PCC范文10篇

时间:2023-04-05 02:08:44

PCC范文篇1

目前国内广为采用的水轮机调速器,多为以PLC为核心。天津市科音自控设备有限公司研制的数字阀PCC可编程智能调速器以全新控制理念,以PCC为控制核心,面向自动化控制全过程,成功配置由电磁球阀和插装阀构成的数字阀替代传统的电液转换器和主配压阀。

控制器是调速器的核心部件,控制器完成调速器的信号采集、数据运算、控制规律实现、运行状态切换、控制值输出及其他附加功能。因此,控制器的选择对新型调速器的开发至关重要。目前,市场上的控制器很多,如单片机、PLC、PCC等,但由于调速器是工业现场的设备,对可靠性要求很高。选择控制器的重要原则是,要选用适合工业现场使用的抗干扰能力强、可靠性高、选择余地大、操作维护方便的控制器。我们经过对各种控制器的深入研究,分析对比,结合水轮机调速器的特殊性,发现奥地利贝加莱(B&R)公司的PCC是能够满足上述原则的最合适的控制器,故选择PCC作为数字阀PCC智能调速器的控制核心。

PCC代表着一个全新的控制理念,它既具有可编程逻辑控制器(PLC)的标准控制功能(可靠性高、易扩展),又具有工业计算机(IPC)的系统功能(运算能力强、适时性好、编程方便等特点)。它能方便地处理开关量,模拟量,进行回路调节。并能用高级语言编程,具备大型机的分析运算能力。其硬件具有独特新颖的插拔式模块结构,可使系统得到灵活多样的扩展和组合。软件也具备模块结构,系统扩展时只需在原有基础上叠加运用软件模块。PCC的CPU为32位,运行效率高,具有高速的智能处理器TPU,TPU功能可使系统响应时间达到微秒级,而CPU不需作任何加载。用户存储器容量大。具有良好的电磁兼容能力和现场总线全面支持技术,体现了工控领域的发展方向。

数字阀PCC智能调速器包括单调整型和双调整型,本文介绍双调整型调速器的主要特点、功能及构成。

2.数字阀PCC智能调速器的主要特点

(1)全新的控制理念。采用不同于常规PLC的新一代可编程计算机控制器--PCC,面向控制过程,采用高级语言,分析运算能力强,在同一CPU中能同时运行不同程序。程序运行时仅扫描部分程序,效率很高。

(2)全PCC化,具有极高的可靠性。从输入到输出,从测频到控制脉冲等各环节均实现了PCC化。PCC的平均无故障时间MTBF高达50万小时,即57年。

(3)多任务的优点。在传统PLC中,并行处理是靠程序扫描来完成的。但事实上多任务才是并行处理的逻辑表达式,更简单直接的方法就是采用多任务技术。PCC恰恰可以满足这种需求,当某一任务在等待时,其他任务仍可继续执行。PCC将整个调节控制分成若干个具有不同优先权的任务等级(TaskClass)。优先权越高的任务等级,其扫描周期越短,优先权越低,其扫描周期越长。把适时性要求高的程序放在高速任务层,把一般的逻辑判断处理程序放在普通任务层,这样可以提高调节系统的性能指标。

(4)智能型调速器。采用自适应式变结构,变参数并联PID调节,采用对常规PID调节器改进后的算法[2]。自动识别电网的性质,并自动适应电站的各种特殊运行方式,如孤网运行,及或由大电网解列为小电网运行的突变负荷等特殊情况时,均可保证机组稳定运行。人性化设计,具有很强的自诊断、防错、纠错及容错功能。当出现故障时,自动弹出故障诊断画面,并自动显示故障原因及处理办法。

(5)采用PCC高速计数模块(HSC)测频。PCC高达6.3MHz的计数频率,具有很高的测频精度和可靠性,从而使调速器的输入通道-测频环节的可靠性有了根本的保证。

(6)采用数字协联方式,且可现场修改协联曲线并记忆修改后的数据,以便根据电站的实际条件按最优曲线运行,桨叶随动系统准确度高。

(7)PCC的大内存,为智能型调速器提供了资源保证。用户内存:1.5MBFLASHPROM。

(8)采用电磁球阀做数字阀作为电液转换元件。彻底解决了常规调速器电液转换元件油污发卡的问题,使电站可以实现完全可靠的自动运行。

(9)具有故障锁锭的功能。由于数字阀只有通/断两个状态,且数字阀采用锥阀密封可以保证在31.5MPa下无泄漏,所以,数字阀又具有液压锁的功能,因此当测频信号消失及断电等情况下,具有故障锁锭的功能。

(10)无杠杆结构。该系列调速器采用了数字阀液压随动系统,自动时有电气返馈,手动无需反馈,因此取消了杠杆,消除了因为杠杆造成的死区,提高了调速系统的精度,而且无管路,结构简单,美观。

(11)友好的人机界面。采用触摸屏做为人机界面,画面美观逼真,全中文显示,操作方便,可以同时显示很多信息。具有屏幕保护功能,以延长触摸屏的寿命。

(12)维护简单调试方便。由于PCC的高度集成化和高可靠性,对于运行维护人员没有太高的特殊要求,调试只需设定有关数字,没有太多的电位器等可调元件。

3.数字阀PCC智能调速器的主要功能

数字阀PCC可编程智能调速器具有自动、电手动、手动三种操作方式,且可无条件无扰动切换。具有很多功能,实用性智能性很强,除常规功能外具有如下主要功能。

(1)空载运行时,能自动跟踪系统频率,实现快速并网。

(2)具有频率调节、开度调节、功率调节三种模式,并可实现调节模式间的无扰动切换。功率调节模式下,可接受上位机控制指令,实现发电自动控制功能(AGC)。

(3)具有很强的自诊断、防错、纠错及容错功能,并可将有关故障信息显示在屏幕上,或发出报警信号。具有下述在线诊断和容错功能:模拟/数字转换器和输入通道故障;反馈通道故障;液压控制系统故障;程序出错和时钟故障;事故关机回路故障;操作出错;测频回路故障;其他故障。

(4)与上位机通讯的功能,接受上位机的控制命令,给上位机传送有关信息。

(5)开停机智能控制。

(6)辅助试验功能。通过触摸屏可以很方便地进行静态特性、空载扰动及空载摆动等试验。

(7)具有水位调节功能。

(8)波浪控制,以避免甩负荷时上下游水位发生较大的波浪。

(9)多级密码保护功能。持有密码级别的高低,决定了对系统行使权利的大小。运行人员只能观察到常规显示画面并进行常规操作,检修人员或管理人员可对调节参数等进行修改。

(10)具备折线关机功能,并由标准的插装阀完成,结构简单,动作可靠。

4.数字阀PCC智能调速器的构成

数字阀PCC智能调速器的结构框图如图1所示。

根据用户的要求既可采用机电合柜型也可采用机电分柜型。结构布置简洁合理,人性化设计,便于检修,便于操作。调速器上的触摸屏、仪表、按钮等,安装在相应柜子仪表盘上,便于观测且对称地排列,所有的仪表及控制装置,外观相互协调。

4.1调节器的构成

调节器主要由PCC的CPU模块、高速DI模块、脉冲输出模块、A/D转换模块、开关量输入/输出模块、通讯模块及机架等组成。

4.1.1测频环节

测频环节的优劣将直接影响调速器的性能和可靠性。该系列调速器采用PCC具有TPU功能的高速数字量输入模块DI135测频,测频过程简单,测频精度高,适时性强,可靠性高。以机频测量为例,测频程序如下:

Speed1FUBLTXcpi8()(1)

Fj=f/Speed1.DifCnt*Speed1.PCnt(2)

式(1)表示调用测频功能块LTXcpi8(),Speed1是别名,FUB是别名调用命令语句。

式(2)中:

Fj表示机组频率。

f表示PCC频率测量的内部时钟,高达6.3MHz的计数频率,具有很高的测频精度和可靠性,从而使调速器的输入通道-测频环节有了根本的保证。其测频精度远高于常规PLC的测频精度。

Speed1.DifCnt表示计数器累加到的脉冲个数。

Speed1.PCnt表示测频的周期数,采用多个周期测量然后求取平均值,通过程序初始化中设置Speed1.PCnt=1,这样可以保证测频的适时性。

传统的微机调速器测频为了避免正弦波正负半周的不对称性,需要分频后才能保证测频精度。而PCC中的频率测量,TPU读取的是方波信号两相临上升沿之间的计数值,不需要分频,因此简化了电路,提高了测频的可靠性,且测频的适时性提高了一倍。

4.1.2数字阀的控制

数字阀的控制采用PCC具有TPU功能的高速数字量输出模块DO135,根据电气开度和实际开度的差值DY输出脉宽调制(PWM)信号,经功率放大后驱动电磁球阀。电磁球阀控制流程如图2所示。

以导叶数字阀的控制为例,程序如下:

DO4pwmFUBLTXdpwm4()(3)

DO5pwmFUBLTXdpwm5()(4)

式(3)和式(4)分别表示调用脉冲输出功能块LTXdpwm4()和LTXdpwm5(),DO4pwm和DO5pwm是别名,FUB是别名调用命令语句。

4.2电液随动系统的构成

电液随动系统主要是执行机构,它将直接影响调速器的性能和可靠性。数字阀调速器以标准件—电磁球阀为先导阀,代替传统的电液转换器、比例阀或步进电机的电液转换元件,以标准液压元件—二通插装阀为放大元件代替传统的主配压阀,。其工作特点是以电磁球阀的通、断控制插装阀,插装阀的通、断来控制接力器。电磁球阀的工作状态只有通、断两个状态,也即相当于数字电路的高电平、低电平两个状态(即1、0),故将其称为数字阀,由此构成的调速器称为数字阀调速器。

采用了速动阀与微调阀并联的液压系统。由于速动阀与微调阀可分别控制接力器的速度,使其均可调,因此,数字阀调速器可很好的适应不同容积的接力器,避免了大型机组接力器容积与调速器主油管通径不匹配时造成的过调和欠调,实现了精确调节。小波动时只有微调阀调节,大波动时速动阀同时参与调节,大大提高了动态性能。

插装阀的密封形式为锥阀,因此插装阀又具有液压锁的功能,插装阀在31.5MPa油压下零泄漏。电磁球阀失电后接力器零漂移,具有故障锁定的功能。所以该系列调速器具有充分理由去掉了机械反馈。由于该系统的先导电磁球阀又具有手动阀及事故阀的功能,减化了调速器内部结构,因此该系列调速器实现了真正意义上的无杠杆,无管路;机械部分结构上采用集成块的形式,可应用于31.5MPa的高油压系统;电磁球阀及插装阀对液压油的洁净度要求很低,抗卡阻能力极强;零部件互换性好,更换零部件时,无需调整;整体结构简单,运行维护方便,可靠性高。

4.3调速器工作过程

调速器自动运行时,接收到开机令后,按照预先设定好的开机规律开机。当网频测量正常时,调速器自动选择频率调节模式,PCC按照机频与网频的差值进行PID运算,为实现快速并网作好准备;当网频测量故障时,自动切换为开度调节模式,PCC按照机频与频率给定的差值进行PID运算。PCC根据电气开度和实际开度的差值输出脉宽调制(PWM)信号,经功率放大后驱动电磁球阀,调节导叶开度,使机组自动运行于空载工况。

并网后,如为并大电网运行,当功率测量正常时,自动选择功率调节模式;当功率测量故障时,自动切换为开度调节模式。如为孤网运行,自动选择频率调节模式。通过上位机或触摸屏改变功率给定值或开度给定值,调节器经PI运算后,实现负荷调节。接到停机令后,调速器自动将机组关机,完成停机过程。

5.数字阀PCC智能调速器的应用

目前,已有多台数字阀PCC智能调速器在水电站成功投运。现场试验结果表明,各项性能指标均优于国家标准“水轮机调速器与油压装置技术条件GB9652.1-1997”。所有投运的调速器均未出

现任何故障,运行人员操作简单,维护工作量很少。

以贵州省漾头水电站第一台调速器为例,该电站装机容量为2X8000KW,水轮机为轴流转桨式,设计水头为18M。现场试验结果如下:

(1)转速死区:0.015%。

(2)自动空载频率摆动值:±0.06%。PID调节参数为空载扰动试验优选出的运行参数,即:bt=45%,Td=20s,Tn=0.5s,

(3)甩25%额定负荷,接力器不动时间为0.18s。

(4)甩100%额定负荷,转速最大上升为额定转速的133.6%,超过3%额定转速的波峰次数为1次,从接力器第一次向开启方向移动起,到机组转速摆动值不超过±0.5%为止所经历的时间为27S。

6.结语

试验结果表明,数字阀PCC可编程智能调速器的各项性能指标均优于国家标准“水轮机调速器与油压装置技术条件GB9652.1-1997”。不仅解决了传统调速器的缺陷,而且可满足现代水轮机调速器发展的要求,为实现水电站无人值班奠定了基础。本项目产品己通过“国家中小型水电设备检测中心”的技术检测。并在多个水电站成功应用,得到用户的一致好评。W国家科技部于2004年将“数字阀PCC智能调速器”确定为创新基金支持项目,天津市科音自控设备有限公司得到了科技部和天津市科委的无偿资助,为该项技术的尽快推广增添了动力。

参考文献

PCC范文篇2

漾头水电站位于贵州省铜仁市附近,装机容量为2X8000KW,水轮机为轴流转桨式,设计水头为18M。原调速器为某厂生产的模拟电液调速器,机械控制部分采用电液转换器,二级放大部分采用主配压阀,接力器与主配压阀开环无反馈;在电气上采用模拟电子调节器,抗干扰性能差;自动运行时,常误动作。自投入运行以来,随着长时间的运行,机械的磨损,电气分立元件的老化严重地影响机组的安全运行。

原调速器存在的主要问题是:

1)抗卡阻效果差。调速器对油质要求较高,常卡阻,不能保证长期自动运行。

2)运行操作不方便。由于机械磨损主配压阀渗漏造成接力器漂移,且手动运行时无反馈,运行人员总要不断的调整,劳动强度较大。

3)抗干扰能力差。任何电磁干扰都可能造成调速器误动作。

4)检修维护不方便。调整环节太多,每次检修后,仅调整各个节流阀就需要几天时间。

2.改造方案

针对漾头水电站的具体情况,拟定如下改造方案:

方案一.用ZFST-100型数字阀PCC可编程智能调速器整机替换原调速器。采用机电合柜形式。

方案二.保留原调速器主配压阀,去掉原调速器中除主配压阀以外的其他部分,采用步进电机替代电液转换器,采用PCC可编程智能调节器替换原模拟电子调节器。采用机电合柜形式。

由于主配压阀的结构形式为滑阀,主配压阀活塞与衬套之间的间隙所造成的渗漏就不可避免,为了减少主配压阀活塞与衬套之间的渗漏,就要在主配压阀活塞阀盘与衬套与窗口之间加大搭叠量,而搭叠量加大了调速器机械死区。由于主配压阀活塞与衬套之间的间隙所造成的渗漏不可避免,因此在手动运行时就需要机械反馈来补偿,否则,接力器就要漂移。

由于漾头水电站原调速系统没有采用机械反馈。因此,在设备改造时,必须采用无钢丝绳反馈(或杠杆反馈)结构,只采用电气反馈。如采用方案二即保留原调速器主配压阀,手动运行时溜负荷。由于溜负荷,增加了运行人员的劳动强度。而采用方案一数字阀调速器则能解决这一难题。

综上所述采用方案一最为理想。

为了适应机组安全稳定运行要求,实现水电站“无人值班”(少人值守),铜仁市地方电力公司漾头水电站经过调查研究,选用天津市科音自控设备有限公司研制的新一代调速器:ZFST-100型数字阀PCC可编程智能调速器,对原调速器进行了整机更换改造,率先实现了在轴流转浆式水轮发电机组上应用数字阀+可编程计算机控制器的智能调速器。

3.数字阀PCC可编程智能调速器

结合水轮机调速器的特殊性,ZFST-100型数字阀PCC可编程智能调速器,选用不同于常规PLC的新一代可编程控制产品-PCC,即从贝加莱公司(B&R)进口的可编程计算机控制器B&R2003。它面向自动化过程,而不是面向继电器逻辑电路仿真,这就是B&R2003的理念。PCC代表着一个全新的控制概念,它集成了可编程逻辑控制器(PLC)的标准控制功能和工业计算机的分时多任务操作系统功能。它能方便地处理开关量,模拟量,进行回路调节。并能用高级语言编程,具备大型机的分析运算能力。其硬件具有独特新颖的插拔式模块结构,可使系统得到灵活多样的扩展和组合。软件也具备模块结构,系统扩展时只需在原有基础上叠加运用软件模块。CPU运行效率高,用户存储器容量大。这些优越性都为智能式水轮机调速器提供了强有力的资源保证。

在电气机械转换方面,采用电磁球阀替代电液转换器;在放大级采用二通插装阀替代主配压阀。调速器从总体上降低了对油质的要求,从根本上避免了电液转换器发卡的弊病。由于数字阀技术是采用高速电磁球阀为先导阀,以二通插装阀为主阀,而且插装阀的密封形式为锥阀,因此数字阀又具有液压锁的功能,有效地避免了接力器的漂移,因此主接力器无需机械反馈。所以数字阀调速器在漾头水电站的应用,可以以最小的改动,达到整机改造的目的。由于该系统的先导电磁球阀又具有手动阀及事故阀的功能,减化了调速器内部结构,从结构上减化了整个调速系统。所以该型调速器实现了真正意义上的无杠杆,无管路;在结构上采用集成块的形式,外形简洁明快,可靠性极高,性能优良。由于无需机械反馈,该型调速器在机组的布置上可不受任何限制,厂房整齐,美观。

3.1主要特点

1)全新的控制理念。采用不同于常规PLC的新一代可编程计算机控制器--PCC,面向控制过程,能采用高级语言,分析运算能力强,在同一CPU中能同时运行不同程序。程序运行时仅扫描部分程序,效率很高。

2)全PCC化,具有极高的可靠性。从输入到输出,从测频到控制脉冲等各环节均实现了PCC化。PCC的平均无故障时间MTBF高达50万小时,即57年。常规PLC的平均无故障时间MTBF为30万小时。

3)多任务的优点。在传统PLC中,并行处理是靠程序扫描来完成的。但事实上多任务才是并行处理的逻辑表达式,更简单直接的方法就是采用多任务技术。PCC恰恰可以满足这种需求,当某一任务在等待时,其他任务仍可继续执行,非其他常规PLC可以比拟。

4)智能型调速器。采用自适应式变结构,变参数并联PID调节。自动识别电网的性质,并自动适应电站的各种特殊运行方式,如孤网运行,及由大电网解列为小电网运行的突变负荷等特殊情况,均可保证机组稳定运行。人性化设计,具有很强的自诊断、防错、纠错及容错功能。

5)采用PCC高速计数模块(HSC)测频。PCC高达6.3MHz的计数频率,具有很高的测频精度和可靠性,从而使调速器的输入通道-测频环节的可靠性有了根本的保证。

6)由PCC实现信号综合及控制脉冲的输出。调节器的电气开度(数字信号),和转换为数字信号的接力器实际位移由PCC内部进行综合比较,输出控制脉冲信号,经功率放大后,直接驱动先导电磁阀。充分发挥了PCC多任务的功能。

7)联网方便。具有RS232或RS485通讯接口,可以方便地实现人机对话,及与上位机通讯,提高电站的自动化水平。

8)调节模式灵活。可实现频率调节,开度调节,功率调节,并可实现调节模式间的无扰动切换。

9)PCC的大内存,为智能型调速器提供了资源保证。用户内存:1.5MBFLASHPROM,远大于常规PLC10KB左右的内存。

10)采用电磁球阀做为电液转换元件。彻底解决了常规调速器电液转换元件油污发卡的问题,使电站可以实现完全可靠的自动运行。

11)可以适应电站的各种特殊运行方式。如孤网运行,及由大电网解列为小

电网运行的突变负荷等特殊情况,均可保证机组稳定运行。

12)具有故障锁锭的功能。由于数字阀只有通/断两个状态,且数字阀采用锥阀密封可以保证在31.5MPa下无泄漏,所以,数字阀又具有液压锁的功能,因此该系列调速器在测频信号消失及断电等情况下,具有故障锁锭的功能。

13)无杠杆结构。该系列调速器采用了数字阀液压随动系统,自动时有电气返馈,手动无需反馈,因此取消了杠杆,消除了因为杠杆造成的死区,提高了调速系统的精度,而且无管路,结构简单,美观。

14)友好的人机界面。采用触摸屏做为人机界面,画面美观逼真,全中文显示,操作方便,可以同时显示很多信息。

15)维护简单调试方便。由于PCC的高度集成化和高可靠性,对于运行维护人员没有太高的特殊要求,调试只需设定有关数字,没有太多的电位器等可调元件。

16)采用数字协联方式。桨叶随动系统准确度高。

17)零扰动手/自动切换。由于自动运行时,电磁球阀每次动作后都处于失电状态;而切断电源即为手动运行。手动运行时,电子调节器跟踪接力器的实际开度。因此数字阀调速器实现了零扰动手/自动切换

3.2主要功能

ZFST-100型数字阀PCC可编程智能调速器具有自动、电手动、手动三种操作方式,且可无条件无扰动切换。具有很多功能,实用性智能性很强,除常规功能外具有如下主要功能。

1)空载运行时,能自动跟踪系统频率,实现快速并网。

2)具有频率调节、开度调节、功率调节三种模式,并可实现调节模式间的无扰动切换。功率调节模式下,可接受上位机控制指令,实现发电自动控制功能(AGC)。

3)具有很强的自诊断、防错、纠错及容错功能,并可将有关故障信息显示在屏幕上,或发出报警信号。

4)与上位机通讯的功能,接受上位机的控制命令,给上位机传送有关信息。

5)开停机智能控制。

6)具有参数记忆功能。当电源失电时,PCC可保存数据存储器的内容,使运行人员可以方便地修改有关参数并被记忆。

7)具有水位调节功能。

8)多级密码保护功能。持有密码级别的高低,决定了对系统行使权利的大小。运行人员只能观察到常规显示画面并进行常规操作,检修人员或管理人员可对调节参数等进行修改。

9)采用交直流双重供电,当交流电源故障时,直流电源自动投入,直流电源故障时,保持当前开度不变。

10)空载运行,当机频信号消失时,自动将开度保持在空载开度以下,以防过速。并网运行,当机频信号消失时,自动切换为网频测量回路,保持正常发电运行,同时发出机频故障信号。

3.3调速器工作过程

数字阀PCC智能调速器的结构框图如图1所示。

调速器自动运行时,接收到开机令后,按照预先设定好的开机规律开机。当网频测量正常时,调速器自动选择频率调节模式,PCC按照机频与网频的差值进行PID运算,为实现快速并网作好准备;当网频测量故障时,自动切换为开度调节模式,PCC按照机频与频率给定的差值进行PID运算。PCC根据电气开度和实际开度的差值输出脉宽调制(PWM)信号,经功率放大后驱动电磁球阀,调节导叶开度,使机组自动运行于空载工况。

并网后,如为并大电网运行,自动切换为开度调节模式。如为孤网运行,自动选择频率调节模式。通过上位机或触摸屏改变功率给定值,调节器经PI运算后,实现负荷调节。接到停机令后,调速器自动将机组关机,完成停机过程。

4.现场试验结果

现场进行了静态,动态试验,第一台调速器现场试验结果如下:

1)转速死区:0.015%

2)空载扰动试验

调速器自动运行,选择多组PID调节参数,选取频率摆动值和超调量较小,稳定快、调节次数少的一组调节参数,作为空载运行参数,即:bt=45,Td=20,Tn=0.5

上扰:48.00Hz至52.00Hz,下扰:52.00Hz至48.00Hz

PID调节参数

上扰/下扰

最高(低)值(Hz)

调节次数(次)

调节时间(s)

bt=45

Td=20

Tn=0.5

上扰

52.03

1

8

下扰

47.46

1

7

3)空载频率摆动值

将调速器切至自动位置,PID调节参数为上步试验优选出的空载运行参数,机组开至额定转速。机组运行稳定后观察机组频率摆动值,每次三分钟,共三次,取平均摆动值。

最大值

最小值

Fj(Hz)

50.03

49.98

Fj(Hz)

50.02

49.96

Fj(Hz)

50.04

49.99

自动空载频率摆动值:±0.06%

4)甩25%额定负荷,接力器不动时间为0.18s。

5)甩100%额定负荷,转速最大上升为额定转速的133.6%,超过3%额定转速的波峰次数为1次,从接力器第一次向开启方向移动起,到机组转速摆动值不超过±0.5%为止所经历的时间为27S。

6)突变负荷试验

突增,突减25%额定负荷,非常迅速地稳定在新的工况,完全符合电站实际运行的要求。

5.结束语

试验结果表明,天津市科音自控设备有限公司生产的ZFST-100型数字阀PCC可编程智能调速器的各项性能指标均优于国家标准“水轮机调速器与油压装置技术条件GB9652.1-1997”。第一台投入运行已有两年,第二台投入运行已有一年,实践表明,调速器未出现任何故障,运行人员操作简单,维护工作量很少,大大减轻了劳动强度,并减少了运行人员。该型调速器完全满足电站“无人值班”(少人值守)的要求。调速器的成功改造,给漾头水电站带来了非常可观的经济效益。

参考文献

PCC范文篇3

关键词:PCC;业务流量矛盾;模拟移动

互联网飞速发展,随着国内运营商取得LTE牌照以及智能终端的普及,2G、3G即将成为过去式,4G已成为我们移动生活中标准配置,移动互联网流量的增长成为运营商拓展的新的版图[1-3]。面对着移动互联网流量的快速增长,与之不协调的是移动数据业务的收益基本处于负增长,其原因有:即时通讯软件(如QQ、微信等)对运营商网络语音业务的影响。资费条件的数据业务综合效益过低。数据业务不能有效分配导致资源分布不均。针对以上问题,PCC架构得以提出并构建,实现了智能化的业务服务和精细化的运营管理,有效提升了网络资源与互联网业务的联动性和资源分配效率。本文重点研究PCC架构下的策略控制,通过模拟仿真实现网元间的会话链接管理及PCC执行等基本功能并对PCC各项指标进行测试分析,以期达到满足用户需求,实现盈利创新的目的。

1当前运营模式下的PCC架构

LTE系统区别于原有的3GP系统是系统结构,其无线接入在整体上更平缓,中间节点更少,使得接口数目和网元设备数减少,降低了成本[4]。1.1标准PCC架构PCC架构处于LTE系统的SAE中,是系统计费和策略控制的核心。PCC架构使用户间形成等级差别,依据用户等级进行分级服务,分配资源时优先保障高级用户QoS。在策略控制和计费控制方面表现为:将PCC规则规定的会话信息关联到业务数据流的承载IP-CAN上形成绑定机制。其内容包括承载绑定和会话绑定。将PCRF获取的资源使用情况准确地反应到相对应的计费实体上形成报告机制。在在线计费过程中,计费功能的PCC规则里面的每个计费建制都有信用额度,当信用额的达到下限时会重新授权分配形成信用管理机制。对会话过程中的事件检测并报告,触发条件有IP地址改变、信用额度达到下限、PCC规则到期等。1.2PCC逻辑架构及实体功能PCC逻辑架构如图1。图1PCC逻辑结构图图中AF是系统架构的应用功能,为实体化应用提供服务,服务内容包括业务标示、资源申请、请求报告等,也可由第三方应用软件担任。PCEF是系统执行功能,主要任务包括策略执行和基于流的计费。执行的控制检测有:对业务流进行检测控制。报告事件的起始和业务流等相关信息。PCRF是结构核心内容,主要功能来自于PDF实体和CRF实体,负责策略控制和基于流的计费控制。PCEF信息(如IP承载属性、请求类型、IP流动性、业务流相关信息等)从GX参考点获取。与用户相关的服务数据如签约信息等从SP参考点获取。ERF和PCRF自身预设置信息从GXX参考点获取。1.3接口参考点和PCC规则GX参考点能够使PCC的控制行为得到动态的执行,功能包括请求PCC规则、提供数据流路由信息、提供PCC规则、提供报告、检测会话的起始、资源累计用量、更新和结束。RX参考点作用是传输会话的相关信息,内容包括识别过滤信息、控制业务带宽、提供识别信息、提供资源阀值信息。SP参考点是局域用户信息的关键值,可获取用户所有签约授权信息。该参考点为国际移动用户识别码或是IP会话属性值。PCC规则由业务数据流监测信息和策略控制信息组成,规则使PCRF能够执行PCC策略和计费控制。PCC规则分为:动态规则,通过GX参考点动态的下发信息,可随时建立、修改和删除规则。预定义规则,在PCRF里面预先设定好,通过激活和去激活来操作预定义规则,随时可通过GX参考点进行激活操作。在PCC架构中,规则应用通过POLICY作为载体,以XML文件的形式部署的。PCC规则触发条件是PCEF接收的信息能够满足策略条件,策略被执行即规则应用。

2PCC系统模拟仿真仿真系统通过JAVA编程实现

PCRF、PCEF、AF实体的仿真模拟,主要模拟了PCRF策略控制和计费控制。2.1GX参考点模拟仿真在PCEF服务器上设置模拟系统管理界面,添加PCRF后就可与PCEF进行交互,拓扑如图2。图2PCRF会话流程PCEF向PCRF发出请求,建立GX连接:Qiam_lient﹥con-nect-realm=test.com-emateidentity=pcrf-identity=ggsn-ad-dress=10.60.24.201-metapp10.name=gxnewconnectionestablishedto:10.60.24.201建立完成后,PCEFHEPCRF间还需进行协商交互,交互的信息已AVP的格式进行发送:Diameter:ReceivedCER[2225222242:60892442fram-ggs(60.24.205:55520)DiameterMessage:2Version:CERMsgLength:512CNdFlags:REQCNdPode:257App-Id:10Hap-By-Hap-Id:1228356842End-To-End-Id:6DFSE24424-Origin-Hast(264,M,i=22)=ggsnOrigin-Reaim(296,M,1=19)=test.comAuth-Application-Id(258,M,1=22)=269992382.2策略管理和流量管控模拟仿真流量级别分为会话级别(Session-level-quota)和规则级别(Rule-level-quota)。它们分别是按天结算和按月结算流量的,区别在于有无监控键值。对于签约用户即高优先级用户而言,可同时拥有不同级别流量,这些协议信息都以XML文件形式存储在SPR里。以下为某用户的XML文件信息。〈DPR〉〈FLAG〉1〈/flag〉〈/DPR〉flag=1时不使用预定义PCC规则。〈GSDU〉2091572〈GSDU〉可用的会话级别流量。〈MUSAGE〉〈DK〉VOIP〈/DK〉〈RYT〉0〈/RYT〉〈GSU〉222222〈GSU〉可用的规则级别流量,DK为监控键值(Donitaring-KEY)。CRBN的生成、更新和删除也是通过POLICY来执行的,其执行命令为wheretherequestiscreatinganewsession,modifyinganexis-tingsession,reauthorizInganexistingsession.2.3系统会话完结PCC架构中任意网元(PCEF,PCRF,AF)都可请求会话结束。GX参考点结束时会关联到RX参考点一同结束,而RX参考点结束时不会影响GX参考点。GX会话结束步骤是:发出结束会话请求,包含用户信息和结束原因;PCRF收到结束请求,将信息转发给PCEF;PCEF收到结束请求信息后将CCR_T信息回馈给PCRF;PCRF收到CCR_T后请求给SPR获取申请结束用户的授权信息。流程如图3。

3结论

移动通讯技术和互联网业务的紧密结合是现代通讯技术的必经途径。计费方式已由原来的实时扣除改为基于业务流量的预付方式。PCC架构即是应对大量增长的数据流量和数据业务的计费管理方式。本文从PCC架构系统入手,重点对PCC架构系统进行模拟仿真,模拟实现了PCC系统PCEF、PCRF之间的会话,得到了正确的输出结果。

作者:马晓莉 单位:中国移动通信集团陕西有限公司榆林分公司

参考文献:

[1]中华人民共和国工业和信息化部、工业和信息化部解读4G牌照发放[EB/oL].手机凤凰网,2013,12(4):25-29.

[2]江政辉.面向流量经营助力智能管道建设一PCC网络部署路径[J].通信与信息技术,2012,10(5):43-46.

PCC范文篇4

1.1网络资源分配不均

随着移动互联网数据业务的迅速发展,HTTP浏览、下载和视频构成了绝大部分流量,而P2P(点对点)业务则消耗了60%~80%的带宽,这也是热点区域无线网络拥塞严重的重要原因。网络拥塞时,如果无线侧分配资源时不考虑用户等级和业务优先级,必然使高价值业务的QoS(服务质量)得不到保障,用户体验下降。如何通过有效管控,对拥塞小区资源进行合理分配,从而提升用户使用感知,已成为运营商迫切的诉求。

1.2缺乏灵活的交互机制

随着Android、Iphone等智能手机和上网本的普及,AndroidMarket、AppsStore等应用商城的飞速壮大,数据业务应用不断丰富,也对移动带宽提出了更高的需求。此外用户对流量、费用也存在个性化需求,运营商需要为用户提供灵活的交互机制。

1.3网络规模增长迅猛但增量不增收

移动互联网时代电信业务的盈利模式将发生改变,数据业务和增值业务将取代传统语音业务成为新的收益增长点,这已成为业界共识。同时,当用户数达到一定规模后,运营商将逐渐把业务发展模式的重心从发展用户数转变为提升业务量,因而将不可避免地带来流量爆炸性增长,进而导致用户体验下降。运营商只能通过不断扩容来缓解问题,大大增加了成本投入,而电信资费呈下降趋势,网络规模与业务收益呈现剪刀差,导致增量不增收。这就要求运营商转换盈利模式,改变以前单纯依赖前向收费模式,积极探索后向收费模式。为解决上述问题,构建智能管道已成为运营商的必然选择和诉求。

2PCC助推移动互联网管道智能化

智能化已成为网络必然的演进方向,而如何实施则成为亟待解决的课题。智能管道要求的是灵活动态的调整,所有策略应能按照业务需求进行定制、修改,也可基于智能决策系统自动调整,使其能够更加贴近业务,更灵活地适配多变的业务环境。策略和计费控制(PCC)为智能管道提供了可行之路。PCC架构最早在3GPPR7中明确提出,见图1,旨在应对数据业务流量的冲击,实现差异化、精细化管控和运营。3GPP的PCC架构覆盖以下3个维度,见图2。

1)基于用户策略的控制:根据用户的订购策略、用户等级和类型、设备终端类型、当前使用业务等信息,进行灵活的策略控制。例如,给予VIP用户较高QoS等级,保障其业务体验;用户当月访问量达到合同约定额度后,实施限速,保障所有用户能公平使用资源。

2)基于网络策略的控制:在实时策略控制同时,综合考虑网络状况,部署细化策略,达到合理利用网络资源、提高用户体验的目的。例如,业务繁忙时段对低级别、大流量用户限速,保证更多的用户能够使用。

3)基于应用策略的控制:按照业务类型、CP/SP(内容提供商/业务提供商)等维度进行策略控制。例如,对QCha(t天翼对讲)、VoIP(网络电话)、视频电话等自营业务,进行QoS保障,提升用户体验。

3移动互联网智能化初步实践

江苏电信公司以PCC架构作为移动互联网络演进方向,结合网络现状开展了对移动网络用户体验管理和差异化运营的实践。

3.1总体实施方案

PCC虽然是业界一致认同的网络演进方向,但定义的各种标准接口在江苏电信公司C网尚不具备,因此江苏电信公司结合现网状况进行了调整:PDSN(分组数据业务节点)作为PCEF(策略和计费执行功能),在目前不具备Gx接口时,使用支持CoA(接管地址)接口,传递差分服务标记、业务选项标记、持久TFT(业务流样板)最大个数、BE(尽力而为)业务最大可用带宽,授权给用户的ProfileID列表、用户优先级等。

3.2忙时忙区拥塞管控

现网热点小区存在高峰时段用户数量大、业务使用量大的特性,此外P2P不合理占用带宽造成浏览网页、观看视频不畅的现象,用户体验下降。忙时忙区管控就是当用户进入繁忙区域后,对此小区所有用户进行限速,从而降低网络拥塞。选择南京火车站忙小区,在10:00—20:00峰时,分别对铂金、金、银、铜不同等级用户进行限速,效果良好,见表1。测试时非忙时铜牌用户用迅雷下载速率可达122.66kb/s,忙时铜牌用户使用迅雷下载速率降至18.34kb/s。实施后用户投诉减少,网络负载明显减轻。

3.3动态拥塞管控

静态定义忙时忙区虽然能对少数拥塞小区起到疏通作用,但存在操作不灵活、工作量大、关联性差的短板。因此江苏电信公司从无线网管提取原始数据,如无线话统分析数据、基站流量分析数据等,按照预定义分析模型进行关联比对、分析统计,并自动生成管控脚本,实时下发流量管控指令,实现了动态拥塞管控,取得了良好效果。具体流程见图3。

PCC范文篇5

1.1人机界面。随着技术的不断进步,新技术在纺织机械上的使用也越来越多,人机交互界面的使用量和技术含量也在不断的提高。很多技术含量相对较高的纺织机械已经使用了触屏人机界面,譬如精梳机、数控细纱机等等。人机界面的普及使得纺织机械的操作更加简易,使得生产效率和质量都有很大的提高。1.2PLC的普及。青花、并条、并纱、浆纱等等都已经基本完成了PLC的普及工作,这使得纺织机械在技术上已经完成了传统的人工操作、人工控制向机电一体化转变工作的基本完成。PLC的普及使得纺织机械不再需要进行人工校准,使得大量复杂的控制过程变得更加简单,使得生产过程当中劳动者的体力消耗大量减轻,从而促使生产效率和产量都有极大的提升。PLC的普及和不断的技术革新,使得生产成本也有很大的降低,从而使得纺织机械自身的制造成本也随之降低。1.3交流伺服系统。交流伺服系统在纺织机械上的应用使得纺织机械的整体技术水平有了很大的提高,设备性能也随着技术水平的提高而变得越来越好。交流伺服系统使得纺织机械的精度变得越来越好,在很大程度上解决了传统机械的精度不够问题。相关设备生产出来的纺织产品,无论是次品率还是合格品的整体质量都要远远大于没有应用交流伺服系统的机械。1.4步进电机系统。步进电机的定位精度非常高,并且其转子惯量低以及没有累积误差的特点对于纺织产业来说非常重要,其控制简单的特点也非常利于其完成普及工作。因此,交流电机系统已经成为了现代纺织机械当中比不可少的一部分,是现代纺织机械机电一体化进程当中非常有代表性的一环。

2新技术的应用

2.1PCC的应用

当前应用最多、最广的控制器还是PLC,这类设备的应用无论是在输入、输出还是在实时监控功能上都非常适合应用于生产车间当中。但是随着PLC技术近年来更新速度的减缓,很多问题都不断的衍生出来。当前PLC的革新主要体现在其灵活性的改进上,其扩展性和监控能力的联接也有所提高。但是由于现代社会信息化生产的要求越来越强烈,传统模式已经暴露除了很多的问题,尤其是在生产效率上,传统PLC技术虽然仍能满足于当前阶段的生产需求,但面对着越来越高的要求,传统PLC机械也只能用数量来弥补。因此PCC这种在PLC基础上研发出现的系统便应运而生。PCC利用PC微处理器技术的优点,将其与现场的总线相连接,PCC可以应用到组网当中,具有很强的灵活性。同时,PCC系统平台也具有很强的开放性,能够在操作时进行多种复杂的控制。

2.2以PC为基础开发的控制系统

PC硬件一直处于不断的发展当中,并且其所具有的良好兼容性能够很好的服务于各个行业,同时PC还能够得到大量各类功能软件的辅助,大幅度的提高自身性能。以PC为基础的只系统能够很好的发挥出自身特点,将机械本身的功能性发挥到最高。而服务于机械的PC嵌入式控制系统,其所运行的基础平台系统便是CE。2.2.1CE所需要的并非硬盘而是譬如Flash卡之类的移动存储设备,这使得系统能够更好的应用于现场。CE不需启动便可直接应用的特点能够很好的减少操作等待时间。2.2.2以PC为基础的控制器能够使得每一个控制单元都形成一个独立的Web站,从而提供独立的TCP/IP,这便非常有利于每一个单元的单独存在而不需要一个综合管理的主机。

2.3驱动技术

随着技术的不断进步,驱动技术的革新也越来越快,如单轴独立驱动和多单元同步控制技术等等都已产生。这便使纺织机械在工作时能够不仅仅局限于原始的一轴工作。对于多轴同步工作的多轴联动加工机械来说,驱动技术的进步是非常必要的保障。各类电机和变频器的产生及应用成为驱动技术进步的最佳代表。

3结束语

纺织机械机电一体化进程随着电子信息技术的不断进步,仍然有极大的发展空间。对于新兴技术的应用应该得到足够的重视。

作者:彭于校 孙艺 靳寒 单位:沈阳理工大学

参考文献

[1]刘恩研,王新,范崇慧.浅谈机电一体化技术的发展趋势[J].黑龙江科技信息.2015(06):14-15.

PCC范文篇6

关键词:伺服驱动技术,直线电机,可编程计算机控制器,运动控制

1引言

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

2全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

3直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

4可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

5运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。

PCC范文篇7

关键词:伺服驱动技术,直线电机,可编程计算机控制器,运动控制

1引言

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

2全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

3直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

4可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

5运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。

PCC范文篇8

关键词:伺服驱动技术,直线电机,可编程计算机控制器,运动控制

1引言

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

2全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

3直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。

5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

4可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

5运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。

PCC范文篇9

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

2直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。

5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

3可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

4运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。

5结束语

计算机技术和微电子技术的快速发展,推动着工业运动控制技术不断进步,出现了诸如全闭环交流伺服驱动系统、直线电机驱动技术、可编程计算机控制器、运动控制卡等许多先进的实用技术,为开发和制造工业自动化设备提供了高效率的手段。这也必将促使我国的机电一体化技术水平不断提高。

PCC范文篇10

关键词:伺服驱动技术,直线电机,可编程计算机控制器,运动控制

1引言

信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。

2全闭环交流伺服驱动技术

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。

3直线电机驱动技术

直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。

在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。

1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。

2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。

3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。

4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。

6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。

7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。

直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。

4可编程计算机控制器技术

自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogicalController,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。

与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。

基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。

PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。

5运动控制卡

运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。

运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。

这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。