继电保护论文十篇

时间:2023-03-15 14:24:48

继电保护论文

继电保护论文篇1

论文摘要:文章分析了目前变电所存在的各类电磁干扰,讨论了高频保护应采取的抗干扰措施。

高频保护是以输电线载波通道作为通信通道的线路纵联保护。当前随着电网容量的增大、电压的升高,各类电磁干扰现象比较严重。由于输电线路是高频通道的一部分,所以高压的断路器操作、短路故障和遭受雷击等引起的电压,就可能对高频收发讯机产生干扰,导致高频保护误动作。所以,了解各类干扰源,采取相应的抗干扰措施至关重要。

一、干扰源

1、高压隔离开关和断路器的操作。这些操作可能在母线或线路上引起含有多种频率分量的衰减震荡波,母线(或电气设备间的连线)相当于天线,将暂态电磁场的能量向周围空间辐射,同时通过连接在母线或线路上的测量设备直接耦合至二次回路。断路器操作产生的电磁干扰频率一般为0.1~80mhz,每串电磁干扰波的持续时间为10μs~10ms。

由理论分析和实测数据可得出如下规律:①暂态电磁场的幅值随电压等级的增高而增高,主导频率随电压等级增高而降低。②与隔离开关操作相比,断路器操作所引起暂态电磁场的幅值小,主导频率高、脉冲总数少。③快速隔离开关比慢速隔离开关产生的暂态重复频率低、持续时间短。慢速隔离开关一次操作中可能产生上万个脉冲,而快速隔离开关只产生几十个脉冲。

2、雷击线路、构架和控制楼。直接雷击到户外线路或构架,会有大电流流入接地网,二次电缆的屏蔽层在不同的接地点接地时,就会因地网电阻的存在而产生流过屏蔽层的暂态电流,从而在二次电缆的心线中感应出干扰电压,线路感应的过电压也会通过测量设备引入二次回路。由雷击变电所在二次回路中产生的干扰电压可高达30kv,其频率可达几兆赫。

3、短路故障。短路故障与雷击构架一样会引起地网电位的升高,从而在二次电缆中引起干扰电压。变电所内高压母线单相接地时,在二次电缆心线上产生的干扰电压可以从几十伏到近万伏,暂态干扰电压的频率约千赫到几百千赫。

4、靠近高压线路受其工频电磁场作用。这对于电子束类的显示设备产生电磁干扰是十分明显的。在户外变电所中,高压线路或汇流排会产生工频电磁场。一般而言,电压等级越高,产生的电场也越大,但磁场相反减小。

5、局部放电产生频率较高的电磁辐射,可能在电子设备的线路中引起电磁干扰。

6、二次回路中的开关操作。由于感性负载的存在,在二次回路的信号电源端口以及控制端口产生快速瞬变的脉冲干扰。由于电磁电器的大量使用,在二次回路自身工作时会产生中等频率的振荡暂态电压。

二、抗干扰措施

1、通道入口处加装串联电容。高频闭锁式保护的原理是线路本侧收到对侧信号且对侧停信时,由“收讯输出”给出保护动作的一对接点信号,该过程中高频信号存在大约5ms的间断,此间断将作为出口动作的判据。在广州白云供电局所属的某220kv线路曾发生过区外故障时,由于干扰产生间断导致保护误动作的事故,为防止类似情况的发生,应在通道入口处电缆心线内串接0.1μf电容,可有效地起到抗间断作用,取消ybx系列收发讯机线路滤波器输出中的放电管。

2、装置可靠接地。由于变电所的接地网并非实际的等电位面,因而在不同点之间会出现电位差,当较大的接地电流注入接地网时,各点之间可能有较大的电位差,如果同一个连接的回路在变电所的不同点同时接地,地网地电位差将窜入该连通地回路,造成不应有的分流。在有些情况下,还可能将其在一次系统并不存在的地电压引入继电保护装置的检测回路中,或者因分流引起保护装置在故障过程中拒动或者误动,所以对于微机保护装置来说,保护屏必须要求可靠接地,而高频保护也应按部颁要求加装接地铜排或铜绞线(线径不小于100mm2),以保证装置在故障情况下的可靠判断。

3、限制过电压对装置的影响。为防止雷击时产生过电压,可在通道入口处并联适当的电容,由于电容具有两端电压不能突变的性质,当静电感应产生的过电压出现时,首先要向并联电容充电。随着充电过程的进行,副边电压才会慢慢升起来,由于静电感应过电压一般出现的时间都很短,并联电容两端电压(即副边电压)还没有升到足够高时,过电压已消失,这样就能大大限制地电压对高频收发讯机的侵害。

4、高频位置停信加装手合继电器延时闭合接点。当空载线路手动合闸时,由于线路的分布电容,将产生较大的电容电流,此电流有时会达到高频保护的启动值,此时会造成高频保护误动,导致线路合不上断路器。为防止此类现象的发生,可在送电侧断路器保护装置对位置停信略带延时,使位置停信延时停信,所以应将手合继电器的一对常闭接点(延时断开,瞬时闭合)串入装置的位置停信回路中,对装置进行高频保护闭锁。

继电保护论文篇2

在电网正常运行过程中,发现继电保护设备异常的途径主要有以下三个方面:通过日常监盘发现,通过运行巡视、巡检发现,通过专业巡检发现。在发现异常后,调度部门、运行部门、检修部门及专业管理部门之间如何协作、各司其职,并能高效、有效地实现对异常现象的快速响应和处理,是应急管理工作的重点。继电保护应急管理工作流程图如图1所示。

2应急处理和缺陷处理原则

应急处理和缺陷处理是继电保护异常应急管理的核心,因而制定应急处理和缺陷处理原则是本次研究的关键。应急处理原则主要依据网省及地区运行规程和整定方案、相关应急管理规定,以及各生产厂家软硬件设计原理制定。缺陷处理原则主要依据《继电保护及电网安全自动装置检验规程》等管理规定和专业管理规范制定。以下详细论述各类型异常应急处理和缺陷处理原则。

2.1涉及装置本体且与外电路无关的异常

此类异常信息出现后,装置程序处理原则是闭锁保护,可能为装置程序运行出错或装置硬件故障导致,因而优先采取重启装置的办法进行处理。因设备处于异常状态,为防止异常状态下重启造成继电保护装置程序运行出错或无法有效闭锁误动作,故重启前采取短时退出保护出口压板的措施。若重启装置后仍然无效,则退出整套保护装置,等待检修人员处理。对于仅配置单套保护装置的设备,如线路、电容器、接地变等,考虑到此时设备运行可能处于无保护状态,为防止设备或线路故障扩大,应考虑采取旁代间隔或停役间隔的处理办法。对于安全自动装置和母差保护,则采取退出整套保护的措施。对于110kV及以下主变,保护采用主后分箱式配置,某一套保护异常闭锁后,在条件允许的情况下,应转移负荷后停役主变,进行保护异常处理。若因重载等原因一次设备无法停役时,应退出单套保护并进行带电处理。此时,电网保护整定配合可能存在失配,需要调度部门做好相关应急处理预案。涉及装置本体且与外电路无关的异常主要有:运行中,装置DSP模块出现软硬件故障,如“DSP出错”“DSP采样异常”“装置内部通信出错”等;数据存储器、程序及定值等芯片出错;定值及软压板出错;装置自检出口异常;双CPU采样的开关量信息不对应;看门狗出错导致CPU复位,如“保护初始化”“装置通电”等[1]。对于本体插件故障,在更换相应插件后应做相关检测。若对带电设备进行通流、加压检测,则必须严格执行二次作业安全措施票。下文介绍内容涉及带电试验检测的,要求相同。

2.2涉及装置本体且与外电路有关的异常

此类异常信息出现后,装置程序处理原则是不闭锁整套保护,仅闭锁保护装置部分相关逻辑功能,或仅发出报警。因此,在这种异常情况下,应优先检查外电路是否异常。为防止异常扩大造成保护误动或拒动,一般采取以下处理方法。2.2.1电流互感器TA断线或异常当运行中出现多套保护或测控装置发出“TA断线、异常及差电流异常、TA不平衡”报警或采样信号异常时,一般怀疑是TA本体故障、一次系统出现断线或TA接线盒至端子箱、汇控箱的二次电缆故障。若现场确认多套设备均采样异常,则应采取停役一次设备进行检查处理的措施。当运行中出现单套保护设备采样信号异常时,故障点大多在二次回路、TA本体二次绕组或装置本体上。对于双重化配置的设备,应退出采样信号异常的整套保护。对于单套配置的设备,除安全自动装置和母差保护整套退出处理外,线路应考虑旁代或转电停役处理,电容器、接地变停役处理。110kV及以下主变保护采用主后分箱式配置,无法转电停役处理,则应退出采样信号异常的整套保护进行处理。在运行中出现TA异常等信号,不论信号是否自动复归,均应安排人员到现场检查、确认。运行人员在获得TA异常信息后,在检修人员未到达之前,应先携带测温仪进站检查确认。检查内容包括:TA一次设备是否断芯,是否有异常响声;端子箱或汇控箱、保护屏内电流接线是否有明显放电、烧灼现象。若无上述异常,则借助测温仪对端子箱或汇控箱、保护屏内端子排(包括装置背板)所有电流端子进行红外成像检测,检查是否有异常发热点。现场带电检查处理时,必须保证人身安全,如带绝缘手套或站在绝缘垫上,使用的工器具必须经绝缘处理等。2.2.2电压互感器TV断线或异常当多个间隔出现TV断线信号时,一般怀疑是TV本体故障、一次系统故障或公用切换并列装置及其相关二次回路故障(包括屏顶小母线绝缘下降、TV二次保护测量电压总空气断路器损坏等)。此时,不退保护相应功能压板,现场检查确认后再采取进一步措施,如倒母线或二次并列等。若为空气断路器脱扣跳闸,在确认现场设备无烧焦异味后,可先试送一次空气断路器。当某一间隔出现多套保护或测控TV异常时,一般怀疑为该间隔切换装置或二次回路发生故障,可不退出相关保护,但如果220kV线路两套主保护均受TV断线影响而被闭锁,就应考虑将该线路停电处理,防止整定恶化造成失配。若仅单套保护异常,对双重化配置的保护采取退出异常保护的处理措施;对单套配置的保护则不退相关保护,保留运行,但如果是220kV旁路线路保护异常,可能会令线路失去主保护,此时应考虑停役;另外,若是备投装置异常,可能会引起误动作,应退出处理。对于TV回路异常的保护装置处理方法如下:①在测得进保护装置电压正常的情况下,应怀疑装置本体发生故障,单套保护的设备采取整套退出、旁代或转电停役间隔的措施进行检查处理,防止故障扩大,进而引起保护误动作;②出现TV断线信号后,在断开保护装置电源前,应退出所有保护出口压板,防止断电重启过程中造成带偏移特性阻抗继电器误动作;③一般采取分段检查的方法来确定故障点。2.2.3开入异常当出现开入异常(包括光耦失电、位置报警、开入电源异常等)信号时,对双重化配置的保护采取退单套保护的处理措施;对单套配置的保护,由于开入功能无效,可能造成无保护运行或外部闭锁开入失效,所以建议采取旁代或转电停役间隔的处理措施,备投等安全自动装置则采取退出整套保护的处理措施。母差保护发出“开入异常”或其他如“刀闸切换电源异常”“TWJ(跳闸位置继电器)异常”“刀闸位置报警”等信号时,采取不退保护的处理措施,待现场检修人员做进一步检查。若判断为装置本体故障,停役间隔进行处理。若状态检修巡检或监盘过程中发现母线保护测量三相电压偏移或中性点直接接地系统零序电压3U0分量大于1V,应通知检修人员到现场检查处理,防止TV二次回路两点接地造成纵联方向保护拒(误)动。2.2.4通道异常出现该异常信号后,应立即退出两侧主保护或差动压板。若涉及保护装置插件更换或更改定值,则需要退出整套保护装置;涉及接口装置、收发信机或光电转换装置插件更换,则需退主保护。缺陷检查时,采取分段测量收、发功率,并用逐段自环的方法确认故障位置。2.2.5装置直流电源消失装置直流电源消失主要表现为液晶显示屏黑屏,运行灯或电源指示灯熄灭等。对于双重化配置的保护,采取退单套保护的处理措施。对于单套配置的保护,可安排运行人员现场检查保护设备是否有烧焦等异常情况。若只是保护屏直流空气断路器脱扣跳闸,而装置无异常,可先试送一次。试送不成功或有其他异常情况,应对母差保护和备投等安全自动装置采取退出整套保护的处理措施,对分箱式配置的主变保护建议短时退出整套故障保护,调度部门应做好相应事故预案。2.2.6控制电路断线对于双组跳闸配置的断路器,当单组出现控制电路断线时,断路器仍可继续运行。若为第一组控制电源断电,则会影响断路器的合闸功能。此时,可投入保护闭锁重合闸压板或将重合闸停用,故障时保护直接跳三相断路器,避免由保护动作跳单相断路器,再由非全相保护动作跳三相断路器。对于单组跳闸配置的断路器,在排除非二次回路松动或电源空气断路器脱扣导致的控制电路断线后,为了避免设备或线路故障造成断路器越级跳闸,应考虑对该设备进行隔离(如断开上一级电源)。更换操作箱插件或更换断路器机构分合闸线圈后,应做相关检测。更换电缆后,应进行分合试验,分相断路器应逐相确认。更换防跳功能的板件或继电器,还应进行参数及功能测试。2.2.7直流电源失地出现直流电源失地时,应立即通知检修人员到现场进行处理。同时,运行人员在现场应结合天气、站内人员操作(检修)等情况,以及绝缘监测装置报警、选线等综合信息进行初步判断,排除装置误报的可能性,并对绝缘监测装置选出的接地支路优先进行试拉。若未报出具体接地支路,则应测量是否为交流窜入直流,并隔离检修设备和试拉部分非重要负荷。在处理过程中,应防止造成另一点接地。若绝缘监测装置无法正确选线,可借助接地查找仪等设备进行查找定位。在无其他有效措施的情况下,可采取分段拉路的方法查找故障点。2.2.8线路保护重合闸无法充电对于双重化配置的保护,若仅一套保护出现该异常,解除该套保护即可,防止单相瞬时性接地故障时异常保护直接跳三相断路器,造成线路非计划停运。单套配置的保护出现该异常,应立即通知检修人员处理。2.2.9备自投无法充电出现该异常时,应立即解除整套装置,并通知检修人员检查处理,重点检查开入位置状态是否与实际相符,是不是有异常外部闭锁备自投开入。2.2.10指示状态与实际不符正常运行时,保护装置面板、操作箱或切换装置指示灯与实际状态不一致,但保护装置液晶面板、监控系统无异常信息。若该状态指示灯与外电路有关,应优先检查相关二次回路或辅助接点;若该状态指示灯与外电路无关,则检查指示灯是否损坏。2.2.11保护“通信中断”保护测控一体化装置出现通信中断信号会影响运行人员对设备的监盘和监测,运行人员必须立即通知检修人员到现场检查处理。当站内多间隔保护都出现通信中断时,运行人员可在检修人员指导下先进行交换机、管理机等设备的重启。现场应重点检查装置通信地址、规约配置是否正确,通信线是否接触良好,管理机是否故障等。

3系统开发及应用

3.1系统框架

应急管理系统软件构架前台采用了Delphi和J2EE多层框架平台,采用Oracle9i数据库,Weblogic8.1作为中间层服务器,采用EJB作为持久层的基础开发框架,UI(用户界面)采用了EXT2为基础框架。应急管理系统软件构架各层关系如图2所示。

3.2系统模块及功能实现

3.2.1应急处理库模块根据保护及二次回路(通用)的监控系统光字牌和报文动作信息、装置液晶面板显示自检信息、装置面板指示灯信息组成的异常信息库,分析故障原因及对保护设备运行的影响,并提出相应的应急处理策略。3.2.2缺陷处理库模块根据异常信息,制定缺陷判别定位流程,分析可能的故障点,并关联到相应故障装置插件;预判查找过程中可能出现的危险点并制定相应的预控措施及合理的现场检查步骤;列出异常消除后需要进行的检测项目及相应试验仪器;关联典型案例供维修人员参考。3.2.3应急处理综合策略模块根据异常信息,检索相应专家诊断简要、应急处理和缺陷处理策略、关联的备品备件信息及综合策略等。3.2.4备品备件管理模块实现备品备件出入库流程化管理、插件通用性管理,以及插件重要等级和数量的预警等。3.2.5缺陷统计分析管理模块自动生成月度、季度及年度统计分析报表,装置同型号、同批次无故障率信息,对疑似家族性缺陷进行统计、分析及跟踪。3.3应用情况应急管理系统投入实际应用后,系统运行稳定,大大加快了运行、检修人员日常缺陷处理速度。根据掌握的现场异常信息直接在系统上检索应急处理综合策略,能够快速掌握应急处理策略,获取可能故障点、备品备件信息,以及专业值班网、制造厂家技术服务相关联系方式等信息。同时,还可借助该系统开展日常检修、运行人员的继电保护技术技能培训,促进人员业务水平的提高。

4结语

继电保护论文篇3

论文摘要:通过对我国电力系统继电保护技术发展现状的分析,探讨继电保护的任务和基本要求。从分析当前继电保护装置的广泛应用,提出保护装置维护的几点建议,结合实际情况,探讨继电保护发展的趋势。 关键字:继电保护;电力;维护 1 前言 电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。 2 继电保护发展的现状 上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。 目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。 3 电力系统中继电保护的配置与应用 3.1 继电保护装置的任务 继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。 3.2 继电保护装置的基本要求 选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。 灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。 速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的

继电保护论文篇4

可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。具体到继电保护装置,其可靠性是指在该装置规定的范围内发生了它应该动作的故障时,它不应该拒动作,而在任何其它该保护不应动作的情况下,它不应误动作。

继电保护装置的拒动和误动都会给电力系统造成严重危害。但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。由于电力系统的结构和负荷性质的不同,拒动和误动所造成的危害往往不同。例如当系统中有充足的旋转备用容量,输电线路很多,各系统之间和电源与负荷之间联系很紧密时由于继电保护装置的误动作,使发电机变压器或输电线路切除而给电力系统造成的影响可能很小;但如果发电机变压器或输电线路故障时继电保护装置拒动作,将会造成设备的损坏或系统稳定的破坏,损失是巨大的。在此情况下提高继电保护装置不拒动的可靠性比提高其不误动的可靠性更为重要。但在系统中旋转备用容量很少及各系统之间和负荷和电源之间联系比较薄弱的情况下,继电保护装置的误动作使发电机变压器或输电线切除时,将会引起对负荷供电的中断甚至造成系统稳定的破坏,损失是巨大的。而当某一保护装置拒动时,其后备保护仍可以动作而切除故障,因此在这种情况下提高继电保护装置不误动的可靠性比提高其不拒动的可靠性更为重要。

2保护装置评价指标

2.1继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。这是保护装置的正常状态。②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状态。④误动作状态。是指保护装置不应动作时,它错误动作的状态。例如,由于整定错误,发生区外故障时,保护装置错误动作于跳闸。⑤拒动作状态。是指保护装置应该动作时,它拒绝动作的状态。例如,由于整定错误或内部机械故障而导致保护装置拒动。⑥故障维修状态。保护装置发生故障后对其进行维修时所处的状态。

2.2目前常用的评价统计指标有

2.2.1正确动作率即一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:

正确动作率=(正确动作次数,总动作次数)×100

用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kv与500kv)之间的对比情况,从中找出薄弱环节。

2.2.2可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

2.2.3可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t正常工作的概率。可靠度与可用率的不同在于,可靠度中的定义要求元件在时间区间(0,t)连续的处于正常状态,而可用率则无此要求。

2.2.4故障率是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。

2.2.5平均无故障工作时间建设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

2.2.6修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率

2.2.7平均修复时间mttr平均修复时间是修复时间的数学期望值。310kv供电系统继电保护

10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。

3.110KV供电系统的几种运行状况

3.1.1供电系统的正常运行这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况;

3.1.2供电系统的故障这种状况系指某些设备或线路出现了危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况:

3.1.3供电系统的异常运行这种状况系指系统的正常运行遭到了破坏,但尚未构成故障时的运行状况。

3.210KV供电系统继电保护装置的任务

3.2.1在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据:

3.2.2如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行:

3.2.3当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理。

3.3几种常用电流保护的分析

3.3.1反时限过电流保护继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护虽外部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。

3.3.2定时限过电流保护继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

继电器的构成。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。

定时限过电流保护的基本原理。在10kV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。

动作电流的整定计算。过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。

继电保护论文篇5

第一阶段:建国后,在六十年代,我国已经拥有了较为完善的关于继电保护的体系,其中包括了继电保护的设计、制造、研究及运行等。无疑,在这一阶段,为我国继电保护技术的发展起到了推波助澜的作用。

第二阶段:到了八十年代,晶体管继电保护得到了快速发展,如由南京自动化设备厂与天津大学合作研发的500kV晶体管方向高频保护,成功运用在葛洲坝500kV线路上,这代表着我国继电保护取得了重大成功。

第三阶段:到了九十年代初期,起主导地位的是集成电路保护的研发、生产及应用。例如:由南京电力自动化研究院所研发的集成电路工频变化量方向高频保护,便起到了巨大作用。

第四阶段:九十年代初期之后,继电保护在我国呈现了高速的发展势态。其中的微机线路保护装置,是在一九九一年通过鉴定的,它是由南京电力自动化研究院研制成功的。微机相电压补偿式方向高频保护则是在1993年通过鉴定的,它是由天津大学和南京电力自动化设备厂合作研发而成的。当然,原理不同与机型不同的微机线路及主设备保护,均有着各自的优势,它们为电力系统提供了性能及质量优化的继电保护装置。在微机保护装置的致力研究背景下,基于微机保护软件及算法等方面均获得了较为显著的理论成果。显然,自九十年代后,我国继电保护技术所呈现的发展趋势是微机保护。

2电气工程智能系统结构分析

在此系统当中,将专家系统引进电气CAD当中,所使用的语言是编译型TurboPROLOG语言,同时还采取了另外两种语言与交互的方式编制引入电气ICAD系统,这两种语言即为:AutoLISP语言和FOR-TRAN77语言。如此一来,便能够使各类语言本身的优势得到充分利用,同时也使程序的编制更加简便。在用户菜单的设计的基础上,进而使系统提供的能力得到了有效补充,并将无功功率补充专家系统,进而以嵌入的方式到达CAD系统当中。通过用户菜单,用户能够非常方便地对自己的工作方式进行选择。该系统具备的显著的特点包括:简洁、直观且容易被用户接受等。还能够让用户在短时间之内对操作方法进行充分掌握,对相应的子模块极为便利地使用。另外,还降低了设计的成本,使设计效率得到有效提高,从而使设计者的负担得到很大程度减轻。

3数据结构的改进探究

专家系统对设计的数据结构及类型知识的描述,表现出了一些明显的缺陷,主要体现为过于简单化,不能使系统的通用性与扩展性得到充分满足。因此,针对这方面的不足,提出通用的知识表示方法便显得极为重要。基于宏观层面分析,电气设计属于一个正向推理的过程,使部分初始数据来驱动推理机,进一步实现规则匹配及冲突的解决,最终得出相应的结论。对于继电保护系统设计,这些初始数据便是一次系统当中的结构及参数对保护系统的设计要求。对于一些主设备的继点保护的初步设计而言,如变压器等,所使用的以此系统初始数据参数种类使用关联组元进行表达。其中,关联组员表达形式为:(对象名:属性名=属性值),它与孤立对象属性概念的描述相适应;关系谓词表示形式为:(主体对象名,客体对象名:谓词属性名=属性值),在对事实等一系列知识进行表示的情况下,不但具备对象实体的属性,而且也具备多个对象间所维系的关系。对于一个变压器保护系统框架的主要构成,主要包括:系统级、保护方式级以及故障类型保护级等。对于每一级的框架,都拥有相似的结构,同时每一个框架都归属于一个更高级的框架。为系统当中一个电流继电器框架的具体描述过程。此框架表示的对象实体是CR继电器,系统编号是56,归属46号低压过流保护方式框架。其中最为简单的属性槽是“相数=1”,它的属性值在设计推理中的赋值是由规则以直接的方式决定的。能在推理过程中以直接的方式赋值的是“Iset=”,或者,在需计算的情况下通过ISETO的调用对赋值进行计算,另外还能够对定值列表Ilist有用户进行调出,然而以自行的方式对赋值进行选择。位于框架槽的是“型号=DL233/6”,它能够对具体继电器DL233/6进行引出。框架所表现出来的嵌套关系能够对整体保护系统的描述发挥重要作用。此框架系统形成了具有复杂特性的语义网络。当中的子框架能够对父框架的槽值约定进行更改或继承。如此一来,不但能够使表示的信息能够节省,从而降低数据冗余;而且还能够非常简单地使信息的一致性得到有效维持。

4结束语

继电保护论文篇6

关键词:《继电保护》;课程体系;教学方法

中图分类号:G71 文献标识码:A文章编号:1009—0118(2012)11—0162—02



继电保护是在保障电力系统的安全稳定运行方面发挥了重要作用,《继电保护》课程是电力系统自动化、供用电专业的核心课程,具有理论与实践并重的特点。继电保护是一门理论性与实际结合很强的课程,但长期以来,高职院校的继电保护课程只注重理论教学,不注重实践技能的提高;并且,绝大多数院校的继电保护课程所讲授的内容与实际相脱节,我校所讲授的都是继电保护的原理。针对这种情况,我们共同构建新的课程体系,探索继电保护课程改革研究。

一、电力系统继电保护课程现状及背景

《继电保护》是我院的供用电技术专业的一门核心课程,现有的继电保护教材中,分析的都是电磁型、磁电型或集成电路型结构的继电器,而现代电力系统继电保护装置结构已经发生了相当大的变化,微机型保护装置应用的相当广泛。我院只开设了继电保护课程,没有开设电力系统稳态分析和暂态分析这两门课程,学生学习继电保护课程相当费劲;再有,目前的继电保护教材主要讲解的是继电保护的理论知识,实际的电力系统运行案例、电气设备短路电流的计算实例都未讲解,不利于学生理论学习与以后实际工作的认识统一。高职院校是培养高端技能型人才,要求学生具有一定的理论基础的同时,更要具备扎实的操作基本功和自主学习能力和自学创新意识。

二、继电保护课程体系的整合

《继电保护》课程重点分析了继电保护的基本要求、电流保护、距离保护、变压器保护、母线保护、发电机保护等。我校是专科院校,注重学生的技能培养,理论水平以够用为主。而现在电力系统的网络结构越来越复杂和多样,继电保护的原理和形式也在不断的发展和完善,过多学习理论知识是没有必要的,要加强学生的实践能力,要做中学,学中做。在目标定位上,充分考虑学生能先就业再择业的需要,坚持“宽基础、强技能”的原则。既掌握职业岗位需求的专业理论,又能在这些专业理论基础上把已形成的能力在相应职业岗位范围可以转岗。因此,在我们的课程体系改革中,改变了传统的“学科”体系,向“多元型”方向发展。《继电保护》课程的构建应遵循以下原则。

(一)讲解继电保护的基本原理。讲授电力系统暂态和稳态分析的部分知识;讲授各种保护的基本原理、保护装置和继电器的基本原理;微机型继电保护基础知识。在教材编写时要阐明模拟型保护的基本原理,微机型继电保护技术是全新的内容,思维方法与模拟型保护相比完全不一样,应重点讲解如何推倒出算法的数学模型和微机实现原理。

(二)突出课程的职业性,以职业能力作为构建课程的基础,使学生所学知识、技能满足职业岗位的需求。基础理论知识以够用为度,以掌握概念,强化应用为重点;专业知识强调针对性和实用性,培养学生综合运用知识和技能的能力。突出职业能力培养,强化学生创新能力的培养.提高学生就业上岗和职业变化的适应能力,实现“双证书”融通,即毕业证书和高级技能等级证书。

(三)围绕岗位所确定的职业能力要求设置项目,并结合职业技能鉴定考核大纲,对课程内容进行整合,开发校本课程。在课程的难度和广度方面,遵循“实用为先、够用为度”的原则,如表1为五个项目。

三、《继电保护》课程的教学方法与手段

(一)案例教学法

由于电力系统继电保护技术发展很快,在讲授课程相关知识是可以联系电力系统的实际案例,例如某某地区电厂发生断路器跳闸事故,原因是某相电接地导致的等等实际案例。使学生在校期间能了解相关领域的现状。通过典型事故的分析可以培养学生分析和解决实际问题的能力。

(二)任务驱动教学法

任务驱动教学法是任务驱动教学法中的任务是有特定含义的,它不是通常说的“教学任务”,而是指“需要通过某种活动完成的某些事”。课堂讨论、自学答疑教学形式采用任务驱动法。例如让学生设计某条线路的三段式保护。

(三)项目教学法

项目教学法是通过进行一个完整的“项目”工作而进行的实践教学活动的培训方法。教师的主要任务是确定项目内容、任务要求、工作计划,设想在教学过程可能发生的情况以及学生对项目的承受能力,时刻准备帮助学生解决困难问题。

(四)六步教学法

六步教学法是以工作过程为导向的课程实施方法,完成一个完整的实际工作需按照六个工作步骤来进行。例如设计6~10KV线路的过电流保护这个完整工作过程的六个步骤分别为:资讯、计划、决策、实施、检查、评估。资讯阶段,教师布置工作任务,学生首先了解项目要求;计划阶段,学生一般以小组方式工作,寻找与任务相关的信息(如:电压继电器、电流继电器的原理接线图),制定工作计划;决策阶段:教师考察学生做的过电流保护原理接线图,学生可听取教师的建议,对计划做出修改;实施阶段,学生根据计划完成本项目工作过程,完成项目实施工作;检查阶段,学生进行展示工作成果的工作;评估阶段,学生对完成项目任务中的表现做出自我评价、相互评价,最终由教师做出教师评估。

(五)模拟故障法

在实训室上课时,可以通过人为设置故障,测量故障时的电压和电流来分析故障特点,如何迅速、有选择的切出故障。提高了学生发现问题、分析问题和解决问题的能力。

(六)利用常规的电流、电压保护的原理及实现的方法简单、直观的特点,通过多媒体课件演示熟悉电力系统各主要元件继电保护装置的动作原理、结构及其用途。在初步掌握电流、电压保护的基本原理后,再安排学习微机保护的基础知识的内容,由易至难,有利于学生对所学知识的理解和掌握。充分利用多媒体课件、动画演示等对保护装置元件进行直观教学,使教学过程形象生动,帮组学生记忆和理解,提高教学效果;加强课堂微机保护演示;采用在实训室边进行理论教学边进行实验的教学方法。

《继电保护》课程以以岗位能力为出发点,突出职业素质的培养,教、学、做结合,教学方法多样化。课程内容以岗位分析和具体工作过程为基础,将职业技能资格证书所需的应知应会内容贯穿于整个教学的理论和实践过程中,为学生获得“双证书”,提高就业率打下了坚实的基础。本课程基本理论以电力系统继电保护和电力系统暂态和稳态分析应知的理论为基础,理论与实际相结合,以能力培养为重点的高职高专教育特色。

参考文献:

[1]姜大源.职业教育学研究新论[M].北京:教育科学出版社,2007.

[2]陈延枫.高职高专电力系统继电保护课程教学改革探讨[J].中国校外教育,2009.

继电保护论文篇7

关键词:虚拟仪器;微机保护;实验系统

中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5381-02

继电保护装置是一种利用电磁感应原理而发展起来的电力系统保护装置,随着电子技术和网络通信技术的飞速发展,目前已经发展到微机型阶段,并且利用软件技术可以实现由软件技术驱动硬件而实现微机继电保护,这就是目前研究很热的技术――基于虚拟仪器技术的继电保护系统。利用虚拟仪器技术实现的微机继电保护装置,具有传统微机继电保护装置所不具备的优势,例如控制更加安全可靠等。

本论文主要将虚拟技术应用于微机保护实验系统,拟对基于虚拟仪器技术的微机保护系统进行开发,并从中找到可靠有效的微机保护实验方法与建议,并和广大同行分享。

1 微机继电保护概述

1.1 微机继电保护的基本构成

微机继电保护装置,其基本结构构成与普通的电力保护装置一样,也是有硬件和软件两大部分构成。硬件部分主要由数据采集系统、数据处理系统及逻辑判断控制模块等几个部分构成,主要由数据采集模块负责对电力系统的相关电参数实现检测与采集,并将数据传送至数据处理系统,数据经过运算之后,由逻辑判断控制模块调用软件控制程序,并发出相应的控制信号,驱动保护装置执行保护动作,从而实现电力继电保护的功能。

随着集成电子电路技术的发展,目前发展的微机型继电保护装置,其硬件系统主要由CPU(微处理器)主机系统、模拟量数据采集系统和开关量输入/输出系统三大部分组成,尽管结构构成已经发生一定变化,但其实实现继电保护的基本原理仍是一样的,由模拟量数据采集系统负责相关保护参数的采集,微机继电保护装置是以微处理器为核心,根据数据采集系统所采集到的电力系统的实时状态数据,按照给定算法来检测电力系统是否发生故障以及故障性质、范围等,并由此做出是否需要跳闸或报警等判断。

1.2 微机继电保护装置的特点

微机保护与常规保护相比具有以下优点:

1) 微机继电保护装置主要由微处理器为核心而构成的硬件系统,因此借助于现代功能强大的微处理器,微机型继电保护装置可以实现一定程度的智能化。

2) 相比于传统的机械式硬件实现的硬件保护装置,微机型继电保护装置能够依靠数据采集模块实现对相关参数的检测与采集,整个过程实现数字化流程,这就为继电保护装置的控制功能的稳定性、可靠性提供了技术条件;另一方面,依靠微处理器内部的软件程序,微机继电保护装置能够进行周期性自检,一旦发现自身硬件或者软件发生故障,能够立即实施报警,从而保障了继电保护装置功能的可靠性。

3) 传统的机械式硬件实现的硬件保护装置,其保护功能较为单一,仅仅是实现基本的保护功能,动作依靠一次性机械元件完成,一旦该部件发生故障,则整个继电保护装置无法工作;而微机型继电保护装置除了能够利用弱电驱动控制实现继电保护的功能外,还能够依靠数据采集系统对整个电力系统的相关电力参数都实施监测与采集,通过程序的分析,实现对电力系统整体性能的检测,保护功能大大丰富。

4) 传统的机械式硬件实现的硬件保护装置,其功能调试复杂,工作量大,而且极容易造成内部晶体管集成电路的失效,而现代微机继电保护装置,依靠内部的核心微处理器,能够开发专用的人机交互系统,利用人机交互系统实现继电保护装置的调试,简单易行,还可以自动对保护的功能进行快速检查。

5) 利用微机的智能特点,可以采用一些新原理,解决一些常规保护难以解决的问题。例如,采用模糊识别原理或波形对称原理识别判断励磁涌流,利用模糊识别原理判断振荡过程中的短路故障,采用自适应原理改善保护的性能等。

2 基于虚拟仪器的微机保护实验系统开发设计

2.1 总体结构设计

本论文探讨的是基于虚拟仪器技术的微机继电保护系统,因此首先面临选择合适的虚拟仪器开发平台的问题,这里选择基于G语言的LabView开发平台是目前国际最先进的虚拟仪器控制软件,集中了对数据的采集、分析、处理、表达,各种总线接口、VXI仪器、GPIB及串口仪器驱动程序的编制。基于虚拟仪器的微机继电保护装置系统,是利用虚拟仪器开发平台,构建虚拟的微机继电保护装置,实现完整的微机继电保护装置的全部功能,并对设计的虚拟继电保护装置进行评估和改进,从而完成微机继电保护系统设计的一种设计手段。

利用虚拟仪器技术进行微机继电保护系统的开发设计,从具体设计流程来说,主要从以下几个环节入手进行总体结构的设计:

根据微机继电保护系统的设计目标、设计功能,列出所需要的相关硬件,构建整体微机继电保护系统结构框架;另一方面,尽量采用模块化的开发设计模式,将微机继电保护系统按照不同的功能环节,设计各功能模块之间的结构关系。

如下图所示,是本论文所探讨的利用虚拟仪器平台所开发的微机继电保护系统结构原理图。这种方式既便于模块的单独调试,节省系统开发周期,又便于系统功能的改变,使系统具有更强的移植与升级功能。

如图1所示,基于虚拟仪器技术的微机保护系统结构主要由一次系统、转换模块、数据采集模块、保护测量模块及保护决策软件系统等几部分构成,一次系统主要负责面向电网系统模拟设置合适的传感器,将相关拟生成电网的二次侧电压、电流信号,信号经过转换、调理电路变换成符合要求的-5V~+5V模拟信号送数据采集模块,数据采集模块主要由DAQ数据采集卡构成,能够自动将模拟产生的模拟电压信号进行A/D转换,并进行初步的数据处理转换再传送给以虚拟微处理器为核心的保护决策模块,最终将生成的继电保护控制决策信号输出到保护策略模块,最终实现微机继电保护系统的功能。

2.2 数据采集模块的设计与实现

本文中微机实现的继电保护实验系统输入信号来源于继电保护测试仪,根据保护系统测试输入信号的特点,本论文采用数据采集卡来负责数据的采集与高速传输。

2.2.1 数据采集卡的选择

要实现基于虚拟仪器技术平台的微机继电保护系统,一次系统在完成相应电力系统电参数的传感检测之后,数据采集模块要能够按照微机继电保护系统的功能于设计要求实现相应数据的转换与采集,因此,数据采集卡的选择成为整个微机继电保护系统保护功能实现的关键。目前的数据采集卡,主要有12位或16位的DAQ数据采集卡,在具体决定选用12位还是16位的DAQ设备时,主要从采集精度和分辨率这两个指标考虑,可以由给定的系统精度指标衡量出DAQ卡需要的整体精度。

在本论文中,这里选取PCI-1716数据采集卡。PCI-1716是研华公司的一款功能强大的高分辨率多功能PCI数据采集卡,它带有一个250KS/s16位A/D转换器,1K用于A/D的采样FIFO缓冲器。PCI-1716可以提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入。它带有2个16位D/A输出通道,16路数字量输入/输出通道和1个10MHz16位计数器通道。PCI-1716系列能够为不同用户提供专门的功能。

2.2.2 虚拟数据采集程序的实现

在选择了数据采集卡硬件设备之后,需要借助于虚拟仪器平台为整个系统设计虚拟护具采集程序。在具体进行设计时,由系统内部虚拟程序产生数据采集卡锁需要的相应信号,具体来说就是CT、PT信号,因此,在具体编程时,首先将CT、PT信号传输至相应的滤波器,LabVIEW提供了各种典型的滤波器模块,根据需要可以设置成低通、高通、带通、带阻等类型的滤波器;其次,将经过数据滤波处理之后的数据进行输出。数据采集模块的程序如图2所示。

2.3 微机保护模块的设计与实现

既然在数据采集模块之后需要进行数据的滤波,尽管LabVIEW提供了各种典型的滤波器模块,但是仍然需要借助于虚拟滤波模块设计专用的滤波算法,而且在微机继电保护系统中,对电力系统的继电保护功能的实现,主要是由相应的滤波保护算法实现的,因此有必要为虚拟微机电力保护系统设计滤波保护算法程序。

本论文采用如下的设计方法对滤波保护算法进行设计:

1) 利用LabVIEW自带的滤波器进行数据的排序滤波。

2) 按照系统保护功能所需要的数据频带,设置相应的低通、高通、带通、带阻等灯滤波保护功能。按照上述方法,基于虚拟仪器平台的微机继电保护系统,其滤波器输入得到的数据序列,多数是传感器采集到的电参数,如电压和电流,而电压和电流数据是离散的数字量序列,其中包含了大量的谐波干扰信号,因此有必要进行滤波。在本论文中,采用了二级滤波保护算法,即分别进行前置滤波和后置滤波,实现对数据的二级滤波保护,从而提高整个微机继电保护系统的稳定性和可靠性。前置滤波模块如图3所示,后置滤波模块如图4所示。其中前置滤波模块提供了差分滤波器、积分滤波器、级联滤波器、半波和1/4周波傅立叶滤波器、半波和1/4周波沃尔氏滤波器,可以根据需要自行选择;后置滤波模块提供了平均值滤波器、中间值滤波器,也可以自由选择。

3 结束语

利用虚拟仪器技术进行微机继电保护装置系统的设计开发,能够很好的避免了实物硬件开发设计所带来的周期较长、调试较复杂以及成本较高等劣势,所有的开发设计任务全部在虚拟仪器平台上完成。本论文将虚拟仪器技术应用到了微机保护装置的设计,对于进一步提高微机继电保护装置的可靠性与稳定性具有优势,同时借助于虚拟仪器技术的开发,能够更好的实现电气继电保护功能的完善与提升。

参考文献:

[1] 李佑光,林东.电力系统继电保护原理及新技术[M].北京:科学出版社,2003.

[2] 王亮,赵文东.微机继电保护的现状及其发展趋势[J].科技情报开发与经济,2006,16(18):150-151.

[3] 张振华,许振宇,张月品.第三代微机保护的设计思想[J].电力自动化设备,1997,17(3):24-25.

继电保护论文篇8

【关键词】继电保护,运行,可靠性,技术措施

中图分类号:S157.4 文献标识码:A 文章编号:

一.前言

提高继电保护运行的可靠性的相关措施将会大大提高电网的运行效率并且减少电网运行的风险性。提高继电保护的技术水平和采取先进的继电保护措施将会使继电保护的日常验收、日常的管理以及其他各项相关工作都更加地快捷和高效。提高继电保护运行可靠性的技术和措施有其重要意义。

二.提高继电保护运行可靠性的技术措施

1.要把好继电保护的验收关

交接验收对于一个即将投入运行的发电厂或变电所是一次全面的“体检”,因此这项工作的好坏直接影响其今后的安全运行,继电保护交接更是如此。保护交接验收必须严格遵循如下工序:在继电保护调试完毕后,要严格自检、专业验收,然后提交验收单由工区组织的检修、运行、保护3个班组进行保护整组试验、断路器合跳试验合格。并确认拆动的接线、元件、标志、压板已恢复正常,现场文明卫生清洁干净之后,在验收单上签字。保护定值或二次回路变更时,进行整定值或保护回路与有关注意事项的核对,并在更改簿上记录保护装置变动内容、时间、更改负责人和运行班负责人签名。保护主设备的改造还必须进行试运行或试运行试验,如差动保护更换TA后,应作六角图试验,合格后方可投运。

2.搞好保护动作行为分析

保护动作跳闸后,严禁随即将掉牌信号复归,而是检查动作情况并判明原因,做好记录,在恢复送电前,才将所有掉牌信号全部复归,并尽快恢复电气设备运行,事后做好保护动作分析记录及运行分析记录。内容包括:岗位分析、专业分析及评价、结论等,凡属不正确动作的保护装置,及时组织现场检查和分析处理,找出原因,提出防患措施,避免重复性事故的发生。

3.提高继电运行的微机化和信息化水平

随着电子信息技术的不断发展和创新,微机保护在各个方面的科技含量也大大增加。目前,最新出现的工控机功能、速度以及存储容量等方面都大大优于原来的小型机。并且现在所使用的工控机的体积很小,仅仅类似于微机保护装置大小。所以,用成套的工控机做继电保护在技术上已经有了可操作性。这种情况下,继电保护在运行过程中的不可靠性将会显著降低。计算机网络技术在电力系统中的应用已经彻底颠覆了传统的继电保护运行的方法和状态,由于继电保护装置的作用是很单一的,主要是用来切除故障元件,但是它在保护电力系统的运行上还存在一定欠缺。为了保证每个保护单元都可以共享运行的数据和故障信息,以进一步提高保护的及时性和准确性,就必须将整个电力系统作为一个整体连接起来。要想实现这种连接应该通过计算机和网络技术的帮助,实现微机保护装置的网络和共享化。

4.加强继电保护运行的智能化程度

提高继电保护运行可靠性的一项重要措施是智能化,同时这也是一项重要的技术创新。人工智能化应用的领域已经越来越广泛,行业也不断得到拓展。很多先进的技术和理念也已经开始在电力系统中出现。诸如神经网络、进化规划、遗传算法、模糊逻辑等技术在电力系统中已经得到了应用,在继电保护领域应用的研究也正在进行并不断深化。人工智能技术的引进具有强大的优势。人工智能将会从很大程度上提高继电保护装置的稳定性能,并且还可以对继电保护装置原有的工作隐蔽性以及连续性等不可靠因素进行有效的控制。人工智能的显著优势是可以进行快速处理,并且具有极强的逻辑思维能力。实践表明,人工智能在在线评估中所发挥的作用是重要的,其明显优势是不可忽略的,并且具有一定的主导地位。人工智能在电力系统,尤其是在继电保护工作中的普及和应用将会给继电保护运行的可靠性带来极高的效率。

5.广泛使用性能极其优良的数字控制器件

性能优良的数字控制器件的使用将会大大提高继电保护的质量。CPLD和FPGA等器件在继电保护领域被广泛使用。CPLD是一种复杂可编程序逻辑器件,FPGA是一种现场可编程序门阵列,这两种器件在继电保护中都具有极其强大的优势,因为,CPLD和FPGA作为现代可编程序专用集成电路(ASCI),具有功能高度集成的特点,并且他们还会把多个微机系统的功能集中在同一块芯片上。这一类性能优良的数字控制器件的使用将会给电子系统设计带来极大变革,并且会展示出强大生命力。因为保护系统的高度集成、快速响应以及较高的可靠性的实现都离不开这一类控制器件。同时,这一类器件有效缩短了保护装置的研发周期,从很大程度上保证了继电保护运行的可靠性。

6. 要把好继电保护运行准确操作关

运行人员在学习了保护原理及二次图纸后,应核对并熟悉现场二次回路端子、继电器、信号掉牌及压板情况;严格“两票”的执行,并履行保护安全措施票;每次保护投入、退出,要严格按设备调度范围的划分,征得调度同意。为保证每套保护投入退出的准确性,在变电站运行规程中应编入各套保护的名称、压板、时限、保护所跳断路器及压板使用说明。由于规定明确,执行严格,简化了运行值班人员保护查图时间,避免运行操作出差错。

三、变电站继电保护故障处理的常用方法

1.替换法

用运行良好的或者当前运行正常的相同元件代替怀疑的或认为有故障的元件,来判断它们的好坏,可以快速地缩小故障查找范围。这是处理综合自动化保护装置内部故障最常用的方法,当一些微机保护故障,或者一些内部回路复杂的单元继电器,可以用附近备用或者暂时处于检修的插件、继电器而取代它。

2.短接法

将电路回路的某一段或者某一部分用短接线进行人为短接,借此来判断故障是否存在于短接线范围之内,如果不在,可以同样方法进行排查,不断缩小排查范围,以此来缩小故障范围。此方法主要在电磁锁失灵、电流回路开路、切换继电器不动作时使用,借此判断控制等转换开关的接点是否良好。

3. 直观法

处理一些无法用仪器进行逐点测试,或者某一插件在故障时没有备品进行更换,而又想及时将故障排除的情况下使用。10kV开关拒分或者拒合的故障处理,在操作命令下达后,观察到合闸接触器或者跳闸线圈能够动作,说明电气回路运转正常,故障存在于断路器操作机构内部。

4.逐项拆除法

将并联在一起的二次回路顺序解开,之后再按照线路顺序依次接回,一旦有故障出现,就表明故障存在于哪一路。再在这一回路内用同样的方法查找出更小的分支回路,直至找到电路故障点。此法主要用于排查直流电源,交流电源熔断器投入即熔断等电路故障。

对于直流接线故障,可以先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒钟,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在的支路。再将接地支路的电源端端分别拆开,直到排查到故障点。

四.结语

近年来,我国的国民经济不断发展,电力系统各在国民经济发展和社会发展中的作用也日益重要。并且伴随着新技术的出现,继电保护技术的发展也出现了崭新的发展前景。同时,我国电力系统的运行与发展也对继电保护的运行可靠性提出了新的更高要求。继电保护是电网安全和稳定运行的必要条件,担负的职责是极其重大的,相关单位应该及时提高继电保护运行可靠性的相关措施和技术,以保证电网的健康运行。

参考文献:

[1]胡安娜 继电保护运行的技术探讨 [期刊论文] 《科学与财富》 -2012年4期

[2]周晓 电力系统继电保护运行的可靠性研究 [期刊论文] 《城市建设理论研究(电子版)》 -2011年33期

[3]张坚俊 浅谈继电保护装置的可靠运行 [期刊论文] 《企业技术开发(下半月)》 -2011年2期

[4]王振平 提高继电保护运行可靠性的技术措施 [期刊论文] 《科技创业家》 -2012年13期

[5]库永恒 现场继电保护装置的技术缺陷及改造方案的研究 [学位论文]2007 - 郑州大学:电力系统及其自动化

继电保护论文篇9

Abstract: Under the background of modern large engineering, the reform of teaching contents and methods of the power system relay protection course is discussed in this paper, a main teaching line of cognition practice- theory teaching - practice teaching- curriculum design is put forward to improve the teaching effect of the course.

关键词:继电保护;大工程观;教学改革

Key words: relay protection;large engineering;teaching reform

中图分类号:G642 文献标识码:A 文章编号:1006-4311(2016)01-0204-02

0 引言

《电力系统继电保护》是电气工程及其自动化专业的主干专业课,在其课程体系中具有举足轻重的地位。《电力系统继电保护》课程通过对具体设备及系统保护原理及其实现的分析阐述,既具有较强的理论性,又具有很强的实践性,课程内容与电力系统生产运行过程密切相关[1,2]。学生由于没有任何生产实际的经验,对继电保护设备没有一个基本的认识,在课程的教学安排和组织过程中往往出现学生难学,教师难教的问题,人才培养质量很难得到保证[3,4]。

在黑龙江科技大学的“培养大工程背景下的思想道德素质高,基础理论扎实,专业知识面宽,工程实践能力强,具有创新创业精神的应用型高级专门人才”的本科专业人才培养目标的指导下,积极组织该门课程任课教师深入生产和教学一线进行调研,对课程的教学内容设置、教学手段和方法、实验实践设施、考核方式等进行积极的改革和探索,取得了一定的成效。

1 课程教学主线的设计与构建

根据《电力系统继电保护》课程的特点、教学现状、存在的问题等,组织任课教师和学生进行认真的分析和调研讨论,对课程的教学积极地进行了改革和探索,提出了认识实习-理论教学-实践教学-课程设计的课程教学主线,如图1所示。

并根据教学内容对教学手段和方法进行了分类和调整,如图2所示。

1.1 教学内容的更新和调整

对课程内容进行更新和调整,构建课程的衔接和侧重面。根据电力系统的最新发展动态,充实教学内容,引入前沿技术,并对电气工程及其自动化专业的前续和后续课程及教学环节进行了调整和衔接,根据黑龙江科技大学2014版最新修订的《电力系统继电保护教学大纲》,课程主要包括继电保护概述、电网电流保护、电流距离保护、输电线路纵联保护、自动重合闸、电力变压器保护、发电机保护、母线保护等内容,增加了数字式继电保护计算基础等方面的内容,并将MALTLAB仿真引入课程的教学当中。

1.2 教学计划的调整

根据黑龙江科技大学学生的学习情况和《电力系统继电保护》课程学习的特点,进行教学方法和手段的改革和实践,提出了以认识实习-理论与实验实践-课程设计-生产实习为主线的全新课程教学模式。在2014版培养方案中,对认识实习环节的设置时间、实习内容进行了调整,安排学生到发电厂和变电所进行短期认识实习,邀请现场专工给学生进行现场继电保护装置的介绍,使学生对于继电保护装置、功能、原理等有一个感性认识。课程教学过程中根据教学内容的不同,改变以往理论与实验实践脱节的现象,将理论教学调整到实验实践环节进行,边理论边实践,在课程结束后增加继电保护课程设计的环节,使学生对所学知识进行综合运用。最后在课程结束后的生产实习中,再次安排发电厂及变电所的实习环节,由指导教师和现场运行人员结合现场实际的保护元件、保护配置对保护的动作情况进行讲解。使学生实现实践-理论-应用-再实践的锻炼,提高学习兴趣和质量。

2 多层次、高水平的课程实践教学环节建设

多层次、高水平的课程实践教学建设对提高教学效果起到至关重要的作用,在学校的支持下,建立的电力系统继电保护实践基地,引进THKDZB-1型继电保护实验装置,该套装置具有多个设备组件,利用设备组件之间的组合,既可以实现单个继电器的实验,如电流继电器、电压继电器、时间继电器、中间继电器的实验;也可以实现综合性保护实验,如线路过电流保护实验、重合闸前加速和后加速实验、变压器差动保护及过流保护实验、线路三段式保护与自动重合闸综合实验等。

课程教学过程中根据教学内容的不同,改变以往理论与实验实践脱节的现象,将电网电流保护、重合闸、发电机保护和变压器保护等部分得理论教学调整到实验实践环节进行,边理论边实践。

例如对于电网电流保护中的继电器部分的讲解先通过理论教学对继电保护的继电特性、启动电流、返回电流及返回系数进行讲解,然后通过电磁型电流继电器实验对这部分理论知识进行验证,学生在实验过程中可以对继电器的结构有一定的认识,并且通过实验验证对理论知识有更深一步的理解。

电网的电流保护先对阶段式保护的整定计算、保护的接线方式及原理接线图进行理论讲解,之后通过6-10kV线路过电流保护实验帮助学生更好的掌握过流保护的原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。

3 积极进行课程考核评价方式的改革和实践

以往的《电力系统继电保护》课程以期末笔试成绩为主,缺乏考核评价的全面性和客观性,根据课程教学环节的调整及课程特点,对课程的考核评价方式进行了积极的改革和探索,采用理论考核、实验实践环节、课程设计环节的综合考评方法,其中理论考核占40%的成绩,实验实践环节占40%,课程设计环节占20%。

4 教学改革实例及效果

电网的电流保护一直是《电力系统继电保护》课程的学习难点,抽象难理解,首先带领学生到现场进行认识实习,结合现场对电流保护的原理,工作过程,作用等进行初步认识,之后在课堂上对阶段式保护的整定计算、保护的接线方式及原理接线图进行理论讲解,之后通过6-10kV线路过电流保护实验帮助学生更好的掌握过流保护的原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。实验线路图如图3所示,实验接线图采用展开图的接线方式。通过教师演示和学生动手操作来进行,过流保护的动作顺序为:当调节单相自耦调压器和变阻器R,模拟被保护线路发生过电流时,电流继电器LJ动作(实验中交流电流回路采用单相式),如图3(a)所示,其常开触点闭合,接通时间继电器SJ的线圈回路,SJ则动作,经过一定时限后,其延时触点闭合,接通信号继电器XJ和保护出口中间继电器BCJ的线圈回路,BCJ动作,常开触点闭合,接通了跳闸回路,(因断路器QF在合闸状态,其常开触点QF是闭合的)。于是跳闸线圈TQ中有电流流过,使断路器跳闸,切断短路电流。同时XJ动作并自保持,接通光字牌GP,则光字牌亮,显示“6-10kV过流保护动作指示”,如图(b)所示。通过实验,学生可以更深入的了解过流保护的实际动作情况和工作原理。

通过对课程流程、教学方法的改革,对2014学年和2015学年两届学生的学习效果和成绩分析表明,学生学习效果大幅提高,平均及格率由原来的低于70%提高到85%以上,优良率也由原来的不足5%提高到15%左右。

5 结论

在现代大工程观的背景下,根据课程理论性和实践性都很强,学生学习困难的现状,对《电力系统继电保护课程》课程从教学内容、培养方案设置、实验实践教学环节、考核等方面行了改革和探索,提出了认识实习―理论与实验实践―课程设计的课程教学主线,认识实习环节的提前引入和实验环节引入课堂较好地提高了学生的学习兴趣和教学效果,学生课程及格率和优秀率均有大幅提高。

参考文献:

[1]杨军,龚庆武,吕艳萍,丁涛.智能电网背景下的继电保护实验课程体系[J].电气电子教学学报,2014(01):73-75.

[2]程海军,陈晓英,孙丽颖.基于“卓越工程师”目标下的《继电保护课程设计》教学改革[J].教育教学论坛,2015(08):112-114.

继电保护论文篇10

关键词 电力系统;继电保护;发展现状

中图分类号TM6 文献标识码A 文章编号 1674-6708(2013)84-0065-02

1 我国继电保护技术的发展历程

自建国以来,我国的继电保护技术借着电力行业不断发展的东风,也得到了很大程度上的发展。在新时代电子技术、计算机技术在各行各业的广泛运用。继电保护技术在最近的40余年里的发展可以总结为四步。

第一步,传统继电保护技术的起步时代。在50年代的以前,我国的电力系统中继电保护技术基本上属于真空阶段。在50年代的期间,我国技术人员以国外先进的设备和技术为学习内容,建成了一支不仅有着深厚理论知识并且有这丰富运行经验的继电保护的技术队伍。随后,还引进国外的继电器的制造技术,并且结合国内实际情况,建设出了我国自主的继电器制造业。

第二步,晶体管继电保护技术时代。在60到80年代之间,晶体管被继电保护技术中广泛的采用。其间,天津大学和南京电力自动化设备厂开展合作,研究出了500kV晶体管方向高频保护,同时南京电力自动化研究院也研制出了晶体管高频闭锁距离保护。两大成果成功的运用于葛洲坝500kV的线路上。从此我国在500kV线路保护上突破了完全依赖进口的局面。

第三步,集成电路继电保护技术时代。70年代,集成运算放大器的集成电路运用于继电保护技术的研究课题已经开展。到80年代末,集成电路保护技术已经形成了一个完整的系列。晶体管保护技术都逐步的取代。到90年代初期。集成电路保护技术无论是在研究还是生产与运用上,都牢牢的占据了主要地位。

第四步,计算机继电保护技术时代。1984年华北电力学院研制出的了输电线路的微机保护装置第一个通过鉴定,并且成功的运用于电力系统中。从此我国的继电保护技术又迈进了一个新的阶段。微机保护从此进入了业内人士的视野。到90年代的时候。我国的继电保护技术就开始进入到微机保护的时代。丰富多样的微机线路和主设备保护为电力系统提供了新的一批性能优良、功能齐全的可靠机电保护装置、

2 我国现阶段微机保护技术的优点介绍

我国继电保护技术在最近半个多世纪得到了很大的发展,由学习国外的传统技术到现在所使用的微机保护技术可以说是一个巨大的历史跨越。无数的人为继电保护技术的发展呕心沥血,付出都是值得的,我国现阶段所使用的微机保护技术相对于传统继电保护技术以及晶体管和集成电路继电保护技术来说,在各方面的性能都是有着成倍的提升的。

继电保护的动作特征级性能得到了很大的改善和提高,正确动作率高。这个优势主要体现在微机保护技术能够得到常规保护不易获得的特性。因为微机保护有很强的记忆力。所以就能更好的实现故障的分量保护。同时微机保护还可引进自动控制、新的教学理论和技术,运行正确率也很高。

其它的辅助功能能够更加方便扩充进来。比如可以方便的将低频减载、故障录波、自动重合闸以及故障测距等功能附加上来。

工艺结构条件优越。当今社会电脑被广泛的运用,所以硬件相对来说也就比较通用。而且制造非常容易来实现标准的统一。并且装置的体积比较小,盘位数量得到了减少,耗能比较低。

可靠性容易提高。这个优势主要表现在数字元件的特性上,数字原件不易受到温度变化、电源波动以及使用年限等因素的影响。元件更换也不易影响到它。并且数字原件的自检和巡检能力很强,可以通过软件方法来实现主要元件、部件的工况和功能软件本身的检测。

使用灵活方便。能够方便能维护调试,缩短维修时间,还可以根据运行经验通过软件方法在现场就实现改变特性、结构的操作。

能够进行远方监控。微机装置相比其他装置而言,具有串行通信的功能。通过与变电所微机的监控系统的通信联络来实现微机保护的远方监控。

3 我国继电保护的发展展望

通过社会网络技术的发展,我国继电保护很可能在未来几年内走上网络保护的阶段。首先网络保护在理论上是可行的,它是将计算机技术、通信技术以及网络技术和微机保护相结合而诞生的一种新兴的继电保护的技术手段,也可以将之理解为微机保护的强力升级版。

网络保护必然是通过计算机网络来实现其各项保护的功能。比如谁变压器保护和母线保护。网络保护最大的优势就在于数据的共享,这样就可以实现本来由高频保护、光纤保护才能实现的众联保护。电力系统网络型的电力保护作为一种新型的继电保护类型,是继电保护继微机保护技术发展的必然趋势。

计算机技术的发展以及计算机在电力系统中的运用,继电保护也必将采用计算机技术。这些年来,人工智能技术在各个领域中都得到了广泛的运用,在电力系统的各个部分也得到了应用。继电保护技术在现在微机保护的基础上在慢慢的往网络保护上开始研究,网络保护也必将带来智能化在继电保护上的运用,从而继电保护会不断的向更高的层次不断发展。可以大胆的猜测一下,继电保护在现今微机保护的发展上,迎来的会是网络保护,在网络保护全面应用之后就会向智能保护来发展。

4 结论

我国继电保护这半个多世纪的发展,技术的更新是值得我们骄傲的。继电保护技术从最原始技术到现在的微机保护,并且我们也为下一步网络保护的发展提供了一个展望的平台,但是这些成就并不代表着继电保护技术的发展已经值得我们满足了。在21世纪高科技的快速发展上,特别是计算机技术和网络技术的黄金时间。这些科技也必将带动继电保护技术的快速发展,继电保护的发展在21世纪也将是一个必然的结果,这就对技术工作人员提出了更高的挑战。

参考文献

[1]王梅义.高压电网继电保护运行技术[M].北京电力工业出版社,1981.

[2]杨奇逊.微型机继电保护基础[M].北京水里电力出版社,1988.