光电子学论文十篇

时间:2023-03-25 11:44:11

光电子学论文

光电子学论文篇1

关键词: 光电效应 爱因斯坦量子理论 微粒说 波动说

灿烂的阳光照亮了地球,给地球带来了生命和活力,人们之所以能看到五彩缤纷、瞬息万变的世界,是因为眼睛接收到物体的发射,反射或散射得光。那么光到底是什么呢?即光的本性是什么?这一直是学者们注意和探讨的中心。到了17世纪,由于光学得到了一定的发展,因而关于光的本性问题引起人们越来越大的兴趣。

一、世纪中叶至19世纪:光的微粒说和波动说

鉴于17世纪的水平,人们只能把光与两种传递能量的机械运动相类比,分别提出了关于光本性的两种学说:微粒说和波动说。光的微粒说认为光是由光源发射的一束微粒流。由此很容易解释直线传播定律和反射定律以及光在折射率较大的媒质中传播速度较快的结论。然而微粒说对干涉、衍射、偏振等现象的解释相当勉强。而光的波动说认为,光是一种特殊媒质――“以太”的波动。通过与机械类比,波动说很容易定性地说明干涉和衍射现象,但不能定量地说明干涉和衍射现象,甚至不能圆满地解释直线传播规律。因此,多数科学家在17和18世纪倾向于微粒说。

19世纪初,英国的杨氏(T.Yong)完成了著名的“杨氏干涉实验”,提出“干涉原理”。1815年,法国的菲涅耳(A.JFresnel)使用数学工具对光做了定量论证,提出了“惠更斯―菲涅耳原理”。该原理用波动理论完满地解释了光的直线传播定律,定量地给出了圆孔的衍射图形的强度分布。随后阿喇戈(D.Arago)用实验证明了菲涅耳理论,给予强力支持。1817年,杨氏明确指出,光波是一种横波,1850年,法国的博科(J.B.L.Foucault)公布了他在实验室中测定的光速数据,肯定了光在水(折射率较大)中的传播速度小于在空气(折射率较小)中的速度。自此,波动说的优势明显体现。

二、光电效应

1.光电效应的发现

在19世纪末,光的电磁说使光的波动理论发展到相当完美的地步,取得了巨大的成功。但是,就在这时候,又发现了用波动说无法解释的新现象――光电效应。

光电效应是指在光的照射下物体发射电子的现象。它是赫兹在1887年最早发现的。赫兹在做证实麦克斯韦的电磁理论的火花放电实验时,无意中注意到如果接受电磁波的电极之一受到紫外线照射,火花放电就变得容易发生。1888年,霍尔瓦斯(1859―1922)证实了这是由于在放电间隙内出现了荷电体的缘故。电子发现后,1902年,德国物理学家勒纳德(1862―1947)证明了这一荷电体即为电子。

随着研究的深入,勒纳德用各种频率的光照射钠汞合金时,发现了金属在某些频率的光照射下会发射出电子来,就好像这些电子被光从金属表面打出来一样。他对这一现象进行了系统的实验研究,并总结出了如下两条经验规律。

(1)当光的频率高与某一定值时,才能从某一金属表面打出电子来,被打出的电子的能量(或速度)只与光的频率有关,而与光的强度无关,电子的能量随光的频率的增高而增大。

(2)被打出的电子的数目与光的强度有关而与光的频率无关。

勒纳德首先将这一现象称之为光电效应。这两条实验规律用经典物理学的理论是无论如何解释不了的。按照波动理论,光的能量是由光的强度决定的,而光的强度又是由光波的振幅决定的,跟频率无关。因此,不论光的频率如何,只要光的强度足够大或照射时间足够长,都应该有足够的能量产生光电效应,极限频率的存在变得无法理解。

2.光电效应实验及规律

1887年赫兹在进行著名的验证电磁波存在的实验时发现,如果接收线路中两个小铅球之一受到紫外线照射时,两小球间很容易有火花跳过。此后,其他科学家进一步研究表明,这种现象是由于光照射在小锌球上,锌球内的电子吸收了光的能量而逸出球表面,成为空中自由移动电荷所造成的。这种由于光照射是电子逸出金属表面的现象称为光电效应,所逸出的电子称为光电子。

上图是研究光电效应的实验原理图及伏安特性曲线图。在高真空玻璃管内装有阴极K,在两极之间加上电压,阴极K不受光照时,管中没有电流通过,说明K、A之间绝缘。当有适当频率的光通过窗口照射到阴极K上时,使得有光电子逸出,在电场力作用下光电子飞向阳极A形成电流,这种电流称为光电流。电路中有电压表和电流计分别测定两极间的电压和产生的光电流大小。实验结果表明,光电效应有以下规律。

(1)存在饱和电流。图8.2.1-2是用不同强度,而频率相同的光照射阴极k时,得到的光电流I随电压V变化的实验曲线(称伏安特性曲线)。由图中可以看出,光电流随电压的增大而增大。然而,当加速电压超过某一量值时,光电流达到饱和。这说明单位时间从阴极逸出的光电子数目n是一定的,当光电流达到饱和值Im时,显然有Im=ne。如果增大光的强度,实验表明,在相同的加速电压下,饱和电流也增加,并且与光强成正比。这说明n与光强成正比。

(2)存在反向截止电压。由上图可知,只有当V=-V时,光电流才降为零,这个反向电压称为反向截止电压。这说明光电子逸出金属后仍具有一定的初动能,光电子甚至能克服反向电压飞到阳极,除非反向电压达到一定的程度。当入射光强改变时,截至电压不变,这意味着光电子的最大初动能与入射光强无关。

(3)存在截止频率(红限)。如果用不同频率的光照射阴极K,发现截止电压V,随入射光的频率的增大而增高,两者呈线性关系,如图,即V=K(V-V)。对于不同的金属材料,具有不同的K和不同的V值。实验还发现,当入射光频率低于某一临界值时,不论光强多大,也不论照射多久,都不会发生光电效应。此临界频率称为光电效应的截止频率。

(4)弛豫时间极短,从光照射到阴极K上,到发射出光子所需要的时间称为光电效应的弛豫时间,实验表明,只要频率大于截止频率,无论光照如何微弱,几乎在照射到阴极K的同时就会产生光电子,弛豫时间不超过10s。通过实验看到,光的经典理论在此时遇到了重重困难。

3.爱因斯坦的光量子理论及其对光电效应现象的解释

1905年爱因斯坦发表了论文“关于光的产生和转化的一个启发式的一个启发性观点”,成功地解释了光电效应并确定了它的规律。他以勒纳利总结出的光电效应的性质作为光的微粒说的依据,并且和德国物理学家普朗克的量子假设结合起来,提出了量子假说:他认为光(电磁辐射)是由光量子组成,每个光量子的能量E与辐射频率υ的关系是E=hυ。1916年爱因斯坦的光量子假说被实验所证实。1923年康普顿(Compton)散射实验再次提供有力的验证。至此,爱因斯坦的光量子假说克服了经典理论遇到的困难,成功圆满地解释了光电效应中观察到的实验现象。

三、光的本性

按照爱因斯坦的量子理论,频率为υ的光子具有的能量E和动量P:

E=hυ

P=hυ/c=h/λ

在以上两式中,等号左边表示微粒的性质,即光子的能量和动量;等号的右边则表示波动的性质,即电磁波的频率和波长。这两种性质通过普朗克常数h定量的联系起来。爱因斯坦公式表明,光子同时具有波动和微粒两重性。所谓“波动性”是指光场满足叠加原理,能产生诸如干涉、衍射这类体现波动性的现象;而所谓“微粒性”则指光子作为整体行为所呈现的不可分割性。光子只能单个整体被吸收或发射,不存在“半个”或“几分之一”个光子。交换光子的能量或动量只能用爱因斯坦公式给出的单元进行。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

波粒二象性并非光子单独具有的性质。1923年德布洛意(L.deBroglie)受到普朗克和爱因斯坦关于光的微粒性理论取得成功的启发,提出了微观粒子也具有波粒二象性的假设。他提出,伴随着所有实物粒子,如电子、质子、中子等,都有一种物质波,其波长与粒子的动量成反比:λ=h/p,式中h为谱朗克常数,这种波现称为德布洛意波,由上式所决定的波长叫做德布洛意波长。在一定的场合下,微观粒子的这种波动性就会明显地表现出来。例如让电子束穿过细晶体粉末获薄金属片后正像X射线一样也产生衍射现象。电子显微镜就是利用电子衍射的原理制成的。

在人们所习惯的经典图像中,波是连续的非局域的且扩展于空间;而粒子是离散的,集中于一点,如何把这两种截然相反的属性赋予同一实体?初看起来,很难想象。下面我们用单电子干涉实验来回答这个问题。电子杨氏双缝干涉是最典型的实物粒子干涉实验。这个实验表明,当少量电子通过仪器落在屏上时,其分布看起来是离散的、毫无规律的,并不形成暗淡的干涉条纹,这显示了电子的“粒子性”。但大量电子通过仪器时,则在屏上形成清晰的干涉条纹,这又显示了电子的“波动性”。

那么有人可能会问,双缝干涉条纹的产生(即粒子的波动性)是否由于大量粒子之间相互作用的结果呢?1949年毕伯曼等人成功地做了单电子衍射实验,结果表明,衍射图样的产生绝非大量电子相互作用的结果。

单电子干涉,衍射实验表明,波动性是每个电子本身固有的属性,电子的干涉(密度的重新分布)是自身的干涉,而不是不同电子间的干涉,或者说波动性和粒子性一样,是每个电子的属性,而不是大量电子在一起时才有的属性。若采用单个光子来代替实验中的电子。结果也完全相同。

四、光的波粒二象性

光的波动性和粒子性既对立又统一,波粒二象性是粒子性和波动性的统一应从两方面去理解。

1.光子的能量公式:E=hυ,式中的E是光子能量,是不连续的,一份一份的,量子化的。这是光的粒子性的特性,式中的υ是光波频率,它表现的是波动性的特性。

2.波粒二象性中的粒子并不是宏观的粒子,波也不是宏观的波,而是指微观的光子物质波,微观世界有其自身的规律,不能简单套用宏观世界的结论。个别光子表现粒子性,而大量光子表现波动性;低频光子表现波动性,而高频光子表现粒子性。

光的本性一系列的假设,从微粒说到光子说,从波动说到电磁说,到最后统一为波粒二象性,经历了几百年漫长而曲折的认识过程,以牛顿为代表的微粒说既有古希腊人的光粒子学说的痕迹,但又有所不同;麦克斯韦的电磁说使惠更斯的波动说摆脱了机械波的束缚,是人类对光的本性认识的一大飞跃,同样爱因斯坦的光子说又与牛顿的机械微粒有着本质的区别,因为光子说已不是经典的机械微粒,光子说的提出又是一大飞跃。

参考文献:

[1]吴强.光学.科学出版社,2006.

[2]赵达尊,张怀玉.波动光学.宇航出版社.

[3]中学物理教学参考,2005,(4),34,4.

[4]物理教师,2005,4,26.

[5]曾心愉等.光的波粒二象性,[J].大学物理,1993,12,(9).

[6]赵凯华,钟锡华.光学.北京大学出版社,2000.

光电子学论文篇2

关键词:电子科学与技术;光电子技术;教学改革;实践创新

作者简介:邸志刚(1975-),男,河北唐山人,河北联合大学电气工程学院,讲师;贾春荣(1977-),女,河北唐山人,河北联合大学电气工程学院,副教授。(河北 唐山 063009)

基金项目:本文系河北联合大学教育教学改革重点项目的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)07-0059-02

21世纪,随着现代科学技术的飞速发展,人类历史即将进入一个崭新的时代──信息时代。其鲜明的时代特征是,支撑这个时代的诸如能源、交通、材料和信息等基础产业均将得到高度发展,并能充分满足社会发展及人民生活的多方面需求。信息科学的基础是微电子技术和光电子技术,它们同属于教育部本科专业目录中的一级学科“电子科学与技术”。专家预言,光电子技术将继微电子技术之后再次推动人类科学技术的革命和进步。因此,本世纪将是微电子和光电子共同发挥越来越重要作用的时代,是电子科学与技术飞速发展的时代。

电子科学与技术对于国家经济发展、科技进步和国防建设都具有重要的战略意义。为了我国电子科学与技术事业的可持续发展和抢占该领域制高点,必须统筹教育、科研、人才等各种资源和要素,而其中的人才培养是极其重要的环节。经过对比研究其他院校对电子科学与技术专业的教改研究,本文根据当前的社会现状,结合河北联合大学实际对电子科学与技术专业的培养方案进行改革初探。

一、培养方案制订的原则

目前,我国高等教育正从精英教育转向大众化教育。招生规模扩大的同时,教育质量正遭受严峻的考验。高等教育的目的是为国家培养具有良好的思想道德素质、扎实的基础理论知识、宽广的科学技术知识面、良好的创新意识和创新能力的高素质人才,以适应社会发展的需要。为此,加强人才培养是一个复杂而重大的工程。

培养方案主要包含专业培养目标和专业建设思路两大部分。专业培养目标首先要符合当前社会发展需要,其次要符合学校本专业的实际情况,最后再考虑专业、师资情况。

目前,电子科学与技术专业的毕业生基本上是供不应求,特别是高层次人才稀缺。但是,电子科学与技术产业存在着分布不均、分类较细、进展迅速、产业结构多样化等特点。因此,社会需求与本专业毕业生层次结构之间的供需矛盾会持续一段时间。此外,光电子技术产业得到了国际社会的极大关注,经过光电子技术市场产品的整合,目前光电子技术市场重新步入上升轨道,后期发展将主要受市场影响。[2]我国对光电子技术的发展高度重视,2010年我国以光电子技术为指导的信息产业形成了5万亿美元的规模。

河北联合大学电子科学与技术专业自2002年开始招生,到目前为止共培养出10届本科毕业生。毕业生的反馈意见成为专业培养目标制订的重要影响因素。此外,在学生培养方面,注重学生综合素质的提高,特别加强对学生实践创新能力的培养。

电子科学与技术专业教师中光电子方向占大多数,微电子方向占少数,另有电子材料、自动化控制等研究方向。

二、培养方案的制订

培养方案的制订在综合考虑社会需求、学校及专业实景情况的基础上,首先进行充分的社会调研、分析,然后通过对天津大学、清华大学、燕山大学等院校充分调研,最终确定合理的专业培养方案。

1.培养目标

以培养研究应用型高级人才为目标,以适应当前社会主义现代化建设及信息产业化的发展需要,使学生具有良好的思想道德和科学文化素质;拥有扎实的自然科学基础知识和宽广的专业知识;具备创新、实践及跟踪掌握新理论、新知识、新技术的能力,能够在光纤传感、光电检测及半导体制造等领域从事系统研发与设计、运行维护等工作。

2.专业建设思路

针对电子科学与技术专业现状,综合考虑社会市场需求、专业师资及毕业生反馈意见,提出关于“增强光电子特色,优化专业课程体系改革”的建设思路。

(1)专业课程体系建设。专业课程体系的建设,首先以专业培养目标为准绳,进行模块化课程设置,调整课程内容,形成以光电子技术为主、微电子技术为辅的专业方向,以光纤传感体系和光电检测体系为核心,从而使专业课程体系具有前瞻性、针对性和可操控性,进而保障人才培养目标的实现。

1)优化培养方案。根据国家对光电子、微电子人才培养内容和方式的要求,不断优化培养方案,使其既符合教育部颁布的“电子科学与技术专业规范”,又能充分体现学校的特色。优化的出发点是:光电子和微电子产业及工程应用对人才的需求;遵循专业发展规律;突出知识面、素质和能力的培养;制订与时俱进的培养方案和体系。

2)课程教学内容建设。为使课程教学建设与专业特色一致,体现光电子、光纤传感与检测的专业特色,由教授和学科带头人牵头建设光纤传感与光电检测课程体系。光纤传感课程体系包括传感器原理及应用、应用光学、激光原理与技术、光纤技术、光纤传感技术等课程;光电检测课程体系包括传感器原理及应用、传感器原理及应用、应用光学、激光原理与技术、光电技术和光电检测技术等课程。此外,为使课程内容充分反映相关产业和领域的新发展、新要求,减少陈旧内容,删掉了热力学统计物理、数理方法、物理电子学、集成电路设计基础、集成电路工艺仿真等课程。

3)教学方法及手段改革。为了实现专业人才培养目标,专业教师发挥各自才智,加强与学生沟通,集思广益,对教学方法和手段进行改革探索。例如对晦涩难懂的专业基础课、深奥抽象的专业课进行多媒体教学,以加深学生的理解,促进学生理论知识的学习。另外,对光纤传感技术课程进行双语教学,让学生学习理论知识的同时,加强专业英语的学习和运用,为后期阅读国外资料进行充分的准备。

(2)专业特色。河北联合大学电子科学与技术专业为适应现代化信息技术产业的发展,形成以光电子技术为主、微电子技术为辅的专业方向,具体特色如下:

1)课程体系设置。课程体系分为通识教育平台、学科基础平台和专业教育平台三大部分,包含光纤传感技术、光电检测技术及半导体制造技术三个主干学科,所有课程共198.5学分。其中通识教育思想政治教育类课程、大学英语课程、体育、大学语文、计算机基础及学科导论共55.5学分,占28%;学科基础平台主要指公共基础课和专业基础课,共74学分,占37%;专业教育平台是专业课,共63学分,占32%;另外还有创新实践环节,6学分,占3%。

2)学生培养。在夯实专业基础知识、拓宽专业知识的基础上促进学生的个性发展,加大力度培养学生的创新意识及能力,定期聘请校外专家为学生作学术前沿报告,使学生掌握本专业科研动态的同时,在开设专业英语及双语教学的基础上鼓励学生阅读外文一手文献,以激发学生的创新意识,使其创新能力得到大幅提高,培养学生在光纤传感、光电检测及半导体制造等领域的研发能力和应用实践能力,并能够进行相关的系统分析、设计、优化及维护。

3)实践教学。突出光电子技术应用,加强学生实践能力的培养。在培养方案中增加电子技术、光电子技术系统设计的实践训练。电子技术实践训练包括电工电子实训、电子技术课程设计和专业生产实习。光电子技术实践训练包括光电工艺实习、专业生产实习、光纤传感系统课程设计以及综合性课程设计。通过这几项实践训练,学生能够在电子技术领域、光纤传感及光电检测领域具备足够的实践能力。此外,为了让学生尽快将理论知识转换为实践能力,学校组织学生参加飞思卡尔智能车大赛、光电兴趣小组大赛等活动,从而培养学生的知识综合运用能力、创新能力和解决实际问题的能力。

三、改革效果

1.优化了课程体系,提高了教学质量

专业的培养目标及方向确定以后,围绕培养目标组建了课程建设小组,并请天津大学电子科学与技术专业专家教授进行指导,进而建立结构合理、条理清晰、方案可行的课程体系,相对而言大大提高了课程的教学质量。

2.学生夯实了专业基础,拓宽了专业知识,加强了实践技能

课程体系优化以后,学生入学后对培养方案及目标非常明确,从而使得学生能够妥善处理各门课程之间的关系,抓住核心,适当拓展,使所学理论知识成为体系。与此同时,通过竞赛及光电兴趣小组引起学生的求知欲,以此激励学生加强理论知识的学习,促使学生自发地将理论知识和实践环节有机结合起来,使二者相辅相成、相互促进。

3.培养了学生的创新能力及科研思维

在教学过程中强调基础知识的灵活运用及实践创新案例讲解。其次,组织并指导学生参加飞思卡尔智能车大赛、光电兴趣小组及各项实践环节。这样有效提高学生对专业知识的理解与应用能力,从而使得学生的创新能力及科研思维得到了培养及提高。在2012年飞思卡尔智能车大赛中,电子科学与技术专业的组队获得了国家一等奖的好成绩。

4.提高了就业率和考研率

通过加强学生的理论基础知识、完善其知识结构,并且实践能力及创新能力都得到很大提高,使得学生的竞争力得到大大加强,并得到企业和其他高校的认可,刺激了学生的求知欲和创新欲,从而提高了就业率和考研率。

四、结论

电子科学与技术专业作为教育部为适应市场需要而确定的一个新专业,其发展任重而道远。结合河北联合大学本专业的实际情况,提出关于“增强光电子特色,优化专业课程体系改革”的建设思路,“夯实专业基础、拓宽专业知识、加强实践技能、突出光电子应用”的培养主线,对本专业的建设方案及培养体系进行优化改革,加强了师资队伍建设、专业课程体系建设,并在此基础上对教学方法和手段进行改革,从而提高教师的教学水平,加强学生的理论基础,完善其知识结构,提高其实践及创新能力,实现了教学科研相辅相成、教学相长的目的。

参考文献:

[1]电子科学与技术专业教学指导分委员会.电子科学与技术专业发展战略研究报告[J].理工科通讯,2007,(6).

[2]徐文彬.应用型电子科学与技术专业人才培养方案的思考[J].新课程研究,2011,(8):20-21.

光电子学论文篇3

欧阳征标早年在国际上首次提出了静电混合型自由电子激光器的概念。他主持了包括国家自然科学基金项目、广东省自然科学基金重点项目等在内的10项课题研究,发表学术论文100多篇,被SCI收录30余篇,被EI收录近60篇,申请发明专利近30项,获美国发明专利授权1项、中国发明专利授权12项、中国实用新型发明专利授权1项。

1988年6月,欧阳征标到深圳大学任教,现任深圳大学太赫兹技术研究中心副主任、固态光子实验室主任等职,长期从事光子晶体的理论及相关光子器件的开发研究。

近年来,在光子晶体研究领域,他提出了一系列新型的光子晶体全光逻辑门和全光半加器等逻辑光路;他还提出了一类光子晶体磁光环行器、单TM模工作的磁性材料Bragg光纤结构、宽禁带全角度反射器结构以及正入射情况下超窄频带、超窄角度单偏振滤波器结构等。他发现了光子晶体谐振腔的模式分类特性和复周期光子晶体中的密集多通道滤波特性。他提出的二维FIBONACCI光子晶体的概念,从理论和实验上证实了该光子晶体存在较大的光子禁带。

在太赫兹领域,他提出一种高灵敏度太赫兹摄像头,获得美国发明专利授权。他提出的几种宽调谐范围窄带连续波太赫兹发生器,曾获得德国洪堡基金。他还曾获得过机电部科技进步二等奖一项。“短波长光子晶体三维谐振腔”获深圳市科学技术协会2000年学术年会优秀论文奖;“一种复合型光子晶体微谐振腔”获深圳市2005科技年会优秀论文奖。在深圳大学工作期间,他曾获深圳大学学术创新奖二等奖1次、三等奖4次,深圳大学先进工作者、深圳市优秀班主任、深圳市优秀教师称号,入选美国“马库斯科学与工程名人录”、“马库斯亚洲名人录”、“马库斯世界名人录”。他指导的硕士研究生刘强和毛德鹏获美国大学全额奖学金,分别赴Old Dominion University和Iowa State University攻读博士学位,其硕士论文被评为广东省优秀硕士论文。

光电子学论文篇4

关键词:激光物理;受激辐射;离子束反转

中国分类号:G633.7

20世纪中叶以后由于量子电子学的发展而出现了一个新的分支,以研究激光物理机制,探索新型激光器而形成了专门的科学,即激光物理。激光物理是20世纪量子理论、无线电电子学、微波波谱学以及固体物理学的综合产物,也是科学技术、理论与实践紧密结合的灿烂成果。激光物理的发展已经半个世纪有余,在这短短的时间里,激光物理不仅推动了近代物理的快速发展,同时也大大加快了各个学科的发展进程。

一、光量子理论的提出

光量子理论是爱因斯坦为了解释光电效应现象,受普朗克能量子理论启发而提出的。

l895年。德国实验物理学家维恩(W.Wien.1864-l928)在研究黑体辐射时,假设电磁辐射遵循麦克斯韦(J.C.Maxwell.l83l- l879)气体分子分布规律,推导出一个著名的辐射能量分布公式。但此式在频率较高、温度较低时,理论值与实验值比较符合,但在频率较低的长波区域,则理论值与实验值出现较大偏差。1900年,英国人瑞利( Rayleig.1842-1919)在研究黑体辐射时,利用麦克斯韦的能量均分定律及电磁波辐射可能形成驻波理论提出另一个热辐射分布律,后经金斯(J.H.Jeans.l877-l946)修正成为瑞利-金斯公式,当频率较低时,瑞利一金斯公式理论值与实验结果比较符合。但当频率较高时,就与实验结果表现出很大的差异。为了解决这个问题,从1894年就把注意力转向黑体辐射的德国物理学家普朗克(M.Planck.1858-1947)在维恩与瑞利-金斯定律相应的热力学表达式之间进行内插,得到了新的辐射公式,与实验符合的很好。于是他提出一个以频率v振动的谐振子只能取v、2v、3v…这样分离的能级,他引入E=hv的能量子概念,这是谐振子能够吸收和发射的最小能量值,即谐振子的能量取不连续hv的整数倍的定值,不像经典理论所描述的连续任意的能量值。这样就圆满的解释了黑体辐射。

二、爱因斯坦受激辐射理论的提出

在普朗克的启发下,爱因斯坦在光量子概念的基础上解释了光电效应实验。所谓“光电效应”是指在光的照射下金属表面发射电子的现象。最早观察到光电效应的是德国物理学家赫兹(H.N.Hertz.1857-1894),1887年,他在进行电磁波实验时,注意到电极之间的放电,会受到光辐射影响。经过极其细致的观察和分析后,赫兹发表了题为《紫外光对放电的影响》一文,这是发现光电效应的最早记录。

爱因斯坦认为分子的分立能态的稳定分布是靠分子与辐射不断进行能量交换来维持的,即使在平衡条件下也会有分子与辐射场之间的能量交换所引起的涨落。并假定气体分子(普朗克谐振子)能态之间的跃迁是以三种基本作用进行的:(1)自发辐射,(2)受激吸收,(3)受激辐射。

自发辐射是指处于上能级的原子按一定的辐射跃迁定则向下能级跃迁并伴随着辐射出一个能量为 的光子。物质的这种发光过程是在没有任何外界作用的情况下完全自发和独立进行的。

受激吸收不是自发产生的,必须吸收外来光子才会发生,该过程的发生不仅与原子本身的性质有关,还与趋近它的光场和原子密度有关。

受激辐射是指处于上能级E2的原子,若有一频率满足 的外来光子趋近它,入射光子就能以一定得几率驱使原子从能级E2到能级E1,并释放出能量为 的光辐射,叠加到入射光场上。受激辐射产生的光子与引起这种辐射的原来光子的性质与状态完全相同,同属一个光子态,即具有相同的频率、方向和偏振态,对大量的光子而言,还可以证明他们的相位也是几乎相同的。

所以,由受激吸收与受激辐射的特点可以看出,当同样的光辐射作用在同一个原子体系时,受激吸收使原来的光辐射有所减弱,而受激辐射则使得原来的光辐射有所增强,两种过程同时存在,彼此互相竞争。当原子受激辐射过程占主导地位时,光通过原子体系后呈现放大现象。由此可见,受激辐射是产生激光的最基本过程。

三、离子束反转-产生激光的必要条件

爱因斯坦靠思维的洞察力,肯定了观测仪器尚未发现的受激辐射现象的存在。遗憾的是,对这个大胆的科学构想,并没有引起物理界的广泛注意,甚至还遭到了一些怀疑和批评。因为激光必须产生在激发的原子与辐射的相互过程中,产生的速率正比于光源中高能态的密度。然而,正常的能态分布是由玻耳兹曼分布决定的,在热平衡的条件下,处于两个能级E1和E2上的原子密度(单位体积中的原子数)N1和N2按能级分布的玻耳兹曼公式是: ,其中,T是热平衡时气体的绝对温度。所以,从上式可得,上能级的原子密度总是小于下能级的原子密度,上下能级间的能量差(E2-E1)越大,或者气体的温度越低,上能级的原子密度就越小。因此受激态E2原子在受激发射中所产生的光子未来得及辐射出去就已被大量基态E1原子吸收了,受激发射过程被同时发生的大量吸收过程完全淹没。要使受激发射压倒受激吸收,即使受激态E2能量原子密度大于基态能量E1,就必须使式子 反过来,即温度T就要取负值,实现离子束反转。

对科学结论如果没有科学的态度,一味盲目的听从、偏听偏信、不加分析、固执己见,则一切结论都将成为传统的偏见和顽固的保守主义,这对科学发展,和会进步都是有害无益的。所以,在科研工作中要始终保持冷静的头脑,相信科学、相信真理、不盲从权威和接受指导、学习别人的辩证关系,以充分发挥自己的特长。

参考文献

[1] 王较过, 郑荣平. 光量子理论的确立和发展[J]. 咸阳师范学院报,2005.

光电子学论文篇5

(安徽工程大学电气工程学院,安徽 芜湖 241000)

【摘 要】光电子产业作为21世纪具有代表性的主导产业之一,对当今世界科技发展起到巨大驱动力的作用。而《光电子技术》则是电子信息科学类专业的基础学科,本文从分析该课程在本科教学阶段的现状及存在的问题出发,通过剖析学生学习的状态及《光电子技术》在教学模式中存在的问题,把科学研究引入课堂,采用诱导式教学方法和多元化的考核评价标准,对《光电子技术》的教学模式进行创新性探索。实践表明这些教学探索极大程度的调动学生的学习热情,提高了《光电子技术》的教学效果。

关键词 光电子技术;教学方法;诱导式教学

基金项目:安徽工程大学引进人才项目(2013YQ002)

作者简介:张艳(1983—),女,汉族,博士,安徽工程大学电气工程学院,讲师。

0 引言

随着国家信息化建设的逐步深入,我国采取了一系列积极、稳妥、有效的措施促进电子信息技术产业高速、持续、健康的发展。从2002年开始国家计委组织实施光电产业化专项计划,光电专项产业化目标[1]是:(1)根据我国在光电子研究开发方面所具有的技术优势和资源特点,重点支持一批技术水平高、市场前景好的光电产品,实现产业技术升级,并尽快形成规模生产。(2)“十五”期间初步形成具有一定自有知识产权和产业优势的光电产业体系。通过对我国已有技术和资源优势并在国际市场有竞争力的光电子产品的重点支持,力争在“十五”期间使国内光电产业能够满足国内各行业的需要,并进入国际市场。(3)通过技术创新和项目建设的带动,扶持光电产业基地的形成。光电信息技术产业的迅速发展,使得具有光电信息技术知识背景的从业人员的需求逐年增加。作为培养专业人才的摇篮,近年来,很多高校相继开设了光电信息工程专业。它以培养可从事光学工程、光通信、图象与信息处理等技术领域的科学研究及相关领域的产品设计与制造、开发及应用等工作的应用型人才为目的。

而《光电子技术》作为光电信息工程专业的一门专业基础课,从了解光电子技术的发展和应用开始,通过学习光学基础知识,以光学系统的源、传输通道、信息加载、探测、信号处理、显示和存储为主线,引导学生系统、全面的学习光电子技术。通过本课程的学习应使学生对光电子技术中的基本概念、基本技术和基本器件有比较全面、系统的认识,培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课打下基础。

本文从分析《光电子技术》课程在本科教学阶段的现状及存在的问题出发,通过剖析学生学习的状态及《光电子技术》在教学模式中存在的问题,把书本上的内容与当前光电信息产业的发展现状相结合,采用诱导式教学把科学研究引入课堂,对《光电子技术》的教学思路进行创新性探索。实践表明这些教学探测极大程度的调动学生的学习热情,提高了《光电子技术》的教学效果。

1 《光电子技术》的教学现状及问题

就《光电子技术》这门课程而言,由于教学内容的逻辑推导内容较多,要求以大学数学为基础,具备物理学,材料学,电路电子等多学科的知识和理论体系,导致部分学生对其缺乏兴趣,进而 影响到教学的效果。

尽管近年来,随着的电子设备走进课堂,授课方法也日趋多样,如、“现代化多媒体与传统板书”相结合的教学方法、“图片演示与实物展示”相结合的教学方法、“课堂讲授与小组讨论”相结合的教学方法等[2]。对传统意义上的教学模式进行了改革,如,讲解到激光原理与技术这一章节的时候,在课件中放上激光器以及激光光束的图片,把文字描述的内容以实实在在的实物图片展现在学生的眼前,加深了学生对知识点的理解和接受。这些教育教学方法的改革在很长的一段时间的确取得了很好的教学效果。

然而,随着的物联网技术的发展,现在的大学生可以从互联网上获取海量信息,仅仅是一副图,一个装置器件已经无法引起学生过多的关注。那么,如何吸引到学生的注意力,激发学生的学习兴趣,把《光电子技术基础》这门光电信息工程专业基础课讲解的生动,打开学生通往光电子技术领域的大门,为进一步学习相关专业课打下基础是我们亟需解决的问题。

2 诱导式教学方法

传统意义上的诱导式教学方法早在20世纪80年代被提出,其理论依据出自《论语-述而》:“不愤不启,不悱不发,举一隅不以三隅反,则不复也。”意思是只有当学生百思而不得其解时,教师才可以有选择的启发他,当学生心里明白但不知如何表达时再去开导他,如果学生不能举一反三,就先不要往下进行了。因而诱导式教学应当是“启发”和“引导”相结合,通过“启发”和“引导”学生,使得学生在有限的课堂教学时间内做到触类旁通,提高教学效率。

而大学教育赋予了“诱导式教学”新的含义,除具有传统意义上的诱导式教学的思想以外,还包含了用发展的眼光看待书本上的知识体系,把科学研究、最新的科技发明、科技产品引入课堂。就《光电子技术基础》这门课程而言,可以从光电产业的最新科研成果中提炼出与课本知识点相关联的的内容,通过光电产业的新发明,新应用吸引学生的注意力,在讲解这些发明或应用的过程中传授教学内容,激发学生的学习《光电子技术》的兴趣。以《光电子技术》[3]中“偏振——起偏——检偏”这一知识点为例,如果仅仅从书本上给出的概念出发讲解:(1)偏振指的是振动方向对于传播方向的不对称性;(2)自然光得到偏振光的过程称之为起偏,所用器件为起偏器;(3)检测某一光束是否为偏振光的过程称之为检偏,所用器件为检偏器。抑或在多媒体课件上放置光束起偏/检偏的图片,都不能起到很好的教学效果。为了吸引学生的注意力,激发学生对“光的传播”这一教课内容的兴趣和求知欲,同时扩展学生的知识面,可以从近阶段的热门话题个人全息手机(takee手机)引入,takee手机的亮点之一是可以使用户从各个角度都能感受到浮在屏幕上的全息立体3D效果,进而联系到学生身边的光电信息技术——3D电影,观众要戴上一副特制的眼镜,而这副眼镜就是一对透振方向互相垂直的偏振片,由此把重点落到“偏振”这个知识点上,让学生在一个轻松的教学氛围中不仅学到了新知识,(下转第82页)(上接第86页)而且知道新知识的应用领域和当前发展的现状,扩宽了学生的知识面和眼界。

因此,大学课堂中的诱导式教学方法应该:(1)培养学生具有批判性思维;(2)具有科学的想象力;(3)具备自我塑造和发展能力。在此基础上,“以点带面”提高学生的创新能力和动手实践能力。

3 多元化的考核评价标准

北京航空航天大学校长前校长曹传钧教授在本科教学上,提出“讲一、练二、考三”的教学模式。指出学生的学习效果体现在:(1)知识面的宽窄;(2)学习,实践的经历;(3)自学的能力;(4)是否具备创造性思维和创造性能力,具有独立的见解等几个方面[4]。那么单纯的一张试卷,一次考试就不能够作为学生掌握知识的依据。

而《光电子技术基础》是理论与实践相结合的一门课程,这就要求其课程的考核评价标准应该具备多元化,多样性的要求。整个课程的考试分为三部分:(1)理论部分的考核:可以采取闭卷考试了解学生对基本概念,基本理论的掌握程度,或者把基本理论深入剖析,采用开卷考试的方式,考察学生运用书本知识分析问题的能力;(2)实验部分的考核:通过实验不仅能够加深学生对知识的掌握,实验本身更是对整个章节,甚至整个课程内容的一个体现,如电光调制实验,旨在让学生掌握晶体电光调制的原理和实验方法,但是该实验从激光发射出的光波经由起偏器,电光晶体,1/4波片,检偏器之后被光电探测器接收,通过信号处理,学生可以在示波器上观察到作用到电光晶体上的调制信号曲线和光电探测器解调后的信号曲线。而这么一套设备展现出来的就是一个完整的光电系统。学生在实验的过程中可以运用光电系统的知识搭建好实验线路,确定光路信号的走向,通过示波器显示的信号曲线分析实验过程中出现的问题,思考该问题出现的原因以及采用何种解决这些问题,从而考察了学生对于光电调制内容的掌握程度,促使学生从实践中意识到理论知识的重要性,提高学生分析问题解决问题的能力;(3)课程设计部分:课程设计旨在学生根据授课内容,通过自学扩大自己的知识面,结合日常生活中使用的光电子产品,培养学生科学的想象力和创新能力。整个成绩采用百分制的标准,三部分的分值分配以60%+15%+25%的形式评判学生对《光电子技术基础》的学习掌握程度。

通过对两届学生的采用诱导式教学和多元化考核评价的教学,其实践表明这些教学探索极大程度的调动学生的学习热情,提高了学生运用所学知识分析问题,解决问题的能力,培养了学生的动手能力和创新能力,达到了《光电子技术》的教学效果。

4 结束语

光是人们最为熟悉的现象之一,从17世纪关于光的本质的两大对立学说到21世纪的信息时代,光电信息技术已经渗透到人们日常生活之中,除了光电子技术专业的学生需要深入系统地学习《光电子技术》外,微电子技术、材料、电子科学与技术等专业的学生也需要了解光电的基本概念和基础知识。探索诱导式教学方法在《光电子技术》课程的新模式和多元化的考核评价标准,把光电基本概念和基础知识与当前光电信息产业的发展现状相结合,使学生较好地掌握所学知识,把握知识点的学术前沿,为学生的进一步学习和发展打下坚实的基础。

参考文献

[1]国家计委.国家计委组织实施光电子产业化专项计划[J].中电网,2002,2,28.

[2]于雪莲,顾国华.《光电子技术》教学方法的探讨[J].高教论坛,2009,9(9):77-78-81.

[3]朱京平.光电子技术基础[M].2版.科学出版社,2009.

光电子学论文篇6

关键词 多学科 跨大学科平台 研究生培养

中图分类号:G643.0 文献标识码:A 文章编号:1002-7661(2016)03-0001-02

在我国研究生规模化教育的背景下,提高研究生教育质量,培养高层次创新人才是深化研究生教育改革的核心问题。当今,不同学科的交叉融合成为优势学科的发展点、新兴学科的生长点、重大创新的突破点,同时也是人才培养的制高点。构建跨大学科的科研平台,探索跨学科研究生培养新模式成为解决高层次创新型人才培养核心问题的重要途径。

1.跨大学科的科研平台构建的必要性

随着研究生招生规模持续增长和研究生培养的多样化发展,跨学科、跨专业研究生的培养质量和创新能力成为高校关注的重要问题,而科研平台是支撑学科建设、布局研究领域、整合科技资源、聚集科研人才、争取重大项目、培育重大成果、促进合作交流的基础,也是高层次人才培养的关键,科研平台水平是高校教学、科学研究、人才培养、学科建设和管理水平的重要标志。围绕着创新能力提升、高层次人才培养的核心任务,进行科研平台的整体谋划和布局调整,以跨学科大平台的概念进行平台构建成为必要。重庆邮电大学适时进行了科研大平台的谋篇布局和规划发展,其中光电科研大平台是跨学科大平台中的典型实例。

2.工理结合的光电科研大平台

光电科研大平台包括中央与地方共建光电器件及系统科研和能力提升平台、微电子工程重点实验室、中地共建光信息材料实验室、中地共建射频技术平台,其整体统一在光电信息感测与传输技术重庆市科委重点实验室下,是整合光电工程学院、数理学院等多个学院的科研能力,共同构成的覆盖光电产业链上中下游的光电科研大平台,平台示意图如图1所示。平台支撑电子科学技术、光学工程、理论物理、生物医学工程等多学科的发展,并对信息与通信工程、控制科学与工程等学科的形成有力辐射。大平台学科涉及面广,学科交叉明显,为跨学科的应用型、复合型、创新型高层次人才提供了支撑。

3.光电科研大平台的研究生培养方向与内容

本跨学科科研平台主要在光电感测材料、光电感测器件与技术、光电信息传输体制与系统三个方向进行研究和高层次人才培养。三个方向彼此关系密切,有机结合,支撑了电子科学技术、光学工程、理论物理、生物医学工程等多学科的发展和高层次人才培养。

①光电信息材料的理论与技术

光电信息理论与技术体系的形成是光电感测技术应用的重要支撑,是发展新兴战略性产业的物质基础和技术关键。关于光电信息材料的理论与技术的研究近年来在国际国内都十分活跃。本研究方向以信息技术领域的新型功能材料为主要研究对象,以材料的计算机模拟、设计和仿真为主要研究方法,为新型光电信息材料,特别是新型光电传感材料的研发和改进提供理论指导,并在光电功能转化、光纤放大器、生物荧光探针等技术方面进行探索。本方向的研究能够有力支持理论物理专业、电子科学与技术中物理电子学专业的研究生培养。

②光电感测技术与器件

本方向主要对光电感测机理与技术、光电感测器件的设计与工艺技术进行研发。在光电感测机理方面,在光电信息材料理论与技术研究的基础上,针对位移、振动、角速率、光谱、光热、气体痕量分析、生命体征信息等感测对象,对其感测机理进行探索,对惯性传感、光纤传感、温度传感、光敏传感、气敏传感以及MEMS传感等单元感测技术进行探讨,对感知器件及系统的设计提出新的方案。在光电感测器件的设计与工艺技术方面,根据光电器件的基础理论及关键工艺技术,结合感测信息对象的需求,开展MOEMS传感器、角速率传感器、振动传感器、温度传感器、气敏传感器等器件及系统的设计与加工工艺技术研究,以此为基础,研究感测片上微系统、光电混合微系统集成等工艺,为光电信息的传输与系统设计提供依托。本方向是电子科学与技术、光学工程研究生培养的重要方面。

③光电信息传输体制与系统

光电信息传输的目的是将光电器件感知检测到的信息传送至上层应用,是感知层与应用层之间的连接纽带,负责总体数据传输和数据控制,提供传输连接服务和数据传输服务。在研究方向一光电材料理论探索和研究方向二光电感测器件设计的支撑下,结合国内外的技术发展和技术趋势,本研究方向重点面向智慧医疗应用,主要攻克体征信号处理、信息传输体制与标准、微系统结构与应用集成等方面的技术难题,形成智慧医疗与健康信息服务领域完整的自主知识产权,形成基于光电感测与传输的共性技术体系,为光电技术的工程化应用提供支撑。本方向是电子科学与技术、生物医学工程、通信与信息工程研究生培养重要依托。

4.基于跨学科科研大平台的研究生培养导师团队建设

学校在研究生培养过程中长期坚持导师团队的管理方式。基于跨学科科研大平台的研究生培养首先必须构建具备多学科学术背景、学术经历和研究领域的教学科研团队。在光电大平台基础上,所涉学院密切合作,形成了一支高素质的学缘结构、学历结构、学科结构合理的导师团队。团队拥有研究生导师30余名,重庆市学术技术带头人1名,重庆市巴渝学者1名,拥有智慧医疗系统与核心技术重庆高校创新团队,同时集成电路设计团队获得中国侨界创新团队贡献奖。团队具有指导电子科学与技术、光学工程、理论物理、生物信息工程、信息与通信工程等多学科研究生的多年经验,为跨学科研究生师生团队培养模式的具体实施提供了人才保障。

5.人才培养成效

近5年来,本平台在其他高校挂靠招收博士研究生3人,授予博士学位人数2人。累计招收硕士研究生已达到600余人,授予硕士学位人数超过400人,有20余名硕士生获得重庆市优秀硕士学位论文。在“挑战杯”等科技竞赛中上百人次获奖。同时,注重研究生创新实践能力的培养和提高,健全了研究生培养保障体系和质量监控制度,保障了人才培养的质量。

参考文献:

光电子学论文篇7

【关键词】光谱分析 发展 重要意义

【中图分类号】TP391【文献标识码】A【文章编号】1672-5158(2013)02-0041-01

光谱分析法是测定物质与电磁辐射相互作用时所产生的发射、吸收辐射的波长和强度进行定性、定量和结构分析的方法。光谱分析是近几十年发展起来的,当今发展迅速、方法门类众多,能够适应各个领域所提出的新任务,已成为现代分析的重要方法:

1、原子发射光谱法

1859年基尔霍夫、本生研制了第一台用于光谱分析的分光镜,实现了光谱检验; 1900年普朗克提出了“量子化”概念并于1918年因创立量子论、发现基本量子获诺贝尔物理学奖;1905年爱因斯坦提出了光量子假说并于1921年因“光的波粒二象性”这一成就获得诺贝尔物理学奖,他们的理论为光谱分析的发展奠定了坚实的理论基础。20世纪30年代建立了光谱定量分析法。20世纪60年代以后原子发射光谱得到迅速发展,期间主要应用火焰、电弧及电火花等激发光源,在发现新元素、促进原子结构理论的发展及其在各种无机材料定性分析中发挥了重要作用。20世纪70年代以来,应用了电感耦合高频率等离子体焰炬、激光等新型激发光源。

2、原子吸收光谱法

1802年,伍朗斯顿在研究太阳连续光谱时发现了太阳连续光谱中有暗线。1817年福劳霍费在研究太阳连续光谱时,再次发现了这些暗线,将这些暗线称为福劳霍费线。1860年,本生和克希荷夫证明太阳连续光谱中的暗线,正是太阳大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果。1955年澳大利亚的瓦尔西发表了论文《原子吸收光谱在化学分析中的应用》奠定了原子吸收光谱法的理论基础;50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。1961年里沃夫发表了非火焰原子吸收法的研究工作。1965年威尔斯将氧化亚氮—乙炔火焰成功地用于火焰原子吸收光谱法中,使可测定的元素达到了70个之多。近年来,使用电视摄像管做多元素分析鉴定器,结合中阶梯光栅,设计了用电子计算机控制测定多元素的原子吸收分光光度计,为解决同时测定多种元素的问题开辟了新的途径。激光的应用使原子分光光度法为微区和薄膜分析提供了新手段。

3、紫外—可见分光光度法

紫外—可见分光光度法是在比色法的基础上发展起来的,比色法是通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。早在公元初古希腊人就曾用五倍子溶液测定醋中的铁。比色法作为一种定量分析的方法,大约开始于19世纪30~40年代。皮埃尔·布格和约翰·海因里希·朗伯分别在1729年和1760年阐明了物质对光的吸收程度和吸收介质厚度之间的关系;1852年奥古斯特·比尔又提出光的吸收程度和吸光物质浓度也具有类似关系,两者结合起来就得到有关光吸收的基本定律——朗伯-比尔定律。1945年美国的Beckman 公司推出了第一台紫外可见分光光度计。20世纪60年代,紫外-可见分光光度计已逐渐代替光电比色计,分光光度法也随之逐渐代替了比色法。20世纪60年代以后随着科学技术的发展,紫外可见分光光度计仪器得到了飞速发展,自动化程度大大提高。

4、红外光谱法

1800年英国天文学家Hershel发现了红外光区。此后陆续有人用红外辐射观测物质的吸收光谱。1905年前后,人们已系统地研究了几百种化合物的红外吸收光谱并且发现了一些吸收谱带与分子基团间的相互关系。1918年到1940年期间人们对双原子分子进行了系统的研究,建立起了一套完整的理论,随后在量子力学的基础上又建立了多原子分子光谱理论基础。20世纪50年代在化学领域已经积累了丰富的资料,收集了大量纯物质的标准红外光谱图。20世纪40年代中期到50年代末,红外光谱法主要是采用以棱镜为色散元件的双光束记录式红外分光光度计,到六十年代,光栅式红外分光光度计得到了普及。七十年代初,又发展起来富里哀变换光谱仪,为红外光谱的应用开辟了许多新领域。近年来,电子计算机技术在红外光谱中发挥了重要的作用,电子计算机被用于记录分析结果,数据自动处理,通过求解性方程对多组分混合物进行定量分析。在定性及未知物结构鉴定中可用计算机进行谱图检索,辨认和确定未知物所含的基团和结构。

5、荧光分析法

1575年西班牙植物学家N.Monardes第一次记录了荧光现象。1852年stokes在考查奎宁和叶绿素的荧光时,用分光计观察到其荧光才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,从而导入了荧光的光发射概念,还由发荧光的矿物“莹石”提出“荧光”这一术语。1867年Goppelsroder进行了历史上首次的荧光分析工作,应用铝—桑蓝色配合物的荧光进行铝的测定。1880年Liebeman提出了最早的关于荧光与化学结构关系的经验法则。19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600种以上的荧光化合物。1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Gario发现增感荧光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等;1928年,Jette和West研制出第一台充电荧光计;1939年Zworykin和Rajchman发明充电倍增管以后,使增加荧光计的灵敏度和容许使用分辨率更高的单色器成为可能。1943年Button和Bailey提出了一种荧光光谱的手工校正装置,到1952年才出现商品的校正光谱仪器。近十几年来,激光、微处理机、电子学、光导纤维和纳米材料新技术的引入,大大推动了荧光分析法在理论和应用方面发展,促进了荧光方面的新方法、新技术的发展。

目前,光谱分析越来越受到重视,并向多技术综合联用、自动化高速分析的方向发展。相信随着科学技术的进步,光谱分析方法会在科学的各个领域发挥极其重要的作用。

参考文献

[1] 杨根元.实用仪器分析.第四版,北京:北京大学出版社,2010:8

光电子学论文篇8

【关键词】大学物理教学;光电信息科学与工程;专业特色

【Abstract】How to reflected photoelectric information science and engineering specialty in college physics teaching is a pressing matter of the moment for us. In this paper, to improve the learning interest of the students, taking the knowledge of electrical polarization theory for example, we proposed the methods on reforming teaching means and content for college physics teaching on the based of difference specialty according to the exploration and practice of college physics teaching.

【Key words】College physics teaching;Photoelectric information science and engineering;Specialty feature

0 引言

对于地方高校而言,由于生源质量的下滑和学生一进校就感受到的就业压力,许多学生对一门课程的认识首先就是学习这门课程有什么用,这门课程学起来难不难。基于这种出发点,学生对于大学物理这门工科专业必修课程的学习兴趣不大。上课不专心听讲,课后不复习,作业不认真,在网络上搜寻答案,学习效果自然不明显,对大学物理的重要性认识不够,从而影响后续专业基础课程与专业课程的学习,进而影响其全面发展[1]。

我们执教光电信息科学与工程专业的大学物理学课程已四届,每年都在思考一个问题:怎样在大学物理的教学里体现光电信息科学与工程专业的专业特点? 通过对教学内容的细致分析,在教学中穿插光电信息科学与工程专业的专业特点,不仅使学生自觉或自发地认识到大学物理的重要性,而且大大提高了大家学学物理课程的兴趣,培养了进一步学习后续知识的热情和对未知专业知识的渴求。

本文首先分析大学物理在光电信息科学与工程专业中的位置,然后以电介质极化理论为例,分析它与光电信息科学与工程专业的结合点,在教学实践中充分体现专业特色,并对大学物理与我校工科专业的结合作了出展望。

1 大学物理在光电信息科学与工程专业中的位置

目前我们将大学物理设置在大一,先修课程只有高等数学,后续相关专业基础课程有物理光学、光电子技术基础、激光原理等;后续专业课程有光纤通信原理与技术、光电传感与检测技术、光显示技术等。从课程设置的关联和大学物理课程本身的内容,我们可以看到大学物理在光电信息科学与工程专业中处于基础性位置。教学的目的主要是使学生认识并理解一些物理现象,掌握大学物理的一些基本概念,熟悉大学物理理论体系的一些基本实验。

鉴于大学物理在光电信息科学与工程专业中的基础位置,我们在教学实践中,分析一些物理现象的基本原理时,经常将物理现象与激光技术、光通信、光电检测等领域的实际问题结合起来,引导同学们一起讨论是否可以用相同的物理原理解释,激发大家对光电信息科学与工程专业的学习兴趣,激励学生对基本物理原理和概念的学习热情。

2 大学物理中的光电信息科学与工程专业特色

2.

电介质的极化虽由外电场引起, 但因极化电荷对外电场有影响,因而极化后,介质中的总场强应为外电场与极化电荷激发电场的叠加,而P则不仅与外电场,而且与总场强有关。由于光是一种电磁波,当光波在介质(晶体)中传播时,光频电场会引起介质的电极化。当课程内容讲授至此,我们可以拓展[3]:在激光出现以前,当光波在介质中传播时,不会出现其他频率的光。而两束以上的光波在介质中传播时,光波之间也不会发生相互作用,服从独立传播原理,不改变各自的频率。当它们在介质相同区域相遇时,则服从线性叠加原理。诸如:光对于介质的折射、反射、衍射、散射和双折射等现象。但介质的电极化强度与光频电场之间的关系,除了线性关系之外,还有非线性的高次项。非线性光学产生的原理可作如下解释:分子是由原子组成的,分子中的电子被束缚在原子核的周围运动,如果外加一个电磁场(光也是一种电磁场),则这种运动将受到扰动,如果外场是一种谐振场,则电子会产生和外电场相同的谐振,正负电中心不重合就诱导产生了一种“极化”,从而产生诱导偶极矩P。

通常,一般光源的光频电场强度Ej较小,这样高次项的电极化强度都很弱,可以忽略不计,只用到式(4)中的第一项,即式(3)。而激光是一种具有极强光频电场的光源,式(4)中第二、三项等非线性项就可产生重要作用,可观测到不同的非线性光学现象。

2.2 其他知识点的光电信息科学与工程专业特色

对于光电信息科学与工程专业的学生,我们可以从光和信息两个层面对其他很多物理现象进行阐述和讨论,体现光电信息科学与工程专业的特色[4-5]:如光的全反射现象是光纤通信技术的基础;压电效应和逆压电效应,广泛应用的光纤电场量传感器,是基于这一原理实现的;磁致伸缩效应或法拉第磁光效应是光纤磁场量传感器的工作基础;帕尔贴效应是半导体激光器温度控制的关键技术。

我们在大学物理课堂上强调红外、可见光、紫外等光频电磁波,讨论它们的产生、发射、传输、接收和检测等, 介绍光通信、光检测等相关专业方向在现代信息技术中的地位和发展状况。这样不仅在教学实践中突出光电信息科学与工程专业的“光”与“信息”这两个基本特色, 激发学生学习相关专业课程的浓厚兴趣,而且学生对学习光电信息科学与工程的信心大大增强,同时也提高我们在专业建设和学科建设中的前后一贯性。

3 结论

本文以电极化理论为例, 在讲解大学物理内容的基础上, 通过深入或外延的方式,寻找与光信息专业后续相关专业课程知识的结合点,通过教学实践,使光信息专业大一的本科生对专业产生学习的热情,培养大学生对本专业的浓厚兴趣,树立继续学习本专业的信心。近四年的教学证明,在大学物理教学中主动体现光信息科学与技术专业特色, 不仅实现了预期的专业建设和学科建设的目的, 而且有助于提高教师在学生心目中的地位。

就我校实际情况而言,如化工、生物专业的学生认为热学与专业课程联系最为紧密而力学和电磁学往往与专业联系不大,电子、计算机等专业的学生认为电磁学联系最为紧密而力学、热学、近代物理部分与专业的联系相对较低。因此,对不同专业的学生所讲授的内容应该有所侧重,应依据各专业的特点对物理学的各部分内容有所侧重和增减教学内容,使学生明确感受到物理与自己的专业密切相关,使物理教学兼顾专业基础课教学和专业技能的需要。

【参考文献】

[1]董少光.大学物理教学与理工科学生学习现状的思考[J].中国西部科技,2008, 7(40):73-75.

[2]罗益民,余燕.大学物理[M].2版.北京:北京邮电大学出版社,2010.

[3]张静江,宋淑梅.非线性光学与光学教学[J].大学物理,1999,18(5):35-39.

光电子学论文篇9

1科学本质观的内涵

科学本质观即对科学本质的认识。对科学本质的界定众多,每个界定之间都有区别,但许多研究者通过对科学发展的历史和科学研究的对象、过程、方法、科学研究的成果等方面的考察,认为科学本质主要包括“科学知识的本质”,“科学探究的本质”和“科学事业的本质”三个维度。其各维度的特征如下。

1.1 科学知识的本质

(1)客观性。科学是对客观世界认识性的解释。(2)暂定性。科学知识并非绝对真理,会随新证据的出现而发生改变。(3)可检验性。科学的正确性决定于观察和实验的检验。(4)继承性与创造性。科学是人类在已有理论基础上通过合理的推理、想象和创造的。

1.2 科学探究的本质

(1)多样性。科学探究的过程及方法不是按部就班的,对同一问题可能有不同的解决方法。(2)理论渗透。研究者本身的理论渗透于科学探究的过程中。(3)可重复性。(4)观察和推论。科学知识是建立在观察和推论基础之上的。观察是通过人的感官或这些感官的扩展收集的,推论是对这些观察的解释。(5)想象与推理。

1.3 科学事业的本质

(1)道德性。科学研究中有普遍接受的道德规范。(2)科学家研究风格。科学家的社会文化背景会影响其研究风格。(3)科学与技术。科学研究的是“是什么”的问题,技术研究的是“怎么做”的问题,科学的进步推动技术的发展,两者不等同,会相互作用。

2“科学的转折:光的粒子性”一节中体现的科学本质观

本节内容中体现了当代科学本质的九个方面:即科学知识的暂定性、客观性、可验证性、继承性与创新性;科学探究的可重复性,理论渗透,想象与推理;科学与技术,科学家研究风格和科学研究的道德性。

3“科学的转折:光的粒子性”一节教学目标的构建

教学目标对整个教学行为和教学认识活动的设计具有导向作用。已有研究表明,科学本质理解是一种认知性学习结果。因此,将科学本质理解作为显性教学目标是进行科学本质教学的前提[1]。

本节的课的教学目标可确定为以下几个方面。

3.1 知识与技能

(1)通过实验观察,了解是光电效应。(2)了解光电效应的实验规律。(3)知道爱因斯坦光电效应方程以及意义。(4)了解康普顿效应,了解光子的动量。(5)知道光子的模型的建立过程及对康普顿效应的解释作用。

3.2 过程与方法

对光电子模型的产生方式进行探究、反思和评价其合理性。让学生领略自然界的奇妙与和谐,发展学生对科学的好奇心与求知欲。

3.3 情感态度与价值观

体会假说与模型建立在构建立科学论知识中的作用。让学生体验探索自然规律的艰辛与喜悦,从而提升学生的科学本质观。

4教学过程设计

已有研究表明,在教学活动中通过显性和反思性活动能让学生更近一步的理解科学的本质。故教师在教学中应恰到好处地不断地重现合符科学本质观的语言,使学生渐渐建立科学本质观。例如:教师的教学语言中应该经常含有“观察”、“推论”、“猜测”、“可能是”、“支持”、“提出”等词语。在显性活动中,注意区别观察和推论,注重知识的产生方式。在反思性活动中,要让学生清晰回顾知识学习的过程,对知识的产生方式进行反思,综合评价知识的合理性,使学生对于科学理论的本质有一定的认识[4]。

4.1 引入新课

光的干涉、衍射现象及麦克斯韦的理论都确定了光的电磁波本质。然而,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。这一现象及其相关问题的研究,使得人们对光的又一本质性认识得到了发展,这充分说明了科学理论具有暂定性,只要证据充分,原有的理论将会被修正。

4.2 新课教学

4.2.1 光电效应规律的探究过程

资料(1):1887年,赫兹在研究电磁波的实验中偶尔发现,接收电路的间隙如果收到光照,就更容易发生电火花,这是最早发现的光电效应。

资料(2):1902年,德国物理学家勒纳德通过实验找到了光电效应的两条实验规律:①存在一个照射光的最长波长,只有短于这个波长的光的照射,才能将电子从金属表面打出来;②光的强度只决定打出电子的数目,与打出电子的能量无关。这两条实验规律无论用经典的微粒说还是波动说都无法解释。

资料(3):英国物理学家J.J汤姆孙也做了光电效应的研究,相继证实了照射到金属表面的光,能使金属中的电子从表面逸出。

[显性语言]从光电效应的首次发现直至被许多科学家关注并证实的这一过程充分体现了科学探究的过程的可重复性。但如果只在某一个科学家的实验室里发现了某个现象,那这个探究称不上是科学的探究过程[3]。

4.2.2 探究光电效应的实验规律

[方式]结合试验,通过科学探究方式,让学生体验科学探究过程,进而让学生初步理解科学探究的本质。

[内容]光电效应的实验规律讲解。

[讨论]为什么经典理论无法解释光电效应的实验规律?

[显性语言]在发现光电效应后,光的电磁理论只能部分地解释光电效应。而接受了普朗克能量子假说的爱因斯坦却是从光的粒子性角度来思考光电效应现象,并提出了爱因斯坦光电效应方程,使光电效应中与实验的矛盾迎刃而解。这说明科学家具有的理论背景将在很大程度上影响研究者研究问题的视角和方式。对同一个自然现象,不同的科学家可能会有不同的观察结果,科学探究的过程渗透着理论。

4.2.3 爱因斯坦光电效应方程的建构

资料(4):1900年,普朗克提出能量子假说。

资料(5):1905年,爱因斯坦提出光量子假说,建立光量子理论。

[显性语言]爱因斯坦的“光子假说”是在继承了前人普朗克的“能量子假说”,的基础上进行而提出的,这充分说明了科学知识本质的继承性和创新性。

[内容]光量子假设的内容及爱因斯坦光电效应方程的知识讲解。

[显性语言]爱因斯坦利用光量子理论解释了光的粒子性,是建立在赫兹、勒纳德、汤姆孙等人实验研究的基础上的,这也体现出科学知识的客观性。

资料(6):从1907年起,美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。

[显性语言]爱因斯坦提出光电效应的解释时,实验测量尚不精确,加上这种观点与以往的观点大相径庭,因此并未立即得到承认。直到密立根通过实验才证明了爱因斯坦对光电效应的解释是合理的,这正体现了科学知识是可以被检验的。而爱因斯坦由于发现了光电效应的规律获得1921年的诺贝尔物理学奖,也说明了科学知识需要接受科学大众的检验。

资料(7):1923年,康普顿做X射线通过物质散射的实验,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。

[内容]康普顿效应及光子动量的知识讲解。

[显性语言]普朗克的能量子和爱因斯坦的光子并没有被肉眼实际观测到,这些假说的提出完全依赖于这些杰出科学家的想象和对观察到的现象的推理。科学探究并非一定是按提出问题、分析数据等步骤进行,科学家的思维具有跳跃性,想象和推理在科学探究的过程中起了很大的作用。但科学的想象和推理需建立在客观事实的基础上。

4.3 讨论与反思性评价

(1)为什么爱因斯坦对光电效应的解释和康普顿对康普顿效应的解释能为大多数人所接受?

(2)爱因斯坦对光电效应的解释和康普顿对康普顿效应的解释是不是就是完美无缺的呢?

(3)分析光电效应和康普顿效应对光具有粒子性的解释过程,你受到什么启示?

4.4 作业设计

对于学生科学本质理解的评价性作业可以从以下三个方面来进行:(1)评价学生对于科学内容的理解;(2)评价学生对科学知识产生方式的理解;(3)评价学生对于科学知识合理性的理解[1]。按照教学目标,可以设计以下作业。

(1)描述光电效应规律及爱因斯坦光电效应方程;(2)描述康普顿效应和光子的动量;(3)你能观察到普朗克的能量子和爱因斯坦的光子吗?你相信存在能量子和光子吗?请说明理由;(4)你认为光子模型的建立合理吗?请你给出观点;(5)光电效应和康普顿效应对光具有粒子性的解释合理吗?请你给出观点。

4.5 课外知识补充

(1)介绍太阳能电池、光电管、光控继电器的制作原理。让学生体会科学与技术的区别及相互关系;(2)介绍爱因斯坦、密立根及康普顿的相关生活背景,让学生了解他们的科学研究风格。

5结语

基于科学本质理解的教学不仅有助于学生对科学本质的理解,还有助于学生理解科学内容,培养学生的批判精神和创造性思维。为了能在教学中渗透科学本质,提升学生的科学本质观,教师在进行教学设计时可以采用多种教学方法和教学策略,但一堂课中不需要,也不应该涉及科学本质的所有方面,而应该选取最适合这堂课内容的相关方面进行重点引导和阐释。

参考文献

[1] 梁永平.促进学生科学本质理解的教学设计[J].中学化学教与学,2009(1).

[2] 刘健智.论中学生科学本质观的内涵[J].物理教学探讨,2006(5).

光电子学论文篇10

【关键词】实验教学 仿真实验 光电效应

【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)01-0099-02

一、引 言

光电效应是物理学史上一个著名的物理实验,1905年,年仅26岁的爱因斯坦提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后物理学家密里根用以精确的光电效应实验证实了爱因斯坦的光电效应方程,并测定了普朗克常数。两位物理大师都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验及其光量子理论的解释在量子理论的确立与发展上、在解释光的波粒二象性等方面都具有划时代的深远意义。利用光电效应制成的光电器件,如光电管、光电池、光电倍增管等,已成为生产和科研中不可缺少的器件,在科学技术中得到广泛的应用,且至今还在不断开辟新的应用领域,具有广阔的应用前景。大学物理实验中开设光电效应实验的目的是为了让学生了解光电效应基本规律,并学会用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。利用仿真实验的优势,通过教师的生动讲解,可以拓展学生在新知识方面的视野,拓宽对学生能力的培养的途径,学生在电脑仿真实验平台上完成实验,可以收到先进、快捷、直观、灵活、安全、经济的理想效果。

二、实验原理

当用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性具有极其重要的意义。爱因斯坦利用光子假说做了清晰的说明,并提出了爱因斯坦光电效应方程,即:

hυ=Ws+ mv2 (1)

式中,υ为入射光的频率,m为电子的质量,ν为光电子逸出金属表面的初速度,Ws为被光线照射的金属材料的逸出功。光电效应实验原理如图1所示,其中S为真空光电管,K为阴极,A为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当一束合适频率的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线

如图2所示。由方程(1)可知, mν2为从金属逸出的光电子

的最大初动能,这表明即使光电管的两端不加电压,也会有光电子到达阳极A形成光电流,这从图2中可以明显的看出,随着光电管两端所加上的反电压UAK<0不断增加,检流计G中测量到的电流值会下降,当电压增加到一定程度,所有的光电子都不能到达阳极,此时光电流为零,那么刚好使光电流为零的反向电压的绝对值就是截止电压,即图2中的U0。

图1 光电效应实验原理图 图2 光电管的伏安特性曲线图

在截止电压下,eUs= mν 2代入方程(1),整理后可得:

Us=k(v-v0) (2)

其中k=h/e,e为电子电荷,h即普朗克常量。式(2)表明,只要测量出不同入射光频率下的截止电压,如果这些数据点是在同一条直线上,则证明了爱因斯坦光电方程是成立的。如图3所示,对同一光电管v0也是常量,实验中测量不同频率下的截止频率Us,做出Us-v曲线。在(2)式得到满足的条件下,这是一条直线,由斜率k=

可以求出普朗克常数h。由直线上的截距可以求出溢出功Ws,

由直线在v轴上的截距可以求出截止频率(红限频率)v0。

三、实验内容

光电效应电脑仿真实验包括以下内容:①连接光电管正向、反向电路图,线路连接成功后需要对电路中的检流计调零;②通过调节单色仪,分别选出汞光源的4条谱线进行实验;③采集光电管正向、反向电流、电压数据;④在各频率入射光下的反向伏安特性曲线上读取截止电压值并记录在实验报告上;⑤要求学生通过作图法,计算普朗克常量,光电管阴极材料的红限频率V0及溢出功WS。图4是光电效应电脑仿真实验平台,学生在开始实验前先要通过鼠标点击平台上的光学及电学仪器了解其名称及作用,并将实验中所用到的仪器填写在实验报告上。

在仿真实验过程中学生往往会忽视实验操作的安全性问题,应提醒学生注意。例如:当记录完一组实验数据,电源总开关应该断开。实验中还有很多细节,学生也容易忘记,如:采集光电管正向、反向数据前先要将检流计的量程分别调节到×0.1档和×1,如果检流计的量程在×0.1档时采集光电管反向数据,就无法从光电管反向伏安特性曲线图上读出截止电压,实验需重做。在采集数据时还应注意各数据点分布的均匀性,我们要求学生先粗调滑线变阻器,找到合适的电压范围,再在这个范围对数据点进行合理布局。

四、实验结果

图5是通过仿真实验获得的光电管正向和反向伏安特性曲线,在照射光的强度一定的情况下,光电管中的电流I与光电管两端的电压UAK之间存在着一定的关系。

学生需要从不同入射光波长下的反向伏安特性曲线图中找到截止电压,在这个环节中学生往往找不准截止电压。有的学生会将曲线与电压轴的交点处的电压值当作是截止电压,这说明他们对光电管的特性还没有了解清楚,需要教师作一定的解释,让学生知道我们在伏安特性曲线图中观察到的电流不仅仅是由阴极材料产生的光电流,还包括反向光电流、暗电流和本底电流,因此在找截止电压时应由拐点法求得,即找到电流开始明显变化的地方的电压值;还可以引导学生去考察光电管正向伏安特性曲线上饱和电流与入射光频率之间的关系,入射光强一定这个前提条件不可忽略。正确读出4种不同频率光照射下光电管的截止电压后,学生要通过作图法找到这几个数据点间的线性关系,拟和出直线的斜率,由此计算出普朗克常量、光电管阴极材料的红限频率及溢出功,最后还要分析影响实验结果的因素。

参考文献

1 洪国瑞.仿真实验在光电效应教学中的应用[J].技术物理教学,2006(2):30~31

2 王廷志.光电效应实验对原创能力的培养[J].物理实验,2006(1):36~39