无损检测技术论文十篇

时间:2023-03-13 17:26:00

无损检测技术论文

无损检测技术论文篇1

关键词:激光无损检测超声无损检测射线无损检测

在现代生产中针对不同对象选择何种无损检测方法已成为人们关注的问题,为解决好这个问题,就必须对无损检测方法及其特征有较全面的了解。所谓无损检测,是在不损伤材料和成品的条件下研究其内部和表面有无缺陷的手段。也就是说,它利用材料内部结构的异常或缺陷的存在所引起的对热、声、光、电、磁等反应的变化,评价结构异常和缺陷存在及其危害程度。下面简要介绍三种常用方法的应用和发展。

一、激光技术在无损检测领域的应用与发展

激光技术在无损检测领域的应用始于七十年代初期,由于激光本身所具有的独特性能,使其在无损检测领域的应用不断扩大,并逐渐形成了激光全息、激光超声等无损检测新技术,这些技术由于其在现代无损检测方面具有独特能力而无可争议地成为无损检测领域的新成员。

1.激光全息无损检测技术

激光全息术是激光技术在无损检测领域应用最早、用得最多的方法。激光全息无损检测约占激光全息术总应用的25%。其检测的基本原理是通过对被测物体加外加载荷,利用有缺陷部位的形变量与其它部位不同的特点,通过加载前后所形成的全息图像的叠加来反映材料、结构内部是否存在缺陷。

激光全息无损检测技术的发展方向主要有以下几方面。

(1)将全息图记录在非线性记录材料上,以实现干涉图像的实时显现。

(2)利用计算机图像处理技术获取干涉条纹的实时定量数据。

(3)采用新的干涉技术,如相移干涉技术。在原来的基础上进一步提高全息技术的分辨率和准确性。

2.激光超声无损检测技术

激光超声技术是七十年代中期发展起来的无损检测新技术。它利用Q开关脉冲激光器发出的激光束照射被测物体,激发出超声波,采用干涉仪显示该超声波的干涉条纹。与其他超声无损检测方法相比,激光超声检测的主要优越性如下。

(1)能实现一定距离之外的非接触检测,不存在耦合与匹配问题。

(2)利用超短激光脉冲可以得到超短声脉冲和高时间分辨率,可以在宽带范围内提取信息,实现宽带检测。

(3)易于聚焦,实现快速扫描和成像。

3.激光无损检测的发展

激光超声检测成本高,安全性较差,目前仍处于发展阶段。但在无损检测领域,激光超声检测在以下几方面的应用前景引起了人们的关注:(1)可用于高温条件下的检测.如热钢材的在线检测;(2)适用于某些不宜接近的样品,如放射性样品的检测;(3)激光束可入射到任何部位,可用于检测形状奇异的样品;(4)可用于超薄超细的样品及表面或亚表面层的检测。国外近几年已有将激光超声检测用机复合材料的检测、热态钢的在线检测的报道,在化学气相沉积、物理气相沉积、等离子体溅射等高温镀膜工艺过程中膜层厚度的实时检测方面也进行了研究。

二、超声检测技术在无损检测中的应用与发展

超声无损检测技术(UT)是五大常规检测技术之一,与其它常规无损检测技术相比,它具有被测对象范围广。检测深度大;缺陷定位准确,检测灵敏度高;成本低,使用方便;速度快,对人体无害以及便于现场使用等特点。

1.超声检测技术的应用

(1)目前大量应用于金属材料和构件质量在线监控和产品的在投检查。如钢板、管道、焊鞋、堆焊层、复合层、压力容器及高压管道、路轨和机车车辆零部件、棱元件及集成电路引线的检测等。

(2)各种新材料的检测。如有机基复合材料、金属基复合材料、结构陶瓷材料、陶瓷基复合材料等,超声检测技术已成为复合材料的支柱。

(3)非金属的检测。如混凝土、岩石、桩基和路面等质量检验,包括对其内部缺陷、内应力、强度的检测应用也逐渐增多。

(4)大型结构、压力容器和复杂设备的检测。由于超声成像直观易懂,检测精度较高。因此,近几年我国集超声成像技术及超声信号处理技术等多学科前沿成果于一体的超声机器人检测系统已研制成功,为复杂形状构件的自动扫描超声成像检测提供了有效手段。

(5)核电工业的超声检测。

(6)其它方面的超声检测。如医学诊断广泛应用超声检测技术;目前人们正试图将超声检测技术用于开辟其它新领域和行业,如人们正努力将超声检测技术用于血压控制系统进行系统作非接触检测、辨识。性能分析和故障诊断等。

2.超声检测技术的发展

在现代无损检测技术中,超声成像技术是一种令人瞩目的新技术。超声图像可以提供直观和大量的信息,直接反映物体的声学和力学性质,有着非常广阔的发展前景。现代超声成像技术都是计算机技术、信号采集技术和图象处理技术相结合的产物。数据采集技术、图象重建技术、自动化和智能化技术以及超声成像系统的性能价格比等发展直接影响超声检测图像化的进程。现代超声成像技术大多有自动化和智能化的特点,因而有许多优点,如检测的一致性好,可靠性、复现性高,存储的检测结果可随时调用,并可以对历次检测的结果自动比较,以对缺陷做动态检测等。

目前已经使用和正在开发的成像技术包括:超声B扫描成像,超声C扫描成像、超声D扫描成像,SAFT(合成孔径聚焦)成像,P扫描成像,超声全息成像,超声CT成像等技术。

三、射线技术在无损检测领域内的应用与发展

1.射线检测技术的应用

射线检测技术是利用射线(X射线、射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件的射线由于强度不同在X射线胶片上的感光程度也不同,由此生成内部不连续的图像。

(1)早期使用在石油工业.分析钻井岩芯。

(2)在航空工业用于检验与评价复合材料和复合结构。评价某些复合件的制测技术的重要基础之一是数字图象处理技术,即使常规胶片射线照相技术,也在采用数字图象处理技术。

(3)今后重点应用的技术。1994年HaroldBerger在美国《材料评价》发表的“射线无损检测的趋势”中提出,在20世纪的最后10年和21世纪的初期,下列技术将得到广泛应用:①数字X射线实时检测系统在制造、在役检验和过程控制方面。②具有数据交换、使用NDT工作站的计算机化的射线检测系统。③小型、低成本的CT系统。④微焦点放大成像的x射线成像检验系统。⑤小型高灵敏度的X射线摄像机。⑥大面积的光电导X射线摄像机。

四、无损检测的发展趋势

1.超声相控阵技术

超声检测是应用最广泛的无损检测技术,具有许多优点,但需要耦合剂和换能器接近被检材料,因此,超声换能、电磁超声、超声相控阵技术得到快速发展。其中,超声相控阵技术是近年来超声检测中的一个新的技术热点。

超声相控阵技术使用不同形状的多阵元换能器来产生和接收超声波波束,通过控制换能器阵列中各阵元发射(或接收)脉冲的时间延迟,改变声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方向的变化,然后采用机械扫描和电子扫描相结合的方法来实现图像成像。与传统超声检测相比,由于声束角度可控和可动态聚焦,超声相控阵技术具有可检测复杂结构件和盲区位置缺陷和较高的检测频率等特点,可实现高速、全方位和多角度检测。对于一些规则的被检测对象,如管形焊缝、板材和管材等,超声相控阵技术可提高检测效率、简化设计、降低技术成本。特别是在焊缝检测中,采用合理的相控阵检测技术,只需将换能器沿焊缝方向扫描即可实现对焊缝的覆盖扫查检测。

2.微波无损检测

微波无损检测技术将在330~3300MHz中某段频率的电磁波照射到被测物体上,通过分折反射波和透射波的振幅和相位变化以及波的模式变化,了解被测样品中的裂纹、裂缝、气孔等缺陷,确定分层媒质的脱粘、夹杂等的位置和尺寸,检测复合材料内部密度的不均匀程度。

无损检测技术论文篇2

[关键词]红外无损检测;表面温度;红外辐射;热传导

中图分类号:TP274.52 文献标识码:A 文章编号:1009-914X(2016)03-0363-01

红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术。作为一种非接触的无损检测手段,广泛应用于航空航天、机械、医疗、石化等领域.常规的无损检测技术例如超声波探伤、射线探伤、磁粉和渗透探伤等的研究已经很成熟,但仍存在高空、地下架设等无法满足检测要求的情况,具有一定局限性。

红外热成像无损检测技术的创新性在于使用红外测温的方式,不接触被测物体,不破坏温场,以热图像的形式直观准确的反映物体的二维温度场分布,使材料表面下的物理特性通过其表面温度变化反映出来。近几年红外无损检测技术飞速发展,已经成为传统检测方式如激光、超声等技术的补充及替代。该技术也可以与其他检测方式相结合以提高检测的精确度及可靠性。与传统的检测方式相比,该技术的特点如下:

(1)适用范围广,可检测金属及非金属材料;

(2)测量结果的可视性,可以通过图像显示测量结果:

(3)非接触式测量,不会对物体造成污染:

(4)检测面积广,可对大型设备进行整体观测;

(5)检测设备携带方便,适用于现场在线检测;

(6)检测速度快。

一、 红外热成像无损检测原理

(一)基本原理

红外热成像无损检测技术是根据红外辐射的基本原理,通过红外辐射的分析方法对物体内部能量流动情况进行测量,使用红外热成像仪显示检测结果,对缺陷进行直观上的判定。此方法以热传导理论和红外热成像理论为基础。当物体的温度与环境温度存在差异时,就会在物体内部产生热量的流动。如果向该物体注入热量,其中一部分热流必然向内部扩散,使物体表面的温度分布发生变化。

1、对于无缺陷的物体,当热流均匀注入时,热流能够均匀的向内部扩散或从表面扩散,因而表面的温度场分布也是均匀的;

2、当物体内部存在隔热性缺陷时,热流会在缺陷处受阻,造成热量堆积,导致表面出现温度高的局部热区;

3、当物体内部含有导热性缺陷时,物体表面就会出现温度较低的局部冷区。

由以上三种情况可看出,当物体内部存在缺陷时,就会在物体有缺陷区和无缺陷区形成温差。且该温差除了取决于物体材料的热物理性质外,还与缺陷的尺寸、距表面的距离及它的热物理性质有关。由于物体局部温差的存在,必然导致红外辐射强度的不同,利用红外热像仪即可检测出温度的变化状况,进而判断缺陷的情况。

(二)检测理论依据

1、红外热成像理论

高于绝对温度零度的任何物体都会不停地向外界发射电磁波,红外热成像无损检测技术是建立在电磁辐射和热传导理论基础上的一门无损探伤技术。根据物体辐射的特点可以将物体分为绝对黑体和灰体两类,被检测物体辐射都属于灰体辐射。灰体辐射总辐射强度等于同一温度黑体的总辐射强度乘以灰体的发射系数,即灰体辐射满足斯蒂芬波尔兹曼定律。

(1)

式中―灰体发射系数

―斯蒂芬波尔兹曼常数

―物体辐射强度

―物体绝对温度

红外热成像无损检测技术正是利用这个公式,通过红外热像仪接收来自物体的辐射,从而测定物体表面的温度场分布,然后根据温度场的异常分布情况来识别物体内是否存在缺陷。因此,物体具有不同的温度和发射系数,红外热像仪接受来自物体的辐射,便可测定物体表面的温度场分布。

2、热传导理论

热量从物体内温度较高的部位传递到温度较低的部位,或从温度较高的物体传递到与之接触的另一温度较低的物体,此热传递过程称为热传导。物体内部产生导热的起因在于物体各部分之间具有温度差,所以只要确定物体内部温度场,根据傅里叶定律就能确定物体内的热流。

(2)

―单位面积上在温度降低方向上单位时间的热流量

―被测物体导热系数

―被测物体内空间、时间温度分布

上式揭示了热流量与温度之间的关系,对于稳态场和非稳态场都适用。通常用热传导微分方程来描述温度场时空域的内在联系。

(3)

―加载热源项

―被测物体密度

―被测物体比热容

在给定温度梯度的条件下,热流的大小正比于物体的导热系数。因此,在热传导分析中,物体的导热系数是一个很重要的参数,它直接影响物体内热流的大小。各种工程材料的导热系数相差悬殊,最大的是纯金属,最小的是气体和蒸汽,非结晶绝缘体和无机液体的导热系数介于两者之间。

二、检测方式

(一)主动式检测

为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。

(二)被动式检测

被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。

三、总结

红外热成像检测技术不同于常规的检测手段(如射线、磁粉、超声、涡流、渗透等),可以快速扫描,提高检测效率。作为目前较为成熟的检测技术,脉冲红外热成像技术脉冲能量大,单次检测面积大,检测速度快。锁相红外热成像技术所得的位相图不受物体的表面情况等影响。对于深层缺陷,疲劳损伤和微小缺陷可以达到较好的检测深度,同时锁相红外热成像的位相延迟和物体的缺陷深度和锁相频率有关,当知道锁相频率和位相延迟就可以求出缺陷的深度。

在实际应用中,两种技术可以互补使用,对于具体的物体和具体的检测要求可选择不同方案。由于被测物体温度场变化迅速,仪器精度和灵敏度受外界影响较大。而且对仪器的设置、环境和被测物体表面等要求严格,这些因素决定了使用红外热成像无损检测方法后,可使用常规无损检测手段进行复检,以提高检测的正确性。

参考文献:

[1] 梅林,王裕文,薛锦.红外热成像无损检测缺陷的一种新方法[J].红外与毫米波学报,2000.

[2] 王康印.红外检测[M].国防工业出版社,1986

[3] 宗明成,全宏庆.红外热成像无损探伤技术的应用研究[J].北方交通大学学报,1993.

[4] 王迅,金万平,张存林.红外热波无损检测技术及其发展[J].无损检测,2004.

[5] 程玉兰.红外诊断现场使用技术[M].机械工业出版社,2002.

[6] 杨黎俊,耿完祯.红外热像检测中的缺陷大小评估[J].无损检测,1999.

无损检测技术论文篇3

关键词:建筑工程;检测技术;发展特点

中图分类号:TU7文献标志码:A文章编号:2095-2945(2018)06-0057-02

工程檢测在建筑工程中的重要行主要体现在提高工程质量和保障施工安全两个方面,与此同时其还能够保障相关监督工作落实到位。近年来,我国建筑行业发展速度不断加快,大量的新型材料被应用与建筑工程中,在此基础上,工程检测技术的发展进程不断加快,目前我国工程检测技术种类十分丰富。而所谓的工程检测技术其存在的主要目的是利用相关手段来对工程的施工质量进行测试,并为工程建设提供可靠的技术依据。基于此可以看出,工程检测技术的发展水平也在一定程度上影响着建筑行业工程的发展水平。

1研究现状

伴随着我国建筑工程行业的迅猛发展,工程检测技术随之日益丰富化、创新化,检测技术水平不断提升。我国学术界对于建筑工程检测技术的发展进行了诸多研究,且研究硕果累累。解国梁、申向东等人(2011年)在文章《红外热像技术及其在建筑工程无损检测中的应用》中着重分析了红外热像技术的应用原理,指出物体表面发热率、大气的吸收、背景的辐射都会对红外热像测试精度产生一定程度的影响,在此基础上,从建筑节能是否达标、外墙饰面砖粘结质量是否良好、屋面、墙体是否有渗漏、受潮现象,混凝土表面是否存在缺陷等方面探讨了红外热像检测技术的具体应用。何忠华(2012年)在论文《浅谈桩基检测技术在建筑工程中的应用》中认为桩基工程是建筑工程的基础,直接关系到建筑工程质量,对桩基检测是控制建筑工程质量的重要手段,并提出桩基低应变、桩基高应变、单桩复合地基静荷载三种桩基检测技术,最后基于其多年在工程现场检测中的经验对桩基检测做出了详细总结,他指出,在桩身抗阻多变时,以低应变桩基检测技术对桩身完整性进行检测局限性较大,很难对桩身进行全面测量,检测结果的准确性有待考量。并提出高应变在获取相关参数后,可精准检测出桩基单桩载荷能力,该方法是桩基检测中最为快捷有效的方法。通过对我国建筑工程检测具体案例的分析,笔者了解到近年来,在我国建筑工程检测中应用最广泛的当属无损检测技术。例如,张亚峰(2014年)在《无损检测技术在既有建筑工程中的应用》一文中,分别论述混凝土强度无损检测与钢结构无损检测,其中混凝土检测主要利用声波法、回弹法、探地雷达法、综合法四种检测方法;钢结构检测主要利用磁粉、渗透、超声波三种方法进行检测。最后提出,为进一步提升无损检测精度,可建立更为完善的检测体系,加强检测过程的全程监控。另外,扩大检测范围与内容,实现对建筑结构的综合检测,从而有效确保的建筑结构的安全性与可靠性。

近年来,我国学者在建筑工程检测上进行了多方位的理论研究与实践探索,但伴随着建筑工程行业的飞速发展,建筑工程检测仍需不断完善。本文在分析当前建筑工程检测特点出发,分析其常用检测技术,提出建筑工程检测的未来发展趋势。

2我国建筑工程检测技术现状

工程检测主要有检测工程建设中材料、施工质量以及工程使用功能的水平等内容,随着检测技术在建筑行业中的不断应用和革新,我国建筑检测技术发展速度加快,检测技术种类不断增加,但是这些检测技术在应用过程中都或多或少的存在一些问题。而导致这一现象的主要原因在于我国建筑检测工作中并没有建立一个相对完善统一的检测标准来规范检测工作,这对于检测技术的发展而言是一大阻碍。目前,建筑检测技术中无损检测技术的应用可以说是检测行业中最新的突破,随着无损检测技术应用范围的不断扩大,其逐渐成为了检测行业未来发展的主要趋势。但是现有的技术并不能完全满足建筑工程发展的需求,还需要对相关技术进行完善和发展。例如,在实践过程中,对工程检测技术中存在的问题进行深入的分析,并提出针对性的改善措施。总而言之,我国工程检测技术虽然得到了一定的发展,但是其依然存在一定的不足之处,例如缺失相关的法律法规,需要对这方面的问题进行及时的完善。

3建筑工程检测技术发展特点和发展中存在的问题

(1)相比其他国家,我国建筑工程发展的时间比较晚,为了对建筑质量进行更好地评定我国制定了一系列的质量评定规定、施工结构验收、设计规范等标准,然而并没有从原则方面对规范的方法和原则进行规范。(2)目前在工程中最常见的检测方法主要有破损检测、微破损检测以及非破损检测等。其中非破损检测在对检测系数进行判定时并不会对建筑结构产生破坏,且使用方便。其中,利用红外线像技术来检测混凝土的强度,用磁效应来测量钢筋位置和直径。非破损检测技术能够保有建筑原有的结构,应用十分方便,精确度较高,但是由于使用量大,因此会增加工程的成本。而另外两种方法——微破损检测以及非破损检测都会对建筑结构产生一定的破坏,在此基础上它们才能完成检测估计。微破损法在对工程混凝土强度进行检测时,一般采用钻芯法和拉拔法来进行检测;而破坏性检测则是对建筑结构的破坏更大,如果想要不破坏建筑达到检测的目的,就需要对建筑工程进行综合性试验,以试验结果来对检测值进行判定。通常情况下这两种方法会用于局部建筑检测中,这样能够减少资源的浪费。然而这两种方法不仅会破坏建筑结构,同时检测不全面,且由于取样较少,因此精确度也无法与非破损检测法相比。当然随着我国科学技术水平的不断提高,相关检测技术的检测水平也有了明显的提高。(3)就目前我国检测技术发展的现状来看,其中存在的许多的问题,例如检测结构的准确性低,检测工程缺乏相对统一的规范,检测技术研究不深入等。除此之外,检测人员和检测技术管理方面同样存在一定的缺陷,例如检测设备标准不统一,建筑工程检测中的设备质量无法得到保障等。这些问题的存在会给建筑工程的检测带来负面的影响。例如检测过程中使用不合格的检测设备会对检测结果有着直接的影响,导致检测结构出现误差。随着科学技术的发展,无损检测技术开始廣泛应用于过程检测技术中,这种技术不仅能够提高检测的精确度,同时还能将对建筑结构的破坏降至最低。

4建筑工程的主要检测方法

(1)红外热像技术。该方法主要依靠红外辐射来提高温度使得分子进行运动,分子运动辐射红外线,倘若被检测对象内部有缺陷或破损,会影响热传导。进而影响被检测对象表面温度分布,而借助红外检测设备则可准确定位被检测对象的缺陷所在。当前工程检测中常用的为检测设备为红外热像检测仪。一般情况下红外热像技术用于检测建筑物的墙体、墙面以及屋顶等地方施工质量。(2)超声波技术。一般情况下,在检测建筑工程中岩石抗压性时会使用该种技术,以此判断岩石的性质,当然检测路面也可以使用超过声波技术来对路面损坏的情况进行了解。在检测路面过程中,要将传感器安装在需要检测的位置,利用超声波算出波速,以此来对检测材料的弹性和抗压程度等情况进行判定。(3)频谱分析技术。该种技术主要是通过频率来进行检测。例如在检测路面时,会对路面施加垂直力,并让频率在路面上扩散,通过调整锤头和锤重量的方法来获取频率信号,通过不同部位传感器上的数据和相关进行来计算出介质的力学参数。(4)路用雷达检测技术。在公路检测、管线检测以及水库检测时常常会用到路用雷达检测技术,其主要的工作原理为在检测时将电磁波发送到低下,通过电磁波遇到介质所反馈的信息可以了解相关的数据,如位置和结构等信息。路用雷达检测技术在工程检测中常常会在地面工程检测中使用。

5建筑工程检测技术的发展前景

随着我国科学技术水平的不断提高,我国检测技术的种类逐渐丰富,其中无损检测技术是其中主要的发展趋势,其使用范围不断扩大。无损检测技术之所以能够受到广泛的欢迎,是因为无损检测技术既不会对建筑结构产生破坏,同时还能应用于各种工程建筑中,应用范围十分广泛。目前,我国对无损检测技术的研究还在继续,也在一定程度上推动了无损检测技术的发展。在研究的过程中,理论和实际相结合的科学研究可以更好地推动无损检测技术的发展,并且随着网络技术的发展,也为无损检测技术的发展和推广提供了一定的条件,但是无损检测技术在不断发展的同时一些问题也开始逐渐显现出来。随着无损检测技术的发展,相关的检测设备为了满足该技术的使用要求,相关企业需要投入大量的资金购买相关的检测设备。同时为了确保工程检测的质量,相关的标准和规范也需要进一步完善,以此来提高检测的整体水平。最后,检测人员是否履行自身的监督职责对于工程检测质量而言,有着十分重要的意义,因此企业在不断提高自身检测水平的同时,还需不断培养相关检测人员的整体水平,确保相关工作落实到位,从根本上保障建筑工程的整体质量。

无损检测技术论文篇4

【关键词】射线检测,复合材料,无损检测

中图分类号:TU761.1+4 文献标识码:A文章编号:

前言

随着近代高新技术的发展,对材料性能要求的日益提高,单质材料很难满足性能的综合要求和高指标要求。因此复合材料凭借其优良的性能得到了广泛的开发和利用,成为了很多行业的优选关键材料。为了保证工程的质量必须要保证使用的复合材料的质量,这给复合材料的无损检验提出了更多更高的要求,如何提高无损检验技术也就成为了复合材料能否更多的被广泛应用的关键,从目前的情况来看,复合材料的无损检测技术有很多种,其中,射线检测是比较重要的一种,射线检测在工业产品的结构测量、缺陷监测和损伤评价等方面都得到了比较广泛的应用,在现代复合材料的无损检测中发挥着重要的作用,占据着重要的地位。

射线检测法在复合材料无损检测中的应用

X射线照相检测法

这种检测方法已经广泛的应用于工业检测领域,与现在的检测技术来说,是应用比较早的检测技术,是最传统的无损检测方法之一,其基本原理在于,通过射线来穿过不同的材料,因为材料的性质不同,射线在经过材料时的衰减量也是不一样的,从而射线的透射强度也是变化的,在胶片上就会呈现出明暗变化不同的影像,通过观察这些影像得到检测结果。针对X射线照相检测法可以检测到的材料的缺陷问题,倾向性的观点是可以发现夹杂物、气孔,而不能发现垂直于射线方向分布的脱粘和裂纹。X射线照相检测法的优点是成本低,易操作;其局限性为效率低,缺陷(裂纹)的方位是决定性的,要求与射线平行。

2、X射线实时成像检测法

随着生产规模的扩大和对复合材料质量的更高要求,早期的检测方法已经不再适用于材料的无损检测,它的可靠性和效率都已经不再适用新的要求,X射线实时成像检测法就是比传统检测方法更进一步的无损检测法,它的基本原理是利用X射线的特性,即穿透物体的时候,会因为物体的吸收及散射的原因产生衰减,从而在荧光屏上通过特殊的图像增强器会形成与物体内部想对应的图像,然后在通过摄像设备把图像转化成视频信号,然后输出,通过计算机的数字图像处理技术,对输出的视频信号进行分析,从而得到结果。这种检测法的优点就在于对材料的缺陷可以进行在线检测,检测结果自动生成,检测效率较高。其缺点在于,

通过这种检测方法得到的图像样品是层叠的影像,不利于观看和分析,缺陷的影像也是累积的,而不是三维的空间影像信息。现在已经发展的主要成像系统有:数字实时成像系统、荧光屏成像系统、图像增强器成像系统等。

射线计算机断层扫描检测法

此种检测方法是起源于前面提到的第一种方法,与第一种方法的不同之处在于,它的区别在于采用的是圆锥状射线,检测原理在于通过准直设备将圆锥状射线变成面状或线状扫描束,从而对射线穿过的物体的某一个断面扫射,得到一个断面的图像,通过分析每一层断面的图像就可以得到详细的检测结果,达到检测目的。

4、X射线断层形貌成像检测法

X射线断层形貌成像检测法的基本原理是利用样品散射的空间探测来描述材料的内部特征,从而通过分析,得到检测结果。这种检测法是X射线散射和图像成像的优点进行了结合的检测法,可以对材料机械性能的关系、晶体的界面面貌组织,尺寸进行研究,并且可以对微观的细小的损失进行分析。它具体的可以分为大、小角度X射线散射方法,大角度的X射线散射是无能量转变的弹性散射,对结构比较小的分子和原子结构能够快速反应。而小角度的X射线散射则是传统的一种对胶体、生物和聚合物进行研究的工具,也可检测纤维转向。

5、X射线康普顿散射成像检测法

康普顿散射成像检测技术采用散射线成像,射线源与检测器位于物体的同一侧,其技术上的显著特点是单侧几何布置。具有层析功能,一次可以得到多个截面的图像,也可得到三维图像。在理论上图像的对比度可达到100%。其局限性为,由于康普顿散射成像检测技术采用散射线成像,因此它主要适于低原子序数物质且位于近表面区厚度较小范围内的缺陷检测,通常它适宜检验的物体表层厚度区是:钢约为3ram,铝约为25ram,塑料和复合材料约为50ram。在应用时必须考虑基体材料和缺陷对射线的散射差别、检验要求的分辨力和成像时间。

6、中子射线照相检测法

中子照相检测法的基本原理是,通过准直器将中子源发射出的中子束射到被检验的物体上,因为不同的物体对中子的衰减系数是不同的,所以检测器记录到的已经投射形成的中子束分布图像就是不均匀的,通过分析这些图像,就可以对物体内部的杂质和缺陷有清晰的了解,与以前的R或X射线不同的是,中子射线照相检测法还可以对放射性的物质进行检测,并且可以对金属中的一些低原子序数物质进行检验,对同一元素的不相同的同位素也可以进行区分,这种检测法的缺点在于,中子源的价格昂贵,所以检测耗费就比较贵,中子的安全防护也是必须要特别注意的问题。

三.结束语

综上所述,目前已有多种射线检测技术应用到复合材料无损检测中,获得了较好的结果,对复合材料制备过程的质量控制及其产品的质量评价等起到了至关重要的作用。提高了复合材料的使用可靠性,同时也为复合材料结构设计提供了更多的选择机会。随着复合材料设计水平的不断提高和新制备方法的应用,将会有越来越多性能优良的复合材料被开发利用。

参考文献:

[1]徐丽 张幸红 韩杰才 航空航天复合材料无损检测研究现状(被引用 8 次)[期刊论文] 《材料导报》 2005年8期

[2]苏新彦 韩焱 微波在无损检测技术中应用 [会议论文]- 2005年全国射线检测技术及加速器检测设备和应用技术交流会

[3]吴斌斌 邬冠华 铝基复合材料无损检测研究进展 [期刊论文] 《无损探伤》 -2012年1期

无损检测技术论文篇5

[论文摘要]介绍当前压力容器制造和使用过程中所采用的无损检测技术,包括射线、超声、磁粉、渗透等常规技术和声发射、磁记忆等新技术,并论述他们的工作原理、优缺点和应用范围。

一、引言

随着现代工业的发展,对产品质量和结构安全性,使用可靠性提出越来越高的要求,由于无损检测技术具有不破坏试件,检测灵敏度高等优点,所以其应用日益广泛。目前对压力容器的检测方法有多种,本文主要介绍无损检测的常用技术如射线、超声、磁粉和渗透及新技术如声发射、磁记忆等。

二、无损检测方法

现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构,性质,状态进行检查和测试的方法。

(一)射线检测

射线检测技术一般用于检测焊缝和铸件中存在的气孔、密集气孔、夹渣和未融合、未焊透等缺陷。另外,对于人体不能进入的压力容器以及不能采用超声检测的多层包扎压力容器和球形压力容器多采用Ir或Se等同位素进行γ射线照相。但射线检测不适用于锻件、管材、棒材的检测。

射线检测方法可获得缺陷的直观图像,对长度、宽度尺寸的定量也比较准确,检测结果有直观纪录,可以长期保存。但该方法对体积型缺陷(气孔、夹渣)检出率高,对体积型缺陷(如裂纹未熔合类),如果照相角度不适当,容易漏检。另外该方法不适宜较厚的工件,且检测成本高、速度慢,同时对人体有害,需做特殊防护。

(二)超声波检测

超声检测(Ultrasonic Testing,UT)是利用超声波在介质中传播时产生衰减,遇到界面产生反射的性质来检测缺陷的无损检测方法。

超声检测既可用于检测焊缝内部埋藏缺陷和焊缝内表面裂纹,还用于压力容器锻件和高压螺栓可能出现裂纹的检测。

该方法具有灵敏度高、指向性好、穿透力强、检测速度快成本低等优点,且超声波探伤仪体积小、重量轻,便于携带和操作,对人体没有危害。但该方法无法检测表面和近表面的延伸方向平行于表面的缺陷,此外,该方法对缺陷的定性、定量表征不准确。

(三)磁粉检测

磁粉检测(Magnetic Testing,MT)是基于缺陷处漏磁场与磁粉相互作用而显示铁磁性材料表面和近表面缺陷的无损检测方法。

在以铁磁性材料为主的压力容器原材料验收、制造安装过程质量控制与产品质量验收以及使用中的定期检验与缺陷维修监测等及格阶段,磁粉检测技术用于检测铁磁性材料表面及近表面裂纹、折叠、夹层、夹渣等方面均得到广泛的应用。

磁粉检测的优点在于检测成本低、速度快,检测灵敏度高。缺点在于只适用于铁磁性材料,工件的形状和尺寸有时对探伤有影响。

(四)渗透检测

渗透检测(PenetrantTest,PT)是基于毛细管现象揭示非多孔性固体材料表面开口缺陷,其方法是将液体渗透液渗入工件表面开口缺陷中,用去除剂清除多余渗透液后,用显像剂表示出缺陷。

渗透检测可有效用于除疏松多孔性材料外的任何种类的材料,如钢铁材料、有色金属材料、陶瓷材料和塑料等材料的表面开口缺陷。随着渗透检测方法在压力容器检测中的广泛应用,必须合理选择渗透剂及检测工艺、标准试块及受检压力容器实际缺陷试块,使用可行的渗透检测方法标准等来提高渗透检测的可靠性。

该方法操作简单成本低,缺陷显示直观,检测灵敏度高,可检测的材料和缺陷范围广,对形状复杂的部件一次操作就可大致做到全面检测。但只能检测出材料的表面开口缺陷且不适用于多孔性材料的检验,对工件和环境有污染。渗透检测方法在检测表面微细裂纹时往往比射线检测灵敏度高,还可用于磁粉检测无法应用到的部位。

(五)声发射检测

声发射(Acoustic Emission,AE)是指材料或结构受外力或内力作用产生变形或断裂,以弹性波形式释放出应变能的现象。而弹性波可以反映出材料的一些性质。声发射检测就是通过探测受力时材料内部发出的应力波判断容器内部结构损伤程度的一种新的无损检测方法。

压力容器在高温高压下由于材料疲劳、腐蚀等产生裂纹。在裂纹形成、扩展直至开裂过程中会发射出能量大小不同的声发射信号,根据声发射信号的大小可判断是否有裂纹产生、及裂纹的扩展程度。

声发射与X射线、超声波等常规检测方法的主要区别在于它是一种动态无损检测方法。声发射信号是在外部条件作用下产生的,对缺陷的变化极为敏感,可以检测到微米数量级的显微裂纹产生、扩展的有关信息,检测灵敏度很高。此外,因为绝大多数材料都具有声发射特征,所以声发射检测不受材料限制,可以长期连续地监视缺陷的安全性和超限报警。

(六)磁记忆检测

磁记忆(Metal magnetic memory, MMM)检测方法就是通过测量构件磁化状态来推断其应力集中区的一种无损检测方法,其本质为漏磁检测方法。

压力容器在运行过程中受介质、压力和温度等因素的影响,易在应力集中较严重的部位产生应力腐蚀开裂、疲劳开裂和诱发裂纹,在高温设备上还容易产生蠕变损伤。磁记忆检测方法用于发现压力容器存在的高应力集中部位,它采用磁记忆检测仪对压力容器焊缝进行快速扫查,从而发现焊缝上存在的应力峰值部位,然后对这些部位进行表面磁粉检测、内部超声检测、硬度测试或金相组织分析,以发现可能存在的表面裂纹、内部裂纹或材料微观损伤。

磁记忆检测方法不要求对被检测对象表面做专门的准备,不要求专门的磁化装置,具有较高的灵敏度。金属磁记忆方法能够区分出弹性变形区和塑性变形区,能够确定金属层滑动面位置和产生疲劳裂纹的区域,能显示出裂纹在金属组织中的走向,确定裂纹是否继续发展。是继声发射后第二次利用结构自身发射信息进行检测的方法,除早期发现已发展的缺陷外,还能提供被检测对象实际应力---变形状况的信息,并找出应力集中区形成的原因。但此方法目前不能单独作为缺陷定性的无损检测方法,在实际应用中,必须辅助以其他的无损检测方法。

三、展望

作为一种综合性应用技术,无损检测技术经历了从无损探伤(NDI),到无损检测(NDT),再到无损评价(NDE),并且向自动无损评价(ANDE)和定量无损评价(QNDE)发展。相信在不员的将来,新生的纳米材料、微机电器件等行业的无损检测技术将会得到迅速发展。

参考文献

[1]魏锋,寿比南等. 压力容器检验及无损检测:化学工业出版社,2003.

[2]王自明.无损检测综合知识:机械工业出版社,2005.

[3]沈功田,张万岭等.压力容器无损检测技术综述:无损检测,2004.

[4]林俊明,林春景等.基于磁记忆效应的一种无损检测新技术:无损检测,2000.

无损检测技术论文篇6

关键词:建筑工程; 技术; 问题; 方法

中图分类号:TU198文献标识码: A

一、建筑工程阶段发展特点和问题

我国建筑工程发展相对比较晚,直到二十世纪七十年代中期,《建筑安装工程质量检测评定标准》(TJ321-76)的出台,加之以前施工项目所参与的钢筋混凝土结构施工验收规范及设计规范,共同形成相对完善的结构性能检测标准,直到目前也没有具体原则上改变该规范的方法和原则。

建筑工程常用的检测主要包含非破损检测,微破损检测,破损检测和构性试验。非破损检测坚持“不破坏原有的结构”方法,通过对原有物理量的测量来判断所需要的相关检测系数,这种检测方法优越性在于实施起来相对比较方便,能保持原有物理结构,例如在对混凝土强度测量中,可以直接采用红外线像和表面硬度量测来进行,而钢筋位置和钢筋直径的大小则直接可以根据磁效应来断定。非破损检测还具有精确度强的优点,非破损检测的缺点在于检测过程中样本取样要尽可能的大,人力物力比较耗费。主要有的方法为:回弹法、红外线法,雷达法和桩基动测等等;微破损检测和非破损检测相反,需要对被检测的结构进行轻度破换,进行取样,已完成检测目标值的估计,微破损检测的优点在于可以对单个结构和某个局部建筑工程进行检测,减少了人力物力,但是其缺点也显而易见,一是对原有物理结构的轻微破坏,二是项目检测的结果只能适应于局部,要强全面检测,这需要多角度的实施该检测方法,第三是,微破损检测选择的样本不能太多,其检测准确性比非破损检测一般说来要低,微破损检测方法主要有钻芯法检测混凝土的强度,以及拉拔法检测混凝土强度;破坏性检测和结构性实验,是需要在原建筑物本位上,或者直接取用下来,进行相关的测验,他的操作过程中不排除对原有建筑物结构进行破怀,也可以不进行破坏直接进行一定程度的综合性实验,根据实验结果得到建筑工程的综合性能,以判断检测期望的参数值,破坏性检测间和结构性实验相对比较以上两种检测优缺点参半。

在具体工程检测上,非破损和微破损检测方法的标准少之又少,检测方法仅仅限于说明书上,实验性能很差,实际操作中准确性差,直到 20 世纪八十年代后,建筑设计方法改变,实验增加,再次基础上了一些标准,如指令性标准 TJ321-1996,JG23-2001,GBJ129-90 等;由中国工程建设标准化委员会推荐的标准《超声回弹综合法检测混凝土强度技术规程》,《钻芯法检测混凝土强度技术规程》,《静力触探技术标准》,《超声法检测混凝土缺陷技术规程》,《后装拔出法检测混凝土强度技术规程》等。到此随着检测标准的不断发展,工程检测技术也不断完善起来。

总体来说目前工程检测技术相对还是不完善的,很多检测领域和实施规范都未有立法,系统研究不足,首先表现在检测结果和判定中缺乏理论的支持,检测中间参数结果不能明确,导致工程检测处理的随意性。其次,对基本设备,人员和技术管理上,没有标准,很多设备往往是不合格的。还有,检测中的产品的负面破坏不能严格把握,例如取芯钻机没有明确的规定,检测中把打洞的钻芯用于检测,可能导致错误的结果,检测中震动对检测结果也会有影响。随着科学技术的发展,目前的建筑工程越来越倾向于首先发展非破损检测技术,这主要是基于电、磁、声、射线等学科和技术发展的完善。

二、建筑工程常用的方法

(1)红外热像技术。建筑工程的红外检测技术一种利用红外辐射对建筑物工程进行检测和测量的专门技术,他的原理是温度在绝对零度以上的物质会产生分子运动,而分析运动过程中会辐那个射出红外线,如果物质内部存在或者缺陷,其特征将会使得热传导发生改变,从而造成物质表面温度分布不同,通过利用红外检测设备可以确定物体的缺陷部位,目前在建筑工程上主要使用红外热像检测仪。用于建筑物墙体剥落、空鼓、墙体及屋面渗漏。房屋保温气密性、火灾混凝土损伤、碳纤维加固质量等领域。

(2)超声波无损检测技术。超声波在建筑成功领域被用于检验岩石的抗压强度已经判断岩石性质。他的原理是,超声波传输过程中也服从波的传播规律,在路面检测时,首先发射超声波到材料介质,通过接受反射波的相关技术系数指标,判断路面损耗情况。在路面检测时,在被检测区域不同位置设立传感器,通过对超声波传播的时间、速度和位移变化计算出超声波波速,利于波速和介质的参数关系测定材料的弹性、抗压强度和折压能力,并也可以检测介质的缺陷。

(3)频谱分析检测技术。频谱分析检测技术是利用了在不同的建筑工程介质中传播表面波的频率。在路面施加一垂直力,就可以形成一个振源,并以振源为中心沿着地表深度向四周扩散。通过调整力锤重量或不同的锤头可以获得含有各种频率成分的瑞雷面波信号,在不同位置设置传感器可以检测到波传播的频率,借助于频域的互谱分析和相干分析技术,可以达到测试不同深度分层介质力学参数的目的。

(4)路用雷达检测技术。探地雷达是一种利用高频电磁波进行地下结构体探测的高科技术,被广泛地应用于公路质量检测、地下管线探测、水库大坝状况检测、岩溶地质勘探等领域。路用雷达检测技术是利用电磁波发射到地下,当电磁波遇到不同介质的结果层,就会将一部分脉冲波能量反射回地面,可以根据反射回波的速度、时间、波幅与波形,得到目标

介质的空间位置和结构。目前雷达在地面建筑工程检测中应用广泛。

三、建筑工程技术展望

根据以上建筑工程检测技术发展特点,以及技术优缺点分析,无损检测技术在以后的建筑工程中将应用比较广泛,并具有发展潜力。无损检测技术是多学科综合的一门应用技术,是建立在基础学科的基础之上的,他在不影响原来建筑项目结构和性能的前提下,通过对原有物理量的量测进行检测,在工程建筑项目中比较受到适应,无损检测技术的发展是多个学科相互密切结合的发展的结果。

无损检测技术论文篇7

英文名称:Nondestructive Testing

主管单位:中国科学技术协会

主办单位:中国机械工程学会;上海材料研究所

出版周期:月刊

出版地址:上海市

种:中文

本:大16开

国际刊号:1000-6656

国内刊号:31-1335/TG

邮发代号:4-237

发行范围:国内外统一发行

创刊时间:1978

期刊收录:

核心期刊:

中文核心期刊(2004)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

期刊简介

《无损检测》(月刊)创刊于1979年,是中国机械工程学会与上海材料研究所主办、中国科协主管的应用类技术刊物,全国无损检测学会会刊,学会对外交流指定用刊。《无损检测》被列为全国中文核心期刊(2004年版),首批中国科技论文统计源期刊,中国科技核心期刊,中国科学引文数据库来源期刊,Ei Page One和РЖ收录期刊,中国学术期刊(光盘版)和中国期刊网收录期刊,被俄罗斯《文摘杂志焊接》、中科院科学技术文摘《中国光学与应用光学文摘》和《机械制造文摘焊接分册》收录,被列为《计量测试文摘》的核心期刊。

无损检测技术论文篇8

关键词:桥梁检测光纤传感无损检测传感器声发射超声检测探底雷达红外检测

中图分类号:K928.78 文献标识码:A 文章编号:

0引言

随着我国公路建设事业的飞速发展,公路桥梁作为公路工程的重要组成部分,其使用过程的平稳性和安全性是公路交通的关键。近年来,我国的桥梁建设水平逐步提高,桥梁的建设质量也得到了充分的保障。但是在长期的自然环境和荷载作用下,桥梁的结构和构件会产生一定的损坏现象。公路桥梁的检测工作是桥梁养护和维修的重要依据,也是保证桥梁正常使用的基本前提。桥梁的无损检测技术可以在不影响桥梁结构和构件性能的前提下,对桥梁的损伤情况和运营状况进行诊断和评估,从而为桥梁养护与维修方案的制定提供科学依据。

无损检测技术特点及内容

桥梁无损检测技术一般指在不影响桥梁结构的正常使用或结构构件性能的基础上,采用非破坏性手段,通过检测桥梁的某些物理指标以来判定结构或构件性能是否发生改变的检测方法 相比较于其它的一些常规检测方法,无损检测技术具有一下特点和优势

(1) 属于非破坏性试验,对结构或构件的受力( 正常使用) 性能不产生任何影响

(2) 可经行全方位检测,无需二次修复处理,检测方法经济实用,快捷方便

(3) 可对混凝土构件内外部缺陷( 孔洞开裂碳化和钢筋锈蚀等) 进行全面检测

(4) 可用于大型建筑或使用年限已很长的危险建筑进行检测和鉴定

(5) 检测仪器简单,易操作

桥梁无损检测的常规内容有: 混凝土的强度局部缺陷( 孔洞开裂等) 检测; 内部钢筋的数量位置保护层碳化及钢筋锈蚀情况的检测; 混凝土裂缝开展情况及其它耐久性指标检测; 桥梁结构变形的常规性检测.

无损检测技术

传统的无损检测技术得到了较大的发展,目前已有光纤传感检测技术、超声检测、探底雷达检测技术、声发射、红外检测、声发射、等。

光纤传感检测技术

此项技术通过利用光纤对某些物理量的特殊敏感性,将不可度量的外部物理量转化成可以直接进行测量的光纤信号技术。光纤应检测技术与传统技术相比具有不受环境因素的限制,绝缘耐高压耐腐蚀,能在各种复杂的环境下良好运行,还 具 有 体 积 小,重 量轻,可做成任意形状的传感器阵列精 度 高实 用 性 强 等 优点,但是价格因素一直是困扰此项技术高速发展的绊脚石。光纤传感器主要用于:桥梁结构的施工监测、既有桥梁结构的工作性状监测、服役时间较长的桥梁结构的损伤检测。

超声波检测技术

原理:① 超声脉冲波在混凝土中遇到缺陷时产生绕射,可根据声时及声程的变化,判别和算缺陷的大小;② 超声脉冲波在缺陷界面产生散射和反射,到达接收换能器的声波能量(波幅)显著减小可根据波幅变化的程度判断缺陷的性质和大小;③ 超声脉冲波中各频率成份在缺陷界面衰减程度不同,接收信号的频率明显降低,可根据接收信号主频或频率谱的变化分析判别缺陷情况;④ 超声脉冲波通过缺陷时,部分声波会产生路径和相位变化,不同路径或不同相位的声波叠加后,造成接收信号波形畸变,可参考畸变波形分析判断缺陷。

此项技术应用瞬间应力波原理为技术依托,通过在结构便面使用器物发生瞬间的机械撞击以产生低频率应力波,并记录传导至结构内部,经断点或接触面反射回来的低频波然后通过对记录的波进行分析,可以较为准确的知道结构内部是否产生损伤,或者损伤的位置,甚至可以大体得知结构内部损伤的大小等信息 由于是通过电波来检测,因此超声波检测技术一般用于桥梁结构的梁板柱及光管混凝土的内部裂缝检测和维护。

探底雷达检测技术

探底雷达技术是利用高频的电磁脉冲波通过宽频带脉冲的形式作用到检测体,根据波在传导过程中所遇介质的不同,对回收波进行分析研究的一种新型检测方法它不仅能准确定位损伤的形状 深度和大小,而且由于操作方面,可以进行大面积区域的检测。 此项技术目前主要用于桥梁面层厚度,基础密实度,含水量和挡土墙的损伤缺陷检测。

声发射( AcousticEmission, 简称AE)

通常桥梁的结构在受到长期荷载作用后,容易发生类似于塑性变形、裂缝等破坏性损伤。这种损伤会不同程度的释放出声波能量,根据这种现象研制的声反射检测器,可以有效的对处于荷载状态下的桥梁材料进行监测和预警; AE技术是根据结构内部发出的应力波来判断内部损伤程度的一种新型动态无损检测方法。它可以在构件或材料的内部结构、缺陷或潜在缺陷处于运动变化的过程中进行检测。

红外热像仪检测技术

红外热像仪可以用于桥面各类病害的检测工作,它是利用红外摄像机所生成的桥面温度图像,来测定混凝土裂层上的热点。混凝土层面上如果存在裂层,这种较薄的充满空气的裂层对温度起到了绝热的作用,就会使其上的混凝土温度快速上升。通过红外热像仪便可把热点的红外辐射转化成图像,从而直观地观察到桥面的温度分布,达到混凝土内部和表面结构的检测目的。红外热像仪具有检测速度快、稳定性高、轻巧灵便等特点。

结论

无损检测技术在桥梁的养护、维修和改造上,发挥了不可忽视的重要作用。虽然我国桥梁的无损检测技术取得了一定的成果,但大多的技术都是由国外引进,要进一步的推广还需要时间。我们必须结合我国国情不断的对技术进行开发和创新,使无损检测技术在我国有更大的发展空间,也为我国的桥梁工程质量提供技术保证。

参考文献

[1] 张俊平.桥梁检测.北京:人民交通出版社,2002,9.

[2] 王建华,孙胜江.桥梁工程试验检测技术.北京:人民交通出版社,2004,11.

[3] 毕卫红,郎利影.光纤传感技术在桥梁检测中的应用[J].研究与开发,2002(6).

[4] 潘松林,张红阳.公路桥梁检测概述[J].城市道桥与防洪,2003(5).

无损检测技术论文篇9

关键词:建筑工程;检测技术;发展特点

中图分类号:TU74 文献标识码:A

1 概述

为确保建筑工程检测活动顺利开展,文章就分析了该项检查科技的具体特征,进而便于总结经验。对于检测技术来讲,其也有很多的不利现象,它们的优势和缺陷等无法有效的体现出来,文章分析了建筑项目的具体特征和该项检测工艺的一些要素,进而论述了无损检测工艺的发展方向。

2 项目检测时期的具体特征和面对的不利现象

在我们国家建设项目的发展不是很早,其常用的检测涵盖很多类型,比如非破损检测,微破损检测,破损检测和结构性试验。对于第一种来讲,顾名思义就是说不干扰其原来的构造,经由对之前的要素的测定来分析有关的检测要素,该项检测措施的优点是其便于落实,可以确保之前的构造合理,比如在测定其强度的时候,能够使用红外的热像等来检测,其还有很多的优势,比如精确性非常好。但是它也存在不利点,比如检测时期要做好抽样活动,不但费人力还费物力。关键的措施是:回弹法、红外线法,雷达法和桩基动测等等;第二种措施和上述的是完全不一样的,要靠着一定的轻微的破损来获取意义。它的优势是能够对单一的体系或者是一个部分的项目开展检测活动,其不仅仅不会耗用很多的人力,而且也不需要过多的物质,不过它也存在缺陷,第一,对于问题的构造有一定的影响,第二,该项检测只适合用到部分区域之中,要综合化的发展,因此就要靠着多层次的检测措施来开展。第三,其选取的样本不应该过于繁琐,其精准性不如上一个要素。微破损检测方法主要有钻芯法检测混凝土的强度,以及拉拔法检测混凝土强度;破坏性检测和结构性实验,是需要在原建筑物本位上,或者直接取样下来,进行相关的检验,其操作过程中不排除对原有建筑物结构进行破怀,当然也可以不对结构进行破坏而直接进行一定程度的综合性实验。根据实验结果及检测参数值判断建筑工程的综合性能。破坏性检测和结构性实验相对比较以上两种检测方法优缺点参半。

总体上来讲,项目检测工艺发展的还不是非常的优秀,许多的检测氛围中都没有相关的立法活动,体系的探索不是很好,第一,检测信息中不具有理论信息作为前提,检测中的信息混乱,使得检测活动的处理非常的无序。第二,对常见的装置和工作者以及技术管控来讲,其不具有标准,很多的装置一般都是不达标的。除此之外,检测要素的负面影响无法积极的掌控。

由于科技高速的前进,此时的建筑项目会不断的朝着非破损的方向进步。其关键是以电磁等为前提的。我们国家的该项检测活动也是处在一个发展时期,接下来对于常见的几类检测措施开展比对活动,以此来带动该项检测工艺的进步。

3 使用频率较高的检测措施

3.1 红外热像技术。建筑工程的红外检测技术一种利用红外辐射对建筑物工程进行检测和测量的专门技术,它的原理是温度在绝对零度以上的物质会产生分子运动,而分析运动过程中会辐射出红外线,如果物质内部存在或者缺陷,其特征将会使得热传导发生改变,从而造成物质表面温度分布不同,通过利用红外检测设备可以确定物体的缺陷部位,目前在建筑工程上主要使用红外热像检测仪。用于建筑物墙体剥落、空鼓、墙体及屋面渗漏。房屋保温气密性、火灾混凝土损伤、碳纤维加固质量等领域。

3.2 超声波无损检测技术。超声波在建筑成功领域被用于检验岩石的抗压强度以及判断岩石性质。它的原理是,超声波传输过程中也服从波的传播规律,在路面检测时,首先发射超声波到材料介质,通过接受反射波的相关技术系数指标,判断路面损耗情况。在路面检测时,在被检测区域不同位置设立传感器,通过对超声波传播的时间、速度和位移变化计算出超声波波速,利于波速和介质的参数关系测定材料的弹性、抗压强度和折压能力,并也可以检测介质的缺陷。

3.3 频谱分析检测技术。频谱分析检测技术是利用了在不同的建筑工程介质中传播表面波的频率。在路面施加一垂直力,就可以形成一个振源,并以振源为中心沿着地表深度向四周扩散。通过调整力锤重量或不同的锤头可以获得含有各种频率成分的瑞雷面波信号,在不同位置设置传感器可以检测到波传播的频率,借助于频域的互谱分析和相干分析技术,可以达到测试不同深度分层介质力学参数的目的(梁青林,陈宪庭;2011)。

3.4 路用雷达检测技术。探地雷达(g round penet rating radar, GPR)是一种利用高频电磁波进行地下结构体探测的高科技术,被广泛地应用于公路质量检测、地下管线探测、水库大坝状况检测、岩溶地质勘探等领域。路用雷达检测技术是利用电磁波发射到地下,当电磁波遇到不同介质的结果层,就会将一部分脉冲波能量反射回地面,可以根据反射回波的速度、时间、波幅与波形,得到目标介质的空间位置和结构。目前雷达在地面建筑工程检测中应用广泛。

结语

结合上述的建设项目的检测特征和相关的优势和缺陷的论述,该项检测活动在后续的建设项目中的应用很广,而且有着优秀的发展潜力。该项检测工艺是一项综合性的活动,是设置在基础科学前提之下的,其在不干扰过去的建筑项目构造的背景中,经由对之前的物理要素的分析检测,在项目中会得到积极地发展,该项检测工艺的进步是多项知识共同发展的成就。

由于物理学在不断的进步,同时材料学业获取了显著的意义,多项要素融汇到一起,该项检测科技已经从过去的理论分析中不断的壮大。对于无损检测工艺来讲,要将理论和具体状态的分析放到一起,建立起理论研究与工程应用联系的桥梁,完善现有的方法和开辟新的途径。由于当前的科技高速发展,此时网络也获取了显著的成就,它们都对该项工艺贡献了非常多的力量。不过其还是面对一些不利现象,第一是其应用领域变大,要积极地分析与之协调的检测装置。第二,该项技术的相关规定等要积极的落实,只有这样才可以确保该项检测工艺具有实际的意义,能够更加的精准和稳定。第三,要积极地培养工作者的素养,建筑项目的检测活动是基建活动中非常关键的一个构成要素,不过通过分析当前的状态来讲,其无法合乎建设活动的规定,该项检测活动是一种全新的发展趋势,会获取优秀的成就。

参考文献

无损检测技术论文篇10

关键词:无损检测技术;压力容器;运用

1.前言

无损检测技术是一门新型技术,技术使用主要是压力容器检测。该技术的使用是基于设备检测时,不能影响到设备整体性能的要求而产生。在检测过程中,不会导致设备结构分解,物理外观发生改变,检测准确率高。

2.激光无损检测

压力容器检测方法,方法局限性比较大,应该综合使用,才能使得检测技术得到保障。就当前发展而言,压力容器检测方法非常多,常用的技术主要有超声检测、渗透检测以及磁粉等等。这些检测技术有各自缺陷和优势。激光散斑技术是借助散光斑图分析检测结果,对被检测的物体进行激光处理,有缺陷的位置会出现条纹,从而判断异常存在位置。激光本身能量比较高度集中,单色性较好,在使用时方向性很强。在无线损检测领域,使用的范围逐渐扩大,有激光散斑、激光全熄以及激光超声波等等新技术。激光全息技术的使用,针对的是超声波施加负荷。存在缺陷的位置会出现形变,激光会记录下该形变量,最终的数值同其他材料对比有差异,这就可以判断出材料的特性。激光超声波有着突出优势,最关键的优势是能实现非接触检测,能够避免耦合剂的影响。使用该技术进行检测,可以检测到设备的特性,该检测技术被使用于压力容器焊缝表面检查使用。

3.激光无损检测新技术在压力容器检测中的运用

3.1在压力容器检测中应用低频率电磁技术

低频率电磁技术已经成为压力容器检测最常选择的检测技术,该检测技术借助激发探头设备,在压力容器检测中输入低频率电磁信号。该信号一旦遇到压力容器有缺陷存在时会及时的进行信号反射,信号的原有性会发生改变。使用该技术定位出压力容器缺陷位置,借助回波信号情况,做好定量分析工作。掌握压力容器实际情况,这在进行生产中,保障了生产质量。根据相关调研发现,低频率电磁技术的使用取得了良好成效。该检测技术,一般都会从压力容器表面逐渐深入到内部,一般表面的检测进行中,遇见缺陷时,该技术会快速的定位出病害所在,从而更有力的进一步优化设备生产。这是一种非接触性的检测技术,将其放置容器中进行检测时,不会造成污染,更不会影响检测结果。

3.2磁粉检测技术在压力容器检测中的应用

磁粉检测技术在压力容器检测中的应用方法主要是磁轭法,这种方法操作简单便捷,活动关节磁轭能够对压力容器的角焊缝进行较为深人的检测。在压力容器检测过程中,要对压力容器各个方向上有可能存在的缺陷进行检测,应在同一检测位置进行相互垂直的探伤操作。为了保证检测的精确度,可以将压力容器焊缝划分为多个检测部分,另外,检测时应具备一定的重叠。磁轭检测方法具有多种优点,但也具有一定的局限性。该检测技术存在的最大的缺陷是效率相对较低,在检测过程中会导致漏检问题出现,但是这样的情况在后期检测中是可以避免的。在进行检测时,还可以选择交叉磁轭的方式进行检测,这是压力容器最常选择的检测方法。在检测中,会产生大量的旋转磁场,不过检测灵敏度比较高,整个操作过程简单方便。进行检测时,一旦发现有较大的缺陷粗壮你就爱,会及时定位出来。这样检测技术最常使用于深度较大的部位,但是不合适使用于压力容器角焊缝探测。该检测方法对电压有较高的要求,一般情况下,需要提供380v的电压,如果检测条件有局限时,不能提供要求的电压,该检测方法将不能使用。因此,可以看出该检测方法存在一定的缺陷。该检测方法对于压力容器检测,使用效果比较明显,适应性也比较强。这个方法和与磁轭方法存在一定共性。简单而言,就是进行在压力容器检测时,需要对某个部位进行两次检测,这样才能保障检测的准确率。

3.3激光全息无损检测技术

激光全息无损检测技术被推广使用是在70年代,激光本身尤其独特的其特性性能,因此被推广使用。随着科技水平不断进步,逐渐发展成激光全息、激光超声波技术。这些技术的使用,使得检测更加准确,拓展检测领域新天地。在激光检测领域,激光全息是使用最早的一项技术,也是使用最广泛之技术。根据统计显示,激光全息技术占据技术重要组成部分。其实它的检测原理非常简单,借助对检测物体外加荷载,当检测物体出现形变量时,就可以确定缺陷位置。在未来发展中,激光全息无损检测技术有以下重要发展方面。一,将全息图直接记载在材料上,就可以对图像进行干涉,从而浮现出新的图像。二,在进行图像处理时,要获得更多的干预条纹的实时定量数据。三,选择新的干预技术,例如选择了相移干涉技术,总体使用上,会进一步提升全息技术检测质量。

3.4激光超声无损检测技术

超声检测技术检测成本比较高,安全性比较差,在当前发展中,规模还比较小,属于发展阶段。但是超声检测技术的使用,却有良好的前景。一,可以在高温条件下进行检测,例如进行热钢材在线检测。二,使用于方便面接近的物体检测。例如:放射性样品检测。三,超声波检测可以射到检测物体任何部位。因此,可以使用于检测外形不规则的样品。四,借助超声波可以对超薄样品表面进行检测。在近几年发展中,超声波检测的范围在逐渐扩大。

4.结束语

激光无损检测技术相对于传统检测技术而言,该检测准确率高。使用新技术进行检测,能够准确的定位出容器缺陷所在,从而及时进行调整。压力容器检验对于保证压力容器的正常安全运行具有重要意义,在实际工作过程中应该高度重视压力容器的检测工作。当前压力容器检验过程中还存在着不少问题,这些问题如果得不到有效解决就会严重影响到检验效果。

参考文献:

[1]董世运,刘彬,徐滨士,林俊明.再制造领域中超声无损检测技术的应用及其发展趋势[J].全球华人无损检测高峰论坛