沉井地压范文10篇

时间:2023-03-17 22:44:48

沉井地压范文篇1

关键词:沉井;地压;主动土压力;被动土压力

引言

岩石力学认为:所谓地压是泛指在岩体中存在的力,它既包含原岩对围岩的作用力,围岩间的相互作用力,又包含围岩对支架的作用力。当围岩的次生应力不超过其弹性极限时,地压可全部由围岩来承担,井巷可不加支护在一定时期内维持稳定;当次生应力超过围岩强度极限时,为保持井巷稳定,必须架设支架,这时,地压是由围岩和支架共同承受。为此,把围岩因变形移动和冒落岩块作用在支架上的压力称为狭义地压;而将岩体内部原岩作用于围岩和支架上的压力称为广义地压。就地下工程而言,主要研究狭义地压。

若在竖井(垂直巷道)中,由于井帮发生破坏,使井筒(支架)受压,这种岩土压力和水压(有水时)所形成的压力,即为竖井地压。

1、竖井地压

1.1竖井散体(松动)地压的计算

当竖井在表土层或竖井井帮岩石破碎时,井筒井壁周围将产生散体(松动)地压,对于该地压的计算公式有多个,目前“竖井设计中散体(松动)地压的计算广泛使用平面挡土墙公式和圆锥挡土墙计算法”[1]。

平面挡土墙计算法的实质是把表土或破碎的围岩视作无凝聚力的松散体,将井壁视为平面挡土墙,作用在井筒井壁上的地压为主动土压力。

圆锥挡土墙计算法中,竖井井壁是个圆柱面,当土体(或破碎岩体)向内滑移时,井壁周围岩土体形成空心圆锥体,按空间轴对称问题求得计算公式。

它们的计算假设和依据都是基于:

1.在讨论竖井围岩的应力分布时,把井筒看作是一个半无限体的垂直孔。

2.竖井井筒(支架)是固定直立,不会移动的受力体。

3.按狭义地压的定义,把围岩因变形移动或冒落作用于支架上的压力,来计算竖井散体(松动)地压。

1.2平面挡土墙计算法的由来

1.2.1普氏计算法[6]

普洛托吉雅可洛夫(M.M.Протодьяконов)用坚固性系数f来代表岩石的性质,也即用似内摩擦系数tgΦ来代表。井壁压力就是极限平衡状态的侧压力,岩(土)体自重为γz(z为计算深度),侧压系数为,井壁压力为P.但当井筒深入岩层,硬岩和软岩中井壁压力有明显差别,从而产生了秦氏计算法。

1.2.2秦氏计算法

秦巴列维奇(П。М。Цимбаревич)的基本观点与普氏相同,只是不用加权平均的坚固性系数,而是分层计算。秦氏提出计算竖井(垂直巷道)的地压公式是:“垂直巷道内的支架,即可看作一种承受着围岩方面的主动压力的挡土墙,这种假想并不是十分严格的,而只是一种可以提供近似结果的假设”。同时,视土为松散介质,而不考虑粘结力:“而且假定在岩层与支架材料之间没有摩擦才能有效”[2]。

由于秦氏计算式在设计计算中被广泛使用至今,因而,人们长期都认为竖井井壁(包括沉井)所受的力,就是这种“承受着围岩(土)方面的主动压力”的地压,而不存在其他力的作用。

2、挡土墙与土压力简介

2.1土压力的种类

根据挡土墙位移的情况,产生三种不同的土压力,

(1)挡土墙固定不动,作用在挡土墙上的土压力称为静止土压力P0.

(2)松散介质(土)对于挡土墙的推力而产生的主动土压力Pa.

(3)松散介质(土)受到挡土墙的抗力而产生的被动土压力Pp.

2.2主动土压力与被动土压力

著名的朗肯土压力理论一般情况的适用条件为:(1)挡土墙墙背垂直;(2)墙后填土表面水平;(3)挡土墙背光滑,没有摩擦力因而没有剪应力,即墙背为主应面。

2.2.1主动土压力与被动土压力的计算

(1)在半无限弹性土体中,深度Z处取一微元体,土的容重为γ,则微元顶面应力为σz,σz=γZ;σx为侧面应力[图2(a)],此时应力状态可用

(2)主动土压力:假设土体在水平方向均匀拉伸膨胀,则σz不变,σx逐渐减小,直至极限平衡状态为止,如图2的(c)和(b)中的摩尔园Ⅱ,此时Ⅱ与抗剪强度曲线相切于T1点。可求出无粘性土时(粘性土时,略)的主动土压力:

Pa=KaγZ

式中:Pa为主动土压力;γZ为土的自重;Ka为主动土压力参数,Ka=tg2[(45°-Φ)/2];Φ为土的内摩擦角。

(3)被动土压力:若土体在水平方向压缩,则σz不变,σx不断增大并超过σz,一直到达被动极限平衡状态为止。如图2(d)和(b)中的摩尔园Ⅲ所示,此时Ⅲ与抗剪强度曲线相切于T2点。可求出无粘性土时(粘性土时,略)的被动土压力:

Pp=KpγZ

式中:Pp为被动土压力;γZ与(5)式同;Kp为被动土压力系数,Kp=tg2[(45°-Φ)/2].

(4)在竖井表土地压中,是否只有主动土压力的作用?有没有被动土压力的存在和作用?这就是本文所要探讨的关键问题。

3、沉井受力简析

3.1沉井法概况

沉井法是在不稳定含水表土层中,开凿井筒的特殊施工方法之一。1839年法国沙龙尼(Saloney)煤田首次使用沉井法以来,在欧洲已使用于地下工程中有1500多个[4]。1966年日本竣工的日铁有明3号立井,沉深达200.3m为世界之最。我国煤炭工业使用沉井法已建成100多个井筒,其中山东单家村煤矿下沉到192.75m深度[5]。沉井法工艺较简单,设备较少,劳动强度轻,在我国煤炭表土建井中曾有较大发展,在桥梁交通、地铁、建筑等行业中,也得到应用。

3.2沉井受力与下沉条件

沉井一般是靠井筒自重Q,克服土壤的正面阻力Rs,侧面阻力Tf,井筒水的浮力B而下沉。Q是沉井的主动力;Rs是土给刃脚斜面的反力,若及时出土,Rs即可消失。B等于井壁所排开同体积水重,若采用淹水沉井,虽有阻力作用,但它保持了井内外压力平衡,对沉井有利。Tf是井筒外壁所受土的阻力(包括井筒前端的刃脚),是下沉的一个重要因素。因此,加大自重Q,减少Tf是沉井的关键。由于自重是人为的可控因素,应着重研究的是侧面阻力Tf.3.3沉井侧面阻力的侧压力

3.3.1我国学者(包括有关的高校教材)对沉井侧阻所提出的看法,主要论点可归结为:

(1)下沉的沉井井壁与土壤直接发生摩擦,也有认为是沉井井壁与土壤间发生滑动。

(2)沉井井壁所受的侧压是竖井表土地压(散体地压)。

这些看法可能是由于受原苏联学者的影响所致,例如П。М。秦巴列维奇在他的著作《矿井支护》中提到:沉下式“支架所受的影响是它本身的重量,岩层及水的侧压以及支架基础所生反作用力,当支架底部岩石一旦挖出,其底部的反作用力即消失,支架可由本身自重而下沉,支架外表的摩擦力逐渐增加,无论支架处于哪一种位置,摩擦力大小都决定于侧压力的大小,岩石与支架外表之间的摩擦系数,以及支架外部表面的大小,即侧阻值等于侧压与表面积摩擦系数之积”[2]。

此处的侧压是什么力,秦氏未明确指出。然而人们却用竖井表土地压作为沉井侧压力,并用秦氏公式来计算它,显然与秦氏平面挡土墙公式的理论不符。因为该公式是在“假定在岩层与支架材料之间没有摩擦才能有效”[2]。

3.3.2沉井井壁与土层间发生了什么?从沉井施工现场,可观察到以下现象:

(1)在徐州拾屯沉井施工时,为了纠偏,进行壁外“大揭盖”,发现与沉井壁相隔0.2-0.3m的炉渣层(壁外充填料)的土层,有一比同一标高土层颜色较深,结构较密实的环状土层。在距地表下3m(井西南方),距井壁外0.7m与4.0m处取同层土样,测得干容重分别为:在0.7m处,γd=16.4kN/立方米;在4.0m处,γd=15.3kN/立方米.γd常见值为13-20kN/立方米,γd越大,土体越密实,说明靠近井壁的土层被压密实了。

(2)徐州地区进行料石沉井壁后注浆时,都比较费劲,几乎每个沉井井壁外都要捣1-3m的硬土层才能进行。例如东城矿主井筒(沉井),穿过的硬土层为2-3m.

(3)在沉井壁中放置的放水管,经常放不出水。例如拾屯主井从地表下沉到31m深,放水管从未流出过水,工人用2m长的钢钎捅和用锤击钎子,发觉壁外有一硬层难以通过。又如马庄主井,沉井井壁安置放水管伸出壁外较短,放不出水来,但听见有水的响声。

(4)拾屯主井下沉到30多米时,下沉几乎停止,刃脚部份完全露出(即Rs=0,B=0)。伸手摸刃脚外壁,有一层200-400mm厚,粘着紧密且含水少,很难尅出的土层。通过计算,此时沉井自重大大的超过侧面阻力(表土地压为侧压力),该现象无法解释。

(5)在各种沉井正常下沉时,均可在井壁与土层间进行充填,如用炉碴、泥浆、压气等物充填;表明刃脚与井壁(内缩)形成的台阶(约0.3m宽)空间,围绕井筒而存在。否则,壁后充填都将无法进行。

以上各种事实表明,沉井井壁外有一层被压密的土层存在,并形成一个围绕沉井壁而竖立的“压密壳”体。因此,在正常下沉情况下,井壁与土层间都不会直接发生接触和产生摩擦。

3.4沉井刃脚下的应力分布

沉井刃脚下沉时,其周围土的受力情况较为复杂,通过实验和数学分析相结合的方法,分析如下[6]:

(1)若在刃脚尖端作用下,土受垂直集中力P作用,可求得在集中力作用下的半平面体的应力。以集中力P的作用点为极坐标原点(图4),应力与P,r,θ有关,通过推导得:

σr=2p/(πr)cosθ

由τγθ=0,σγ=σ1,σθ=σ3=0,按有关公式可求任意方向应力,因此,X,Z方向的应力:

σz=2p/πcos3θ/r

σx=2p/πsin2θcosθ/r

τzx=2p/πsinθcos2θ/r(10)

因θ是无因次量,故应力分量σγ是1/γ的函数,又是θ的函数。r越大,应力σγ越小。集中力P作用线上应力最大,向两侧逐渐减小。

垂直线上的应力随深度变化,愈深愈小,因而在垂直与水平方向上,土体受力被压缩。

(2)在刃脚下沉过程中,周围的土中应力变化,可按三角形荷载作用下半面体的应力计算:

根据公式可得出不同深度Z/b与不同位置X/b,在三角形荷载下的应力σZ/P值。

3.5压密壳与土压力

沉井下沉,井筒最前端的刃脚对其周围土层施力,在力的作用下,土被挤压和压缩,土中应力应变发生改变。土中发生动水过程,水分被挤出,孔隙减少,土被压实和移动变形(弹性变形并伴随永久变形),若达到土的抗剪强度,土产生相对滑动,若强度破坏点越来越多,则形成滑动面,使压实土体滑动分离,逐渐形成“压密体”和“压密壳”体。

刃脚垂直剖面为三角形,一般刃脚高3-8m,夹角30°左右。刃脚与井壁相连,井壁外侧向内收缩0.3m左右,形成一台阶空间,因而使井壁与土层“压密壳”间形成一空间,压密壳环绕井壁而立。因此,在一般正常下沉情况下,井壁是不会与土层发生接触和摩擦的。

通过上述分析知道:沉井在正常下沉过程中,将不会受到地压(主动土压力)的作用(除了产生涌砂,突水,壁外充填被破坏;或沉井偏斜过大等不正常情况外);而只是在刃脚部份受到被动土压力的作用。

4、竖井表土地压与沉井地压

在竖井表土(散体)地压的计算公式中,人们把垂直巷道内的支架,看作是承受围岩(土)方面的主动压力的挡土墙,而不论这些支架(竖井井筒)处于何种状态——是静止还是移动的。这与我国长期接受和采用普氏、秦氏等人的观点与理论有关,因此,当有不同的看法与论点,例如,笔者撰写的“水力机械化料石沉井侧面阻力计算”(1961年毕业论文,和文献[7],[8]),认识到“沉井刃脚的侧面压力是被动土压力”,均未引起注意。同时,在矿山岩石力学教材中,也很少介绍被动土压力的有关知识。

应当指出,沉井井筒在表土层中下沉,不是静止的,井筒不断下沉,井筒前端的刃脚要压迫土体,挤压土体和受到土的被动土压力的作用;并形成“压密壳”体围绕井筒而立。在正常下沉情况下,沉井不会受到地压(主动土压力)的作用。我们知道:被动土压力和主动土压力(地压),两者无论在质和量上都是不相同的,两者有较大的差别:“在一般表土层中,被动土压力较地压(主动土压力)要大几倍,且其与深度的关系也较密切”[8]。为了区别,我们把沉井井筒(刃脚)所受的被动土压力称之为沉井地压。

5、结语

(1)沉井地压是竖井表土地压现象中的一种特殊地压形式,它无论在作用方式以及性质和数量上都与竖井表土地压是不相同的,而且有很大差别。

(2)沉井井壁外“压密壳”的形成,为正常下沉时,实施炉碴、泥浆、压气等减阻措施提供了空间,并起到平衡地压的作用。只有在出现涌砂、突水、压密壳破坏等异常情况下,才可能产生地压(主动土压力)作用。

(3)沉井地压的提出,改变了有关沉井的认识和计算,有助于岩石力学地压理论的研究和探讨。

(4)沉井施工法,不仅在煤炭工业上得到应用,还应用于交通、桥梁、建筑、地铁等的施工中,因此,对沉井地压的研究,不仅有理论意义,还有施工的经济价值。

参考文献:

[1]李通林,等。矿山岩石力学[M]。重庆:重庆大学出版社,1991.177-179.

[2]秦巴列维奇。矿井支护[M]。北京:煤炭工业出版社,1953.98-696.

[3]陈希哲。土力学地基基础。第二版[M]。北京:清华大学出版社,1995.120-138.

[4]余力,马英明。特殊凿井法的发展与展望[R]。徐州:中国矿业学院,1982.1-5.

[5]余力。泥浆淹水深沉井新工艺[J]。建井科技动态,1983.1(1):16-17.

[6]华安增。矿山岩石力学基础[M]。北京:煤炭工业出版社,1980.93-103.

沉井地压范文篇2

关键词:沉井;地压;主动土压力;被动土压力

引言

岩石力学认为:所谓地压是泛指在岩体中存在的力,它既包含原岩对围岩的作用力,围岩间的相互作用力,又包含围岩对支架的作用力。当围岩的次生应力不超过其弹性极限时,地压可全部由围岩来承担,井巷可不加支护在一定时期内维持稳定;当次生应力超过围岩强度极限时,为保持井巷稳定,必须架设支架,这时,地压是由围岩和支架共同承受。为此,把围岩因变形移动和冒落岩块作用在支架上的压力称为狭义地压;而将岩体内部原岩作用于围岩和支架上的压力称为广义地压。就地下工程而言,主要研究狭义地压。

若在竖井(垂直巷道)中,由于井帮发生破坏,使井筒(支架)受压,这种岩土压力和水压(有水时)所形成的压力,即为竖井地压。

1、竖井地压

1.1竖井散体(松动)地压的计算

当竖井在表土层或竖井井帮岩石破碎时,井筒井壁周围将产生散体(松动)地压,对于该地压的计算公式有多个,目前“竖井设计中散体(松动)地压的计算广泛使用平面挡土墙公式和圆锥挡土墙计算法”[1]。

平面挡土墙计算法的实质是把表土或破碎的围岩视作无凝聚力的松散体,将井壁视为平面挡土墙,作用在井筒井壁上的地压为主动土压力。

圆锥挡土墙计算法中,竖井井壁是个圆柱面,当土体(或破碎岩体)向内滑移时,井壁周围岩土体形成空心圆锥体,按空间轴对称问题求得计算公式。

它们的计算假设和依据都是基于:

1.在讨论竖井围岩的应力分布时,把井筒看作是一个半无限体的垂直孔。

2.竖井井筒(支架)是固定直立,不会移动的受力体。

3.按狭义地压的定义,把围岩因变形移动或冒落作用于支架上的压力,来计算竖井散体(松动)地压。

1.2平面挡土墙计算法的由来

1.2.1普氏计算法[6]

普洛托吉雅可洛夫(M.M.Протодьяконов)用坚固性系数f来代表岩石的性质,也即用似内摩擦系数tgΦ来代表。井壁压力就是极限平衡状态的侧压力,岩(土)体自重为γz(z为计算深度),侧压系数为,井壁压力为P.但当井筒深入岩层,硬岩和软岩中井壁压力有明显差别,从而产生了秦氏计算法。

1.2.2秦氏计算法

秦巴列维奇(П。М。Цимбаревич)的基本观点与普氏相同,只是不用加权平均的坚固性系数,而是分层计算。秦氏提出计算竖井(垂直巷道)的地压公式是:“垂直巷道内的支架,即可看作一种承受着围岩方面的主动压力的挡土墙,这种假想并不是十分严格的,而只是一种可以提供近似结果的假设”。同时,视土为松散介质,而不考虑粘结力:“而且假定在岩层与支架材料之间没有摩擦才能有效”[2]。

由于秦氏计算式在设计计算中被广泛使用至今,因而,人们长期都认为竖井井壁(包括沉井)所受的力,就是这种“承受着围岩(土)方面的主动压力”的地压,而不存在其他力的作用。

2、挡土墙与土压力简介

2.1土压力的种类

根据挡土墙位移的情况,产生三种不同的土压力,

(1)挡土墙固定不动,作用在挡土墙上的土压力称为静止土压力P0.

(2)松散介质(土)对于挡土墙的推力而产生的主动土压力Pa.

(3)松散介质(土)受到挡土墙的抗力而产生的被动土压力Pp.

2.2主动土压力与被动土压力

著名的朗肯土压力理论一般情况的适用条件为:(1)挡土墙墙背垂直;(2)墙后填土表面水平;(3)挡土墙背光滑,没有摩擦力因而没有剪应力,即墙背为主应面。

2.2.1主动土压力与被动土压力的计算

(1)在半无限弹性土体中,深度Z处取一微元体,土的容重为γ,则微元顶面应力为σz,σz=γZ;σx为侧面应力[图2(a)],此时应力状态可用

(2)主动土压力:假设土体在水平方向均匀拉伸膨胀,则σz不变,σx逐渐减小,直至极限平衡状态为止,如图2的(c)和(b)中的摩尔园Ⅱ,此时Ⅱ与抗剪强度曲线相切于T1点。可求出无粘性土时(粘性土时,略)的主动土压力:

Pa=KaγZ

式中:Pa为主动土压力;γZ为土的自重;Ka为主动土压力参数,Ka=tg2[(45°-Φ)/2];Φ为土的内摩擦角。

(3)被动土压力:若土体在水平方向压缩,则σz不变,σx不断增大并超过σz,一直到达被动极限平衡状态为止。如图2(d)和(b)中的摩尔园Ⅲ所示,此时Ⅲ与抗剪强度曲线相切于T2点。可求出无粘性土时(粘性土时,略)的被动土压力:

Pp=KpγZ

式中:Pp为被动土压力;γZ与(5)式同;Kp为被动土压力系数,Kp=tg2[(45°-Φ)/2].

(4)在竖井表土地压中,是否只有主动土压力的作用?有没有被动土压力的存在和作用?这就是本文所要探讨的关键问题。

3、沉井受力简析

3.1沉井法概况

沉井法是在不稳定含水表土层中,开凿井筒的特殊施工方法之一。1839年法国沙龙尼(Saloney)煤田首次使用沉井法以来,在欧洲已使用于地下工程中有1500多个[4]。1966年日本竣工的日铁有明3号立井,沉深达200.3m为世界之最。我国煤炭工业使用沉井法已建成100多个井筒,其中山东单家村煤矿下沉到192.75m深度[5]。沉井法工艺较简单,设备较少,劳动强度轻,在我国煤炭表土建井中曾有较大发展,在桥梁交通、地铁、建筑等行业中,也得到应用。

3.2沉井受力与下沉条件

沉井一般是靠井筒自重Q,克服土壤的正面阻力Rs,侧面阻力Tf,井筒水的浮力B而下沉。Q是沉井的主动力;Rs是土给刃脚斜面的反力,若及时出土,Rs即可消失。B等于井壁所排开同体积水重,若采用淹水沉井,虽有阻力作用,但它保持了井内外压力平衡,对沉井有利。Tf是井筒外壁所受土的阻力(包括井筒前端的刃脚),是下沉的一个重要因素。因此,加大自重Q,减少Tf是沉井的关键。由于自重是人为的可控因素,应着重研究的是侧面阻力Tf.

3.3沉井侧面阻力的侧压力

3.3.1我国学者(包括有关的高校教材)对沉井侧阻所提出的看法,主要论点可归结为:

(1)下沉的沉井井壁与土壤直接发生摩擦,也有认为是沉井井壁与土壤间发生滑动。

(2)沉井井壁所受的侧压是竖井表土地压(散体地压)。

这些看法可能是由于受原苏联学者的影响所致,例如П。М。秦巴列维奇在他的著作《矿井支护》中提到:沉下式“支架所受的影响是它本身的重量,岩层及水的侧压以及支架基础所生反作用力,当支架底部岩石一旦挖出,其底部的反作用力即消失,支架可由本身自重而下沉,支架外表的摩擦力逐渐增加,无论支架处于哪一种位置,摩擦力大小都决定于侧压力的大小,岩石与支架外表之间的摩擦系数,以及支架外部表面的大小,即侧阻值等于侧压与表面积摩擦系数之积”[2]。

此处的侧压是什么力,秦氏未明确指出。然而人们却用竖井表土地压作为沉井侧压力,并用秦氏公式来计算它,显然与秦氏平面挡土墙公式的理论不符。因为该公式是在“假定在岩层与支架材料之间没有摩擦才能有效”[2]。

3.3.2沉井井壁与土层间发生了什么?从沉井施工现场,可观察到以下现象:

(1)在徐州拾屯沉井施工时,为了纠偏,进行壁外“大揭盖”,发现与沉井壁相隔0.2-0.3m的炉渣层(壁外充填料)的土层,有一比同一标高土层颜色较深,结构较密实的环状土层。在距地表下3m(井西南方),距井壁外0.7m与4.0m处取同层土样,测得干容重分别为:在0.7m处,γd=16.4kN/立方米;在4.0m处,γd=15.3kN/立方米.γd常见值为13-20kN/立方米,γd越大,土体越密实,说明靠近井壁的土层被压密实了。

(2)徐州地区进行料石沉井壁后注浆时,都比较费劲,几乎每个沉井井壁外都要捣1-3m的硬土层才能进行。例如东城矿主井筒(沉井),穿过的硬土层为2-3m.

(3)在沉井壁中放置的放水管,经常放不出水。例如拾屯主井从地表下沉到31m深,放水管从未流出过水,工人用2m长的钢钎捅和用锤击钎子,发觉壁外有一硬层难以通过。又如马庄主井,沉井井壁安置放水管伸出壁外较短,放不出水来,但听见有水的响声。

(4)拾屯主井下沉到30多米时,下沉几乎停止,刃脚部份完全露出(即Rs=0,B=0)。伸手摸刃脚外壁,有一层200-400mm厚,粘着紧密且含水少,很难尅出的土层。通过计算,此时沉井自重大大的超过侧面阻力(表土地压为侧压力),该现象无法解释。

(5)在各种沉井正常下沉时,均可在井壁与土层间进行充填,如用炉碴、泥浆、压气等物充填;表明刃脚与井壁(内缩)形成的台阶(约0.3m宽)空间,围绕井筒而存在。否则,壁后充填都将无法进行。

以上各种事实表明,沉井井壁外有一层被压密的土层存在,并形成一个围绕沉井壁而竖立的“压密壳”体。因此,在正常下沉情况下,井壁与土层间都不会直接发生接触和产生摩擦。

3.4沉井刃脚下的应力分布

沉井刃脚下沉时,其周围土的受力情况较为复杂,通过实验和数学分析相结合的方法,分析如下[6]:

(1)若在刃脚尖端作用下,土受垂直集中力P作用,可求得在集中力作用下的半平面体的应力。以集中力P的作用点为极坐标原点(图4),应力与P,r,θ有关,通过推导得:

σr=2p/(πr)cosθ

由τγθ=0,σγ=σ1,σθ=σ3=0,按有关公式可求任意方向应力,因此,X,Z方向的应力:

σz=2p/πcos3θ/r

σx=2p/πsin2θcosθ/r

τzx=2p/πsinθcos2θ/r(10)

因θ是无因次量,故应力分量σγ是1/γ的函数,又是θ的函数。r越大,应力σγ越小。集中力P作用线上应力最大,向两侧逐渐减小。

垂直线上的应力随深度变化,愈深愈小,因而在垂直与水平方向上,土体受力被压缩。

(2)在刃脚下沉过程中,周围的土中应力变化,可按三角形荷载作用下半面体的应力计算:

根据公式可得出不同深度Z/b与不同位置X/b,在三角形荷载下的应力σZ/P值。

3.5压密壳与土压力

沉井下沉,井筒最前端的刃脚对其周围土层施力,在力的作用下,土被挤压和压缩,土中应力应变发生改变。土中发生动水过程,水分被挤出,孔隙减少,土被压实和移动变形(弹性变形并伴随永久变形),若达到土的抗剪强度,土产生相对滑动,若强度破坏点越来越多,则形成滑动面,使压实土体滑动分离,逐渐形成“压密体”和“压密壳”体。

刃脚垂直剖面为三角形,一般刃脚高3-8m,夹角30°左右。刃脚与井壁相连,井壁外侧向内收缩0.3m左右,形成一台阶空间,因而使井壁与土层“压密壳”间形成一空间,压密壳环绕井壁而立。因此,在一般正常下沉情况下,井壁是不会与土层发生接触和摩擦的。

通过上述分析知道:沉井在正常下沉过程中,将不会受到地压(主动土压力)的作用(除了产生涌砂,突水,壁外充填被破坏;或沉井偏斜过大等不正常情况外);而只是在刃脚部份受到被动土压力的作用。

4、竖井表土地压与沉井地压

在竖井表土(散体)地压的计算公式中,人们把垂直巷道内的支架,看作是承受围岩(土)方面的主动压力的挡土墙,而不论这些支架(竖井井筒)处于何种状态——是静止还是移动的。这与我国长期接受和采用普氏、秦氏等人的观点与理论有关,因此,当有不同的看法与论点,例如,笔者撰写的“水力机械化料石沉井侧面阻力计算”(1961年毕业论文,和文献[7],[8]),认识到“沉井刃脚的侧面压力是被动土压力”,均未引起注意。同时,在矿山岩石力学教材中,也很少介绍被动土压力的有关知识。

应当指出,沉井井筒在表土层中下沉,不是静止的,井筒不断下沉,井筒前端的刃脚要压迫土体,挤压土体和受到土的被动土压力的作用;并形成“压密壳”体围绕井筒而立。在正常下沉情况下,沉井不会受到地压(主动土压力)的作用。我们知道:被动土压力和主动土压力(地压),两者无论在质和量上都是不相同的,两者有较大的差别:“在一般表土层中,被动土压力较地压(主动土压力)要大几倍,且其与深度的关系也较密切”[8]。为了区别,我们把沉井井筒(刃脚)所受的被动土压力称之为沉井地压。

5、结语

(1)沉井地压是竖井表土地压现象中的一种特殊地压形式,它无论在作用方式以及性质和数量上都与竖井表土地压是不相同的,而且有很大差别。

(2)沉井井壁外“压密壳”的形成,为正常下沉时,实施炉碴、泥浆、压气等减阻措施提供了空间,并起到平衡地压的作用。只有在出现涌砂、突水、压密壳破坏等异常情况下,才可能产生地压(主动土压力)作用。

(3)沉井地压的提出,改变了有关沉井的认识和计算,有助于岩石力学地压理论的研究和探讨。

(4)沉井施工法,不仅在煤炭工业上得到应用,还应用于交通、桥梁、建筑、地铁等的施工中,因此,对沉井地压的研究,不仅有理论意义,还有施工的经济价值。

参考文献:

[1]李通林,等。矿山岩石力学[M]。重庆:重庆大学出版社,1991.177-179.

[2]秦巴列维奇。矿井支护[M]。北京:煤炭工业出版社,1953.98-696.

[3]陈希哲。土力学地基基础。第二版[M]。北京:清华大学出版社,1995.120-138.

[4]余力,马英明。特殊凿井法的发展与展望[R]。徐州:中国矿业学院,1982.1-5.

[5]余力。泥浆淹水深沉井新工艺[J]。建井科技动态,1983.1(1):16-17.

[6]华安增。矿山岩石力学基础[M]。北京:煤炭工业出版社,1980.93-103.

沉井地压范文篇3

关键词:沉井;地压;主动土压力;被动土压力

引言

岩石力学认为:所谓地压是泛指在岩体中存在的力,它既包含原岩对围岩的作用力,围岩间的相互作用力,又包含围岩对支架的作用力。当围岩的次生应力不超过其弹性极限时,地压可全部由围岩来承担,井巷可不加支护在一定时期内维持稳定;当次生应力超过围岩强度极限时,为保持井巷稳定,必须架设支架,这时,地压是由围岩和支架共同承受。为此,把围岩因变形移动和冒落岩块作用在支架上的压力称为狭义地压;而将岩体内部原岩作用于围岩和支架上的压力称为广义地压。就地下工程而言,主要研究狭义地压。

若在竖井(垂直巷道)中,由于井帮发生破坏,使井筒(支架)受压,这种岩土压力和水压(有水时)所形成的压力,即为竖井地压。

1、竖井地压

1.1竖井散体(松动)地压的计算

当竖井在表土层或竖井井帮岩石破碎时,井筒井壁周围将产生散体(松动)地压,对于该地压的计算公式有多个,目前“竖井设计中散体(松动)地压的计算广泛使用平面挡土墙公式和圆锥挡土墙计算法”[1]。

平面挡土墙计算法的实质是把表土或破碎的围岩视作无凝聚力的松散体,将井壁视为平面挡土墙,作用在井筒井壁上的地压为主动土压力。

圆锥挡土墙计算法中,竖井井壁是个圆柱面,当土体(或破碎岩体)向内滑移时,井壁周围岩土体形成空心圆锥体,按空间轴对称问题求得计算公式。

它们的计算假设和依据都是基于:

1.在讨论竖井围岩的应力分布时,把井筒看作是一个半无限体的垂直孔。

2.竖井井筒(支架)是固定直立,不会移动的受力体。

3.按狭义地压的定义,把围岩因变形移动或冒落作用于支架上的压力,来计算竖井散体(松动)地压。

1.2平面挡土墙计算法的由来

1.2.1普氏计算法[6]

普洛托吉雅可洛夫(M.M.Протодьяконов)用坚固性系数f来代表岩石的性质,也即用似内摩擦系数tgΦ来代表。井壁压力就是极限平衡状态的侧压力,岩(土)体自重为γz(z为计算深度),侧压系数为,井壁压力为P.但当井筒深入岩层,硬岩和软岩中井壁压力有明显差别,从而产生了秦氏计算法。

1.2.2秦氏计算法

秦巴列维奇(П。М。Цимбаревич)的基本观点与普氏相同,只是不用加权平均的坚固性系数,而是分层计算。秦氏提出计算竖井(垂直巷道)的地压公式是:“垂直巷道内的支架,即可看作一种承受着围岩方面的主动压力的挡土墙,这种假想并不是十分严格的,而只是一种可以提供近似结果的假设”。同时,视土为松散介质,而不考虑粘结力:“而且假定在岩层与支架材料之间没有摩擦才能有效”[2]。

由于秦氏计算式在设计计算中被广泛使用至今,因而,人们长期都认为竖井井壁(包括沉井)所受的力,就是这种“承受着围岩(土)方面的主动压力”的地压,而不存在其他力的作用。

2、挡土墙与土压力简介

2.1土压力的种类

根据挡土墙位移的情况,产生三种不同的土压力,

(1)挡土墙固定不动,作用在挡土墙上的土压力称为静止土压力P0.

(2)松散介质(土)对于挡土墙的推力而产生的主动土压力Pa.

(3)松散介质(土)受到挡土墙的抗力而产生的被动土压力Pp.

2.2主动土压力与被动土压力

著名的朗肯土压力理论一般情况的适用条件为:(1)挡土墙墙背垂直;(2)墙后填土表面水平;(3)挡土墙背光滑,没有摩擦力因而没有剪应力,即墙背为主应面。

2.2.1主动土压力与被动土压力的计算

(1)在半无限弹性土体中,深度Z处取一微元体,土的容重为γ,则微元顶面应力为σz,σz=γZ;σx为侧面应力[图2(a)],此时应力状态可用

(2)主动土压力:假设土体在水平方向均匀拉伸膨胀,则σz不变,σx逐渐减小,直至极限平衡状态为止,如图2的(c)和(b)中的摩尔园Ⅱ,此时Ⅱ与抗剪强度曲线相切于T1点。可求出无粘性土时(粘性土时,略)的主动土压力:

Pa=KaγZ

式中:Pa为主动土压力;γZ为土的自重;Ka为主动土压力参数,Ka=tg2[(45°-Φ)/2];Φ为土的内摩擦角。

(3)被动土压力:若土体在水平方向压缩,则σz不变,σx不断增大并超过σz,一直到达被动极限平衡状态为止。如图2(d)和(b)中的摩尔园Ⅲ所示,此时Ⅲ与抗剪强度曲线相切于T2点。可求出无粘性土时(粘性土时,略)的被动土压力:

Pp=KpγZ

式中:Pp为被动土压力;γZ与(5)式同;Kp为被动土压力系数,Kp=tg2[(45°-Φ)/2].

(4)在竖井表土地压中,是否只有主动土压力的作用?有没有被动土压力的存在和作用?这就是本文所要探讨的关键问题。

3、沉井受力简析

3.1沉井法概况

沉井法是在不稳定含水表土层中,开凿井筒的特殊施工方法之一。1839年法国沙龙尼(Saloney)煤田首次使用沉井法以来,在欧洲已使用于地下工程中有1500多个[4]。1966年日本竣工的日铁有明3号立井,沉深达200.3m为世界之最。我国煤炭工业使用沉井法已建成100多个井筒,其中山东单家村煤矿下沉到192.75m深度[5]。沉井法工艺较简单,设备较少,劳动强度轻,在我国煤炭表土建井中曾有较大发展,在桥梁交通、地铁、建筑等行业中,也得到应用。

3.2沉井受力与下沉条件

沉井一般是靠井筒自重Q,克服土壤的正面阻力Rs,侧面阻力Tf,井筒水的浮力B而下沉。Q是沉井的主动力;Rs是土给刃脚斜面的反力,若及时出土,Rs即可消失。B等于井壁所排开同体积水重,若采用淹水沉井,虽有阻力作用,但它保持了井内外压力平衡,对沉井有利。Tf是井筒外壁所受土的阻力(包括井筒前端的刃脚),是下沉的一个重要因素。因此,加大自重Q,减少Tf是沉井的关键。由于自重是人为的可控因素,应着重研究的是侧面阻力Tf.

3.3沉井侧面阻力的侧压力

3.3.1我国学者(包括有关的高校教材)对沉井侧阻所提出的看法,主要论点可归结为:

(1)下沉的沉井井壁与土壤直接发生摩擦,也有认为是沉井井壁与土壤间发生滑动。

(2)沉井井壁所受的侧压是竖井表土地压(散体地压)。

这些看法可能是由于受原苏联学者的影响所致,例如П。М。秦巴列维奇在他的著作《矿井支护》中提到:沉下式“支架所受的影响是它本身的重量,岩层及水的侧压以及支架基础所生反作用力,当支架底部岩石一旦挖出,其底部的反作用力即消失,支架可由本身自重而下沉,支架外表的摩擦力逐渐增加,无论支架处于哪一种位置,摩擦力大小都决定于侧压力的大小,岩石与支架外表之间的摩擦系数,以及支架外部表面的大小,即侧阻值等于侧压与表面积摩擦系数之积”[2]。

此处的侧压是什么力,秦氏未明确指出。然而人们却用竖井表土地压作为沉井侧压力,并用秦氏公式来计算它,显然与秦氏平面挡土墙公式的理论不符。因为该公式是在“假定在岩层与支架材料之间没有摩擦才能有效”[2]。

3.3.2沉井井壁与土层间发生了什么?从沉井施工现场,可观察到以下现象:

(1)在徐州拾屯沉井施工时,为了纠偏,进行壁外“大揭盖”,发现与沉井壁相隔0.2-0.3m的炉渣层(壁外充填料)的土层,有一比同一标高土层颜色较深,结构较密实的环状土层。在距地表下3m(井西南方),距井壁外0.7m与4.0m处取同层土样,测得干容重分别为:在0.7m处,γd=16.4kN/立方米;在4.0m处,γd=15.3kN/立方米.γd常见值为13-20kN/立方米,γd越大,土体越密实,说明靠近井壁的土层被压密实了。

(2)徐州地区进行料石沉井壁后注浆时,都比较费劲,几乎每个沉井井壁外都要捣1-3m的硬土层才能进行。例如东城矿主井筒(沉井),穿过的硬土层为2-3m.

(3)在沉井壁中放置的放水管,经常放不出水。例如拾屯主井从地表下沉到31m深,放水管从未流出过水,工人用2m长的钢钎捅和用锤击钎子,发觉壁外有一硬层难以通过。又如马庄主井,沉井井壁安置放水管伸出壁外较短,放不出水来,但听见有水的响声。

(4)拾屯主井下沉到30多米时,下沉几乎停止,刃脚部份完全露出(即Rs=0,B=0)。伸手摸刃脚外壁,有一层200-400mm厚,粘着紧密且含水少,很难尅出的土层。通过计算,此时沉井自重大大的超过侧面阻力(表土地压为侧压力),该现象无法解释。

(5)在各种沉井正常下沉时,均可在井壁与土层间进行充填,如用炉碴、泥浆、压气等物充填;表明刃脚与井壁(内缩)形成的台阶(约0.3m宽)空间,围绕井筒而存在。否则,壁后充填都将无法进行。

以上各种事实表明,沉井井壁外有一层被压密的土层存在,并形成一个围绕沉井壁而竖立的“压密壳”体。因此,在正常下沉情况下,井壁与土层间都不会直接发生接触和产生摩擦。

3.4沉井刃脚下的应力分布

沉井刃脚下沉时,其周围土的受力情况较为复杂,通过实验和数学分析相结合的方法,分析如下[6]:

(1)若在刃脚尖端作用下,土受垂直集中力P作用,可求得在集中力作用下的半平面体的应力。以集中力P的作用点为极坐标原点(图4),应力与P,r,θ有关,通过推导得:

σr=2p/(πr)cosθ

由τγθ=0,σγ=σ1,σθ=σ3=0,按有关公式可求任意方向应力,因此,X,Z方向的应力:

σz=2p/πcos3θ/r

σx=2p/πsin2θcosθ/r

τzx=2p/πsinθcos2θ/r(10)

因θ是无因次量,故应力分量σγ是1/γ的函数,又是θ的函数。r越大,应力σγ越小。集中力P作用线上应力最大,向两侧逐渐减小。

垂直线上的应力随深度变化,愈深愈小,因而在垂直与水平方向上,土体受力被压缩。

(2)在刃脚下沉过程中,周围的土中应力变化,可按三角形荷载作用下半面体的应力计算:

根据公式可得出不同深度Z/b与不同位置X/b,在三角形荷载下的应力σZ/P值。

3.5压密壳与土压力

沉井下沉,井筒最前端的刃脚对其周围土层施力,在力的作用下,土被挤压和压缩,土中应力应变发生改变。土中发生动水过程,水分被挤出,孔隙减少,土被压实和移动变形(弹性变形并伴随永久变形),若达到土的抗剪强度,土产生相对滑动,若强度破坏点越来越多,则形成滑动面,使压实土体滑动分离,逐渐形成“压密体”和“压密壳”体。

刃脚垂直剖面为三角形,一般刃脚高3-8m,夹角30°左右。刃脚与井壁相连,井壁外侧向内收缩0.3m左右,形成一台阶空间,因而使井壁与土层“压密壳”间形成一空间,压密壳环绕井壁而立。因此,在一般正常下沉情况下,井壁是不会与土层发生接触和摩擦的。

通过上述分析知道:沉井在正常下沉过程中,将不会受到地压(主动土压力)的作用(除了产生涌砂,突水,壁外充填被破坏;或沉井偏斜过大等不正常情况外);而只是在刃脚部份受到被动土压力的作用。

4、竖井表土地压与沉井地压

在竖井表土(散体)地压的计算公式中,人们把垂直巷道内的支架,看作是承受围岩(土)方面的主动压力的挡土墙,而不论这些支架(竖井井筒)处于何种状态——是静止还是移动的。这与我国长期接受和采用普氏、秦氏等人的观点与理论有关,因此,当有不同的看法与论点,例如,笔者撰写的“水力机械化料石沉井侧面阻力计算”(1961年毕业论文,和文献[7],[8]),认识到“沉井刃脚的侧面压力是被动土压力”,均未引起注意。同时,在矿山岩石力学教材中,也很少介绍被动土压力的有关知识。

应当指出,沉井井筒在表土层中下沉,不是静止的,井筒不断下沉,井筒前端的刃脚要压迫土体,挤压土体和受到土的被动土压力的作用;并形成“压密壳”体围绕井筒而立。在正常下沉情况下,沉井不会受到地压(主动土压力)的作用。我们知道:被动土压力和主动土压力(地压),两者无论在质和量上都是不相同的,两者有较大的差别:“在一般表土层中,被动土压力较地压(主动土压力)要大几倍,且其与深度的关系也较密切”[8]。为了区别,我们把沉井井筒(刃脚)所受的被动土压力称之为沉井地压。

5、结语

(1)沉井地压是竖井表土地压现象中的一种特殊地压形式,它无论在作用方式以及性质和数量上都与竖井表土地压是不相同的,而且有很大差别。

(2)沉井井壁外“压密壳”的形成,为正常下沉时,实施炉碴、泥浆、压气等减阻措施提供了空间,并起到平衡地压的作用。只有在出现涌砂、突水、压密壳破坏等异常情况下,才可能产生地压(主动土压力)作用。

(3)沉井地压的提出,改变了有关沉井的认识和计算,有助于岩石力学地压理论的研究和探讨。

(4)沉井施工法,不仅在煤炭工业上得到应用,还应用于交通、桥梁、建筑、地铁等的施工中,因此,对沉井地压的研究,不仅有理论意义,还有施工的经济价值。

参考文献:

[1]李通林,等。矿山岩石力学[M]。重庆:重庆大学出版社,1991.177-179.

[2]秦巴列维奇。矿井支护[M]。北京:煤炭工业出版社,1953.98-696.

[3]陈希哲。土力学地基基础。第二版[M]。北京:清华大学出版社,1995.120-138.

[4]余力,马英明。特殊凿井法的发展与展望[R]。徐州:中国矿业学院,1982.1-5.

[5]余力。泥浆淹水深沉井新工艺[J]。建井科技动态,1983.1(1):16-17.

[6]华安增。矿山岩石力学基础[M]。北京:煤炭工业出版社,1980.93-103.

沉井地压范文篇4

关键词:位移被动土压力侧摩阻力刃脚

0引言

沉井法是一种特殊的施工方法。沉井的下沉是在自重G作用下,克服井壁与土体的摩擦阻力Rf、刃脚反力Rj和浮力Nw来完成,见图1(a)。在沉井下沉计算中,一般假设沉井单位面积上的侧摩阻力随深度而变化:在浅土层中,侧摩阻力从地表起逐渐增加,进入土层一定深度后达到最大值,然后逐渐减少,达到一定的深度趋于稳定[1,2]。工程设计中,单位面积侧摩阻力q一般按规范或实测取值。折算深度的计算一般按照图1(b)方法进行。文献[3]提出按图1(c)的计算方法。

对沉井所受的土压力,普遍观点认为沉井受主动土压力的作用,并根据Coulomb和Rankine土压力理论进行计算与分析。文献[4]提出沉井所受的土压力为被动土压力,并进行了论证。认为沉井下沉过程中井壁未受到土压力的作用,只是在刃脚处受到被动土压力的作用。但是并未提出此土压力的计算方法。

图1沉井侧摩阻力分布图

(a)沉井下沉受力;(b)规范提出的折算高度计算方法;(c)文献[3]提出的折算高度计算方法

现行的计算方法简便,但比较粗糙。它忽略了沉井外土体对沉井井壁与刃脚的不同作用;未考虑刃脚结构几何尺寸对沉井下沉的影响;也未考虑沉井挤压土体后的影响,因此,精度较差。

由于土压力的性质与大小与墙身的位移、墙身的材料、高度及结构形式、墙后填土的性质、填土表面的形式以及墙和地基的弹性等有关,而其中又以墙身的位移、墙高和填土的物理力学性质等最为重要[5,6]。因此本文重点从土体的位移、墙高和填土的物理力学性质等方面对沉井土压力及侧摩阻力进行分析。通过对单孔圆形沉井下沉过程进行分析,对沉井结构的简化,建立沉井受力简化模型,分析沉井所受的土压力,并据此对沉井刃脚和井壁所受的土压力及侧摩阻力进行分析。同时对现行方法及本文方法,对某钢厂新建的地下铁皮旋流池结构的受力进行分析和验算。

1沉井的下沉分析模型

根据试验研究和理论分析可知,沉井的下沉过程实际是刃脚的踏面挤压土体的过程。沉井下沉时,在重力作用下,刃脚对其下及周围土施加压力,使土中的应力、应变发生改变,水分被挤出,土的孔隙减少,土体产生弹性变形并伴随着永久变形。在沉井刃脚踏面下,由于土与基底间的摩擦力对基底下土粒侧向位移的约束作用,在基础下形成楔形的弹性压实核,见图2(a)。为此,对沉井下沉进行如下假定:

图2沉井下沉模型

(a)刃脚与弹性核;(b)沉井下沉的闭口系

⑴沉井下沉对地基的破坏形式主要是冲剪破坏和局部剪切破坏。

⑵被压缩的土体符合小变形的假定:

土体的压缩量为:,设土体的压缩距离为s<<D,当Δh→0时,ΔV→0。

⑶沉井在Δt的时间内下沉深度Δh→0的这一过程为一准平衡过程。

⑷被压缩的土体符合连续性坚定和各向同性假定。

⑸在沉井下沉过程中,将与基础同时移动的压实核看作基础的一部分。沉井下沉Δh高度,相当于刃脚从a-b-o-c下沉到a′-b′-o′-c′面。

⑹设刃脚的厚度Δ=(D-d)/2≤0.1D,Δ为D的高阶无穷小。将沉井简化为直径为фd′=D-2s、壁厚为Δ→0的园筒;将沉井环形面积上的荷载(G-Nw)简化为直径为φd′的园周上的线荷载,见图2(b)。

⑺井内及时取土,Rj≈0。

⑻沉井对土体的压缩为刃脚宽度的一半s,即土体从o-o′面被挤压至c-c′面外。

⑼沉井外土体土体被压缩后,土体产生相对滑动,达到土的抗剪强度,形成滑动面,土体被压缩后(图3),逐渐在沉井外形成一环绕沉井井壁及刃脚的压密体。环绕沉井的土体被压缩前后,内摩擦角φ不变。

图3刃脚外侧土体压缩变化的三相图

⑽将沉井及被压缩的土体设置为一闭口系,见图2(b)虚线所围成的体积。外力作用下,沉井的下沉及压缩土体的过程为一绝热过程,且与外界无物质交换。

在上述假定的基础上,依据热力学第一定律可知,沉井下沉过程中外力所做的功全部转化为物质的变形能,且外力所做的功与初始状态和最终状态有关,而和变形过程无关。因此,可将沉井在Δt的时间内下沉深度Δh分解为两个独立的子过程的叠加、而建立沉井受力模型:

⑴沉井的下沉

直径φd′、壁厚Δ→0的园筒,在园周上的线荷载作用下,克服摩擦阻力,下沉Δh深度。在此过程中,土体位移:s=0;土的物理性质指标(γ、e、w、φ)保持不变。

⑵土体的位移与压缩

直径φd′、壁厚Δ→0的园筒在土压力作用下挤压土体,使土体产生的位移s>0。土的物理性质指标(γ′、e′、w′、φ′)发生改变,其中:γ′>γ、e′<e、w′<w,φ′=φ。

2沉井受力分析

2.1土体的位移

根据上述的沉井受力模型,由Coulomb和Rankine土力学理论可知:在沉井下沉过程中,土体未产生位移,沉井所受的土压力为静止土压力E0;而在土体的压缩过程中,土体产生的位移从0增加到s。沉井所受的土压力从静止土压力E0逐渐增大到Ep′,Ep′=∈(E0,Ep],见图4。综合以上两个过程可知:沉井所受的土压力为被动土压力。

图4土压力随位移的变化

由于在沉井实际设计中,井壁外侧一般向内收缩一定距离,形成一台阶空间。因此,对沉井的井壁及刃脚所受的土压力需要进一步分析。

有关文献资料已证明,在正常的下沉情况下,沉井外侧的环状的压实土体一般不会与土层发生接触和摩擦[3]。因此,沉井在正常下沉过程中,沉井所受的被动土压力只局限于刃脚部份受到被动土压力的作用,井壁并未受到被动土压力的作用。

对沉井所受到的被动土压力Ep′的计算,可以采用的考虑变形的Rankine土压力模型[7]进行分析,当挡土墙位移量s∈(0,sp)时,

Ep′=Ep(1)

其中,被动土压力系数折减系数:

式(1)中,s与sa符号相反,取产生被动土压力的位移为正。很明显,刃脚的宽度越大,被动土压力的折减系数越大。

尽管在沉井下沉过程中,井壁未受到被动土压力的作用。但是,随着时间的推移,被压缩的土体有向井壁移动的趋势。因此,沉井井壁所受的土压力应按土体向沉井井壁移动、按主动土压力进行计算分析。

2.2土的重度变化

根据工程实践资料,沉井的刃脚挤压和压缩土体,在沉井外侧形成一环状的压实土[3],表明沉井下沉使刃脚外土的物理性质指标发生变化。对沉井所受的土压力,由Rankine土压力理论:

及:(对无粘性土:)(2)

可知,土压力随着土的重度增加而增加。因此,在计算土压力E0、Ep或Ep′时,应考虑土体物理性质指标的变化对土压力的影响与变化。

土体被压缩前:,压缩后:。

则:(3)

取土体压缩后沉井外侧形成的环状压实土体:e≈0,w≈0,则:

(4)

将式(4)代入式(2),即可求出Ep及Ep′。

2.3刃角的高度

在沉井侧摩阻力的计算中,规范法假定总侧摩阻力Rf距地面5m范围内按三角形分布,其下为常数,见图1(b);文献[3]提出的观点与此相近,见图1(c),只是折算深度计算方法不同。两种方法均认为沉井井壁受到土体侧摩阻力的作用,总侧摩阻力Rf沿深度成梯形分布。而根据沉井受力模型及实际工程中的沉井结构,在沉井下沉过程中,井壁未受到被刃脚压实的环状的土体的接触和摩擦,因此,本文建议采用单位面积侧摩阻力q等于侧压力E与表面积摩擦系数μ之积[8],即:

q=μEp′(5)

取h0=h进行计算,求得的侧摩阻力Rf与沉井实际所受侧摩阻力更为吻合。

3应用与分析

3.1基本情况

某钢厂新建连铸车间拟建一地下铁皮旋流池,工艺要求,旋流池水容量V≥320m3。各层土的分布规律及物理力学性质见表1。地下水位为标高-16.00~-20.00m。

表1地基土的物理力学性质

岩土名称层厚γ0weIpILEsfkφδcμqkk

/m/kN/㎡/%//Mpa/kPa/º/Kpa/kPa

层①:杂填土1.516~18140.780..45

层②:粗砂层3.518.6140.7511.0140260.5

层③:粉土6.019.0140.7570.457.0199292120.35

层④:粗砂层10.020200.60.4516.0200250.502000

根据工艺要求及场地情况确定旋流池结构几何尺寸,选择圆形、带隔墙的旋流池。由于场地限制,取旋流池外径D=9m,旋流池壁厚取较小值(D-d)/2=0.7m,旋流池内径d=7.2m,深度H=18.2m,刃脚高度根据经验取h=2.0m~3.2m,池底标高-16.2m。持力层为层⑤粗砂层,地下旋流池的结构见图5。

图5地下旋流池结构简图

3.2计算与讨论

根据初选的结构几何尺寸,计算沉井重量为G≈11398kN。取刃脚高度h=2.0m、2.4m、2.8m、3.2m,以及刃脚踏面宽度2s=150mm、200mm、250mm进行计算分析。为了简化计算,取达到被动土压力极限值所需的位移量sp=5%H,达到主动土压力所需的位移sa=-sP;静止土压力系数k=1-sinφ′≈0.5;刃脚外侧被压缩后的土体e≈0,w≈0,其重度γ′按式(4)进行计算。侧摩阻力Rf的计算与下沉系数k的验算分别采用规范法、文献[7]的方法和本文的方法进行计算和比较,计算结果见表2。其中表2中Ea、Ep为沉井下沉中刃脚所受的最大土压力。

表2侧摩阻力的计算及下沉系数的计算

计算方法hh0qsaspskakpk0kp′γEaEpmEp′Rfk

/m/m/kPa/m/m/m/kN/m3/kN/m/kN/m/kN/m/kN

规范法2.0H-2.5=15.725.9-------γ=19.11----11497.40.99

2.4H-2.5=15.725.9-------γ=19.11----11497.40.99

2.8H-2.5=15.725.9-------γ=19.11----11497.40.99

3.2H-2.5=15.725.9-------γ=19.11----11497.40.99

文献[3]2.0(H+h)/2=10.125.9-------γ=19.11----7392.21.54

2.4(H+h)/2=10.325.9-------γ=19.11----7538.61.51

2.8(H+h)/2=10.525.9-------γ=19.11----7575.51.50

3.2(H+h)/2=10.725.9-------γ=19.11----7823.81.45

本文方法2.0h=2.0--0.0610.910.0750.312.90.52.76γ′=29.34398.42419.50.224543.16892.81.65

2.0h=2.0--0.0610.910.1000.312.90.52.76γ′=29.34398.42419.50.242586.57444.21.53

2.0h=2.0--0.0610.910.1250.312.90.52.76γ′=29.34398.42419.50.259630.07995.61.42

2.4h=2.4--0.0610.910.0750.312.90.52.76γ′=29.34478.12903.30.224650.48270.81.38

2.4h=2.4--0.0610.910.1000.312.90.52.76γ′=29.34478.12903.30.242702.48932.51.28

2.4h=2.4--0.0610.910.1250.312.90.52.76γ′=29.34478.12903.30.259754.59594.11.19

2.8h=2.8--0.0610.910.0750.312.90.52.76γ′=29.34557.83387.30.224758.89649.71.18

2.8h=2.8--0.0610.910.1000.312.90.52.76γ′=29.34557.83387.30.242819.510421.71.09

2.8h=2.8--0.0610.910.1250.312.90.52.76γ′=29.34557.83387.30.259880.211193.71.03

3.2h=3.2--0.0610.910.0750.312.90.52.76γ′=29.34637.53871.30.224867.211028.71.03

3.2h=3.2--0.0610.910.1000.312.90.52.76γ′=29.34637.53871.30.242936.611911.00.95

3.2h=3.2-0.061–0.91–0.1250.312.90.52.76γ′=29.34637.53871.30.259100612793.20。89

从表2中可知:

⑴按规范法进行分析,取有效高度h0=(H-2.5),刃脚高度、刃脚踏面宽度的变化,对计算的沉井的侧摩阻力Rf及下沉系数k均不存在任何影响。

按文献[3]方法,取有效高度h0=(H+h)/2,刃脚高度从h=2.0m增加到h=3.2m、增加60%,沉井的侧摩阻力Rf由7392.2kN增加到7823.8kN,增加5.8%,下沉系数k由1.54下降到1.45,减少5.8%。

以上两种计算方法的结果说明,目前的沉井结构设计实际上均未考虑刃脚结构几何尺寸、土体的变形对沉井受力的影响。

⑵采用本文方法进行计算分析,刃脚结构的几何尺寸如刃脚的高度h,刃脚踏面的宽度2s的取值对沉井的侧摩阻力Rf和下沉系数k影响很大对沉井的下沉影响很大。

当刃脚高度h>2.8m,刃脚宽度2s>0.25m时,采用本文方法计算的侧摩阻力大于规范法计算的侧摩阻力。而当刃脚的高度h=2.0m,刃脚的宽度2s=0.15m时,计算的侧摩阻力仅为规范法结果的60%。

当刃脚的高度h=2.0m,计算的侧摩阻力与文献[5]方法基本接近;当h>2.0m时,计算的侧摩阻力均大于文献[5]的计算结果。

⑶在本文的分析中,假设刃脚外侧被压缩后的土体处于完全密实状态,沉井对土体的压缩仅假设为刃脚踏面下一半的土体。尽管如此,在保持刃脚高度h不变情况下,踏面宽度由2s=150mm增加到250mm,增加66.7%;侧摩阻力Rf增加16%,下沉系数k下降12.7%~14%。

⑷根据本文的计算公式:刃脚的高度主要与沉井和土体的接触面积有关。沉井的侧摩阻力与沉井和土体的接触面积成正比。因此,刃脚的高度越大,沉井与土体的接触面越大,则沉井的侧摩阻力越大。相应地,计算的下沉系数越低。表2中,保持刃脚踏面宽度2s不变,刃脚的高度h从2.0m增加到3.2m,增加60%;沉井的侧摩阻力Rf增加60%、下沉系数k约下降37.3%~37.6%。

⑸对刃脚处所受的土压力进行比较,刃脚的宽度从2s=0.15m增加到0.25m,Ep′/E0从1.36增加到1.58,增幅为16.2%

上述分析表明,减少刃脚的高度和宽度均可减少沉井的侧摩阻力。因此,采用本文分析方法进行分析,可以为某些沉井设计、施工中存在的问题如:计算的沉井自重远超过沉井的侧面阻力,但施工中出现难沉、而沉井壁无孤石等异常情况;计算的沉井自重能满足沉井的下沉,但施工中却出现超沉情况;设计表明,只有在沉井自重加一定的配重才能满足设计要求,而实践发现几乎无需配重就能下沉到设计标高等,应从刃脚的结构几何尺寸、刃脚及井壁所受的土压力等方面进行分析。

针对某钢厂地下旋流池的设计,采用本文的分析方法,可取沉井刃脚高度h=2.8m。刃脚和井壁强度及刚度的计算按规范进行。其中刃脚的计算分析采用被动土压力;井壁的计算则根据沉井最不利情况,即被压缩的土体可能向沉井井壁移动,作用于井壁而采用主动土压力进行计算与分析。设计的配筋见图5。

4结论

⑴基于土体的位移而建立的沉井下沉受力分析模型,可以得出沉井在刃脚处所受的土压力为被动土压力,其被动土压力的大小与刃脚踏面受力有关。在一般情况下,沉井刃脚处的被动土压力介于静止土压力与被动土压力极限值之间。根据文献[5]提出的考虑变形的Rankine土压力模型,可以计算出沉井刃脚处的被动土压力值。

⑵采用规范法计算沉井的受力,未考虑沉井结构的几何尺寸的影响。

⑶根据本文的分析,刃脚尺寸对沉井结构影响很大。在沉井下沉过程中,刃脚设计高度和刃脚踏面的宽度对沉井侧摩阻力影响因素较大。

参考文献:

[1]顾晓鲁,钱鸿缙,刘惠珊等.地基与基础[M].北京:中国建筑工业出版社(第三版),2003:823-853.

[2]傅号军.大型沉井数字化监测与控制研究[D].上海交通大学硕士学位论文,1999.3.

[3]郑本楠,张丽伟,梁玉芝.关于沉井结构摩擦力计算方法的建议[J].东北水利水电,1997,155(5):37-39.

[4]王祥厚.沉井地压——一种特殊表土地压的探讨[J].贵州工业大学学报(自然科学版),2002,2:53-58.

[5]Fang.Y.SstaticEarthPressurewithWallMoyements[J].JournalofGeotechnicalandGeonvirmentalEngineering.1986.112(6):317-333.

[6]K.Terzaghi.LargeRetainingWallTests[J].EnggNewsRecord,1934,11(2):112.

沉井地压范文篇5

输电线路的施工包括3部分,分别为基础部分的施工、张力架线施工和线路的保护施工。本文基于这3方面对输电线路的施工技术进行了详细探讨。

1.1输电线路的基础施工技术

在输电线路的施工过程中,输电线路基础部分的施工非常重要,其质量会对杆塔的稳固性造成较大的影响。在基础施工中,常见的基础形有岩石锚杆基础、阶梯型基础、岩石嵌固基础、大板基础、掏挖基础、斜插板式基础、灌注桩基础、联合基础和复合式沉井基础等。在进行基础施工时,要以实际施工情况为依据选择基础样式。下面对几种比较常用的基础施工技术进行分析。

1.1.1岩石嵌固基础

岩石嵌固基础是利用岩石自身具备的抗剪强度对输电线路基础部分进行施工的基础施工技术之一。这种施工技术具有基坑土方量少、混凝土用量少、钢筋用量少、不需要使用模板等特点。因此,岩石嵌固基础在使用过程中投入的成本相对较低。同时,岩石嵌固基础的抗拔承载力比较强,在没有覆盖层或覆盖层比较浅的地基中比较适用。

1.1.2大板基础

在基础施工过程中,会因下压力、水平力和上拔力而产生相应的弯矩和剪力,在大板基础使用的过程中,这些力均由基础底板的双向配筋承担。大板基础的使用特点为埋藏的深度比较浅、开挖比较方便;施工底板比较薄、大;施工比较方便。大板基础在流塑黏性土、粉细砂和软土等土质中开挖不易成型的输电线路基础施工中比较适用。

1.1.3联合基础

联合基础的比较适用于开挖难度小、基础根开小的软弱输电线路的基础施工中。联合基础的特点是埋藏深度比较浅。在联合基础的施工过程中,要对4个基础采用整体浇筑的方式施工。由上、下压力和水平力引发的弯矩主要通过基础底板上的加筋混凝土承担,因此,联合基础具有良好的整体性。

1.2张力架线技术

张力架线技术指的是在超高压输电线路施工时,采用相应的机器设备使导线能在张力状态下展放,同时,采用一定的方式安装挂线、附件等零件,并完成紧线工作。张力架线技术在使用过程中有6个特点:①在使用张力架线技术的过程中,输电线路始终都处于腾空状态;②耐张段施工不会对施工段造成影响,直线塔可作为施工段的起止塔使用;③平衡挂线与半平衡挂线都可以在耐张塔上进行;④通过张力架线的方式架设线路能有效避免地面摩擦,从而有效消除线路运行对无线电系统造成的影响;⑤通过张力架线的方式能有效缩短施工周期和提高机械化程度;⑥张力架线技术在跨越公路、铁路和江河等的施工中依然适用,同时,还能产生较大的经济效益。张力架线技术的应用流程比较复杂,基本分为以下6步:①展放导引绳。②通过导引绳拉动牵引绳,同时使用牵引绳拉动导线。③展放导线。④悬挂放线滑车。悬挂放线滑车的方式分为分开悬挂式滑车悬挂和二联板拉杆悬挂式滑车悬挂。⑤紧线。以滑车悬挂方式为基础,可将紧线分为一次紧线和两次紧线。⑥安装附件。安装附件分为直线塔的附件安装和耐张塔的附件安装。其中,直线塔的附件安装又分为“一提二”安装法和“一提四”安装法;耐张塔的附件安装又分为平衡挂线法、50m锚线落地压接法和10m锚线空中压接法。

1.3冷喷锌技术

输电线路暴露在空气中的时间非常长,因此,为了避免输电线路出现氧化、腐蚀等问题,可采用冷喷锌技术对其进行处理。冷喷锌是一种抗腐蚀性强、耐高温的环保材料。在输电线路上喷刷这种物质能延长线路的使用寿命。

2输电线路的运行管理维护策略

2.1提高运行可靠性

为了提高输电线路在运行过程中的可靠性,需要转变电网原有的连接方式,使用经济性更高的迂回、倒送方式连接。在必要时,还可将开式电网结构转变为闭式网络结构。此外,还可通过分相检修的方式检修线路,以免在检修过程中出现过多的停役线路,进而对输电系统的运行造成不利影响。

2.2提高抗电防雷性能

在输电线路的运行过程中,为了降低输电线路遭受雷击的概率,在架设线路时应安装避雷器,并架设耦合地线。在选择输电线路的路线时,要尽量避开雷击频发、被冰雪覆盖和地质灾害频发的区域。同时,转角塔也要尽量避开山脊位置,避免覆冰对线路造成不利影响。2.3加强巡视和检查在输电线路的运行过程中,要加强维护和管理,对线路进行定期检查和实时监控,尤其要加强对覆冰地段和易出现问题地段的检查和监控。检查和监控的内容主要包括:检查杆塔的运行状态、及时调整耐张型杆塔两侧的拉线和保证杆塔塔身具有较高的稳定性。在巡视输电线路时,要加强对导线、绝缘子和拉线等的检查,并合理调整线路周边的树木,保证输电线路与树木之间留有一定的安全距离。

3结束语