油料作物和经济作物的关系十篇

时间:2023-11-20 17:54:51

油料作物和经济作物的关系

油料作物和经济作物的关系篇1

[关键词] 生物质能产业链; 生态产业链网络; 循环经济; 生态工业

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2011 . 04 . 031

1引言

1.1研究的背景及意义

自20世纪以来,由于各国经济发展的需要,人类对自然资源进行大肆掠夺,对自然生态环境造成严重破坏,人类的生存发展面临着自然资源严重匮乏、能源严重短缺、生态环境严重破坏的困境。为了摆脱困境,在全世界兴起了对新的生产方式的研究,这种新的生产方式的宗旨是要实现“人类社会经济系统”与“自然生态系统”的和谐健康发展。于是一个个“生态园区”应运而生,我国也在国外实践的基础上提出了发展“循环经济”的理念,在这样的背景下,包括生物质能在内的新能源产业已在世界各地蓬勃发展起来。

随着石油危机及温室气体减排呼声的日益高涨,寻找替代性清洁能源成为化解能源危机和温室效应的最佳策略。由于生物质能是一种化学态能,不仅能够发电、供热,而且还能转化为液态燃料和生物基产品,是唯一可大规模替代化石燃料的能源,主要发达国家的技术专家和决策者都非常重视生物质能产业的开发。近年来,伴随着针对生物质能产业创新而发生的“车人争粮”、“人道危机”、“环境问题”等激烈争论,世界生物质能产业创新开始呈现出新的趋势和特点。

生物质能产业基于循环经济理论、工业生态理论所建立的生物质能生态产业链网络具有良好的经济效益和环境效益,这成为生物质能产业发展的新趋势和新特点。本文通过对金骄集团生物质能产业链的分析,追踪这些新趋势和新特点,旨在发现生物质能产业创新的规律社会约束条件,探索适合

2.2循环经济理论

循环经济与工业生态学理论具有非常密切的关系,循环经济的思想萌芽可以追溯到环境保护思潮兴起的时代,20世纪60年代美国经济学家肯尼思·鲍尔丁提出的“宇宙飞船理论”可以作为循环经济的早期代表。该理论的核心是:如果人们像过去那样不合理地开发资源和破坏环境,超过了地球的超载能力,就会像宇宙飞船那样走向毁灭。人类应以“循环式经济”代替传统的“单程式经济”,这意味着人类社会的经济活动应该从效仿以线性为特征的机械论规律转向服从以反馈为特征的生态学规律。

循环经济(circular economy)是物质闭环流动型(closing materials cycle)经济和资源循环(resources circulate)经济的简称。20世纪90年代以来,各国学者和政府清醒认识到,当代资源环境问题日益严重的根源在于工业化运动以来以高开采、低利用、高排放为特征的线性经济模式,从物质流动和表现形态角度看,传统工业社会经济是一种“资源—产品—污染排放”单向流动的线性经济。与此不同,循环经济倡导的是一种与地球和谐的经济发展模式。它要求把经济活动组织成一个“资源—产品—再生资源”的反馈式流程。所有的物质和能源能在经济循环中得到合理和持久的利用,从而把经济活动对自然环境的影响降低到最低水平。循环经济本质上是一种生态经济,它运用生态学规律而不是机械论规律来指导人类社会的经济活动。

3金骄集团生物质能产业链结构解析

金骄集团发展生物质能产业,主要是利用各种植物秸秆、林作物以及不能作为食用油的油作物等。据相关资料介绍:巴彦淖尔市耕地面积中有可耕地77.3万公顷,灌溉面积60万公顷,有待开发面积50.7万公顷。其主要粮食作物为小麦和玉米,种植面积分别为12.7万公顷和13.9万公顷,另外还有油葵、食葵等经济油料作物,这可以为金骄集团生物质能产业的发展提供足够的纤维类原料。巴彦淖尔市周边的土地多为沙荒地、盐碱地、荒坡地,共133.3万公顷,其可作为生物质能产业的林木种植基地,种植面积可达20万公顷以上。金骄集团现已在该市边际性土地上建立石油植物园,重点培育油料作物文冠果。

目前集团开发的生物质能三大产品包括生物甲醇、生物柴油和燃料乙醇。另外,为了更好地实现生物质能产业应有的生态性以及生产过程中的物流循环,该集团建成了独立的热电联产系统和环境综合处理系统(见图1)。

该集团以石油植物园、甲醇基燃料系统、生物柴油—生物油联产系统、纤维制乙醇系统、热电联产系统、环境综合处理系统为框架,各系统之间通过中间产品和废弃物的相互交换而互相衔接,从而形成了一个比较完整的生物质能产业链网络,见图2。

本文以产业链“内含链”理论为基础,从“企业链”、“产品链”、“生产链”、“技术链”等4个方面对金骄集团生物质能产业链进行阐释。

3.1集团企业链解析

从图2中可以看出,该集团产业链主要由3条主链组成:

(1) 文冠果果实制生物柴油产生副产品粕及二氧化碳;

(2) 生物甲醇生物柴油废渣制堆肥石油植物园;

(3) 文冠果废枝条燃料乙醇废渣制堆肥石油植物园。

将3条主链对应到各个生物质能产业系统,即表示成“企业链”的形式为:

(1) 石油植物园生物柴油、生物油联产系统环境处理系统;

(2) 生物甲醇系统生物柴油、生物油联产系统石油植物园;

(3) 石油植物园燃料乙醇系统环境综合处理系统石油植物园。

另外,环境综合处理系统和热电联产系统与集团内三大生物质能产品系统的联系紧密。这两个系统的存在不仅实现了集团内的水循环和能量循环,它还是联系三大生物质能产品系统的重要纽带。其具体“企业链”形式如图3所示。

企业链(1)是以环境综合处理系统为链中下游企业,该系统的物料投入主要是来自集团内生物质能生产系统和热电联产系统生产过程中排出的各种废水、废渣和废气等废物。

企业链(2)是以环境综合处理系统为链中上游企业,它表示废水、废渣和废气等经该系统处理后,被集团内其他系统循环利用的过程。其中该系统主要利用回用水工程,将废水经过处理以后,达到工业用水的要求,重新被甲醇基燃料系统、燃料乙醇系统所利用。

企业链(3)是以热电联产系统为链中上游企业,它表示该系统以利用甲醇基燃料系统的余热和其他投入为基础,将产生的电、汽、热全部应用于集团内三大生物质能产品系统的生产过程。

3.2集团产品链解析

从产品结构视角看,产业链是指以某项核心技术或工艺为基础,以市场前景比较好的、科技含量比较高的、产品关联度比较强的优势企业和优势产品为链核,以产品技术为联系,投入产出为纽带,上下连结、向下延伸、前后联系形成的产品链。产业链中,上一个企业的产出是下一个企业的投入——这是产业链的“基础内含链”。

从“企业链”的角度来讲,金骄集团仅有3个生物质能产品系统。但从“产品链”的角度来讲,金骄集团生物质能产品共有5种:生物甲醇、生物柴油、生物油、燃料乙醇、碳酸二烷酯等。从生物柴油、生物油联产系统的工艺流程(如图4所示)可以看出,油酸甘油酯通过酯交换、酯化,分别生成生物柴油、生物油两种生物质能产品;甲醇基燃料系统最终生产出生物甲醇、碳酸二烷酯两种生物质能产品,碳酸二烷酯以生物甲醇为原料,由生物甲醇进一步加工而生成。另外生物甲醇作为中间投入,用于生物柴油、生物油联产系统中,作为最终生物质能产品生物柴油的中间投入。由此便形了成金骄集团生物质能“产品链”,具体见图5。

3.3集团生产链解析

产业链的生产链是与最终产品生产直接或间接相关的诸多企业及社会经济的若干部门之间的一种相互依存、相互制约的链状经济技术关系。

产业链的生产链结构及运行有两个突出特点:一是各个环节在空间上的并存性和运行时间上的继起性。空间并存性,是指链条的基本环节在空间上不能空缺,也就是在同一时点上各个环节都必须同时存在。时间的继起性,是指生产链的每一个生产环节的运动不仅自身不能停止,而且必须一个接一个地有序地跟着前进。二是链状结构之间的比例性和运动的平衡性。只有各环节在组织规模与作业数量上保持一定的比例,才能保持各环节在运动中的动态平衡;也只有保持链状环节的动态平衡,才能保持整个生产链良性互动,并产生出整合的前推力量。该原理可借鉴并联电路中总电流i与分电流ii的关系进行描述,见图6。

在图6中,电阻之间是相互并联的关系,总电流i与分电流ii的关系为:i = i1 + i2 + … + in 。

当电路中其中一个电阻值ri变大时,则:ii减小,因此便会引起总电流变小。为保证整个电路能够正常工作,当其中电阻变大时,总电压也应相应地增大。

对于金骄集团的5个系统,各个系统之间是相互联系、相互作用的。其中任何一个系统产品产量和规模的变化都会给其他系统带来影响。如:热电联产系统,该系统存在的意义是将电、汽、热及时、保质保量地供应给其他系统,这样才能保证集团生物质能产品的正常生产。如果三大生物质能产品系统中任何一个系统想要扩大生产规模,那么该系统对电、汽、热的需求便会增加,此时就应该相应地扩大热电联产系统的规模。

3.4集团技术链解析

产业链中每个企业为了保证产品生产的质量,都有一系列的技术支撑,所有不同环节企业的技术之和便构成了产业链的技术链。由于每个企业都有自己的核心竞争力,因此每个企业也都有独特的技术,这些技术是企业的竞争优势所在。当市场需求发生变化时,首先会引起技术链的变化,只有技术链能顺利对接才能保证产业链生产上的对接,才能保证产业链的稳定运行。

金骄集团各系统之间存在着紧密的经济技术联系,如果没有各种生物质能技术的支撑,就不能形成生物质能产业链。各系统中利用的关键技术见表1。

以纤维制乙醇为例,该工艺与发酵法纤维制乙醇相比,成本相当于其58%,投资低65%,生产规模是其2~3倍,与天然气制醇类燃料相比,大大减少了温室气体co2的排放(是其26%),该技术工艺是由金骄集团自主研发的。

金骄集团吸纳国内在生物质炼制领域技术领先的3所重点大学(北京化工大学、吉林大学、华南理工大学)作为股东,共同办企业。由大学教授与企业科研人员共同组成课题组,利用大学的基础研究设施和企业的应用研究、小试生产、中试生产设施共同完成科研开发,实现大学的基础理论研究与企业的产品研发、应用技术研究相结合。开发队伍精干,具备一流的研发实验设施,形成灵活高效的运作机制、显著的自主创新优势和突出的技术特色,能够持续不断地为生物质炼制产业技术进步提供有力支撑。

4金骄集团生物质能产业链的特性

4.1“生态产业链”特性

生态产业链一般是指依据生态学原理,以恢复和扩大自然资源存量为宗旨,为提高资源基本生产率或满足社会需要,对2种以上产业的链接进行设计(或改造)使其成为一种新型的产业系统的系统创新活动。

生物质能产业链是借助于高新科技将“生态工业系统”与“自然生态系统”耦合而形成的一种产业链,因此其必定具有一定的生态特性:

(1) 首先,从集团发展生物质能的原料来看,甲醇基燃料系统、纤维制乙醇系统均以植物纤维等农林废物为原料,这些纤维素类物质是地球上最丰富、最廉价的可再生资源,利用这些废物不但可恢复、扩充自然资源增量,还会减少这些废物对生物生存空间的侵占并减少一定的环境污染。另外该集团利用巴彦淖尔市边际性土地(沙荒地、盐碱地、荒坡地)种植文冠果果树等生物质能林木,原料供应不但做到了“不与人争粮”,“不与粮争地”,从而避免以往生物质能产业引起的“车人争粮”、“人道危机”、“环境问题”等激烈争论,而且将能源林基地建设与防风固沙、城市周边绿化融为一体,更好地体现了该集团生物质能产业链的生态特性。

(2) 从生物质能产业链的“生态工业系统”角度来讲,金骄集团研发部依据生物质c、h、o循环机制、生物质炼制与环境的协调性、生物质产品技术经济分析等设计和改进生物质能生产工艺,其生产过程中处处体现绿色、无毒和安全的特性。例如,在生物柴油、生物油联产系统整个生产过程中,利用国际领先的工艺(生物柴油生产过程采用国际先进的汉高法;生物油生产过程采用国际先进的有利凯玛法,均为国际通称的“绿色精细化工”方法),不添加任何对环境可能造成污染的添加剂,且工艺安全合理。另外,在生产过程中,涉及外运的易燃易爆品为工业溶剂油和甲醇,将采用专用车、专用道、专用时间运输。

(3) 从生物质能产品利用的角度来讲,生物质能产品与石油能源产品相比,其本身具有很好的环境友好特性,下面以生物柴油和燃料乙醇为例进行说明。

生物柴油具有优良的环保特性,主要表现在:由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放可减少约30%(有催化剂时为70%);生物柴油中不含对环境有污染的芳香族烷烃,因而其废气对人体的损害低于柴油,检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患癌率;由于生物柴油含氧量高,其燃烧时排烟少,其co2的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油生物降解率高,对水和土壤的污染比较少(参见表2)。

随着燃料乙醇在汽油中混合比例的增加,其生命周期环境影响总水平值降低。当混合比例为100%时,环境影响总水平值最低,为4.26 × 10-5人/km。因此,与汽油比较,燃料乙醇产生的环境影响较小(参见图7)。

一直以来,煤炭作为不可再生的化石能源,是我国主要依赖的能源,在一次能源消费中其比例高达70%。然而煤炭的利用给我国带来了巨大的环境问题,co2、so2等有害气体的大量排放,在造成环境污染的同时也制约着我国经济社会的可持续发展。生物质能作为世界第四大能源,是唯一既可再生又可直接储运的能源,其开发利用可使人类摆脱对化石能源的依赖,对生态环境保护具有重要的意义。

4.2循环经济特性

循环经济是指为保护环境,实现物质资源的永续利用及人类的可持续发展,按照生态循环体系的客观要求,通过清洁生产、市场机制、社会调控等方式促进物质资源在生产中循环利用的一种经济运行形态。资源的循环利用是循环经济的核心内涵,“循环”则是循环经济的中心含义。“循环”是指经济赖以存在的物质基础——资源在国民经济再生产体系中各个环节的不断循环利用(参见图8)。

金骄集团循环经济特性主要表现在以下方面:

(1) 在生产加工过程中对能源原材料的果实、秸秆、叶子等全方位的利用。以石油植物园中生产的文冠果为例,文冠果是我国特有的优良木本油料树种,种子含油量为45%~50%,种仁含油量为70%。从能源角度看,是一种理想的能源林植物。金骄集团将文冠果果实作为生物柴油、生物油投入的原料;其废枝条用于燃料乙醇和热电联产系统;文冠果叶被采摘直接销售到市场,经其他企业加工生产高级茶叶。

(2) 通过适当的技术尽量将生产的副产品进行回收。金骄集团三大生物质能产品系统在生产过程中均有一定数量的副产品生成。如:甲醇基燃料系统副产品二氧化碳、堆肥;生物柴油、生物油联产系统副产品甘油、粕;纤维制乙醇系统副产品堆肥。其中,副产品堆肥作为有机复合肥用于石油植物园的中间投入进行使用,以节约资源,减少集团开支。另外,副产品甘油、粕等直接进入流通市场,为集团创造了额外的经济效益。

(3) 在各系统生产过程中,一个系统排出的“废物”作为集团内其他系统的最初投入。以甲醇基燃料系统为例,其在生产过程中产生的“废热”被热电联产系统所利用;集团内各系统生产过程中所排出的“废渣”、“废水”等废物,均是环境综合处理系统的最初投入。在环境综合处理系统中,通过回用水工程,实现了集团内的水循环。

4.3产业链网络结构特性

根据以上论述,金骄集团生物质能产业链既具有生态性,又具有循环经济特性。因此在集团内部,一条产业链的“下游企业”有可能是另一条产业链的“上游企业”。产业链的这种特性,很好地实现了系统间的物质集成、能量集成,通过上下纵向延伸和横向环向拓展,形成产业间的工业代谢和共生关系,构建出生物质能产业共生网络系统。其中上下纵向延伸是对生物质资源进行深加工,环向拓展就是将上下延伸的产业链排放出来的副产品或废弃物再深度加工。

产业链网状结构的构建需要多种技术,除包括循环经济技术中通常使用的替代技术、减量化技术、再利用技术、资源化技术以外,还包括系统优化技术以及共生链接技术。系统优化技术是从系统工程的原理出发,通过资源、能源工业代谢分析,实现区域物质流、能量流、信息流、价值流等优化配置的软科学技术,可用于指导产业链网状结构的构建;共生链接技术是在构建产品组合、产业组合,实现产业链链接和产业共生时采用的链接技术,这对于构建生态产业链的成功起到关键作用。

根据前面对集团产业链的解析结果,该集团目前存在的纵向主导产业链有:文冠果果实—生物柴油—市场;文冠果果实—生物柴油—生物油—市场;文冠果纤维茎秆—燃料乙醇—市场;生物质纤维—生物甲醇—市场;生物质纤维—生物甲醇—生物柴油—市场;生物质纤维—生物甲醇—碳酸二烷酯—市场。

而环向产业链的构建主要是靠集团内两大寄生型共生系统为媒介进行搭建。环境综合处理系统吸收并消化三大产品系统产生的废水、废渣、废气,并实现了废水回用于集团各系统,实现了水系统集成;热电联产系统利用石油植物园中植物纤维以及生物甲醇系统的余热实现发电,并用于满足集团各系统对于热、电、汽的需求,但是从对该集团生物质能产业链耦合程度的考察结果来看,其在纵向延伸的深度和横向延伸的广度上可进一步加强,从而构建出更加健全稳定的生物质能产业链网状结构。

5进一步构建集团生物质能生态产业链网络的建议

金骄集团生物质能产业共生系统在其结构形成和发展过程中,会不断加深各种链状结构的纵向延伸和横向联系,从而又形成新内容的链状结构,最终形成更复杂的产业链网状结构。本文根据目前集团生物质能产业链网络的发展情况,提出了集团生物质能产业链网络结构的改进措施,具体如下:

(1) 燃料乙醇产业向上延伸与化石能源煤炭产业接轨,利用劣质煤炭褐煤与植物纤维双原料技术,生产乙醇基燃料;

(2) 生物甲醇系统可进一步利用甲醇催化脱水制备二甲醚,利用再度脱水制备汽油技术,生成最终产品生物汽油,延长其产业链长度,增加经济效益;

(3) 进一步扩大环境综合处理系统的规模,改进污水处理技术,并将处理后的水用于石油植物园的灌溉和生物柴油系统中,更好地发挥集团水集成系统功能;

(4) 利用循环经济技术,进一步构建co2利用产业链,更好地实现废物利用的经济效益。

5.1燃料乙醇产业向上纵向延伸

内蒙古自治区具有丰富的煤炭资源,在该地区煤炭资源开发与利用过程中,一部分劣质煤市场竞争力较弱,价格低廉,在对其开采过程中往往造成很大的浪费;另一方面,集团现有的纤维制燃料乙醇气化技术存在着能量利用率低、过程污染严重等问题,因此该技术亟待改善。本文建议结合当地煤炭资源优势,在纤维制乙醇系统中将褐煤这一劣质煤作为原料,与植物纤维混合制乙醇,在改进技术工艺的基础上,使生物质能产业向上延伸,与煤炭行业接轨。

纤维质与煤炭双原料气化技术的优势在于:

(1) 煤炭的气化温度高,生物质的气化温度低,双原料气化可以使生物质气化在较高的温度下进行,气化反应充分,并可促进焦油的分解,减少过程的污染;

(2) 生物质中的高碱金属可以在煤焦气化过程中起催化作用,加快气化反应速度;

(3) 生物质供应受季节的影响,而生物质和煤双原料利用解决了季节性问题。

本项目以“生物质与煤双原料制乙醇基燃料”技术为依托,采用高压循环流动床气化和连续自热式固定床合成塔催化合成乙醇基燃料工艺,以生物质与煤为原料,通过双流气化制备双流合成气;双流合成气可满足管道输送要求,从而可提高天然气的供应量;乙醇基燃料可直接掺入汽油或柴油中作为发动机燃料,燃料特性比甲醇好,而且还是甲醇、汽油的助溶剂,是生物柴油的功能改进剂。

5.2生物甲醇制备生物汽油

该项目经工艺延伸联产高附加值产品,实现生物基化学品与石油化学品的“功能替代”,生产的生物汽油可代替化石能源直接应用于各种发动机。

生物质能产品的主要风险来自市场的竞争,而产品的价格竞争又是市场发展的重要因素。该项目直接利用金骄集团生产的生物甲醇来生产生物汽油,降低了原料成本,提高了生物汽油的市场竞争力,与原有生物甲醇产业链相比,其经济效益的提高非常明显,具体见表3。

甲醇制汽油技术工艺并不复杂,具体见图9。

反应式为:2ch3ohch3och3+h2o(脱水反应)

首先甲醇转化为烃类是强放热反应,因此控制和传递大量热量是甲醇转化为汽油工艺的重要问题。其次是反应过程中生成大量水的问题,反应主要装置有流化床反应器、再生塔和外冷却器,反应器包括一个密相段,其下部为稀相提升管。

原料甲醇和水按一定比例配料并进行气化,过热到177℃后进入流化床反应器。反应生成的相气中除去夹带的催化剂后进行冷却,分离为水、稳定的汽油和轻组分。反应热是在高温催化剂返回反应器之前,通过冷却器循环而回收。同时反应热可发生高压水蒸气,其提供的余热同样可用于集团中的热电联产系统。

5.3进一步发挥环境综合处理系统的功能

根据上述分析可知,集团环境综合处理系统虽然在一定程度上实现了水集成系统的功能,但是其集成程度并不完善,这直接造成以环境综合处理系统为主导企业的产业链网络中的环链结构不够发达,因此本文提出对其进行完善的建议,具体见图10。

在已有的环向链联系中,由于环境综合处理系统规模较小,使其处理废物的能力受到限制,其处理的废物中又以废水为主,而对于其他废物的处理能力较弱,造成部分废物的流失,其中包括温室气体co2等。另外,集团中生物柴油系统是一个用水量较多的系统,而目前其用水主要为新鲜水,因此,为节约水资源,提高环境综合处理系统的水处理能力势在必行。

另外,石油植物园中植物的种植,需要肥料和大量灌溉水。在集团三大产品生产系统中都有大量的有机堆肥产生,经过环境综合系统对其进行处理,将其作为植物生长中所需的肥料;各系统中产生的各种废水经过环境综合系统回用水工程处理,可用于植物灌溉。通过这种从“源”—“汇”—“源”的纵向闭合来实现资源的永续利用。产业生态学要求从产品设计开始,就必须考虑产品使用期结束后的处置和再循环问题。因此,废弃物处置和产品的设计、生产一样重要,并且具有特殊的生态经济意义,它既是物质生命周期的最终环节,也是链接上下两个循环周期以及纵向闭合与横向耦合、协同共生与内外和谐的关键环节。

5.4构建集团副产物co2利用产业链

循环经济要求构建原材料、产品、副产品以及废物的循环工业链,实现物质的最优化循环和利用。循环工业链的设计是生物质能产业链环向链中的重要组成部分,因此是值得我们探讨的一个重要问题。纵观金骄集团生物质能产业链网络,我们发现在其生产过程中,排放的主要废弃物就是co2,且以生物甲醇系统为最,每生产1吨生物甲醇就会产生0.1吨的co2。

实际上,co2在工业、农业、食品、医药、精细化工等领域应用广泛,但结合本集团种植业与工业生产相结合的现状,可考虑利用co2发展生态农业。具体做法是:收集各系统产生的co2气体用于集团石油植物园温室育苗过程,以达到减少温室气体排放的目的。与此同时,还可利用集团中各系统产生的余热来维持温室温度。

另外,该集团正在开发藻类生产生物柴油技术,并在石油植物园中培育高产量藻类品种,而藻类在其生长过程中同样离不开co2,因此在集团内部就可以将co2消化掉。利用co2气体构建的生态产业链可以表示为:co2气体—种植业—三大产品系统;co2气体—藻类培育—生物柴油。因此,co2产业链的构建使得集团生物质能产业链的耦合程度更加复杂化,生物质能产业链网络更加完善,具体见图11。

综上所述,在原有的生物质能产业链网络结构基础上,可延伸出褐煤—乙醇基燃料、生物甲醇—生物汽油—市场等纵向产业链;以及各系统废水—环境综合处理系统—石油植物园、生物甲醇系统—co2气体—石油植物园、co2气体—藻类培育—生物柴油系统等多条横向耦合的产业链,形成了更加复杂的生物质能产业链网络。

在该生物质能产业链网络中,其价值链更长。循环经济生产方式本身拉长了产业链,深化了资源价值的开发。在该结构中,废弃的副产品被回收、处理、加工,因此增加了生产环节,价值链相应得到延伸,用同样的资源却创造出了更大的价值。

6总结

通过对金骄集团生物质能产业链的分析,我们得出以下结论:

(1) 生物质能产业链是借助于高新科技将“生态工业系统”与“自然生态系统”耦合而形成一种资源循环利用型产业链,以此发挥该产业在经济部门中的静脉作用。生物质能产业链的培育要充分发挥产业集成技术与循环经济技术的优势。

(2) 生物质能产品企业的核心技术是提高生物质能产业的生产效率和经济效益的关键因素。金骄集团应进一步加大对生物质能技术的开发力度,使其成为产业链中在技术创新、专利、标准、品牌等方面具有竞争优势的核心企业,以其良好的发展前景吸引更多的生物质能产品的消费者。

(3) 我们通过探讨各产业之间“链”的链接结构以及特性,找到产业链上生态经济形成的原因,并据此进一步提出完善集团生态产业链网络内部的“物质流”和“能量流”的建议,以实现整个集团产业链网络的和谐健康发展。

主要参考文献

[1] b hillring.rural development and bioenergy:experiences from 20 years of development in sweden [j] .biomass and bioenergy,2002,23(6):443-451.

[2] k mandal,et al. bioenergy and economic analysis of soybean-based crop production systems in central india [j] .biomass and bioenergy,2002,23(5):337-345.

[3] 欧阳志云,赵同谦,苗鸿,等. 海南制糖—酒精—能源—农业生态产业模式设计[j]. 环境科学学报,2004,24(5):915-921.

[4] 施士争. 以柳树为原料的生物质能源产业链探讨[j]. 江苏林业科技,2007,34(2).

[5] 黄何,于文益,苏碧霞. 广东省非粮燃料乙醇技术发展与产业对策探讨[j]. 科技管理研究,2008,28(11):67-69.

油料作物和经济作物的关系篇2

一、发展现状

1.旬邑县油料作物以大豆和油菜为主,大豆主要分布在城关川道、地界等区域,其它塬区有零星种植;油菜主要分布在原底、丈八寺和湫坡头等乡镇。2010年大豆种植面积2700亩,总产351吨;油菜种植面积3800亩,总产396吨。

2.大豆 (由于夏大豆面积较少,以下统计数据以春大豆调研结果为准分析),主要种植模式为窄行平播和在幼果园中撒播套种,亩均产量为140千克,生产成本337.5元(不包含人工费),亩均产值644元,经济效益306元。油菜 主要种植模式为(撒播)直播栽培,亩均产量104公斤,生产成本344.5元(不包含人工费),亩均产值499元,经济效益154.5元。

3.由于本县油料作物种植面积不大,分布也相对分散。因此未能建成有效的油料产业发展服务体系。也没有成立涉及油料生产的专业合作社。

二、发展潜力分析:

旬邑县地处北纬35o57~35o33',东经108o08~108o52',境内海拔850~1855米,年降水量606毫米,无霜期179天,平均气温9℃,是典型的雨养旱作农业区。农业产业主要集中在苹果产业的发展和玉米小麦等粮食作物的种植上。大豆是喜温作物,不耐高温,对降水量的要求也比较高,特别是播种期和鼓粒结荚期间,水分是否充足对产量的影响甚大。而我县靠天吃饭的现状根本保证不了大豆对水分的要求,农田水利设施目前尚在初建阶段。因此增产潜力有限,再加上经济效益并不十分乐观,近几年来说大豆种植面积不适宜过快增加。就油菜而言我县地处北方冬油菜生产区的陕西渭北,冬春雨雪少,温度偏低,油菜与冬小麦等作物轮作,品种多为冬性强、根系发达的甘白杂交型品种。充足的光照,相对较大的昼夜温差这些有利的生态环境为旬邑县油菜的高产提供了必要的条件,但油菜安全越冬和增产的关键在于土壤水分,而旬邑县冬春降水少,从这点上来看,没有必要的水利灌溉设施,高产就没有任何保障,以目前的产量计算,经济效益微乎其微,如果把人工费用计算在内甚至是负数,这也正是农民种植油菜不积极的最主要的原因。总的来看,就目前各方面的实际情况而言,油菜增产的潜力也不大,不适宜在本县进一步推广。

三、存在的问题

从农户调查问卷的结果来分析,农民目前急需解决的问题主要集中在优质高产新品种推广,油料作物配方施肥以及旱地灌溉设施的建设这三个方面。

四、对策建议

1.加强农田水利建设

特别是原底、丈八寺、湫坡头以及城关川道、地界等油料作物种植相对集中的塬区,加强水利设施的建设工作,以满足油料作物的生长需求。

2.严把种子关

农业局牵头,县种子管理部门应对进入市场上的油料种子进行严格审查,不符合相关规定的坚决不能流入市场。同时农技推广部门应通过赶科技集、散发宣传资料、办知识讲座等手段指导农民科学种植油菜,适当引进油料作物新品种,开展试验试范,对适合我县种植的优良品种进行宣传推广。

3.开展油料作物配方施肥工作

县农技推广中心应总结近几年玉米苹果配方施肥的经验,将油料作物也纳入配方施肥的范围,进行测土配方,指导油料作物种植户科学施肥。

油料作物和经济作物的关系篇3

一、建立健全物资质量管理体系,是提高企业管理的一项重要内容

石油企业物资供应部门开展质量管工作重点应放在内部的质量管理上,只有通过建立健全质量管理体系,使之有效运行来带动各项管理水平的提高。通过科学的组织和管理,强化人们的质量意识和参与意识。不断地挖掘出内部的潜力,从而提高物资供应工作的管理水平和经济效益。目前,石油物资供应部门已经基本建立了质量管理体系,但在实际运行中还存在着一些薄弱环节,必须从认识上分析。如:(1)在质量管理体系中只重视物质采购,验收,检测和保管过程中的质量控制,而忽视了物资在运输,装卸倒运以及物资计划等环节的质量控制。实际上由于装卸倒运的不合理操作,给企业造成了一定的经济损失。(2)质量体系中环节质量的监督检查的力度不够等等。因此,石油物资供应部门应根据物资供应的特点建立物资供应质量环。建立质量控制点,切实落实质量责任制。石油物资供应工作过程中各环节之间存在着相互影响,相互促进的关系。供应物资的质量和服务质量依赖于各环节的工作质量。只有提高各环节的工作质量,才能保证供应质量可靠的物资和提供高满意度的服务。

根据物资供应工作实际,我们把建立物资供应工作形象化地分为几个阶段,构成一个完整的质量环,即:物资需求及市场调研――物资计划――物资订购――物资接运――用户服务――物资发放――物资仓储――物资验收检测信息反馈。各阶段之间交错进行,相互影响。如:物资需求及市场调研环节的工作质量直接影响着物资计划的质量,并对以后几个环节的质量也有着不同程度的影响。用户服务环节是一个循环的最后一个阶段。通过对用户服务反馈回来的质量要求,将影响着下一个循环的开始。这样周而复始,相互制约,相互联系。只有确保每个环节的工作质量,才能使质量环呈螺旋式上升,循环一次,质量就有一次提高,不断循环,供应物资的质量的程度就会得到不断堤高。从质量环中我们可以看出物资供应工作主要由八个环节构成,这些环节的失控就会造成物资不合格,损坏、变质或造成物资积压,严重影响经济效益。因此,应运用预防为主的原理,对物资仓储等对物资质量有较大影响的关键环节和薄弱环节设立质量控制点,实行重点控制。石油企业物资供应部门的主要质量控制点应为:(1)物资计划质量控制点。要求计划编制依据充分,核算正确,保证物资供应,防止造成积压;(2)物资采购质量控制点。要球择优选定供货厂商,比质比价,确保订购物资质量;(3)物资装卸质量控制点。要求做好物资装卸倒运等工作,避免野蛮作业,使物资失效、变形造成经济损失等。总结经验,为下一个循环提供信息。另外,对其他环节也应进行质量控制。在每一个控制点上都应设立相应的控制人、检查人、落实质量责任制,管理部门应定期进行检查考核。目前,石油物资供应部门虽然在质量管理上做了大量工作。有相应的管理机构,制定了一系列管理制度,有成套的质量控制手段,但实施的效果并不理想。关键就在于必须切实落实质量责任制,质量责任制不仅要落实到部门,而且要落实到人头。

二、强化物资供应各环节的质量管理,保质保量的完成供应工作任务

1.加强采购订货过程中的质量管理,把好物资采购关。石油企业是技术和资金密集型企业,石油企业的投资近80%以上用于采购物资,高达数十亿元。如何用好采购资金采购到质量好,价格低的物资。对确保石油生产建设有着重要意义。因此,只有加强物资采购订货过程中的质量管理,提高物资采购订货过程中的质量管理提高物资采购质量,才能把住物资采购关,为了做好采购工作,在采购前必须做认真细致的市场调研。制定合理的物资采购计划,并严格按照《石油工业常用物资采购一般规定》进行采购。一要制定完善的采购管理制度。二要加强物资合同的管理。三要建立物资采购网络。四要把好物资采购关。必须提高业务人员的素质,采购人员的素质是物资采购工作中不可忽视的因素。由于采购员人员的水平低,素质差给油田造成经济损失的事件时有发生,如:某油田采购了一批假电线,被当地技术监督局没收,由于业务人员的失职给油田造成1500多万元的经济损失;某油田曾从日本进口一批五十铃汽车配件,因采购人员的疏忽把100套车门锁的图号错写为车门的图号,厂家发来100套车门,结果造成140多万元的经济损失,因此,对采购人员进行《产品质量法》《经济合同法》《标准化法》、以及《质量振兴纲要》和相关采购标准、产品标准的业务培训,提高业务人员的业务水平和自身素质是很必要的。五要严格控制进口物资的进货渠道。进口物资必须经过国家检验局检验。目前石油企业进口物资有钢材、设备和汽车配件等,一般都是从海关进口的,都经过了国家检验检疫局的商检,而进口汽车配件一部分是“水货”,即无中文标识又无商检证书和标志,包装上只有“纯正部品”四个字,有的甚至连包装都没有,这样的进口配件很难让人相信其质量的可靠性,有人认为进口的东西就是比国产好,还要商检干什么,然而他们没有注意到进口的物资也会出现质量问题,所以控制好进口物资的进货渠道,合理分配采购资金,对提高进口物资的质量有一定的作用。

2.加强物资验收,检测工作力度,强化质量监督的作用。物资验收检测是物资进入的重要关口,把好物资验收检测质量关,对防止假冒伪劣产品进入本企业,有着十分重要的作用,抓好这项工作有效地控制这一质量控制点,应注意以下几点:(1)大力宣传技术监督法律法规,提高技术监督队伍的整体素质。人们通常认为技术监督人员是物资检测、质量、计量、标准化管理人员,不包括验收人员。实际上石油企业验收人员也是技术监督人员,他们是物资到货后第一位进行质量、数量监督检查的技术监督人员。所以技术监督队伍应包括验收人员、检测人员、质量、计量、标准化管理人员。提高技术监督队伍的整体水平,应着眼于这些人员的素质。(2)按标准、按程序严格进行质量、数量的验收。物资到货后,应由保管人员、验收人员、业务人员共同到现场按照订货合同和产品标准对物资进行数量、外观质量、标识、包装、三证等几方面验收。一般情况下应在三日内出具验收合格单。(3)坚持物资报检制度。对重点物资进行内在品质的检测,仓储部门在物资到货后,对

于具有检测手段的重点物资应实行报检制度。对建筑材料、石油专用设备、仪器仪表、化学助剂、石油专用管材、阀门等重要物资应由质检部门进行物理性能、机械性能的检测。检测率达到100%。对于无检测手段的重点物资应由抽检部门负责抽样送检,对已取得IS09001体系认证的产品可以免检。(4)加强质量检测部门的建设,完善检测手段。石油企业应注意对检测部门的资金投入,完善其检测手段。增加检测项目,扩大检测品种,从而增强检测质量的力度,加强仓储部门的质量管理,把住物资出库质量关。

3.及时进行质量回访解决用户使用中出现的质量问题。物资供应部门可通过质量回访了解掌握所供物资在使用中的质量情况,及时处理用户反馈的信息和提出的意见,对存在质量问题的物资进行分析和处理,做好服务工作,先保证生产急需,然后依法向供货厂商索赔。应注意的是质量回访的对象不仅是生产单位供应管理部门的技术部门,还应包括直接使用的生产一线单位。

4.加强对不合格物资的处理力度。对发现的质量问题和数量短少问题应依据标准规定向对方索赔。如:2009年,我油田机械厂购买一批特殊钢材,用易切削不锈钢棒料来加工产品。经下料、锻造、热处理、铣、车等粗加工后在第六道工序精加工时发现有裂纹,该批产品不合格,确定为报废品。我方与供货商共同对报废品质量认定为原材料质量不合格。供货商家对原材料进行了更换并对加工费进行垒额赔偿,从而维护了本企业的利益。

三、加强质量成本的控制是提高企业经济效益,增加企业活力的重要手段

在市场经济条件下,石油企业物资供应部门必须面对现实,面对市场,以质量为根本,迎接新形式的挑战和市场竞争。如果企业单纯强调生产高速度,产品高数量,缺乏对其投入产出经济性的综合评价,必然造成经济效益下降的负效应,从经济效益的角度来看,企业要提高效益,必须进行成本控制,加强物资质量管理,控制质量成本是物资成本管理中的重要内容。质量成本是指项目为保证和提高产品质量而支出的一切费用,以及未达到质量标准而产生的一切损失费用之和。它包括两个主要方面:控制成本和故障成本。控制成本包括预防成本和鉴定成本,属于质量保证费用,与质量水平成正比关系;故障成本包括内部故障成本和外部故障成本,属于损失性费用,与质量水平成反比,控制质量成本应坚持以下原则:

1.目标管理原则。目标管理是进行任何一项管理工作的基本方法和手段,成本控制也应遵循这一原则。即目标设定、分解目标的责任到位和执行检查目标的执行结果评价和修正目标,从而形成目标管理的计划、实施、检查、处理循环。在实施目标管理过程中,目标的设定应切实可行,越具体越好,要落实到各部门、班组甚至个人;目标的责任应全面,既有工作责任,更要有成本责任。如:技术人员在产品设计中选择材料时,要做到技术上切实可行,即工作责任的要求,同时经济上要合理,即成本责任的要求;目标的检查应及时全面,发现问题,及时采取纠正措施;评价应公正、合理。只有将成本控制置于这样一个良性循环之中,成本目标才得以实现。

2.责、权、利相结合的原则。在成本控制过程中,项目经理及各专业管理人员都负有一定的成本责任,从而形成了整个项目成本控制的责任网络。责任人应享有一定的权限,即:在规定的权力范围内可以决定某项费用能否开支、如何开支和开支多少,以行使对项目成本的实质控制。如:物资采购人员在采购材料时,应享有选择供应商的权力,以确保材料成本相对最低。最后,企业领导对项目经理,项目经理对各部门在成本控制中的业绩要进行定期检查和考评,要与工资、奖金挂钩,做到奖罚分明。实践证明,只有责、权、利相结合,才能使成本控制真正落到实处。

3.材料成本控制的原则。成本控制包括材料用量控制和材料价格控制两方面。材料用量的控制包括:(1)坚持按定额确定的材料消费量,实行限额领料制度,各班组只能在规定限额内分期分批领用,如超出限额领料,要分析原因,及时采取纠正措施;(2)改进施工技术,推广使用降低料耗的各种新技术、新工艺、新材料;(3)在对工程进行功能分析、对材料进行性能分析的基础上,力求用价格低的材料代替价格高的材料等

油料作物和经济作物的关系篇4

关键词:生物质能源;产业现状;存在问题;对策措施;贵州

中图分类号:F127文献标志码:A文章编号:1673-291X(2010)28-0128-03

生物质能是植物通过光合作用将太阳能转换为化学能而固定下来并储存于生物质中的能量。主要包括植物、农林废弃物、有机废水和畜禽粪便等 [1]。现代生物质能源的研究与利用主要指借助热化学、生物化学等手段通过先进的转换技术,生产出不同需求的固体、液体、气体等高品位的新能源来替代日期枯竭的化石能源。生物质能源目前已占世界能源消费的14%左右,排在化石能源煤、油、气之后而位居第四[1~2]。 贵州是一个富煤缺油缺气的山区省份,长期欠开发、欠发达,充分利用优越的自然气候资源、丰富的生物资源,积极开发利用生物质能源,缓解能源短缺压力,是事关国家能源安全、生态安全,确保国民经济可持续发展和社会进步的重大研究课题,是国家能源发展战略的必然选择。发展生物质能源有利于探索能源替代新途径,缓解能源压力;有利于贵州喀斯特山区的石漠化治理,改善生态环境;有利于拓展农业生产功能,增加农民经济收入。有鉴于此,拟通过对贵州主要自然气候资源、能源植物资源及产业技术现状、存在问题和发展对策进行分析探讨,以期促进贵州生物质能源产业持续稳步发展。

一、贵州发展生物质能源的优势及条件

“十五”计划以来,随着中国《可再生能源法》的正式实施,生物质能源发展日益受到各级政府和全社会的密切关注。国家先后颁布了《中华人民共和国可再生能源法》,制定了《可再生能源中长期发展规划》、《可再生能源“十一五”规划》及《生物燃料和生物化工原料基地补贴办法》、《生物能源及生物化工非粮引导奖励资金管理暂行办法“财建[2007]282号” 》、《秸秆能源化利用补助资金管理暂行办法“财建[2008]735号” 》等相关政策及资金补助措施。根据中国经济社会发展需要和生物质能源利用技术状况,明确提出到2010年,增加非粮原料燃料乙醇年利用量200万t,生物柴油年利用量达到20万t;到2020年,生物燃料乙醇年利用量达到1 000万t,生物柴油年利用量达到200万t,总体实现年替代约1 000万t成品油的目标。农村沼气、燃料乙醇、生物柴油、致密成型固体燃料等广泛应用于生物质发电、汽车燃料、民用生活领域,能源植物筛选、高效节能技术一直被视为生物质能源研发的重点。贵州位于中国西南地区的东部,地处云贵高原向广西丘陵过度的斜坡地带,介于东经103°36′~109°35′、北纬24°37′~29°13′之间,平均海拔1 100m左右,属亚热带季风湿润气候区,大部分地区年平均气温在15℃左右,日照时数在1 200h~1 400h之间,年均降水量在1 100mm~1 300mm之间,年相对湿度高达82%,立体气候明显、温暖湿润,生物资源种类繁多、富有特色,是全国重要的动植物种源地之一。

根据贵州省(2006―2050)喀斯特石漠化和小流域综合防治规划,贵州省现有200万hm2宜林荒山荒地,在喀斯特地貌的山区种植小油桐、黄连木、光皮树、乌桕、续随子、油桐、蓖麻、甘蔗、木薯、甘薯、芭蕉芋等能源植物资源,对推动山区农村产业结构调整,实现能源农业、能源林业产业化,生物质能源及其他农业废弃物十分丰富,开发应用基础好。按照国家发展生物质能源应坚持不与人争粮、不与粮争地、不破坏生态环境的“三不”原则,贵州发展生物质能源的自然基础条件较其他平原地区优越。

贵州自21世纪开始,已经启动从优势能源植物筛选、利用评价、良种培育、基地建设到加工生产技术工艺等系列基础试验示范工作,基本建立了以小油桐、乌桕、光皮树、芭蕉芋为主的优质高产栽培和良种繁育技术体系,掌握了高转化率的加工工艺和技术,为生物质能源产业进一步发展奠定了一定的基础。

二、贵州生物质能源发展现状及存在问题

1.产业研究发现状

贵州省自2000年以来就开始关注并积极推动农村沼气、燃料乙醇、生物柴油等资源发掘及技术研发工作。在省委、省政府的重视支持下,相关部门先后从农村废弃物生产沼气,从芭蕉芋、马铃薯、甘薯、甘蔗、木薯制备燃料乙醇,从小油桐、光皮树、续随子、蓖麻、乌桕制备生物柴油等方面对贵州生物质能源产业发展进行了摸底调查和相关研究。已从资源评价、良种培育、配套栽培、加工工艺、综合利用及产业化技术等方面展开试验示范研究。2008年全省沼气用户超过149.6万户,实际利用141.5万户,年产气76 682.6m3,秸秆生物气化产气集中供气点达二十余处 [1~5]。在能源资源的调查及筛选评价中,已基本查清全省主要生物质能源植物资源种类、数量、分布区域及主要优势资源,完成30种贵州木本能源植物的种质资源迁地保育,繁育基地及5~10种主要造林树种轻基质容器育苗技术,特别在小油桐、芭蕉芋等的能源植物资源收集、新材料创制和良种繁育方面取得一定进展,已选育出并通过省级审定芭蕉芋品种两个。一是良种繁育技术体系基本建立。二是原料基地建设进展顺利。三是生产加工工艺比较成熟。特别是生物柴油化学生产技术已经形成比较完备的生产加工技术体系和方法,固体催化剂转化率达到99%,甲酯回收率大于95%,并获多项国家发明技术专利。

目前已建有小油桐产业示范基地1.6万hm2,芭蕉芋产业示范基地近1.5万hm2,甘薯产业示范基地近20万hm2,马铃薯产业示范基地50万hm2,甘蔗产业示范基地近2万hm2。油桐产业示范基地30万hm2,黄连木、光皮树、乌桕、蓖麻等还在研究积累初期 [4~6]。已有贵州中水能源股份有限公司、贵州江南航天生物能源科技有限公司、贵州金桐福生物柴油产业有限公司、黔西南康达生物能源科技有限公司均建成了年产1万~3万t的生物柴油加工示范生产线,并将生物柴油作为新产业,逐步建设年产10万t以上的生产能力。按亩产300kg原料计算,目前能源油料种植面积要在2.5万hm2以上。乙醇生产方面:糖厂有现成的乙醇加工设备和技术,年需求原料甘蔗面积也在1.5万hm2左右 [2~4]。贵州大学、贵州醇酒厂的淀粉干片发酵技术还在进一步研究中,不久也会有相应规模的生产线建成投产,加上其他产业的原料竞争,原料不足已导致企业3/4产能闲置,仅靠地沟油、泔水油生产生物柴油很难形成产业化。

虽然生物能源开发利用前景广阔,但生物质能源研发利用技术目前还没有实现关键性突破,在发展过程中还面临优势植物资源缺乏、生产成本高、原料供应不足、市场风险大、综合利用率低、产品标准不一、市场销售不畅等诸多问题。

2.存在问题

(1)对发展生物质能源产业的认识不足。从一个新兴产业的角度和自身发展规律来看,生物质能源产业仍然存在基础积累、市场发育、支撑体系、技术攻关等许多关键环节问题。许多企业或经营者首先想到的是抓基地、建厂房,争取国家的政策性补助。而在产业链的基础环节、市场培育和技术保障方面还存在一定的盲目性,产业体系未建立,导致许多基地经营水平低、示范效果差、农户持观望态度,对发展原料生产没有信心,原料供应严重不足。

(2)研究基础薄弱,原料成本较高。生物质能源产业是一项多学科联合的现代综合性产业,产业链较长,涉及多项技术工程,生物质液体燃料近期主要是生物柴油和燃料乙醇,未来主要技术是木质素和纤维素生产液体燃料。目前主要依赖于油料植物的产量和含油量,许多木本油料植物都呈野生或半野生状态,缺乏强有力的科技支撑是生物能源产业长期做不大的原因之一,产出率不高主要还是资源和技术的双重制约。由于研究时间短,技术基础薄弱,特别是专用原料植物的良种选育及配套生产技术还未真正破题,原料生产成本较高,据测算,13t甘蔗可生产1吨乙醇,需土地1 400m2左右,按蔗价280元/t计算,原料成本价为3 640元,7t木薯生产1吨乙醇,木薯原料成本价4 000元左右,加工成本需500元~800元;按2吨植物油生产1t生物柴油计算,仅原料成本也在4 000元~5 000元之间。目前燃料乙醇销售价为5 000元~6 000元/t,生物柴油销售价为6 000元~7 000元/t,企业利润空间不大,农户种植收入较低。就拿炙手可热的小油桐来说,经历了近五年的研究,虽有规模化种植面积1.6万hm2,但大面积产量低而不稳,平均累计产量不足100kg/667 m2 [2~6]。所以,目前主要都采用地沟油、泔水油生产生物柴油,原料供应严重不足。

(3)主攻方向不明确,优势植物突破性小。通过前期研究,在优势物种选择、良种选育方面尽管取得一些成果,但研究领域狭窄,技术积累不够,在解决品种抗逆性、高产优质和规模化经营方面突破性不大,产量低,成本高。目前大多数能源植物的研究尚处于收集、引种、筛选、评价及试种栽培的探索阶段,原料结构单一、应用范围小,规模化和产业化程度还比较低。糖料作物、淀粉作物产量高,但转化利用成本较高,油脂植物转化利用成本低,但种植产量较低,农户种植积极性不高。不管是糖料能源、油料能源、淀粉能源还是其他,究竟发展能源酒精好还是发展生物柴油好目前也还没有准确定论,基地建设、产品加工、市场销售脱节,直接造成生产成本和管理成本过高,企业出现严重亏损,有碍于经济效益目标的实现,极大地限制了贵州生物能源产业的持续稳定发展。

三、贵州生物质发展建议

1.科学制定发展规划

生物质能源研发的范围十分广泛,从用途上来说,有生物质直接燃烧或混合燃烧发电,生产沼气或制成致密型燃料作民用燃料,生产燃料乙醇、生产生物柴油作机械动力燃料,还能作生物制氢等。根据用途的不同,其技术工艺和所需原料差别也很大。我们要根据市场和贵州经济社会发展的实际需求,结合能源结构特点确定一定时期内的生物质能源产业在经济结构中的地位、发展方向和任务目标,要根据生物质能源产业发展的学科取向、价值取向对相关产业进行系统科学的评估和论证,特别要在开发中的工矿区、非粮产区选择重点领域和重点植物进行研发。

根据贵州山区的能源植物分布比较零星分散、收集运输困难等特点,结合加工工艺比较成熟的实际,能够容易形成产业优势的就是车用燃料乙醇和生物柴油。目前应以车用液体燃料为重点,稳定小油桐、甘蔗、芭蕉芋、红薯、马铃薯生产,探索光皮树、黄连木、乌桕、续随子、木薯、蓖麻及其他纤维植物在喀斯特山区的适应性及发展潜力。贵州省粮食自给虽基本平衡,但随着粮食加工转化利用量的逐年增加,粮食供需缺口将继续存在,推行燃料乙醇必须慎重。结合喀斯特石漠化治理和“两江”流域区的生态屏障建设,重点应选择适应性好、抗逆性强的多年生木本能源植物进行研发。

2.加强科技攻关,突破核心技术

鉴于发展贵州生物质能源产业的关键在于保障原料供应、降低生产成本、保护生态环境和增加农户收入,一是针对喀斯特山区的地理气候环境,强化自主创新,重点利用先进育种手段和生物技术手段,选育速生丰产、抗旱耐瘠、抗病虫害的专用能源植物品种。二是研究速生丰产栽培、病虫害防治、矮化密植及配方施肥等适用技术和省力化技术。三是加快科技成果的引进和新技术研发集成、应用与推广,加速科技成果转化,大幅度提高其产量和品质。四是加强小油桐、黄连木、乌桕、续随子、芭蕉芋、甘薯等副产品的综合利用和技术研发,降低生物质能源生产的综合成本,提高综合效益。

3.探索发展模式

发展生物质能源产业是一项产业化程度较高的系统工程,涉及政府、加工企业、科研单位、农户等诸多部门,目前没有现成的模式可循。市场是拉动生物质能源产业发展的前提,科学技术是确保该产业持续稳定发展的关键。特别在发展初期,由于中国能源生产还存在一定的行业垄断,没有稳定的市场,政府要加强领导和监管,切实调动社会各方面发展生物质能源的积极性,尽快建立起一定规模生物能源基地,组织协调好各方面的利益分配关系。建议有关部门应从国家能源发展战略和解决三农问题的高度出发,切实制定相应的扶持政策和措施,要将产品加工、原料种植、基地建设和退耕还林、生态工程、结构调整、石漠化治理、农民增收等结合起来,做好生物质能源作物种植规划和基地建设,以保证原料供给及降低原料成本。推广“公司+科研+基地+农户”的经营模式,明确各方的责、权、利,建设一定规模的产业化示范基地,共同争取国家的政策支持和资金补助,既满足了企业的原料供应,又保证了农民的经济收入,实现农户和企业之间利益共赢,确保此项工作的顺利开展。

参考文献:

[1]田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程,2005,(1):2-4.

[2]吴创之,马隆龙,陈放,等.中国生物质能源产业发展报告(2009―2010)[R].

[3]九三学社贵州省委.关于发展我省生物质能源的建议[EB/OL].世界新能源―生物质能源网,2008-02-09.

[4]王亚萍,姚小华,王开良.燃料油植物资源研究现状与发展对策[J].中国油脂,2007,(5):7-10.

[5]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,(5):12-14.

[6]邓伯龙,石杨文,陈波涛.贵州生物质能源树种资源的开发与利用[J].资源开发与市场,2006,(3):265-266.

[7]刘新建,王寒枝.生物质能源的现状及发展前景[J].科学对社会的影响,2008,(3):5-9.

油料作物和经济作物的关系篇5

食用植物油是城乡居民重要的生活必需品。抓好油料生产,对于稳定食用植物油市场、满足消费需求、增加农民收入、促进经济发展具有重大意义。近年来,油料生产效益偏低,农民种植积极性下降,全市油料种植面积持续下滑,产量徘徊不前,食用植物油产需缺口不断扩大,已直接影响到全市城乡食用植物油的有效供给。为了进一步促进全市油料生产发展、保障市场供给,根据省政府办公厅《关于促进油料生产发展的意见》(陕政办发〔〕156号)精神,结合我市实际,现就促进油料生产发展提出以下意见:

一、明确工作思路与发展目标

按照立足自给为主、外调为辅,加强宏观调控,确保市场稳定供给的总体要求,今后一段时期,全市油料生产发展的工作思路是:搞好规划布局,发挥区域优势,夏秋油料生产并举,大力培育油料产业基地,稳步扩大油料种植面积,着力改善品质,努力提高单产、增加总产。发展目标是:力争到末,全市油料种植面积25万亩以上,亩产提高到120公斤,总产达到3万吨左右。

二、加大油料生产扶持力度

(一)加快油料生产基地建设。期间,全市建设9个油料生产基地县,重点加强良种繁育,改善农田基础设施条件,全面提高油料综合生产能力。一方面要尽快恢复性扩大秋播油菜种植面积,在稳定粮食面积的基础上,推广油菜套种、移栽、地膜栽培等技术,力争秋播油菜种植面积恢复到20万亩;另一方面要建立油葵、胡麻等油料生产基地,开发利用山区及渭北旱塬夏闲地,种植油葵等小油料5万亩。

(二)促进油料产业化经营。积极引导一批生产规模较大、效益较好的油脂加工企业,在主产区建立原料生产基地,与农户签订产销订单,开发低芥酸菜籽油及油葵精深加工产品。积极推广“企业+基地+农户”的农业产业化经营模式,继续扶持各种形式的产销衔接活动,大力推进农民专业合作经济组织建设,努力提高油料生产组织化程度。延长油料产业链条,利用油饼、豆饼等优质蛋白饲料发展畜牧业,促进农民增收。

(三)积极开展油料作物保险试点工作。按照中省部署和要求,逐步将油料作物纳入农业保险范围并给予保费补贴,降低油料生产风险,稳定农民种植收益。

三、加强科技支撑能力建设

(一)提升油料生产科研创新能力。充分发挥全市科研优势,加快建设油料作物育种技术平台和新品种产业化基地,加强相关配套技术集成创新,培育高产、优质、高油、多抗的油料新品种,不断提高油料生产水平。

(二)加快新品种、新技术推广。积极推广油料重大技术和优良新品种。重点推广“双低”油菜、高产油葵新品种,加快普及油菜地膜覆盖技术,实现良种良法配套。市县农业部门要建立油料高产示范展示区,加强技术培训,组织专家深入田间地头,指导农民加强田间管理和病虫害防治。

(三)提高生产机械化水平。坚持农机与农艺相结合,积极支持油料播种、收获机械研究和开发,结合机械作业调整油料品种选育目标,推进油料生产机械化,切实解决油料生产劳动强度大、费工费时问题。

四、完善食用植物油市场调控体系

(一)建立地方食用植物油储备制度。按照省政府要求,我市要建立1000吨市级食用油储备,其产生的利息及保管和轮换费用标准,按照中央储备油标准执行。各有关部门要切实抓好市级食用油储备的组织实施和后续管理工作,增强政府对市场调控的能力。各县区也要建立和完善相应的食用植物油储备,确保关键时候不脱钩、不断档。

(二)加强对食用植物油市外采购工作的管理。要加大市外食用植物油采购工作力度,落实责任,并鼓励企业积极采购,实现市内食用植物油供求总量平衡,维持食用植物油市场稳定。

(三)建立油料和食用植物油产销预警体系。加强油料和食用植物油信息分析和预警,建立准确、可靠的基础数据采集系统,及时生产、进口、流通等信息,引导生产发展,维护市场秩序。各级粮食部门要对油料及食用植物油产销情况开展定点跟踪调查,准确上报生产、流通、出口、库存等相关数据,搞好信息引导工作。要加强食用油应急网络体系建设,各级财政要对应急网点的建设给予资金扶持,确保应急网点的落实和正常启用。

油料作物和经济作物的关系篇6

[关键词]重型柴油车;实际排放;特性;影响因素;实测研究;

中图分类号:U473.1+2 文献标识码:A 文章编号:1009-914X(2017)11-0002-01

一、前言

研究不同的数据可以大约明确汽车尾气上的排放量,但是对重型柴油机排放现状了解少。可以通过对最后的测试方法测量排放的多少,环境研究与技术是最常见的方法,是很具有代表性的。根据道路上的车辆的具体情况,根据试验测试模型设备,确定车载排放测试仪,加强柴油车在实际道路上的排放污染物的控制。汽车排放污染与人体健康关系的一个良好的汽车排放的气态污染物和颗粒污染物,包括苯和多环芳烃(PAHs)和其他有毒成分和金属是最重要的。

二、测量方法

测量方法包括非分散红外测量,CO和氢火焰离子化检测器测量,THC的紫外分析测量方法,电化学测量NO和NO2等。车辆速度的测量通过GPS(全球定位系统)测量汽车安全带,就是在几秒钟内,测量和记录车辆的地理位置(经度、纬度、海拔高度),然后计算车辆的速度。利用加热的气体的容器,测量准确度和精密度。在道路测量前,标准空气污染物为零。汽车排放的实时变化,实验系统收集的汽车油耗,空气燃料比,其他数据在污染物中的实际应用。[1]测试车辆交通运输,道路上的车辆状态的测量汽车行驶状态时的实际排放量,在这些实验中加强道路试验系统测试。

三、结果

测量参数随时间和条件的变化,研究表明,根据重型柴油卡车的实验数据,包括速度,加速度,燃料经济,废气流量,CO,THC和NO浓度等排放因子来权重参数的设置。汽车排放测试系统的原始数据表明,在重型柴油车实际行驶的工程中,测量并且绘制速度和加速度的时间曲线,确定相应的经济性燃油,以不同的时间以及相应的变化作为条件。根据CO和THC的变化显示实时发射系统,控制车辆确保0车辆的工作条件,即考虑速度,加速性能和燃油的经济性,有着密切的关系,即使在相同的速度和加速度的情况下,车辆状态显示工况下的排放特性的分布不同。[2]通过系统的实际道路排放测试。在实验中测得的7个汽车的道路上车辆的最大速度的,选择平均速度,判断加速度动态范围,特别是在最重要的区间。确定速度和加速度点的分布,进行汽车在汽车在街道上行驶的排放测试。绘制城市道路工况下的速度和加速度分布图。在城市里,在被测车辆的主要街道上,由于马路相对比较宽,在进城的路上,由于被测车辆快速,无交叉问题,但是会受到其他车辆和行人的干扰,车辆怠速61 %,由于该车辆的速度大,减速点分布在±015m・S上。测量结果表明,要加强无障碍的道路或公路的管理,道路越好,效率越高,速度更快而且更加稳定。[3]由于混合道路非机动车及机动车相互干扰,混合驱动车辆的运行效率是最低的。通过微分分布在不同的道路上运行的车辆的情况表明,排放量也不同(表1)。

四、分析与探讨

例如,使用严格的排放标准,柴油车排放的污染物对健康产生深远的影响。如砷,苯,镍会有致癌的作用,柴油机的排放将会成为毒药。发射组件和发动机模型中的影响因素有:这些有毒成分的采样和分析非常困难。因此要对柴油车在城市行驶工况条件下挥发性有机物和多环芳烃的排放量,研究不同性质的内容(燃油硫和芳香烃)和车型的排放进行了研究为了控制重型柴油车的排放,需要对重型柴油车实际排放特性与影响因素进行实测研究。[4]通过速度、加速度的问题,受到加速度的燃油经济性的影响,例如在不同的时间、速度,加速度内油耗量不同,加速车辆通过城市交通的显示的速度、加速度和油耗的关系。记录被测车辆在路口等待交通灯红灯绿灯,通过城市交通在油耗消费上判断速度和加速度的变化。进行这些步骤的同时,制定消费曲线。[4]当交通灯由红灯变成绿灯时,是汽车发动机怠速运行的时候,需要在很短的时间进入气缸,其输出功率大,重型柴油车排放量大,在0至6时,发动机油耗从待机状态转换到正常行驶情况时燃料的消耗量增加3倍,在这一时期测得的车辆提高燃油的经济性是主要的工作,在车辆启动克服阻力后,燃油经济性将继续增加,如果车辆的燃油经济性最高,只有车辆的阻力下降,才能使油耗降低的速度逐渐缓提高。当车辆重新启动时,控制车辆的速度满足燃油的经济性,瞬态y量最大加速度,在这段时间的燃料消耗继续下降,减少的速度加快,但耗油量增加到最大。[5]如果速度为17公里/小时,车辆的瞬时加速度为零。要提高车辆的燃油经济性,在运输的整个过程中加强速度和加速度之间的关系,另一方面,当车辆的加速度变化时,相同的车辆以不同的速度行驶,就会出现不同的耗油量。试验结果表明,较高速的车,车辆加速度变化频繁,对燃油经济性和排放不利(表2、图3)。[6]

五、结束语

硫和芳烃没有太大的影响,挥发性有机化合物的排放量最大的是多环芳烃,但毒性系数比较小,醛的相关程度排放呈现较大的波动,可能与机械设备的操作条件有关。工作环境、燃料、油和排放控制系统,但是有关这方面的定量研究较少。随着社会经济的发展,其余的柴油车辆在国家的增长速度,采用先进的柴油机技术,提高柴油质量,减少污染物的排放。

参考文献

[1] 国家环境保护部.HJ437-2008-车用压燃式、气体燃料点燃式发动机与汽车车载诊断(OBD)系统技术要求.2016.

[2] 罗晶.尿素―SCR系统优化及催化器的研发探讨[D].镇江:江苏大学热能与动力工程系,2015.

[3] 肖丽萍.基于OBD系统的特性分析[J].北京汽车,2016,(5).

[4] 涂先库,黄永青,訾琨.在用柴油汽车排放污染物控制[J].小型内燃机与摩托车,2016(10):61-64.

油料作物和经济作物的关系篇7

随着适用性研究和开发的进展,人们可以发现许多经济上可行的方案来满足整个地球的需求。该"设想"确定了方向和相应的规划,采取措施建立利用植物系统中能源和碳源的可再生资源基础。面临的挑战是严重的,但机遇也是难以衡量的。人类可以适应变化,但必须接受所面临的挑战。序言中从两方面进一步阐明“设想”提出的背景:

1、界定植物/农作物基资源

植物/农作物基(有时用生物基bio-based)资源是指来自于一定范围的植物系统,主要是农作物、林产品和食品、饲料和纤维工业加工过程中的副产物。它们可以通过一年生的作物和树种,多年生植物和短期轮作树种等途径在一个较短的时间内再生。石油化学品原本也是以植物为基础,其基本分子为烃类。植物/农作物基可再生资源当前所用的大量基本分子是碳水化合物、木质素和植物油。也有一些量少高值的分子是来自二级植物新陈代谢。另一个主要区别是烃类及其提取系统已经开发并加工处理其所需要的原料型产品,而植物基可再生资源在某些程度上虽然也被认定,但某种植物会含有某种资源,加工后会留下什么,尚未完全搞清。

最近生物技术进展可以改变植物成分和酶提取系统,这就为现在需要的化学产品和新型中间人体及产品制造提供了新的经济机遇。据统计,美国的森林、耕地、牧场等面积约22.46亿英亩(1英亩=0.405公顷,下同),其中主要农作物的种植面积有4.24亿英亩,可以生产大量植物/农作物基资源。过去50年,这类资源的重点主要是面向食物、饲料和纤维生产。

2、烃类经济

20世纪后期,世界经济发展很快,生产增长率有很大提高,尤其是各发达国家,一些发展中国家也不断增长。成功的增长和发展过程中起主要作用的是烃类经济。自20年代以来,矿物化石燃料的采取和利用提供了人们当前所享受的经济效益和生活水准。许多国家都依靠这种资源来满足能源和原材料的需要。

在过去50年中,大量的研究开发在能源生产和基础产品制造方面创造了许多可以大量增值的工艺过程。市场经济明显地受人们提高生活水准的意愿所驱动,以创造各种产品。生物基资源的(主要是用植物基)用量很小。据统计,在能源方面少于1%,在原材料方面亦低于5%。美国1996年玉米、黄豆和小米等生产用作食品和饲料量约为6900亿磅(1磅=0.4536公斤,下同)。由此从经济角度看还不能赶上工业原料,而以烃类为基础的经济却繁荣昌盛。

烃类虽然将继续起到非常有效的经济发展平台作用,但是在其未来应用中却有若干问题有待解决。首先是对石油化学产品的应用环境问题日益受到关注,随着又产生了许多相关的问题。化石燃料是一类正在减少的原料资源。应用植物/农作物基资源作为一种补充,由于它们是可再生的,所以为经济有序地向可持续发展转变创造了机会。

通过对能源状态的审视就可看到可再生资源作为一种补充的必要性。烃类资源有限,许多专家提出世界可采和探明储量,如按现在消费水平计算只能提供50-100年,此处的一个重要假设是“现在消费水平”是保持不变,但是从全世界人口增长和生活水准变化来考虑,此假设是不合理的。当前世界上按人口平均的能源消费水平差距很大,详见表1,许多发展中国家都将增加能源消费。未来的能源供应问题是多方面的,因为发展中国家人口众多。例如,中国按人口平均能源消费相当于美国水平的1/3,其需要增加的能量数量约相当于美国现在全年能源使用总量。

表1当前按人口平均能源消费水平kwh/人美国法国日本巴西泰国中国

122007500700015001200900

一些有效利用烃类的开发将有助于需要增长问题的解决,但是对烃类找到补充资源是完全必要的,只有如此才能保持可持续发展的工业基础。

新技术开发和应用需要时间。石油化学工业本身的发展就是一个事例。1920年烃类原材料经济并不像今天这样具有吸引力,过了50年,开始适应化石燃料状况的工艺。因此,要使植物/农作物基系统达到同样现代化水平也需要时间。

当前正是开展大量研究开发工作、利用各种可再生资源和各种新工艺、并开始在各种可供选择的途径中提出选择标准的时候。现在进行研究并不意味系统要立即改变,但是,烃类经济的经济学未来将出现问题:要支付高额环境费用,或是由于原料缺少而价格上扬。

投资适用性研究可以在未来能源和原材料间进行相关的比较,提供非常需要的选择。在中期至长期,选择植物/农作物基可再生资源可能是要兼顾环境方面容许和经济方面具有吸引力。而在近期,研究和开发可能只在一些领域内进行,使植物/农作物可再生资源能开始进入基本化学原料市场,从而扩大资源基础,延长有价值的化石燃料储备的应用寿命。

在上述背景环境下,通过研究讨论,提出了2020年开发利用植物/农作物可再生资源的设想的目标;“设想”是要通过植物/农作物基可再生资源的开发来提供经济继续发展、生活的健康标准和强大的国家安全。植物/农作物基可再生资源可以改变当前对日益减少的非再生资源的依赖。

本“设想”的内涵重点是建立新的观念,即植物基资源是越来越重要的工业原料资源。非再生资源可能因经济和环境因素逐步被植物基再生资源所取代,“设想”反对等到危机发生时现开始启动替代。

展望2020年,化石燃料可能仍将占90%,增加植物基可再生资源并不是可有可无的,它对满足未来的需求非常迫切。当然,需要有效地加工和利用这些植物衍生原料。其新途径的研究从现在就要开始,为经济发展有足够的时间,保证解决环境而进行良好的合作。

要取得有成效的进展,应当确定以下的方向性目标:

1、2020年化学基础产品中至少有10%来自植物的可再生资源原料,到2050年提高到50%。

2、建立植物基(农作物,林产,加工业)系统,用有效的转化加工工艺生产可再生原料,为2020年选中的产品提供经济合理、对环境瓜敏感的制造平台。用此生产链来示范一个综合的植物/农作物基原料系统的经济合理性和潜在效益,显示工业应用机遇的新领域,为2020年以后国内和出口的需求做出贡献。

3、在工业投资者、植物商、生产者、学术界和各级政府之间建立合作伙伴关系,开发从小范围到大规模的工业应用,重新激活农村经济,改进增值加工和制造链的集成,消除食品、饲料和纤维加工业与基础材料制造业之间的差别。

“设想”中提出,科研与开发方面要制定有详细目的和要求的相应计划,支持上述方向性目标的实现,从而也可取得投资的优势。

植物/农作物基资源利用现状和前景

一、现状

烃类提供人类能源和衣着。塑料、油料、油漆、染料、药品等基础原料,已经成为现代生活的主要依靠。1970-1990年间石油基的塑料增加了4倍,已经逐步代替了玻璃、金属甚至纸张。植物/农作物基资源目前尚未有效利用,主要是因为可用性差、质量不高、供应不稳或是价格高。要推动和提高植物/农作物可再生资源应用的兴趣,需要从以下几个方面来分析。

1、实用性

尽管消费总量不高,但是植物基原料当前在化学品方面应用面很广,如用于油漆、粘合剂及剂等。黄豆是植物袖的传统原料,随着基因工程进展,可以生产满足特殊剂市场需要的专门油。最近,可用黄豆衍生物制造油墨,在乙醇、山梨醇、纤维素、拧槽酸、天然橡胶、多数氨基酸以及各种蛋白质等化学品生产中,植物基资源是主要原料,详见表2。

表2、美国植物基资源用量万t/a类别用量用途

木材8090纸,纸板,木质素纤维复合材料

工业淀粉300粘合剂,聚合物,树脂

植物油100表面活性剂,油墨,油漆,树脂

天然橡胶100轮胎,家用品

木材提取物90油料,胶

纤维素50纺织纤维,聚合物

木质素20粘合剂,丹宁,vanillin

在多数情况下,应用的植物基材料主要是原始状态分子。如木质素纤维、植物油和橡胶等复杂分子的应用也只有有限的改性。这就与石油化学工业构成明显的反差,石油化工则是用化学方法按需要将烃类裂解成几种简单分子,如甲烷、丙烯等。用这些基础原料进行化学合成,制造所需要的复杂的分子。

在少数情况下,植物/农作物原料进行裂解成为不同的基础分子,例如高果糖的玉米生产糖浆和玉米淀粉发酵生产燃料乙醇。1996年美国用211亿磅(1磅=0.4536公斤,下同)玉米采用新型酶发酵方法生产9亿加仑(1加仑=4.546l,下同)乙醇,从而加工为90亿加仑混合汽油。从许多实例看,植物基原料有一定实用性,虽还未生产像药物那样的高度专业化的分子,但却包括了大量生产的中间体及产品。

2、供应及质量

植物系统地区分布广,由于土壤和气候条件不同,导致供应和质量的差异。森林和农业系统的发展已经缩小了天然野生植物的供应差异。

生物质的总产量虽然很大,但是由于没有经济的转化技术而使其应用受限制。一些新进展如快速裂解提供了从中获得低分子量产品的机会,如果能在分离技术上进一步创新,就可以推动此应用。生物质资源可以来自快速增长木材、田边作物以及其他专门培植的植物物种。另一潜在的生物质资源是当前为食用和饲料种植的农作物,如玉米、黄豆、小麦和高梁等。一般情况下这些作物只应用其产量的一半。此4种作物估计每英亩(1英亩=0.405公顷,下同)约有2600磅(以干物质计,下同)遗留在田地中,总计约有5200亿磅。一部分留在耕地以改良土壤结构,但大部分运出去,作为原料应用。因此要求有适当的、成本低的储运系统和加工技术。

供应方面的主要问题是对原始生产的管理。当前,树木可作木材和纸浆,种植农作物只是为食品、饲料和纤维加工,没有在综合利用上进行优化。对植物/农作物投入的成本评价基础是未经优化的植物生产系统,因此经济性不佳。一些边际土地的利用可以扩大植物基可再生资源原料基地。但是从经济上比较,其很难达到经济可行目标。在估算其经济回报时,要考虑化肥、农药等化学品的使用费用。要增加可再生资源来源,除了要提高边际土地利用率外,主要应是如何对良田建立优化种植生产系统。

当前低投入、低产出的植物生产对农民难以盈利,并不利于农村发展,也不能为加工业提供低价原料。但是在产出方面,数量和质量相差甚大,从此系统得到的产品必然价格较高,严重地限制了经济上的可行性。而且,由于低产出生产就需要更多的土地,其对环境的单位影响常常大于更为强化、密集的系统。因此要优化生产系统,同时改善边际土地的利用。此外利用生产率高的土地作为植物/农作物可再生资源的原料基地,这也有利于解决数量和质量上的波动变化。

农村根据市场需求规划种植计划,如根据乙醇市场还是植物油供需情况,做出种玉米还是种黄豆的选择,其次则要进行第2轮对品种的选择,作乙醇则要种高淀粉含量的玉米品种,如要种饲料,则种含高油量玉米更佳。这些选择都对产出经济效益有很大影响。面对“设想”需要扩大食品或饲料、饲料或原料、油料或淀粉、纤维或糖、药品或聚合物等等选择范围。要根据供应或需求来决策,就需要进一步仔细研究有关课题。

3、植物/农作物基原料成本

利用植物/农作物基可再生资源主要是成本问题,它与烃类相比是不经济的。工业生产要求大量的便宜原料。植物原料价格便宜,如果能开发适当的系统将极具竞争能力。利用植物/农作物基原料生产化学品的成本比较,详见表3。

表3、植物/农作物基化学品生产成本类别生产量万吨通常方法美元/1b植物衍生美元/1b植物衍生占总产量%

糠醛300.750.7897.0

粘合剂5001.651.4040.0

脂肪酸2500.460.3340.0

表面活性剂3500.450.4535.0

醋酸2300.330.3517.5

增塑剂801.502.5015.0

炭黑1500.500.4512.0

洗涤剂12601.101.7511.0

颜料15502.005.806.0

染料45012.0021.006.0

墙涂料7800.501.203.5

油墨3502.002.503.5

专用涂料2400.801.752.0

塑料30000.502.001.8

实际上,在制造业中选用不同的化学加工工艺对其成本影响很大。

植物/农作物基可再生资源不是一种替代性资源,而是为工业原料提供的补充资源。成本问题并非只限于原料,而且与加工过程有关,因此要进一步开发新的化学和生物加工工艺,才能扩大植物基可再生资源应用范围,使之成为经济可行系统。

二、前景

由于植物/农作物基可再生资源的来源不同,每种来源的原料又可以利用不同的加工工艺,构成了一种多维的发展前景。本“设想”运用矩阵分析方法进行探讨。不同投人的植物原料,可以运用不同的加工系统,并取得各种不同的开发效果。

1、废料和副产物利用

从当前看,利用机会多,但需要有新的加工技术才能使其成为更重要的资源。

(1)现代化学

森林工业已经将副产物利用发展成为一个较大的行业,如纸浆副产液转化为磺酸木质素表面活性剂ch3soch3以及用树皮制丹宁。农作物的磨榨工业开发了许多应用副产物进行加工的工艺,如从燕麦制糠醒、淀粉粘合剂、专用棉籽油、从湿磨料生产拧蒙酸盐和氨基酸等。但是,许多食品加工业,如蔬菜和水果却没有开发相应的副产利用加工工艺,经常将副产淀粉和糖排放入周围环境。副产物的利用具有许多发展机遇,提取及销售其所含的有效成分是降低主产物成本的手段,而且从战略上看是扩大利用植物基资源。

(2)改进化学

木本植物和有些农作物加工中有较高的木质纤维素含量和一些碳水化合物,如烃类工业一样,可以将复杂分子转变为较小分子技术。便宜的植物衍生发酵制糖的开发已在进行。用金属有机物化学将碳水化合物转变为增值化学品是扩大利用植物基原料的又一技术途径。改进化学方法具有潜力,可以使植物衍生的废料加工利用提高经济回报率。

(3)生物加工

在比较复杂的料浆中用微生物发酵法生产某种分子,再将其分离出来成为需要的产物。生物转化是应用微生物、细胞或不含细胞的酶系统的一步法工艺,它提供了改进废物料和副产物利用机会,随着分离技术的提高,生物加工工艺可以获得更为广泛的应用。

(4)新分子

在此方面似乎不太重要,从废料中生产新分子不是一条最佳途径。

2、现有农作物

从近期看扩大应用具有最佳机会。

(1)现代化学

从化学工业整体看,并没有|认为植物衍生材料具有较高的经济价值,但是具体|问题要具体分析。石油化工利用烃类而不用碳水化合物和其他生物基分子。

(2)改进化学

如果植物衍生原料是结构型的生物质,含有木质素和纤维素等成分,其具有一定优势。一些新技术,如综合燃烧或金属有机化学等都能提供更好地利用此类资源的机会。除林产资源外,约有5200亿磅的生物质资源目前尚未加以利用。改变加工工艺路线可以提高利用现有资源的效益。新的工艺开发可以提供利用糖和淀粉的机会。植物淀粉有不同来源,如水稻、土豆、玉米和小麦,它们的性质、用途都不同,因此需要改进其化学方法,发挥其潜能。新化学工艺与生物加工及先进的分离技术综合起来可产生很大效益。

(3)生物加工工艺

植物作为生物加工原料量大而多样,从结构型生物质到一些专门的植物组分,在生物加工方面潜在优势很大:用酶转换玉米衍生的葡萄糖生产高果糖的玉米糖浆。最近从玉米葡萄糖经过发酵制琥珀酸也取得成功。琥珀酸盐可以用作制一些化学产品如丁二醇、四氢呋喃,这些中间体又可进一步加工制成许多种产品。当前,用10亿磅这种原料可得到价值13亿美元产品,现在正在中试。多种学科进行合作就可取得良好的效果,这是短期内取得成效的一种良好运行模式。

(4)新分子

植物原料的投入固定,利用基因改性所用微生物或是专用酶,可产生新分子。此工作目前只在很小的市场中进行。当市场对具有特殊性能的新产品需求增加,投入产出可能会促使其发展,技术和经济的综合研究要沿着产品开发链进行,从界定所需要的产品——需要的特性——分子结构——中间体——酶技术——蛋白质/基因工程——投入植物的最佳原料——生产优化等。

3、新鲜农作物

此项作为中期发展机遇。

(l)现代化学

因为化学工业一般不认为农作物的利用能获得较高的经济价值,因此新鲜农作物并无吸引力。过去曾认为可以降低成本,但是实际上的技术限制否定了其经济性。

(2)改进化学

从投入产出看,存在类似问题,如果改进的化学工艺需要专门的农作物,-新鲜农作物可能会有优势。另一优势是在物流方面。按照改进工艺实施和运作规模,所需原料只能就近供应新鲜农作物。因此改进工艺应当与供应系统平行进行才能互相支持共同发展。植物作为原料补充资源时,困难在于许多烃类加工装置不位于农作物和森林种植地区,而植物基原料运输费用很高。

(3)生物加工工艺

与改性化学类似,区别在于如何将原料加工成中间体和最终产品。在技术上要考虑农作物品种的适用性,一种生物工艺可以对多种品种进行加工。优化工艺是影响运作经济很重要的因素。

4、改性基因类植物

这是中长期发展机遇,其可提供的成效目前尚难以想像,今后是否出现碳水化合物经济,或是其他经济,这要看建立在生物工程基础上的新工业平台所能发挥的作用。

(1)现代化学

基因改性植物基原料可能成为现有的烃类加工系统原料。但是,改性植物分子在烃类系统中降解所花代价太高。因此投入技术要能跨越加工技术,或者是较复杂的分子能直接得到并进入制造链,再有是新工艺路线能高效地应用此改性原料。当然这些变革都要从经济和环境两方面来评价其效益。

(2)改性化学

对优化植物/农作物基原料投入和加工有好处,应当进行此方面研究。至于何时见效则要根据基因技术进展及其达到工业化时间来确定。

(3)生物加工工艺

微生物或酶进行基因改变达到强化工艺过程目的。生物工程具有长期潜力,在原料投入和生物技术本身之间创优,有时所需要的可作基础原料的分子可以部分在植物原料内进行合成,用生物转化或高度专门化的生物/化学工艺进行分离。为了继续应用化石燃料生产专门产品,需要进行研究开发,使有限资源能取得最大的价值。

(4)新分子

过去20年中,塑料已成为最大的工业部门,在日常生活中代替了玻璃、陶瓷、木材和金属。市场将会根据消费者的意愿和需求发生变化。材料科学将继续发展,市场销售者将继续设计新的消费品,塑料的未来变化难以预料。能作为新工业发展平台基础的新分子将会很多,物理与化学科学与生物工程材料结合将产生新的领域。植物基可再生资源将是未来的主要资源。新陈代谢工程是将丰富资源制造成所需基础原料的渠道,支持社会基础设施。开发和拓宽其可能性,需要先进的技术,这将是未来新领域。

生物技术的潜在影响及实施“设想”的工作途径

生物技术的潜在影响

对一个新的技术领域进行评价,可以从如下几个方面来分析:近来变化的速度和引入的速度、量度及其带来利益的水平及公共公司投资、评价专利活动和有关协会的活动、观察开发进程、审视所取得的成功进展。

90年代初期,许多人对生物技术将对农作物带来很大变化是持怀疑态度的。到1996年,转基因作物在产业化方面取得成功,明确地澄清了这个问题。这些早期的成效是关于新的作物保护途径,对保护植物生产免受病虫害起了重要作用,对进一步了解和掌握如何改进植物组分也很重要。

由于管理方面的需要,转基因大田试验记录由美国动物和植物健康监测服务中心保存。从记录中可以看到一些行之有效的转基因改变植物组分的工作正在进行之中,试验范围也在不断扩大,一些主要的公司如杜邦、孟山都和pioneerhi-bred等都在进行。

为了改变植物组分以提高营养价值,改善加工性能,或是为了某些工业和制药的应用,一些转基因改性品种已经进行了评价,包括碳水化合物的变革、油和脂肪酸改性、提高氨基酸水平、蛋白质形态操作(typemonipulation)、纤维特性改性、产生抗体、工业酶生产、二级化合物操作(甾醇,earotenoids等)、新型聚合物生产。

转基因技术发展非常迅速,为植物基材料扩大应用开辟了新的途径,使其可以为工业生产提供分子基础原料和更为复杂的分子原料。用植物基原料主产聚合物,制造塑料就是一个成功事例。从a1-coligenenentrophus细菌的3种基因已经能转入植物的1ipid合成中,可以得到polyhydroxybutyrate(聚羟基丁酸酯),浓度可达14%。这种生物可降解的热塑性塑料正在进一步开发,使之可以从黄豆、棉花和油菜籽制备。

在过去50年内,通常用的植物培植产率已经提高了3倍,根据农作物满足食物、饲料和纤维不同用途,选择不同的方法得到具有不同特性的产物。高级植物种植要用基因图谱和转基因技术,进一步提高食物和饲料生产需要供应的植物基原料。

生物技术对植物基原料已经产生革命性的影响。但是,用生物技术来改变植物,使之适合烃类经济需要,并不是一条最佳途径。这就需要进一步弄清什么是工业链需要的因素,而这些因素又是能在未来转基因植物基可再生资源中具有最大的优势。

实施“设想”的工作途径

要成功实施美国可再生资源开发利用的战略设想(以下简称“设想”)中所提出的大纲,需要将研究、开发、工业过程工程以及对未来的市场了解等项工作有效地集成起来。适应“设想”的多学科计划以及各个项目的协作都要求有一共同的目标,向前沿技术迈进。应用改进的化学工艺加工现有的农作物,包括集成运用生物工艺,可以纳入短期计划之内,从当前到今后10年可以着手实施。这是研究中的一个热点。另一个热点是观念上的飞跃,超越当前的烃类化学,结合基因改性植物,运用新的工艺,这可以纳人中长期计划中,在10到20年甚至更长时期内实施并产生影响。上述两个热点都是当前在研究中进行投资,在不同期限内可以取得回报。

如果在这些领域内取得成功,在工业应用上就可以有了一个可行的坚实科学基础。新鲜作物应用开发将被看作是一个降低这些系统成本的一种机制,或是改善供应状况(数量和质量),满足工业发展需要。

当审视植物基可再生资源的前景时,可以看到供应链本身包含着许多重大课题。不同物种发展有各自的地理优势,可以形成专门原料的加工中心,包括进入国内和国外两个市场。对转基因作物的鉴别保护机制仍在变化,植物基可再生资源上的这些系统都需要进一步研究。

本“设想”并非要给各种问题以答案,而是指出未来潜在的可能,在各方面采取一定的步骤就可以使其实现。下一阶段就要进行各方的协调工作,使多方面的投资者能有一个投入的基础,针对“设想”提出的目标进行开发工作。该规划要订出各项目计划,通过研究和开发来支持“设想”中提出的方向性指标。各计划项目要符合下列一个或几个方面的要求。

优化生物质和农作物基原料生产,达到计划应用要求状况。

为植物基原料的供应链提出装置、地点、贮运和分销措施,包括加强农村经济的机制。

加速发展基于改性化学和生物工艺的新工艺,同时考虑利用植物/农作物基可再生资源原料。

对多类投资者支持的项目,对上述三个方面中一个或一个以上将产生影响的项目,或是多学科项目等将给以优先和优惠待遇。投资项目选择标准应考虑时间要求和潜在影响的大小来确定。

植物/农作物基可再生资源对工业基础原产的需求增长是一个战略性措施,也是使美国在21世纪继续保持领先地位的战略性选择。开发基础资源具有经济、环境和社会方面的好处。机遇是明确的,考虑未来的设想是需要的,要联合投资者对新途径进行投资,才能创造一个安全的未来。

“设想”文本中不止一处引用达尔文的名言“能够幸存下来的物种,不是最强的,也不是最聪明的,而是能适应变化的”。

2020年可再生资源应用将增加五倍

《植物/农作物基可再生资源2020年设想实施的技术指南》(以下简称“技术指南”),是《植物/农作物基可再生资源2020年设想》(以下简称“设想”)的补充,提出的目的是:支持“设想”方向,确定发展中的主要障碍和问题,确定优先的研究领域。

要达到上述目的需要进行协调观念开发,收集专家证明,组织多学科研讨会、听证会,优势排队试验和团队行动计划等多项工作。在“技术指南”编制过程中吸收了各方面人士的意见,参加研讨的共有66名有关部门不同行业的专家。专家们就全球性问题提出“设想”,针对“设想”结合现实状况提出存在的主要障碍与问题,再确定研究与开发领域,从而找出优先研究开发的课题。这些课题所属领域都是能为利用可再生资源实现可持续发展起最大杠杆作用的研究领域。通过参加“技术指南”研究和编制的专家的专业情况反映出在化工制造中应用生物基原料需要涉及多门学科。但是有3个产业是中心,即化学、生物和农业,每个产业都涉及几门不同的学科,如农业,林业和石油化学。

1、农业和林业

农业:是一个广泛的概念,包括谷物生产、林地和牧场等。这些土地上生产的农产品和林产品一起构成生物基材料,它们通过太阳能,大气中的co2和土壤中养分进行原始生产而成为可再生资源。美国拥有大量优良土地,丰富的自然水资源和先进的技术基础,通过资源保护和利用,每年可产生可再生资源的巨大财富。林业:在美国有超过6.5亿英亩(1英亩=4046.24平方米)的森林,从业人口140万,每年生产价值2000亿美元产品。过去10年内,纸张部门的增长比木材业快。木材和纸产品回收循环利用率高,每年有约4000万t纸再生利用。美国的林业已经制定出2020年发展设想以及相应的研究计划。该设想呼吁进行研究,用先进的生物和遥感技术以及树木生理学和土壤科学等理论。

农业和林业通过应用基因学技术和转基因植物等新手段将会出现大的跃进。在不久的将来,可生产出大数量和高质量的作物。除了饲料和食品,还可以为工业部门提供原材料。而且还可以引入某些酶标记基因,可能会在植物体内制造完全新型的聚合物,并可大量生产,成为经济的消费用品。

美国将技术进展应用于植物和农作物的调整,使其在农业、林业和制造业中保持可持续发展的领先地位起着主要作用。国家的未来明显地要依靠近期开发可再生资源基础的研究来支持。

2、石油化工业

化学、工程学、物理学和地理学等几门学科在石油化学工业中的应用,对人们生活产生的影响是50年前难以想像的。石油化学工业成功地创造了众多产品,从高性能的喷气发动机燃料到基础化学品以及许多聚合物,如聚丙烯、聚苯乙烯、聚丙烯腈、聚偏氯乙烯和聚碳酸酯等。

石油化学工业:是资本密集型工业,已经建立了可观的基础设施来处理和加工化石燃料。美国每天要用1390万桶烃类原料,多数是作为燃料型产品,用于化工及其他工业基础原料生产,每天约为260万桶油短类原料。

近年来,工业化学品和塑料生产都有巨大的增长。塑料工业从业人员120万人,有20000套生产加工装置,过去在研究开发上花费以10亿美元数计的投资,才获得了今日成就。如果塑料制品的原料没有可再生资源,迟早有一天会变得十分昂贵。一方面,是否还有上万亿桶的石油开采量,原油价格能否在每桶10美元以内。世界原油生产已经变化迅速,而且有许多不定因素。另一方面,化石燃料资源是有限的,这是无可争议的事实。重要的是考虑当供应呈峰值时未来价格的敏感度,而不是去争论何时是油将用尽的理论时间。最近由于几处新资源的发现及应用,在20年内原油产量可能会有所增加。但是,必须注意美国一直是原油进口国,50%原油靠进口。如果原油进口一旦停止,北美可采用的化石燃料资源储量按目前消费水平只能维持约14年。如果保持目前进口水平而不增加,也只能使用28年。当然,将会有新的改进的抽提技术,例如水平钻探和核磁共振钻孔等,但是要在近年取得成效,希望是不大的。

用可再生资源补充石油化学品,要从现在开始,由少量到大量逐步进行,有关研究工作要立即开始。不考虑化石原料供应衰退时间表的争论,由于人口增长以及一些新兴国家人们生活水平提高,需求将继续增长。在可再生资源取代化石燃料之前,它将作为一种补充资源。因此,无论如何在美国开发可再生资源作为工业原料都是十分重要的。

“设想”中提出的指标是“2020年基础化学品至少有10%来自植物衍生可再生资源,随着发展观念到位,2050年要提高到50%”。要注意无论是美国还是全世界总消费量的增加是很快的,因为即使2020年的10%目标是按当时的生产总量计算,也比当前消费水平要提高4—5倍,绝对的增加更大。如果2020年消费水平本身提高1倍,可再生资源的绝对指标也要翻番。

换言之,不能期望可再生资源在不变的需求环境下能完全取代烃类资源,而只有当消费产品需求增加,可再生资源可以能满足此增加需求中的一部分。在2040年时间框架中,指标可以是:可再生资源应用使化石燃料能稳定地维持现在的消费水平。按此指标可以形成以下的观念:

由于不是一个竞争替代战略,可再生资源并不与非再生资源直接竞争。

需要用可再生资源和非再生资源两种资源来满足未来20年的需要。30年以后,可能要更多依靠可再生资源,因为那时的化石燃料将会很贵而且有限。满足近期指标的支持和研究完全与长期目标保持一致,这些方向性指标,非常清楚地表明面临的挑战是巨大的,需要从现在就采取行动,应当开始建立通向扩大利用可再生资源的道路。除了建立可操作的可再生资源基础指标外,其他一些相关的指标也是很重要的,包括:

建立系统,通过加强经济可靠性的基础设施支持,将供应、制造和分销等活动集成起来。

通过功能基因学来提高对植物新陈代谢的理解,优化对专门的增值加工工艺的设计和应用,除应用现有的组分外,要开拓新型聚合物生产和应用。要保证开发的新工艺过程的效率高于95%,同时应用伴生工艺,应用所有副产物,消除废料,保证新的平台能在特殊的环境条件下坚持目标方向对确定目标与研究指标要反复交叉检验,使其能坚持可再生燃料/能源需要的目标。

在生产和分销中要开发保持稳定供应的途径,在年生产一定范围基础上控制一些因素,如价格、数量、性能、地区分布、质量等。同时要制定提出这些因素的标准。

建立进一步合作伙伴关系,改进综合集成,通过加强农村发展来支持取得成功。

“设想”的目标要实现,主要要使本“技术指南”中所列出的目的大纲都能达到。基因改性植物生产专门的代谢产品和开发补充性的化学改性产品取得成效就可以达到2020年可再生资源应用增加5倍的目标。这些进展也将为2020年以后的进一步发展奠定基础。

可再生资源应用技术和市场的障碍及问题

将可再生资源制成消费产品的整个系统中有许多障碍和问题,其中关键和问题是:

植物科学方面:基因学、酶、新陈代谢和组分。

生产方面:单位成本、收率、持续性、基础设计、植物设计。

加工方面:经济学、分离、转化、生物催化、基础设施。

应用方面(由技术和材料驱动的问题):经济学、功能性、性能、新用途。

应用方面(由市场和需求驱动的问题):价格性能比、性能、知觉、市场开发。

现将上述关键和问题择要分别介绍于下。

一、关于应用方面(材料驱动问题)

1、经济学

单位成本是当前植物衍生材料使用的主要障碍,也是经常引起争论的一个问题,问题的核心是竞争性成本状态。在多数情况下,应用植物基原料的成本都比较高,难以与以烃类原料为基础的加工工艺竞争。但是,成本竞争情况有几个非常复杂的因素互相影响,诸如产品价值、材料成本、产量、需要加工程度以及所用基础原料的性能等。因此如果未来的战略只考虑降低本是不会成功的。最重要的经济推动因素不是成本本身,而是制得的产品和制造费用的差价(即增值)。

产品价格是诸多因素的函数,诸如产品利用、性能、消费者喜好和需求等,而制造成本则受原材料价格、供应的持续性、加工、废料处理费用和投资等诸因素影响,要符合当前的具有竞争性的通用化学品工业的低成本需要。但是,从长远考虑,只进行成本比较是有问题的,因为未来的化石燃料的成本是难以预测的。

在当前情况下,用烃类原料生产消费型产品的加工效率是很高的。但这并非是化石原料本身具备的特点。因为石油化工已经研究了100年,有了3代科学家,政府投入了大量资源才使之达到今日的水平。与之相比,植物基材料应用尚处于较低的水平,开拓植物基原料应用来适应已臻成熟的烃类加工需要并不是一条唯一的道路,目前应用数量还是很少的。另一条路线是通过弄清植物衍生材料性能进行技术开发,用基因改性植物,使之能提供含有需要功能的组分。

2、功能性

改变植物中的不同组分含量的目的是提高其功能性。在石油化工中先进行原料裂解降级成为简单的分子,随后用它们再行合成为较复杂的分子和聚合物。植物中已经含有不同形态的聚合物,可以在许多产品中应用。但是,在现在加工系统中尚无大量应用。用量有限的原因有几个方面,其中主要的是由于缺乏对其功能性的理解,而只注意其成本。最近,已经由植物衍生的蛋白质聚合物研制出塑料薄膜的试验产品,显示出其应用的潜力。而且,植物拥有立体化学结构,可以得到一些有价值的手性分子,如糖类、维生素、氨基酸等。从总体看,目前对植物基础原料的反应性和功能性尚不够了解,因此限制了新应用思路的产生。

二、关于应用方面(需求驱动问题)

1、市场开发的费用

植物衍生材料应用的一个关键是市场开发费用高。正如许多新产品市场一样,新产品的研究往往是由小公司开始的,它们投资不足,缺乏继续发展的资源,常常只停留在试验阶段。工业化的成功率低,由于没有一定的供应量而常使产品衰落。因此,需要大力改进产品开发和支持机制,而且要进行与产品相关的市场开发,这是扩大利用可再生资源的主要工作。目前市场上应用的标准都是基于石化产品,没有适应生物基产品的标准,这也是要成功地与石化产品竞争的另一障碍。

2、认识问题

植物衍生材料常给人以较低级的印象,这可能是由于当前处于“石化时代”之故。对某些制造厂商来说,它的性能较差,主要是因为未得优化。虽然公众环境意识增强,但是对植物基产品需求尚不足以创造市场来拉动技术开发。因此,当前可再生资源的进展主要是基于技术推动的结果,只有增加市场拉动才能有力吸引公司更多投资。没有要变革的冲击,就不会有更多的变革。因此,如果没有各种经济倾斜途径,现状是难以改变的。

三、加工问题

1、基础设施中分销问题

多年来石油化学工业已经建立了加工和分销烃类基础产品的有效基础设施。由于依赖进口原油,美国的多数基础设施是建设在海岸线上。因此,许多现有的加工装置并不适合大量植物基材料的收集。植物原料都是在木材加工厂、榨油厂和玉米湿法加工厂进行加工,它们最好接近于供应地。要应用大量植物原料就需要进一步将供应和加工制造集成起来。应当开拓确立农村发展优势和重点的战略和措施,更好地鼓励多用可再生资源。

2、分离技术

应用植物于工业用途的一个关键是缺少植物组分的分离技术。树木具有非常复杂的成分如木质纤维素。此成分强度高,但要将它分离为有用的分子组分则很困难。多数农作物收获品是种子,它们含有碳水化合物、蛋白质、油分和数万种其他组分。通常对许多谷物发芽和生长都能进行良好的安排,而对其作为原料进行分别管理则很困难。一些除去原始粗组分的工艺,如榨油和提取糖分等已经开发,但如何将专门形态的蛋白质和纯的含碳组分分离则仍是困难。在植物基原料加工中常遇到非常稀的水溶液物料,处理费用很高而且技术困难,这是应当要解决的问题。将反应与分离集成起来的加工系统(如催化蒸馏)可能是一个解决问题的方向。但是此类系统目前应用有限。而且还未被开发作为植物基原料方面的应用。通过引入某些基因而使植物增加新的组分,就更需要应用先进的分离技术来回收有意义的新组分。例如生物聚合物开发中目前就因缺少高效纯净的经济上可行的分馏工艺技术而受到限制。植物的组分如不能有效地分离出来,就不可能控制最终产品的特性和质量。

3、转换技术

要利用植物中各种组分的另一问题是将这些非均相的混杂原料转换成较为简单的分子,这才可以进行进一步反应。在植物基原料中,加工工艺需要有高性能的多功能生物催化剂或是非均相催化剂,这些催化剂具有多种功能并可以进行回收。

知识不足是另一关键,目前人们尚缺乏关于植物组分的自然差别和来自不同作物的同样组分的特性等方面知识。这些知识的缺乏和不足就构成难以鉴别植物的差异性,缺少鉴别的手段,因此也就难以考虑作为原料的应用。发酵是用来将某些农作物转化为各种产品的工艺,转化是非均相的。所用的转化方式,副产利用和分离等方面仍有许多有待改进之处。一般地说,植物系统的复杂化学问题使新型或改进植物基加工工艺的设计较为困难。烃类化学制造中有丰富的氧化化学知识,还原化学方面较少,这些都是植物系统加工所需要的。目前特别缺少关于还原生物催化剂共生因子系统方面的实践知识。

植物原料加工工艺开发的另一个大的障碍是当前缺乏有关的教育培训。目前化学工程课程中只有少数涉及生物化学课题,多数毕业生成为化学工程师只拥有非常基础的生物工艺知识和有限的重要生物分离的知识。多年来,工艺化学家和工程师的培训重点都是烃类化学,考虑植物基可再生资源加工需要很少。

四、生产方面

1、收率、持续性和基础设施

因为目前尚未利用大量植物基原料,除木材和造纸外,只是关注未来的供应分销而不是现实存在的问题。但是,这些对实现可再生资源的目标都是十分重要的。在供应的持续性方面,数量和质量都是未知数。如果植物基原料能加工成简单的碳分子,其持续性问题就不成关键。但是如果要设计应用其中某种特殊组分(如聚合物),或是要直接抽取其中某种专门组分,原料的质量和数量的稳定性就非常重要。

在一些情况下,供应持续性中的不确定因素实际上就是风险管理的内容。未来的石油化工供应问题和可再生资源供应问题都有风险。对石油化工来说,未来的供应不桷定因素可能因世界上一些区域的政治变化而增加。而对植物基原料来说,气候可能成为不确定的地区因素。如果某些专门植物不能大量生产可能导致贸易上的不确定因素,这些问题不需要采取断然措施,但是需要重视通过改变基础设施来保证经济可靠性。另一个冲击供应持续性的不确定因素是未来的农作物用途是作为食物还是作为工业原料。一方面是根据供应短缺理论,认为农业难以供应飞跃增长的人口和消费品增长所需的原料。实际上,从需求角度看,食物和原料都在增长,即使不考虑可再生资源进行工业利用,食物本身也存在问题。解决食物问题的方案也可能就是解决工业原料问题的方案。因此,在供应方面必须应用新技术,如生物技术,这样才能保持产率不断提高,使农业能达到一个新的水平。

2、植物设计、植物科学、基因学

转基因技术已经显示出令人鼓舞的前景,要进一步充分利用尚有大量工作有待进行。存在的一个主要障碍是对植物本身内在新陈代谢过程还不够了解,不能按特殊聚合物和其他材料的需要进行设计。因此,对植物新陈代谢和碳流的知识匮乏是其发展中的限制因素。

近年来功能基因学的进展有望促进对材料合成设计的理解。但是这门科学目前刚开始,与类似的医学领域相比所取得的支持还是很有限的。基因转变中的另一成就是让更多的专用基因嵌入和对质体以及细胞核的常规转变。在植物变化、基因学和生物信息等方面有着广泛的研究项目,但是将这些出现的新技术应用于可再生资源的专门研究则很少。

要使科学知识不断深化,在一定程度上取决于消除这些主要障碍,有些已被称为多学科的研究。但是,需要努力加强和协调才能促进现有的障碍及时地被克服。换言之,基因管理的研究必须紧密地与植物内含聚合物的功能性以及分离工程等研究相结合。

研究和开发的课题

《美国植物/农作物基可再生资源2020年设想的技术指南》(以下简称“技术指南“)列出为解决植物/农作物基可再生资源利用中的主要障碍应当进行研究开发的课题。“技术指南”按4个主要方面的障碍依重要性大小列出研究开发课题,每个研究课题的影响都有其时间范围,其中近期表示0—3年、中期表示2010年、长期表示2020年,近期目标的达到可用以衡量面向2020年可再生资源开发利用设想的前进步伐。

一、植物科学研究方面

1、近期影响课题(按重要性依次减小顺序排列,,下同)

(1)应用功能基因学了解植物新陈代谢和组成,至少要与1种主要农作物基因计划结合;

(2)开发能实时进行植物组分的定量分析工具;

(3)改进转基因方法,特别是对麦杆基因的专门嵌入,要在1998年基础上提高效益10倍;

(4)开发1—2种主要农作物的基因标记系列,使之有助于摆在有用的可再生组件含量;

(5)将80%现有的germplasmbase进行编目,有效利用各类淀粉、蛋白质和油分;

(6)找寻发展中的生物信息学利用途径,推动可再生资源的研究和开发,

(7)弄清nuclear-plastid相互作用。

2、中期影响课题

(1)在新陈代谢过程和碳流中至少弄清50个限制速率的关键步骤;

(2)利用功能基因学弄清分子、细胞和整个植物的控制管理;

(3)为主要植物用于可再生资源的组分制定标准;

(4)在2种植物中,建立碳库并为细胞分割确定控制点;

(5)在plastid转变中高效率(大于90%)方法的建立;

(6)创建示范工厂,使主要组分利用率大于60%(如油料、淀粉)或是专门碳键(如c5)大于3o%;

(7)利用基因开关的方法;

(8)建立为植物可再生资源利用的生物信息学基础。

3、长期影响课题

(1)重新设计新陈代谢过程,提供有用的碳结构骨架;

(2)应用有针对性进化技术建立100个未来原料的品种库;

(3)设计新型分子或改性现有化合物,使之适应于功能需要;

(4)为提供工业用原料,创制2种新植物种类;

(5)利用简单的细胞组织进行成本和能源效率评价;

(6)利用计算机技术设计植物组分。

二、生产研究方面

1、近期影响课题

(1)提高亩产量10%~15%以降低原材料单位成本;

(2)改善农业管理,提高肥料利用效率和虫害防治,

(3)确定至少10种影响原料组分和质量的因素;

(4)对至少10种具有潜力的系统和植物类型的亩产效率进行定标赶超(如主要农作物、林业和多年生种类等);

(5)调节气候条件对生产的影响;

(6)每年对2种农作物的潜力进行评价或用其他方法评价亩产量;

(7)提高当前农业加工中废料利用率5倍;

(8)在单位投入基础上提高贫瘠土地产量2倍。

2、中期影响课题

(1)提高产量,使单位投入的碳产出为1998年基础上的2倍;

(2)为长期可持续发展,开发尽量减小土地、大气和水利用影响的系统方法;

(3)对收获产物和主要植物成分建立标准;

(4)专门设计收获装备,尽量增大碳的收获;

(5)开发新的利用方法,使现在遗留在土地上的农作物45%能得到利用,

(6)培育适应专门土地和土壤的农作物;

(7)建立农业信息学基础,重点是不同来源的可再生资源植物类型、生产价值、质量和单位成本。

3、长期影响课题

(l)在化石燃料排出废气中co2的固定;

(2)从现在植物/农作物生产中消除碳的废料;

(3)设计新的农作物/植物生长系统,优化原料回收率(大于95%可利用);

(4)对主要能源获取和固定,提高化合效率;

(5)对收获前期工作和部分就地加工的装置进行设计;

(6)对连续生产系统进行设计和评价。

三、加工研究方面

1、近期影响课题

(1)改进分离技术,处理大于95%的非均—植物材料;

(2)改进单体基础原料变换的生物催化剂;

(3)开发3种具有高选择性的快速反应强力催化剂;

(4)为将植物聚合物转换为有用的单体,找出新型和性能优良的酶(具有10倍活性)并进行评价;

(5)将微生物进行工程化,改善非均—植物的发酵;

(6)提高废物利用率2倍;

(7)开发高效的除水技术并对改进的非水溶剂反应系统进行评价;

(8)在植物材料中利用天然立体化学方法的评价。

2、中期影响课题

(1)应用5种以上高级分离系统(如自行清净膜、离子交换、精馏等);

(2)为经济捕集植物单体和聚合物开发改进的分离——纯化技术;

(3)为2种以上植物类型建立经济共生系统;

(4)通过分子进化技术设计并创制50种新型酶;

(5)开发100种以上具有性能成本特性的新型酶库;

(6)研究反应性分级系统;

(7)对微生物、酶和化学品库的性能建立信息学基础,用于特殊的转化。

3、长期影响课题

(1)实现原料加工中无废料的多种产出的连续工艺;

(2)为改性植物和组分设计新设备;

(3)为3种以上新产品(如将工程化酶转入植物并在收获中得到活化)设计新机制;

(4)固态酶转化;

(5)设计14种化学与生物结合型反应器;

(6)评价植物组分在分离前相内的作用。

四、应用和基础设施研究方面

1、近期影响课题

(3)探求3种在现有加工装置(如玉米湿法加工厂、纸浆厂)上扩大应用植物原料的机遇;

(4)分析测量系统,对90%以上的主要植物组分进行定量;

(5)实时评价单位性能成本和增值成本的方法;

(6)评价运输系统及成本;

(7)计算出100%年加工贮存量和投人产出的需求量;

(8)创建基础设施,扩大利用农业废料。

2、中期影响课匾

(1)深入掌握植物中10种以上组分和碳键新陈代谢体的结构与功能关系知识;

(2)开发对高质量原材料的100%鉴别保护系统;

(3)为价值驱动的生产和定货实现营销系统;

(4)对在同一地点的多目的利用区的协同作用进行评价;

(5)对原材料组分和加工过程中的中间产物实现实时定量分析手段(小于3分钟/试样);

(6)开发生产预测手段,准确性大于95%;

(7)在一组植物原料性能基础上建立信息学基础,如单位成本、性能、功能性、最佳来源、应用范围等。

3、长期影响课题

(1)所需功能进行分子结构设计制备植物化合物至少10种;

(2)在植物生产区内开发至少5个制造利用中心;

(3)开发3种以上有新功能的新材料;

(4)提出扩大利用可再生资源所需的教育培训需求;

(5)在植物组分功能间协同作用的利用;

(6)设计最终产品的贮存和运输,使之到达销售中心和出口;

(7)为供需关系的控制创建减轻超过90%风险的战略。

当前,美国有一些项目已在进行,可视为工业原料中应用可再生资源的先驱,也可视为本“技术指南”中研究项目的示范事例。其一是在转基因植物开发中的聚羟基丁酸酯(pib)。phb可在植物中生成,作为制造生物降解塑料的原料,用适当的细菌基因进行转化并弄清植物内在的新陈代谢路径,从而构成制备方法。现在正在进行分离、生产标准等项工作。

其二是用玉米淀粉作原料,通过酶反应制备聚乳酸(pla)。cargi11-dow合资企业已在充分研究的基础上进一步投资数百万美元建立制造装置进行工业开发。pla是一种生物裂解聚合物,原料是由玉米湿法加工工艺制备的葡萄糖,其中发酵过程和酶的活性是重要因素。最终的pla树脂可视用户制膜、纤维、碳制品和涂层的需要分别制出不同规格品种。pla具有聚苯乙烯、聚烯烃和纤维素的功能性。

协同与合作是取得成功的途径

未来利用可再生资源需要采取一条多学科和跨行业途径。在许多领域内的研究成就都提供了发展机遇,如生物聚合物、立体结构型分子、新型酶、新材料和转基因设计等。但是每个方面内的任何进展如果只当作孤立的技术领域是远远不够的,需要更有力的相关研究计划,采取平行的和协调的方式进行工作,才能取得成果。

要取得有效益的进展必须采取多学科的途径,这是非常清楚的。但是,任何一个组织都难以具备有如此深度和广度的技术能力。因此,对研究提供的支持应当是多方面的,而且要在跨行业的系统中进行。

“植物/农作物基可再生资源2020年设想”(以下简称“设想”)中提出的要求需将重点瞄准有限的热点目标同步取得进展。对于研究工作则需要有准确的时间表和系统中各方面的广泛交流,所有这些都要走相互协同的道路。例如,一位科学家可能发现一种新型聚合物,具有可以作为高级生物降解塑料的功能,但是,此研究成果的价值受到以下一些因素的限制:发现适当的基因、新陈代谢过程可靠性、:最佳作物类型是否能有足够的产率和可承受的成本、各种聚合物组分分离可能和利用此材料制造新产品的方法等。所有这些因素都需通过研究和开发才能取得相应的进展。进行这些研究开发要采取最佳途径保证研究成果关键的目标互相协调、平行地进行,此途径要鼓励私营部门的参与。

当前,植物和农作物作为生物质和原料已被应用,诸如淀粉、蛋白质、脂肪酸和异戊二烯化合物。林业主要是为纸浆和造纸提供原料。黄豆则是用于油墨和涂料。玉米通过湿法加工发酵工艺已经进入几个工业部门,但是各种用量都很少。由于基因工程可以通过新陈代谢操作使植物或农作物生成有功能需要的材料,从而显示出新的发展机遇。

“技术指南”已经突出了未来取得进展的途径,而且确定了系统的各个组成部分的目标。成功地达到这些目标就可实现“设想”中确定的到2020年可再生资源利用增加5倍的目的,同时也为2020年以后进一步发展奠定了基础。按“技术指南”目标提出课题是人们用所有的天然资源满足不断增长的消费品和能源的需要。当前进行研究将为今后的产品选择提供机会。可再生资源需要将注意焦点放在以下几个方面:发展方向、最佳科学思维的应用、最先进技术的应用和最高级智能水平的继续研究等。本“技术指南”已经提出了需求和研究开发课题,其目的就是为美国开拓实施一条成功的可再生资源战略。而且也选出了需要优先支持的领域,它们都是从几个已经确定的科学研究和工业开发需求中选择出来的,而且考虑了在高级可再生资源的关键部门有最大的投资回报。

未来世界许多方面都会延续但将发生变化。幸运的是我们已看见其需求并具有科学智慧适应变化的发展。美国要保持领先地位就要继续采取迅速的行动来满足扩大利用可持续发展的可再生资源的需求。不断的科学突破和技术进步(正如“技术指南”文件中所列出的项目和课题)才能满足资源利用的挑战。这些挑战正在我们面前,我们面临的挑战是为满足人们对产品不断增长的需求。

“技术指南”中从两个方面表明多学科和跨部门的研究开发对实现“设想”的重要性:

一是植物的投人,同时要考虑废料和副产物利用、改性基因学的应用。

油料作物和经济作物的关系篇8

【关键词】生物质能源;开发;应用

提到能源,人们通常会想到煤炭、石油、天然气,抑或是风能、水能和核能。人类所面临的能源危机日益严峻,同时由于石油价格的不断攀升和环境污染的日益严重,使得过分依赖石油作为主要能源的我国面临着越来越大的能源压力。此时,一种人们司空见惯却并未过多留意的能源――生物质能源,正悄然兴起。生物质能源是植物通过光合作用而固定于地球上的太阳能,通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料替代矿物燃料,以减少人类对矿物能源的依赖,保护国家能源资源,减轻能源消费对环境造成的污染。目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术。专家预测,生物质能源将成为未来能源的重要组成部分,到2015年,全球总能耗将有40%来自生物质能源。

1 我国生物能源发展的必要性

能源是工业化社会经济发展过程中的 “ 血液 ”,没有充足的能源供应,社会经济是难以整体持续发展的。按目前的水平开采世界已探明的能源,煤炭资源尚可开采100年,石油30~40年,天然气50~60年。生态危机是当今社会已经面临的巨大挑战。石化能源燃料燃烧时所产生的有害物质,严重污染了环境,导致温室效应、全球气候变暖、生物物种多样性降低、荒漠化等诸多生态问题,严重影响着全球的资源安全和经济持续发展,威胁着人类的生存。近些年来,我国能源工业的发展相对滞后于国民经济总体发展的步伐,我国在21世纪,能源工业面临着十分严峻的挑战。与有限的化石能源相比,生物能源具有可再生和取之不尽的优势。我国能源生物都种植在荒岭、丘地等地带,能够大量利用农村的荒地、盐碱地、沼泽地,就地大量解决农村劳动力就业,提高农民收入。在能源紧缺状况越来越严重的情况下,发展生物能源对缓解能源危机,促进经济健康迅速发展尤为重要。

生物能源较传统矿特能源具有许多优点:

①原料来源广泛,可利用各种动、植物油作原料。

②生物能原作为传统能源的代用品使用方便,不需要因为生物能源的使用去更换新的机器零件,减少了使用成本。

③可得到经济价值较高的副产品以供化工品、医药品等市场。

④相对于传统能源,生物能源贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆);可再生性(一年生的能源作物可连年种植收获;多年生的木本植物可一年种植,维持数十年的经济利用。同时,生物质可在自然状况下实现生物降解,减少对人类生存环境的污染。

2 我国发展生物能源的资源状况

诺贝尔奖获得者,美国加州大学的化学家卡尔文于1986年在加州福尼亚种植了大面积的石油植物,每公顷可收获120桶一140桶石油。他的成功,在全球迅速掀起了一股开发研究石油植物的浪潮。许多国家纷纷建立一种全新的石油生产基地--石油植物园。美国种植有几百万英亩的石油速生林;菲律宾有18万亩的银合欢树,6年后可收1000万桶石油。美国加州的“黄鼠草”每公顷可提炼1000公升石油。

自二十世纪八十年代以来,美国等国进行了能源植物种的选择,富油植物的引种栽培、遗传改良以及建立“柴油林林场”等方面的工作与研究。在能源植物特性和植物燃料油的研制上,在获得植物燃料油途径、燃料油使用技术上都取得了较大进展。石化能源价格的不断上涨,主要油料作物总产量迅速增加而导致油料农产品滞销,为各个国家把部分农业用地转为可生产能源的原料作物提供了有利条件。

我国人均耕地不到0.1公顷,要完全以农产品为原料生产生物质燃料油是不可能的。我国必须立足现实,大力发展自己生物能源产业。我国有广大的山区、沙区可供栽种乔灌木油料植物,作为生物质燃料油的原料。这不仅可以为我国的生物质燃料油工业提供丰富的可再生原料,改善生态环境,还有利于农村产业结构调整,增加农民收入,解决部分农村剩余劳动力的就业问题。近10年来,我国虽然有一些研究单位开展了这方面的研究和生产,但是与世界先进国家比较,仍然有一定的差距。我国政府有关部门根据我国国情,已采取相应措施,推动我国生物质能源的研究和产业化进程。

我国含油植物资源丰富,分布范围广,共有151个科、1553种含油植物,其中种子含油量在40%以上的植物有154种,但是可用作建立规模化生物质燃料油原料基地的乔灌木种却很少;分布集中成片可建原料基地,并能利用荒山、沙地等宜林地造林,建立起规模化良种基地的生物燃料油植物更少。因此,应对我国可以作为生物质燃料油的主要木本能源植物的资源分布、生长及利用状况进行了调查研究和良种选育,在现有资源的基础上建立原料供应基地和良种繁育基地,并在此基础上,对木本能源植物的生物学特性和经济性状进行研究,与有关企业合作,对能源植物的性能、生产工艺、技术设备进行系统配套研究。

我国能源现状是:2003年进口石油9000多万吨,进口依存度为36%,预计2020年进口达2亿吨,进口依存度55%。针对上述情况,采取的对策及战略目标是:节约传统能源、发展可再生能源、发展新型能源,2020年生物能源替代25%进口石油,其中燃料酒精1500万吨,生物柴油1500万吨,材料和化工原料用油1500万吨,二氧化碳排放减少2亿吨。因此,预计在今后15年将是生物炼制产业的快速成长期,生物炼制将在提高能源安全和生态环境质量方面发挥越来越大的作用,逐步成为支柱产业,促进农村经济发展和生物经济时代的早日到来。

我国生物质资源利用包括:农作物秸秆(2000年测算的总产量为5.26亿吨)、林业废弃物(约为3134万吨)、薪炭林(328.25万m3)、畜禽粪便(2002年总量近15亿吨)、高浓度工业有机废水(25亿吨)、油料植物(含油植物有400多种)、生产燃料乙醇所用淀粉(2001-2003全国薯类年均总产量3000~3500万吨;2001-2003年全国粮谷类年均总产量17.5亿吨)和糖类原料(2000-2003年甘蔗平均年产量为7500万吨)等。我国的生物质能发展规划,即到2020年可再生能源发电装机达到1亿千瓦,占全部发电装机构成的10%以上,成为化石燃料发电、大水电和核电之后的第四主力电源,其中小水电最大,为5000万千瓦、风力发电次之,为3000万千瓦、生物质发电2000万千瓦。以液体燃料为重点,开发以农作物茎杆为主体原料的生物酒精、生物油等技术,到2020年形成替代石油产品1100万吨的能力。以商品化为目标,开发和发展以村落和小城镇为依托的生物质气化、发电联合系统,使得商品化的可再生能源供应量达到1亿吨煤当量,为农村和小城镇居民提供成本经济、质量合格的气体燃料和电力供应。从资源状况分析规划实施的可行性出发,可重点发展沼气发电、生物燃油、生物质能发电、城市固体垃圾发电等项目。

中国已具备大规模发展生物能源的条件:(1)原料非常丰富,据估算,全国每年产生7亿多吨秸秆,可转化为1亿吨生物燃料酒精;(2)技术积累阶段已经完成,关键技术基本成熟或接近成熟可边研究边产业化。通过转基因技术可以选育出大量抗盐、抗旱等能源植物,适合在恶劣的生态环境下生长。

3 我国发展生物能源应注意问题

油料作物和经济作物的关系篇9

关键字:油田施工管理有效性

一、引言

油田建设工程项目一般投资大、周期长,尽管在实施前己经对建设完成时间和计划都进行了反复的研究和论证,但仍然存在很多不确定因素,使得施工进度、质量等得不到保障是经常发生的事情。油田公司工程建设项目管理,是油气田开发和地面工程建设项目从规划立项、组织实施到竣工验收全过程进行协调与控制,在核定的投资范围内实现项目工期、质量、功能等预定目标的管理活动。所谓工程项目管理,就是为了使工程项目在一定的约束条件下取得成功,对项目的所有活动实施决策与计划、组织与指挥、控制与协调等一系列工作的总称。

为进一步规范油气田工程建设项目管理,适应现代企业管理的需要,提高投资效益,实现工程建设项目工期、质量、投资的有效控制,研究油田施工的有效管理具有重要意义。

二、油田施工的组织管理

(1)实行模拟法人制

油田公司工程建设项目管理实行项目模拟法人责任制。油田公司总经理作为项目模拟法人对项目的策划、资金筹措,建设实施、生产经营、债务偿还和资产的保值增值,实行全过程负责。凡油田公司投资建设的项目,都要按照本规定建立健全包括决策审批责任制、项目经理责任制、设计施工责任制、监督监理责任制和后评估责任制在内的各项管理制度,确保项目模拟法人责任制的落实和项目目标的实现。油田公司总经理委派分管副总经理主管工程项目建设,聘任和授权项目经理组织实施项目目标管理,各部门按照职责分工,协助项目经理作好工程建设项目实施过程中的监督、检查、协调、服务工作。

基建工程部工程管理科油气田工程建设管理人员每周一之前收集、整理、汇总各项目组地面建设管理中存在的各类问题,并组织机关相关部门每周一召开地面工程建设协调会,会上集中协调解决地面建设中存在的问题,并记录形成“地面工程建设协调会议纪要”,下发相关部门和单位,督促存在问题或需要协调的单位进行整改和处理。

(2)油田施工的物流管理

依据施工企业发展战略和改革规划,适时引入物流管理思想,把物流管理定位并发展成为企业新的经济增长点。从优化施工企业物流管理入手,把施工企业现有的物资管理体系,按照物流管理的原则进行重新整合,规划并建立符合物流管理要求的业务流程、组织构架、物资采购、加工整理、联合配送等系统,由单纯的采购、供应业务,全方位转化为面向工程项目部、面向施工现场的综合服务功能上来。运用物流通道,提倡合理配送,减少物资流转的中间环节,降低施工现场材料储备,保证物资的使用效能。

(3)油田施工的安全管理

油田公司工程建设项目的钻井、试油等井下作业和建筑安装、管道敷设、线路架设、道路修筑等地面工程,项目组须严格审查各施工单位的资质,通过招标方式选择施工单位; 凡进入油田公司承担钻井、试油等井下作业和建筑安装等工程施工、监督监理工作的施工单位,必须通过油田公司工程项目管理部审查其资质,颁发油田公司市场准入证,方可进入油田公司建设市场,承担钻井、试油、地面施工、监督监理任务,规范井下作业队伍施工管理,确保油田安全、清洁生产;所有建设单位或项目组均不得录用无资质或资质不符合要求的施工企业承担油田公司工程建设项目的施工任务,凡一个施工单位能独立完成的建设工程,任何建设单位或项目组均不得将工程肢解,分包给多个施工单位承包。如果单位工程内确有特殊单项,一个施工单位又确无能力承担施工而需分项发包时,必须经工程项目管理部批准。油田对井下作业队伍实行限制队伍规模、限制施工区域、限制施工井的“三限”管理。严格控制作业队伍数量和动力数量,每支队伍只能配置1台动力。作业队伍只能在限定区域内进行作业施工,采油厂、油公司不得擅自录用本区域以外的井下作业队伍。

(4)油田施工的质量管理

承担油田公司工程建设项目施工任务的施工单位,必须在油田公司工程项目管理部核准的范围内承担施工任务,认真履行合同,不得出让资质等级证书和法人营业执照,不准转包工程或向不符合资质要求的单位分包工程,如有违犯本规定的,一经发现,立即清除出油田公司建设市场;承担油田公司工程项目建设的施工单位必须保证工程的施工质量,严禁将不合格的材料和设备用于工程,不准偷工减料、粗制滥造,在工程结算时不准采取欺骗、伪造证据、或与发包方有关人员互相串通等不正当手段,抬高工程造价,从中渔利。有关施工单位的法定代表人,也必须对所承建工程的质量负终身责任;发包单位和负责工程发包的有关人员,不准以任何形式索取和收取回扣、佣金或其它好处,有关施工单位必须自觉维护油田公司建设市场秩序,不准为了承担任务向发包单位及其有关人员提供回扣、佣金和其它好处。

施工的工程质量是指承建工程的使用价值,也是施工工程的适应性。故在规划设计时,应考虑其实际用途与社会生产的条件,考虑技术可能性与合理性,在一定的幅度内提出相应的质量要求。施工企业应按照质量标准,进行最经济的施工,以降低工程造价,提高工程质量。材料是工程施工的物质条件,材料质量是工程质量的基础,材料质量不符合要求,工程质量也就不可能符合标准。材料验收与材料跟踪的目的,是保证使用在管道上的材料都是合格的。到达现场的每件材料,都必须经过承包商质检员、业主和第三方质检员联合检查。根据材料采购订单、发票、业主技术规格书,检查所到材料的质量、数量、标记、尺寸和外观状况是否满足要求。

施工过程中的方法包含整个建设周期内所采取的技术方案、工艺流程、组织措施、检测手段、施工组织设计等。施工方案正确与否,直接影响工程质量控制能引顺利实现。往往由于施工方案考虑不周而拖延进度,影响质量,增加投资。为此,制定和审核施工方案时,必须结合工程实际,从技术、管理、工艺、组织、操作、经济等方面进行全面分析、综合考虑,力求方案技术可行、经济合理、工艺先进、措施得力、操作方便,有利于提高质量、加快进度、降低成本。

三、结论

油田的施工管理是一个多方面的系统工程,涉及到施工质量、安全、进度等多个方面的内容,只有这些方面都做做好,才能保障施工管理的有效性,本文试图探讨保障油田施工的有效管理,并提出了一些建议。

参考文献:

[1] 强俊秀。论建筑施工企业转化物流管理的重要性和实施策略。铁路采购与物流,2008年第1期。

[2] 邴绍强。利用信息技术提升油田作业施工管理水平。施工管理,2007年第3期。

[3] 成立芹,刘建辉。物流管理在施工企业中应用。商场现代化,2007年第1期。

油料作物和经济作物的关系篇10

一、经验:通过立法、规划和鼓励补贴等政策,持续推动生物质资源的研究、开发和利用

(一)美国通过立法和补贴政策促进生物质乙醇产业发展

美国是世界上最大的乙醇生产国,乙醇商业化生产始于上个世纪90年代,玉米一直是其主要的生产原料。20世纪90年代开始,美国以法律形式确定了生物质能源的主导地位和具体发展指标。2002年11月,《美国生物质能与生物基产品展望》报告对美国生物质资源研究做出了远景规划,提出到2030年,美国生物质能和生物基产品将发展成为完善、成熟并可持续发展的产业,为美国农业经济增长创造新的机遇,并向消费者提供性能优良、绿色环保的生物基产品。

1999年,美国了《开发和推进生物基产品和生物能源》总统令,制定了到2030年以生物质燃料替代目前石油消费总量30%的发展目标,占国家电力的5%、交通运输燃料的20%和化工产品的25%。2005年,美国能源部提交的报告显示:生物质能已经开始对美国的能源做出贡献,2003年提供了1亿吨标煤能量,占美国能源消费总量的3%,超过水电而成为可再生能源的最大来源。

为了实现上述目标,美国在生物质资源研发领域的资金投入逐年递增,其中,包括2008年12月能源部投资2亿美元支持利用生物质原料生产先进生物燃料的商业化研究与实践、2009年1月其能源部与农业部联合支持有关生物燃料、生物质能及生物基产品生产技术与过程的研发项目等。即使在金融危机发生之后,生物质资源研究仍成为美国经济复兴和再投资计划的重要组成部分。2009年5月,美国能源部宣布,复兴计划中将有7.865亿美元用于加快先进生物燃料的研究和开发、以及商业规模的生物精炼示范项目等。

发展生物燃料对美国经济发挥了极大的推动力量。据统计,仅 2007年发展乙醇使美国减少进口2.28亿桶原油,原油进口减少量约占美国原油进口总量的5%,相当于为美国经济节省了165亿美元;乙醇生产经营、乙醇运输以及新建乙醇生产企业投资,共为其国内生产总值增加476亿美元,为美国各经济领域创造了近24万个工作岗位;使美国消费者增加了123亿美元收入,为联邦政府创税约46亿美元,同时为各州和当地政府创税36亿美元。

奥巴马上台后,提出了7000多亿美元的巨额经济刺激计划,同时,确保实现国会设定的2022年美国生物燃料年产量达到360亿加仑的目标。为减轻粮食负担,美国已经做好了向非粮的二代生物燃料过渡的部署,到2030年,生物燃料替代30%化石运输燃料中,玉米原料只占6.7%,九成以上将是非粮原料。其最新举措是加快纤维素燃料乙醇的研发和产业化。(详见表1)为尽快实现第二代生物燃料技术的产业化和商业化,美国政府采取了一系列刺激和鼓励政策。

2007年10月,美国生物质研发技术咨询委员会了新的生物燃料与生物基产品路线图,确定了生物质技术发展的主要障碍和解决途径。

(二)欧洲各国对替代燃料的立法支持、差别税收以及油料植物生产的补贴,共同促进了生物柴油产业的快速发展

欧盟委员会提出,2010年运输燃料的5.75%用燃料乙醇和生物柴油替代,到2020年这一比例将提高到20%。法国计划到2015年生物柴油的产能将从现在的每年600万吨增长到1000万吨。目前,意大利是欧洲生物柴油使用最多的国家之一。在2001年制定的金融法中,意大利计划在3年内将生物柴油的生产配额从12.5万吨增加到30万吨。德国政府鼓励使用生物柴油,对生物柴油生产企业全额免除税收,使其价格低于普通柴油。德国在2003年颁布法规,准许自2004年起,无需标明即可在石化柴油中最多加入5%的生物柴油。同时,德国还规定了机动车使用生物燃料的最低份额,从2004年起的2%提高到2010年的5.75%。新规定的出台将使生物柴油营业额从2000年的5.035亿美元猛增至24亿美元,平均年增25%。西班牙2002 年12月30日颁布法令,对生物燃料全部免征特别税,该税是浮动的,根据石油产品和生物燃料生产成本的变化进行调整。

2009年4月23日,欧盟的生物燃料政策也拍板定案,其生物燃料也有了一个明确的目标和发展方向。《可再生能源指令》和《燃料质量指令》这两道与生物燃料政策相关指令的产生,将对欧洲生物燃料行业的未来发展起着决定性的作用,并影响全球生物燃料市场。

(三)巴西通过规划推动生物柴油发展

巴西是世界上最大的可再生能源生产国。2002年,联邦政府推出生产和使用生物柴油计划(PNPB),计划目标为:2008年1月开始,将在全国燃料消费中,添加2%的生物柴油,到2013年1月该比例将上升到5%。为了推进该计划,联邦政府分步骤、分阶段实施。

第一阶段:可行性分析阶段。结论是:在经济上,可以扩大就业,增加收入,缩小区际之间的收入差距。在社会发展上,可以扶持社会弱势阶层,提高低收入者收入水平。在环境上,通过使用生物柴油,减少废气和空气污染,可以降低社会的医疗成本。在发展战略上,可以减少对进口能源的依赖,降低国家能源安全风险。

第二阶段:完善法律和政策阶段。首先,定义和规范生物质能源,同时在法律、政策、税收上给予支持。在税收上针对发展程度不同的地区采取不同的优惠税率,给予贫穷地区更多的税收减免。按照该种差别税率的逻辑,政府政策有义务保护两个薄弱环节:(1)农民的种植环节。联邦政府为了鼓励小农户种植油料作物,保障全部收购,创造了一个“社会燃料”凭证,以此来决定企业税收减免的多少。(2)市场环节。政府公布生物柴油的质量标准,以保障提供到市场上的都是高质量的产品。

第三阶段:计划的实施阶段。在各项法律、政策和税收标准确立以后,2004年12月6日,联邦总统宣布推出PNPB。2005年,第一个加入2%生物柴油的加油站开业,联邦政府以拍卖的方式收购生物柴油,只有拥有“社会燃料”凭证的企业才能参加拍卖。政府的介入和收购,主要目的是形成实在的市场需求。

目前,世界可再生能源消费仅占总能源消费的14%,而巴西占45%。巴西还是世界上最大的乙醇出口国,30年来,乙醇生产导致巴西原油消耗下降,累计节省520亿美元,还提供了100万个工作岗位。

二、各国开发生物质能源带来的启示

(一)利用自身资源禀赋的比较优势,寻找新的替代原料来源,力求保持能源安全、环境安全与粮食安全协调发展

从中国的情况看,上海财经大学财经研究所张锦华与吴方卫研究认为,我国农产品中资源禀赋最高的是甘薯,玉米也有一定优势,小麦不具有优势。但由于当时国家急于解决陈化粮问题,采用玉米和小麦作为生物质能源原料。以玉米为主的生物质能源发展路径并不完全基于资源禀赋优势的策略。同时,与美国地多人少相反,中国的人口众多,即使采用一定优势的玉米为原料的生物质能源发展路径也受到粮食安全问题的制约。虽然我国有大量的盐碱地、荒地等劣质土地可种植甜高粱,也有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。我国虽然在西南地区种植了一定规模的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。生物质资源的发展是生物质能源的根本问题,优良的作物品种是发展生物质能的重中之重。

(二)政府积极参与,为生物质能源的产业化发展创造良好的市场环境

生物质能源产业是具有环境效益的弱势产业。2000年以来,我国建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,但为避免对粮食安全造成负面影响,国家开始对以粮为原料的燃料乙醇的生产和销售采取严格管制。对于生物柴油的生产,国家还没有制定相关的产业政策,也没有完善的销售渠道。此外,生物质资源的其它利用项目,如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,以降低成本。同时,需建立行之有效的投融资机制做保障,促进生物质资源的开发利用。

(三)将扶持生物质能源的产业化发展纳入到国家的可持续发展战略中

我国非粮作物的燃料乙醇尚处于试验阶段,要实现大规模生产,还需在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的技术尚处研究阶段,一些相对成熟的技术缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(四)加强生物质资源研究对于国家可持续发展具有很强的战略意义