

青藏铁路拉萨河大桥,是青藏铁路重点控制性工程之一,是全线唯一的非标准设计特大型钢管混凝土拱桥。该桥地处海拔3670m、桥长928m,主桥采用连续与钢拱组合型结构。大桥于2005年5月提前胜利竣工,为在高寒缺氧、多年冻土等恶劣生态环境下建造桥梁积累了宝贵的工程经验。

2005年建成的宜万铁路万洲长江大桥,正桥采用单拱连续钢桁梁桥式,其360m钢桁拱主跨在世界同类型铁路桥梁中居领先地位。

即将竣工的宜万铁路宜昌长江大桥为预应力混凝土连续刚构与钢管混凝土组合桥式结构,其主跨为130m+2*275m+130m,跨度将在国内同类型铁路桥中位居第一.

建设中的武汉天兴洲公铁两用长江大桥,主跨504m,为目前世界上主跨最大的公铁两用斜拉桥,实现了我国公铁两用大桥主跨从300m到500m级的飞跃;大桥上层为公路﹑下层为四线铁路,铁路设计时速200km,为我国第一座能够满足高速铁路运营的大跨度斜拉桥;该桥可同时承载2万吨的载荷,是世界上载荷最大的公铁两用桥。建设中的南京大胜关大桥是京沪高速铁路﹑沪汉溶铁路﹑南京地铁过江的通道,其主桥采用六跨连续钢桁拱结构;设计时速300km/h,处于世界先进水平;设计核载为六线轨道交通,是目前设计荷载最大的高速铁路桥梁;主桥最大跨度336m.是时速300km级别中最大跨度的高速铁路桥梁。

武汉天兴洲长江大桥和南京大胜关长江大桥的建设已成为当前我国铁路桥梁建造新水平的标志性工程。

参考文献

[1]中国铁路桥梁史.中国铁路桥梁史委员会[M].北京:北京中国铁道出版社,1987.