卫星通信论文十篇

时间:2023-03-29 03:03:37

卫星通信论文

卫星通信论文篇1

1.1卫星通信具有众多的优势(1)电波覆盖地域比较宽广。(2)传输路数多,通信容量大。(3)通信稳定性好、质量高。(4)卫星通信不受地域限制,运用方式灵活。

1.2卫星通信的一些劣势主要的方面有:(1)延迟现象比较常见。(2)传播过程中由于信号较差,容易出现信号中断的现象。(3)终端产品的选择面不广。

2卫星通信产品的多址体制方式的选择

卫星通信由于具有广播和大范围覆盖的特点,因此,特别适合于多个站之间同时通信,即多址通信。多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信。目前比较常用的两种卫星通信多址体制方式为:TDM-FDMA(时分复用-频分多址)和MF-TDMA(跳频-时分多址)。(1)多址体制方式一:TDM-FDMA。(2)多址体制方式二:MF-TDMA。

3卫星通信在铁路应急通信中的应用网络架构

有时候会因为遇到突发性、严重的自然灾害、人为因素导致其他所有通信手段无法使用时,而应急指挥中心又急需现场相关资料,这时就可以利用卫星通信覆盖区域广和快速部署的优势将信息发送到应急指挥中心。常规卫星系统现场接入方式可以分成两种:一种是车载型,一种是便携型,这两种卫星接入方式可以视现场情况而定。而对于铁路应急通信人员来说,以上两种接入方式均可以采用,但在到达应急现场后,还需要在现场对卫星接入设备进行开设,考虑操作使用人员的技术水平和熟练程度,选择自动对星的车载或便携卫星设备就显得非常的方便,可确保快速建立通信链路保证通信。

事发现场人员要将信息传送到应急指挥中心,在铁路应急卫星通信系统网络建设时,可根据实际情况需要,按下文所述三种方案进行建设,如图1所示。

方式一:在中国铁路总公司应急中心建立卫星地面通信站,这样就可以通过应急指挥中心收发数据,再通过地面的有线网络传输到需要数据的各路局应急指挥中心。这种方案对于现代网络资源的应用比较充分,但在遇到一些突况时,数据可能无法通过地面有线网络传输到需要数据的各路局应急指挥中心,这就导致可能会出现一些无法预知的情况。

方式二:在各个路局的应急指挥中心建立卫星通信站,这样就可以在发生状况时迅速的将数据发送到各路局的应急指挥中心,同时各路局也能够及时的下达指令,进行相关问题的处理。这样做的好处是各路局应急指挥中心能及时掌握应急现场状况,但不利的是其建设费用将会大大增加。

方式三:在中国铁路总公司应急指挥中心以及各路局应急指挥中心均设置卫星通信站,这样一来,无论发生什么灾害情况,各路局应急指挥中心与中国铁路总公司应急指挥中心都可以实时掌握事发现场情况。这样做的好处不言而喻,但其建设费用也无疑会昂贵很多。

4结束语

卫星通信论文篇2

1.1提高网络能力应急通讯系统对数据带宽的要求越来越高,从而造成了海事卫星使用的L波段资源越发的紧张,目前已经无法继续满足出现紧急事件时,救助现场和应急指挥在带宽上的需求量。目前国际上已经加强了对海事卫星的研究,新一代的海事卫星系统在具有原系统特点的技术上提高了信号质量、稳定性以及覆盖范围,从而满足卫星通信对宽带的需求量。第五代海事卫星系统能够在支持89个固定点波束的同时支持多个“移动”点波束,这提高了海事卫星的通信能力,同时带宽也达到了3500MHz。与之配套应用的卫星终端的尺寸为20到60厘米,但却可以为系统提供50MB/s的带宽服务,这对系统传输动态图像和大量的数据传输提供了强力的支持。

1.2海外应急通讯机制在全球经济一体化的影响下,世界各国之间的交流明显增多,海外应急通讯需求也在不断的增加。例如,海地地震的发生。针对该种情况的发生,国家外交、能源、水利水电等大型企业都应当适当的建立海外应急通信机制。在海事卫星的利用上应当对以下问题进行重点考虑。首先,应当在海外组织配带便于携带的承载终端及相应的配套装备,以便在紧急事件发生时为移动通信提供保障。其次,应当在常驻的机构及组织中部署专线,同海事卫星进行网络互连,确保传输通道的可靠和稳定,并成功的将通信网络延至海外。最后,建立合理的网络通信化系统,系统应当合理的将短信、位置、视频、音频等功能进行集成,提供本体和远程一体化解方案。

1.3改善海上航空应急方案网络技术的进步推动了海事卫星的在航空领域上在通信上的发展,同时因为海事卫星在遇到危险后具有安全通信的功能,航空领域的通信的优先级为海事卫星中的最高级。航空领域通信的安全性为海事卫星在航空领域的通信安全提供了有利的支持。目前,在世界各国的推动下,海事卫星在能够完成原有的任务的基础上,对网络宽带进行了完善和优化,实现了在技术上的进一步创新,实现了在语音上的双向优先级呼救,并成功的将其应用到了带宽的终端中,同时在安全服务中加入了IP数据业务,并且建立了热备模式“海上安全数据服务器”;“远程会话”功能主要用于对海上应急工作进行协调;提高在飞行过程中对重要数据的传输能力,从而提高飞机的报告系统与通信地址能够被更好的利用。目前海事卫星正在加快将航空宽带和海洋宽带纳入到ICAO和GMDSS安全通信体系之中,这样在一定程度上也提高了应急通信能力[4]。

1.4完善地面应急通信方案海事卫星应急通信网络目前已经在我国的许多行业中得到了应用,并且取得了不错的效果,但在网络利用上的解决方案尚且不足。一方面为了确保宽带在使用上需要具有一定的稳定性,因此在接入方式上应当发展专网接入。从南极科考、四川汶川大地震等重大事件中对海洋卫星通信的应用案例中可以看出相关部门与政府部门利用专网接入的形式同海事卫星进行连接,这样海事卫星则可以独自享用带宽,在数据传输上的可靠性、稳定性、安全性都将会得到进一步的提高。另一方面对海事卫星的终端进行应用,建立现场延伸解决方案。合理的对SIP、甚高频、IP技术和协议进行应用,从而科学的将海事卫星设备、专用设备、无线设备联系到一起,确保组与组、端到端、现场同异地能够顺利的开展,同时应当利用现代的科技手段不断的提高现场通信中组合性、移动性,从而实现异地和现场的移动指挥,提高医疗救助、公共通讯、救灾抢险等应急能力。

2结论

卫星通信论文篇3

静止轨道卫星通信资源-任务匹配就是根据通信任务需求,综合考虑各种约束条件,按照一定规则对卫星资源进行优化配置,制定出满足卫星应用任务需求的资源分配调度方案[9]。卫星任务规划方案的合理性和正确性直接关系到任务的完成效果[10]。因此,要实现规划调度的目标,必须对静止轨道卫星通信资源调度问题中涉及到的约束条件进行详细分析。静止轨道卫星通信资源调度问题的约束规则,可分为2大类共6项,如图2所示。

1.1静止轨道卫星通信资源-任务匹配的硬性约束硬性约束是指完成卫星通信必须具备的最基本的条件。包括3项内容,具体为:1)通信资源调度的范围约束卫星通信首先要求卫星能被卫星无线电通信使用终端“看到”,而这是由卫星天线波束覆盖范围决定的,即当卫星无线电通信使用终端处于卫星天线波束覆盖范围内时,才能进行通信;否则无法达成通信。2)通信资源调度的时间约束①任务的时间约束。针对某一任务的资源调度时间不能晚于该任务的开始时间,资源调度结束时间不能早于任务的结束时间,且任务对于资源的占用时间不能小于任务执行的持续时间。②资源的时间约束。在春分和秋分期间,静止轨道卫星由于处在太阳和地球之间,此时太阳带来的强噪声将引起通信中断,即日凌中断。3)通信资源调度的频段约束不同卫星、卫星使用终端的工作频段通常是确定值,而只有处于同工作频段的卫星和使用终端之间才能建立通信链路,提供通信服务,这是卫星通信资源调度问题中的一个硬约束。

1.2静止轨道卫星通信资源-任务匹配的软性约束软性约束是指对卫星通信的质量、取得效益具有影响的约束条件。包括3项内容,具体为:1)通信资源调度的能力约束资源具备的能力(比如带宽等)必须达到完成任务的最低要求,才能被分配执行任务。2)通信资源调度的质量约束在卫星通信中,无线电波要先后穿越对流层、平流层、电离层等,不可避免的会受到多种因素影响,产生自由空间传播损耗、大气吸收损耗和雨衰损耗等,导致通信质量下降,甚至出现通信中断的现象,特别是降雨对Ku,Ka频段信号产生衰耗较大[12]。而目前,实际应用中的通信卫星工作频段大都在C,Ku和Ka频段。因此,在调度过程中要考虑通信链路载噪比、损耗、误码率等的影响。3)通信资源调度的优先级约束①任务的优先级约束。任务的价值(重要程度)、紧迫度和执行顺序等属性决定了每项任务具备不同的优先级。②资源的优先级约束。资源的价值、能力和稀缺程度等属性决定了每个资源也具备不同的优先级。

2静止轨道卫星通信资源-任务匹配问题模型

在一个多任务的通信环境下,通信资源分配问题可以描述为一个由通信资源和通信任务所构成的数学规划问题。基于以上对静止轨道卫星通信资源-任务匹配的约束分析,建立数学模型如下。

2.1问题假设为简化问题,便于建立数学模型,在不改变问题性质的前提下,做出如下假设:1)所有资源都绝对可靠,即不考虑出现资源性能降低或者故障的情况;2)一个通信资源某一时刻只能为一个通信任务提供服务。3)卫星转发器均为透明转发器,不考虑卫星具备星上处理功能;4)所有任务在进行匹配调度前已经确定,不考虑有新任务动态更新的情况;5)任务一旦开始就必须完成,不考虑自然或人为干涉的任务中断;6)各个任务之间是相对独立任务,不存在逻辑上的先后关系;7)匹配调度过程中不考虑决策者或者事件固有经验的偏好因素。

2.2变量约束条件描述1)覆盖范围约束卫星覆盖区域d由波束决定,对于全球波束,覆盖区域为地球南北纬75°之间与以星下点为中心对地球边缘张角17.34°所围成的部分。对于点波束,覆盖区域d可以通过模型计算得到。若任务区域为D,任务区域必须在覆盖范围之内。

2.3目标函数卫星资源调度相关研究中,通常根据任务完成情况确定目标函数[17]。一般的资源-任务调度多数是以产生的综合收益最大为目标,本文从任务收益和卫星资源使用两方面考虑调度目标。1)任务调度收益大。即任务收益之和尽可能高,不仅要尽可能调度高收益的任务,而且成功调度的任务数量要多。收益主要根据任务的优先级确定。

3静止轨道卫星通信资源-任务匹配问题求解思路

根据以上分析可知,静止轨道卫星通信资源-任务匹配是一个多目标组合优化问题,结合静止轨道卫星通信资源-任务匹配规则,给出求解该问题的思路,如图3所示。匹配过程可以描述为:步骤1数据初始化。根据通信任务和卫星资源的描述,进行数据预处理,主要是编号、计算资源覆盖区域和可用时间,得到任务集合T和资源集合R,进入步骤2;步骤2匹配可行性检测。对照资源-任务匹配的“硬约束”条件,筛选出可调度任务集Tk。如果Tk为空,则无法进行匹配,终止流程,否则进入步骤3;步骤3选择任务。从可调度任务集Tk中选出优先级最大的任务Ti,并将Ti移出Tk,进入步骤4。如果已完成的任务数量等于可调度任务总数,则结束整个流程;步骤4选择资源。根据资源优先级,为选定的任务Ti分配资源Rj,如果资源能够满足任务需求,进入步骤5;否则进入步骤6;步骤5资源分配。将资源Rj从R中移出,设置Rj状态为已调用,并将Rj的处理任务结束时间设为tie,返回步骤3进行循环操作;步骤6资源释放。选择刚完成的任务,将其占用的资源状态设置为可调用,并放回R中,返回步骤4进行循环操作。

4数据仿真

人工智能算法是求解多目标组合优化问题的有效手段,本文采用蚁群算法进行仿真分析。采用MatlabR2010a编程,在Win7系统(硬件配置Core二代2.2GHz,1G内存)计算完成,调度总收益19,经验证其结果正确,运行时间2.775756s。运行结果如表4所示。

5结束语

卫星通信论文篇4

1.性能分析

CFDAMA基本接入方式能够实现较好的时延/吞吐量性能。CFDAMA-PA成功的将按需分配和自由分配结合在一起,采用固定预约时隙分配的形式来保证用户接入的公平性和实际业务需求量,在信道负荷较低的时候,其平均时延和固定分配方式保持一致,在信道负荷逐渐增大和接入用户数变化较大时,存在资源利用率下降的问题。CFDAMA-RA在低信道负荷时由于采用的竞争方式进行接入,对信道利用率更高,但对于用户接入的公平性却不能保证,并且存在接入过程中的碰撞,在高信道负荷时碰撞概率逐渐增大,平均时延性能也急剧下降。CFDAMA-PB通过对上行数据帧结构的改进,减小了用户发送预约时隙请求的间隔时间,但随着信道负荷的增大,某些用户会因为其他用户预约请求的资源占用导致无法发出预约时隙请求,同样不能保证接入的公平性。因此,如何保证用户的接入时延和接入过程中的公平性,成为本文的一个研究重点。

2.CFDAMA-PRI

由于当前数据业务大多突发性较强并且业务类型呈现多样性,抽象出来这类数据业务流通常用ON-OFF信源模型来表示[5]。而在此信源模型的情况下,数据业务具有很强的突发特性,用户的预约时隙请求也带有很强的随机性和不确定性。基本的CFDAMA接入方式此时由于多次请求造成的再分配策略和预约请求的冲突概率增大,在信道负荷较高和接入用户数逐渐增大时,其性能受到明显的影响。CFDAMA-PR协议在用户时隙申请阶段对发送队列的堆积状况进行判断,比较当前时刻和上一时刻发送队列中数据分组的差值Δ,如果Δ>0表示当前发送队列有数据包的堆积,则通过加权的方式向星上调度器发送更多的预约时隙请求[6]。该协议的好处在于实际应用中可以根据用户发送队列的堆积情况获得更多的分配时隙,能在突发数据分组到来情况下实时的将新的数据分组发送出去。因此,本文在CFDAMA-PR的基础上提出了基于用户优先级排序的改进协议CFDAMA-PRI,优化星上调度算法,进一步保证接入的时延性能和接入的公平性。

3.仿真分析

本文采用OPNET仿真平台[7],将基本的CF-DAMA-PA、CFDAMA-PR和改进的CFDAMA-PRI进行对比仿真。具体的仿真参数设置如表2所示。对信道负荷固定但用户数目变化条件下的仿真结果进行分析,目的是为了得出CFDAMA-PRI的时延性能和在用户接入公平性方面的优越性。选取信道负荷为0.8,用户数目依次为5、10、20、40、80,CFDAMA-PA的预约时隙数为20,得到的仿真结果如图5、图6所示。由仿真结果可以看出,当系统中用户数不断增大时,由于CFDAMA-PA在一个链路帧中仅使用了一部分时隙用作预约请求时隙点,那么更多有请求的用户就无法通过预约时隙点接入链路帧,加之信道负荷较大,突发数据强,用户申请时隙的不确定性也大。如果增大预约请求时隙数的比例也会以牺牲数据时隙为代价,平均时延和队列的分组累积同样会增加。CFDAMA-PRI则采用CFDAMA-PR对信源突发数据分组的计算方法,并使用优先级排序的方法对时隙需求量大的用户给予更高的时隙分配权,确保了用户的可接入次数,降低了时延,提高了接入公平性。

4.结语

卫星通信论文篇5

1.1硬件组成硬件部分主要由单片机主控、监控和切换矩阵3部分组成。单片机通过识别本控和远控开关的工作模式,根据串口中断送来的控制信号对在线工作的设备进行操作,同时和数据采集器Nport通信,发送参数注入指令,监控机按指令将正确参数注入到优先级最高的备用设备,完成倒换开关的控制。硬件系统的组成如图2所示。单片机是主控部分[7]的核心,主要完成本控/远控的判断及主要程序的执行、射频设备的倒换以及与监控机的通信,实现电路的选通、面板显示等功能。其主要包括单片机辅助电路、输入输出口驱动电路、射频切换控制数据口、中频切换控制数据口、4线RS-485串口通信电路、外部指示灯控制电路及电源电路。监控部分通过网口与数据采集设备通信,轮询设备的当前工作状态,依据设备工作状态向单片机发送调整信息,并进行参数的注入,实现智能切换单元的远程控制竞争-冒险”现象而导致系统崩溃。切换矩阵通过控制元件完成切换控制。开关矩阵中选择了可控功率大、损耗小的PIN管作为核心控制器件。由于吸收式PIN开关改善了端口驻波,“开”与“断”状态下的驻波较好,兼顾系统的稳定性,在此选择吸收式PIN开关[9]。

1.2硬件电路功能模块根据功能模块划分,实际电路分为5个模块:CPU接口电路模块、串口通信模块、键盘控制模块、液晶驱动模块及PIN开关切换控制模块。①CPU接口电路模块CPU接口电路主要完成电路的控制。电路主要包括晶振电路、外部复位电路、JTAG接口电路及电源指示电路。设计中采用AVR公司的ATMEL6450单片机,此类单片机拥有68个双向I/O口,同时具有64K字节的Flash,2K字节的EEP-ROM,4K字节的RAM,满足设计需求。②串口通信模块串口通信模块用来完成单片机与计算机的通信,实现计算机在远控模式下对整个切换网络的控制,选用MAX1482器件完成双工通信。③键盘控制模块设计中选用74C922键盘控制集成电路模块,运用12个键组合完成所有的设置功能,采用中断方式实现与单片机的数据交换和控制。④液晶驱动显示模块液晶显示模块选用LCM128645zk模块,该模块主要特点是内带8000多GB1/2中文汉字字库液晶显示模块,串行/并行两用接口。设计中采用并行传输模式,由指令位(DLFLAG)来选择8-BIT或4-BIT接口,单片机配合(RS,R/W,E,DB0..DB7)完成传输动作。⑤PIN开关切换控制模块PIN开关采取自主研制,选用吸收式PIN开关改善端口驻波。通过单片机的3个I/O管脚直接控制单刀6掷开关,单刀3掷开关则是先通过74HC139译码器译码,然后通过74LS04后作为中频PIN开关的控制信号。

2软件设计

2.1软件结构设计智能切换单元的软件部分[10]通过对中/射频切换单元和射频设备定期轮询[11],经串口或网口从硬件获取数据信息,将提取到的状态信息进行分析、统计综合、决策,根据优先级策略控制切换单元和射频设备的参数,完成监控和切换。单片机作为控制核心,通过中断完成相关功能。不断查询中断口是否有信号输入,从而触发不同动作。单片机控制的主流程及中断子程序流程如图3所示。监控机通过不断轮询射频设备的工作状态,验证在线设备是否故障。在线设备故障时,监控机根据备用设备的优先级选择设备,同时向单片机发出状态调整信号,完成设备倒换后,监控机会对故障进行记录和压缩,以备用户查询。在线设备正常工作时,监控机继续轮询设备工作状态。

2.2各功能模块设计软件模块主要分为串口数据通信、数据传输与存储、综合处理和设备状态显示4个模块。①串口数据通信模块通过串口服务器与被控设备通信,以轮询的方式采集各设备的上报数据,并发送控制命令。②数据传输与存储模块该模块将接收到的设备上报数据进行解封装,提取出设备状态参数,将其保存并传递给综合处理模块进一步处理;将综合处理模块发出的设备控制命令封装后送至串口数据通信模块。③综合处理模块综合被控设备的状态参数,分析得出系统配置状态,将所有状态信息传送至设备状态显示模块。手动模式下,处理用户的各种操作,完成用户管理、设备控制命令发送和日志记录查询等功能;自动模式下,当检测到在线射频设备故障时,按优先级策略控制切换单元实现切换,并设置备份射频设备频率和衰减等参数,完成自动切换功能。射频设备切换优先级策略如表1所示。④设备状态显示模块将各种信息(系统配置状态和设备状态参数等)以图形化的方式显示在软件的各功能界面上。

3切换策略和逻辑关系

3.1切换策略①射频设备切换策略3站射频设备之间切换需建立正确的切换机制[12],避免“竞争-冒险”而导致系统崩溃。默认情况下,各地球站射频设备都将一台设为备用,此设备的优先级最高。平时管理中,A站对应射频设备1和射频设备2,B站对应射频设备3和射频设备4,C站对应射频设备5和射频设备6。当A站主用1出现故障时,倒换优先级2为最高,另外2站的备用设备也设置响应的优先级。每一台设备对于3个站都具有不同的优先级,如表2所示。②本控/远控切换策略从本控状态切换至远控状态后,键盘按键(除设置键)不起作用;从远控状态切换至本控状态后,串口进行有选择性地执行指令,仅对查询命令回应当前状态。

3.2切换的逻辑关系①联动切换逻辑关系切换矩阵是实现射频设备倒换的关键部分,矩阵中3个单刀6掷中频PIN开关和3个单刀6掷射频PIN开关依据逻辑关系进行动作,实现射频设备的主备切换,如表3所示。M1、M2和M3分别表示3个站中频单刀6掷PIN开关6个管脚的某一个,N1、N2和N3分别表示3个站射频单刀6掷PIN开关6个管脚的某一个,要保证射频设备正常倒换,中频和射频PIN开关要实现联动。②交叉切换逻辑关系在一般情况下,智能切换单元进行联动切换,各站终端设备始终和各站射频设备配合使用。但在特殊情况下,需要各站终端设备与射频设备交叉使用,交叉使用的切换逻辑如表4所示。

4结束语

卫星通信论文篇6

关键词:卫星通信;实验教学;卫星广播电视

截至2015年底,中国在轨运行的卫星数量已超过140颗,仅次于美国,位居世界第二。然而,伴随着卫星数量的突破,我国的卫星产业发展却相对滞后,尤其是地面应用系统的发展还不够。除投入不足外,人才缺乏也是一个重要原因。卫星通信课程作为高校电子通信类专业的主干课程在激发学生对卫星通信领域的学习兴趣、培养卫星通信领域的人才等方面有着不可替代的作用。

1实验课程开设背景

由于卫星通信设备昂贵、通信卫星资源紧缺,传统的本科《卫星通信》课程主要以理论教学为主,以实验演示和参观观摩为辅,实践教学的比例非常少。卫星通信的频率很高,常规的仿真平台很难实现全系统仿真,因此,有条件的院校开设的仿真实验仅限于卫星通信的中频部分[1],让学生观察信号在中频部分的处理与传输过程,深化学生对通信基本理论的认识,但这些改善无法让学生体会到真正的卫星通信过程,也很难激发学生对卫星通信领域的学习热情和兴趣。另外,随着卫星通信技术的迅速发展,《卫星通信》课程的教学内容需要不断更新,与工程实际结合也更加密切,实验教学的重要性越来越突显。与理论教学相比,由于学时有限、实践环节组织困难,实验教学已成为卫星通信教学改革与发展的瓶颈。

2实验教学内容设计

为提高卫星通信课程的教学质量,激发学生的学习热情,对卫星通信课程实验教学的内容和方法进行了探索,在教学实践中取得了一定效果。具体而言,该校在通信工程专业的本科生教学中开设了《卫星通信》课程,在研究生教学中开设了《现代通信新技术》(其中包含了卫星通信的相关内容),针对不同的培养对象,教学的内容、方式方法有很大差异。

2.1本科实验教学

本科教学中学生数量众多,传统的《卫星通信》实验课程受限于实验设备的成本,只能让学生进行卫星通信的演示和观摩,无法让学生切身体会卫星通信的过程。随着技术的发展,作为一种最廉价的卫星通信方式之一——卫星广播电视已进入千家万户,它主要由天线(及其支架)、卫星电视接收机、电视机以及电源等设备组成。该系统属于卫星通信中的单向接收地球站,而卫星通信中的反向发射链路与接收链路相似,因此,该系统完全可以作为学生体验卫星通信过程的实验设备。然而,虽然电视机在该系统中仅作为通信的终端设备,与卫星通信实验课程的教学目的关联性不强,但电视机的成本却占据该套实验系统的70%以上;另外,卫星广播电视实验的开设通常需要在室外开阔地域进行,此时系统的室外供电也将成为课程开设必须考虑的因素;上述两个原因导致卫星电视接收系统在《卫星通信》实验课程的开设过程中无法得到推广。为解决该问题,通过市场调研,将卫星电视接收机和电视机的功能改由寻星仪来实现。寻星仪是融合了卫星电视接收机、电视机以及频谱仪简易功能的一体化设备,采用锂电池供电,不需要市电,便于室外实验的开设。整套系统成本低于1000元,其简易的频谱仪功能还可以开设卫星信标的接收实验。寻星仪的操作界面与常规的卫星电视接收机完全相同,可以设置卫星名称、高频头本振、接收频率、符号率、极化方式等参数;连接卫星电视接收天线后,当天线对准目标卫星时即可接收到该卫星上的信号(即接收的信号强度和信号质量高于卫星接收机门限);若目标卫星上有公开的电视节目,还可以直接使用该终端收看卫星广播电视。在该系统上开设的实验课程可以让学生熟练掌握卫星通信中天线对星的基本流程与操作技巧,明确天线三维指向的参考基准与天线精确对准卫星的判断标准,使学生对卫星通信的整个过程进行全面、整体认知,锻炼和培养学生的实践动手能力。本科生的实验教学重点在于突出学生的感性认识,通过卫星实验,使学生能够掌握卫星通信的基本原理,明白卫星通信中对星的标准是什么,并掌握对星的常见技巧。对于学有余力的学生,启发他们更深入了解卫星通信发展的新技术、新方向。

2.2研究生实验教学

与本科生相比,研究生具有更大的学习自主性,理论讲授不仅要细而专,还要广而泛。在本科现有卫星通信内容的基础上,重点讲授与卫星通信相关的天线技术、阵列信号处理技术以及通信技术等的发展现状,为研究生下一步的课题选择提供参考。作为小班教学,研究生的卫星通信实验课可以采用完全自主的形式——将固定卫星地球站、便携式地球站、卫星动中通地球站以及宽带无线通信系统、无人机视频采集等设备交给学生进行自主组合,按照系统搭建由简单到复杂,地球站由固定到移动,通信业务由话音到视频的渐进过程,让学生体会卫星通信在实际生活中的各种应用场景以及还存在亟需解决的问题,激发学生投身卫星通信领域技术研究的兴趣。

3结语

卫星通信实验课程的开设可以强化学生对卫星通信基本原理的理解和掌握,激发学生对卫星通信领域的学习兴趣。该文针对本科生和研究生两种教学对象,对卫星通信实验课程的开设内容以及实验条件建设进行了探讨与摸索,在实际的教学过程中取得了良好效果。然而,适合于不同对象、不同接受能力的实验内容和教学方法的改革是永无止境的,如何取得更好教学效果还需要与广大高校的卫星通信课程教师共同探讨。

参考文献

卫星通信论文篇7

理论计算篇

一锅多星的原理与光学反射原理是相同的,因为二者在本质上都是电磁波,只是波长不一样罢了。根据光学原理,任意平行射向球面镜的光束,其焦点位于与该球面同心、半径为球1/2的球面上。因此在抛物面前任意发出的电磁波信号,都将在此半径为球1/2的球面上产生焦点,如图1所示,黑色抛物线代表天线面,蓝色抛物线代表半径为球1/2的球面,最上面的三个黑点代表三颗卫星,蓝色抛物线上的三个点代表接收三颗卫星信号的高频头。我们可以看出相邻两颗卫星之间的经度约差10°,通常一锅多星应选择位于中间位置(中星6B)卫星作为主收卫星,其它卫星作为偏收卫星。

1.天线三大角的确定

我们一但确定主收的卫星就可以依据数学公式(1)、(2)进行计算。也可以利用计算机进行计算,笔者使用寻星计算程序v2.1 (图2)。该软件只需要输入所在地的名子,即可算出亚太上空常见卫星的“三大角”,如果有新的卫星还可以手动增加新卫星。

方位角:

仰角:

式(1)、(2)中 λ为卫星经度,λ0φ0、 分别为接收站的经度和纬度。

2.偏收馈源位置的确定

式(3) 、(4) 中 ∠A、∠B、为主收卫星的方位角和仰角,∠A'、∠B' 、为偏收卫星的方位角和仰角,R为天线的球半径。人正对天线面观测,x为正值,表示偏馈源位于主馈源的左侧,反之亦然;y为正值,表示偏馈源位于主馈源的上侧,反之亦然,主馈与偏馈之间的距离。为了简便计算我们可以利用Excel软件,∠A、 ∠A'、∠B、∠B' 可由式(1)、(2)求出或用寻星计算程序得出,利用Excel计算三角函数要将角度乘以π/180转化为弧度,在单元格里输入指定的公式(图3)。表格中单位为米,方位角为负表示南偏东。有了这些理论计算数据我们会在稍后的安装实践中少走许多弯路。

接收实践篇

地点:114.63°E33.63°N

器材:已经使用2年的1.5m华太天线、卓异2500F接收机、高斯贝尔2900A高频头(2006年产品)

主收115.5°E中星6B。根据图2中计算值粗调三大角。实践中气象频道信号较弱,依据气象频道信号细调三大角,使信号质量最大,锁定天线。

偏收125°E鑫诺3号。在偏收中,固定高频头是一个令广大爱好者头痛的问题,市场上购买的多星夹具普遍反映固定牢固但调试不便。笔者使用化学实验室固定铁架台上各种支架的双拧丝(图4)来固定高频头。该夹具是铜制的不易生锈,在化学器材店即可买到。使用双拧丝固定高频头具有调节灵活、固定牢固、价格便宜等特点(图5)。依据理论计算篇的计算结果,利用广西卫视作为引导,手持连接高频头的短杆,在中星6B高频头左上方约10cm-20cm范围内可以很快找到固定点,轻微调节高频头的上下左右方向和极化角,使新疆一组的信号最强,使用双拧丝锁紧高频头即可。

偏收105.5°E亚洲3S卫星。在继续实践中发现无论怎样调节高频头的位置与方向,3S卫星NOW一组信号始终超不过20%,亚洲3S无法稳定偏收。当时天色已晚,遂暂时收工。没想到这次暂时的停工竟然发现了一个有趣的问题,本文后面还要讨论。在后来的日子里笔者多次尝试偏收亚洲3S都以失败告终,笔者甚至产生过放弃“一锅三星”方案实践的念头。在当地星友的鼓励帮助下,通过反复对比实际测量数据和理论计算数据,终于发现了问题――馈源盘的支撑杆正好占据了偏收亚洲3S高频头的位置。笔者想把三根支撑杆逆时针旋转60°,此时接收亚洲3S卫星的高频头恰好落在两根支撑杆之间,但是另外一根支撑杆却把偏收鑫诺3号高频头的位置占了。解决支撑杆遮挡问题是关键,如果把遮挡的支撑杆分成两根来支撑馈源盘,正好可以留出空间安装偏收亚洲3S卫星的高频头(图6)。说干就干……高频头的调节和安装同上,问题就这样在困惑笔者一月后被解决了。

至此,豫东地区“一锅三星”实践成功(图7、图8、图9)。表1、表2、表3分别是安装完毕后三颗卫星上部分转发器的接收机显示信号质量。事实证明主收中星6B的“一锅三星”方案在理论上和实践上都是可行的。

思考讨论篇

自2007年8月1日大规模转星以来,广大烧友写了多篇关于“一锅多星”的文章,理论上讲在我国大部分地区,主收中星6B偏收鑫诺3号和亚洲3S卫星是最佳的方案。曾经在论坛上闻一河北烧友与笔者使用的同是1.5m正馈天线,但是在主收中星6B偏收鑫诺3号成功后偏收亚洲3S却失败了,最后不得不以110.5°E鑫诺1号为主收,其他全作为偏收卫星。笔者分析很可能就是支撑杆遮挡的问题才使这位烧友在最后偏收亚洲3S失败。江苏省一烧友也是使用1.5m正馈天线,采用主收亚洲3S的方案,虽然该方法避免了支撑杆遮挡的问题,但是在偏收鑫诺3号时,由于偏离主星角度过大,有些转发器的信号达不到稳定接收的要求。

在没有意识到支撑杆遮挡问题之前,笔者也一度认为主收中星6B偏收亚洲3S是不能成功的,但是理论计算显示可以的事情,为什么在实践中行不通呢?笔者抱着即使不成功也要找出原因的态度,通过近一个月的试验,终于找到了问题所在。在没有安装亚洲3S高频头的一段时间里笔者记录了鑫诺3号各转发器的信号质量,全部完成后发现未安装3S高频头时鑫诺3号各转发器的信号质量比安装后平均高5%。之所以产生这个有趣的问题,是因为两个偏收高频头关于天线的主轴基本对称,相互遮挡了天线反射面的有效面积,信号质量自然也就下降了。

在确定偏收高频头位置的时候使用公式需要比较准确的天线参数,现在市场上大部分天线实际值与标称值不符,计算也就不准确。实践中我们还是手持高频头寻找偏焦点更直观,但是还要以电磁波反射原理为指导:偏收主星东边卫星的时候,要在主收高频头的西边寻找信号,反之亦然。安装完毕后实际测量偏收鑫诺3号高频头与主馈之间的距离为18cm,偏收亚洲3S高频头与主馈之间的距离为14cm,在允许误差范围内与理论计算值相符。

卫星通信论文篇8

关键词:GPS;钟差预测;灰色理论

引言

在进行GPS定位时,为了提高定位精度,需要对影响定位结果的各种因素如卫星钟差、信号传播延迟、接收机钟差、多路径效应等进行充分考虑,因此提高卫星钟差的A报精度十分重要。目前只能通过卫星星历来获取在一定时刻的卫星钟差数据。卫星星历分为广播星历和精密星历,前者跟着信号实时发送给接收机,每两个小时更新一次;后者由IGS跟踪站等,采样率根据星历类型不同可分为15s、30s、15min等。为了获取任意历元的卫星钟差,需要利用已知的部分历元星历,运用可靠的数据模型进行预测。本文研究了灰色理论模型进行卫星钟差的内插拟合,并利用程序软件进行测试,并对比多项式方法的卫星钟差预测,总结了试验结果,为进一步提高卫星钟差预测精度提供参考。

1 灰色理论模型预测法

灰色模型就是利用少数的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述。该模型对原始数据进行累加或累减,形成规律较强的新数据,并以此建立模型以对未来发展情况作出预测。将灰色系统模型运用于卫星钟差预测时,该模型只利用已知少数几个历元的卫星钟差数据,不需要大量样本数据量,计算工作量较小。

建模之前,要保证原始数据序列符号一致,否则应对每个原始数据加上一个常数c。以此数据为基础建立灰色系统模型,最后的预测结果也相应的将灰色模型预测值减去该常数而得到。

2 算例及分析

在前述灰色理论模型原理内容的基础上,为了解该模型在卫星精密钟差预报中的实际情况。本文利用IGS站的卫星精密钟差文件进行测试,该数据为2016年年积日302天30s的卫星钟差数据,标称精度在0.2至0.3纳秒间,可作为检查模型预测结果的真值。为了分析灰色理论模型预测卫星钟差的可靠性,本文也采用了卫星钟差预测模型常用的二阶多项式模型进行对比分析。

本文取2016年年积日302天(10月28日)2:00至3:00的30s钟差数据共120个历元,分别进行灰色系统建模和二阶多项式建模,然后向外预报150个历元的钟差,以IGS站公布的30s钟差文件igs19205.clk_30s数据为真值进行对比分析,两种模型的预测结果如下所示:

本文采用的灰色理论模型GM(1,1)对卫星钟差进行了预测,从上述三个卫星的计算结果看,灰色理论模型对卫星钟差短期预测的误差达到纳秒级,其精度与钟差常用的二阶多项式预测方法相当。

3 结束语

在GPS数据处理过程中,精密钟差对最终定位的精度影响很大,因此提高其预报精度十分重要。短期钟差预测的模型常常采用二次多项式方法,本文在对灰色理论模型进行了简单的介绍后,通过实例测算其在钟差短期预报中的应用,对三个卫星的钟差进行了预测,并将结果与IGS站公布精密钟差数据进行了对比分析可知,灰色理论模型GM(1,1)在卫星钟差短期预测中可达到纳秒级的精度,适合应用于导航卫星的钟差预报。

参考文献

[1]黄劲松,李征航.GPS测量与数据处理[M].武汉大学出版社,2005.

[2]叶世榕,刘经南.GPS非差相位精密单点定位技术探讨[J].武汉大学学报,2002,27(3):234-240.

[3]邓聚龙.灰色控制系统[M].华中理工大学出版社,1986.

卫星通信论文篇9

关键词:卫星通信;构成;应用;展望

卫星技术和通信技术的大力发展,不仅促进了生产力改革,生产技术的发展,同时还改变了人类交往沟通的方式,使地球连成一个整体,使人类沟通更加方便密切。重视卫星通信技术的发展有着长远意义,不仅有利于科技的进步,同时也利于文明的交往和实现。

1 卫星通信系统的基本构成

卫星通信系统的构成是基于通信卫星技术的发展建立起来的,通信卫星在整个系统中起着关键作用。首先太空中的通信卫星接收一个地球站传输的数据,并将这些数据信号进行变频和放大,然后传输给另一个地球站,由此形成一个完整传输回路,进行信息的远距离传输和接收。为了保证整个传输接收系统的稳定性,整个卫星通信系统还备有测控系统和监测管理系统,测控系统用来对整个通信卫星的运行情况进行监控和测量,以保证整个系统运行正常有序;而监测系统则是为了维持系统的安全性而设计的,它能有效的对系统传输、接收的各个信号进行监督和跟踪,从而维持系统的稳定运行。

2 卫星通信的特点

2.1 卫星通信的优点

卫星通信能实现在长距离、大范围内稳定的进行数据传输、通信。理论上讲,只要发射信号的地球站在卫星信号辐射范围内,并在这个范围内有三颗相对静止的卫星便可以很好的进行数据的传播;卫星通信的主系统――卫星,存在于太空中,其不受地质灾害、自然灾害和认为因素等客观因素的影响,因此,传输系统更加稳定;卫星通信有不同作用,不仅可以进行数据传输,同时还能进行广播覆盖、宽带通信等;卫星通信的使用不受时间、空间限制,更加灵活方便。

2.2 卫星通信的缺点

卫星通信处在太空中,虽不受地球客观条件的影响,但如果传输距离过远,可能会导致传输时间延长,当传输信号达到10GHz以上时,数据的传输就可能受到高层大气天气的影响,出现传输问题;另外,卫星通信受太阳的影响也成为一个重要的限制因素,太阳的剧烈活动都可能导致信号的缺失,甚至无法传递等。

3 目前卫星通信的应用

3.1 卫星固定通信

目前我国的卫星固定通信网主要建设在比较大型的工程上,或者关系到国家安全和建设的方面,比如交通、电力、水利、能源、银行、报社或地震局、气象局等需要实时监测的地方。另外,在国防、公安、警务、公共救援等方面建设的更加健全。目前,我国卫星通信站占已达上万座。

3.2 卫星移动通信

卫星移动通信建设的目的就是为了解决陆海空等各类目标相互之间的通信任务。目前我国应用最多的是便携式移动通信系统,并且运营状态良好。比如,在一些特殊偏远地区,可能普通的数据信号系统并不能进行通信,那么就可以利用卫星通信的功能进行沟通,尤其是对于一些喜欢远途旅行的人员来说,当遇到紧急情况时卫星通信功能可能会起到很大帮助。虽然,这些卫星通信网络使用比较方便,安全性高,但是价格要略高于普通通信网络,所以,应用也受到一定限制。另外,我国在航空、水域方面的卫星移动通信还并不健全,还需要进行进一步探索。

3.3 卫星电视广播

卫星电视广播应用广泛的原因是其服务区域大、覆盖广、投资小、传播远、收益高,所以,我国卫星电视广播系统一直是卫星通信技术中应用最广的系统,并取得了很好的收益效果。目前,我国独立的卫星通信和电视广播网已初步形成,长远看来,卫星电视广播系统将会在经济、教育、文化等方面发挥巨大的作用。

3.4 卫星宽带通信

宽带的发展无疑是20世纪末最伟大的发明,它不仅解决了数据处理传输问题,同时也真正意义上将世界连成了一个“整体”。卫星与宽带的结合可以有效扩展宽带覆盖面积,使宽带的应用更加广泛,同时卫星通信具有可靠、灵活、机动等特点,宽带和卫星的联合还能有效保证宽带网络的安全,实现整个宽带网络的有效运行,当发生紧急事项时,利用宽带卫星进行调度指挥可以保证实效性,同时又提高了工作效率。然而传统的C和Ku频段的卫星通信系统已经不能满足日益发展的宽带通信技术需要,各国都在进行新的卫星通信线路的探索。我国也在不断进行新频段卫星线路的发现,并不断探索完善地面通信设施,以满足社会发展需要。未来的卫星宽带通信系统不但可以满足不同要求的下载、传输、远程医疗等业务,同时还能形成多点广播,真正成为经济社会生活中的一部分。

4 卫星通信技术发展展望

随着科技水平的不断提高、社会经济的不断发展,人类对卫星通信技术的要求也越来越高。如何完善卫星通信技术,使卫星通信应用更加广泛,这需要相关科技人员不断进行发现和探索,对于未来卫星通信技术发展,本人有以下几点展望:

4.1 卫星通信技术真正成为独立网络,不受区域限制

目前,阻碍卫星通信技术广泛应用的原因有很多,其中,受制于地面电信网成为最主要原因。很多偏远地区并没有建立起完整的通信网络,也就无法实现卫星通信的真正使用。虽然,理论上讲只要地球站发射的信号被三颗以上的卫星接收到,那么就可以进行数据传输,但是,在实际应用中,四颗卫星下组成的卫星通信网络都是不稳定的,存在着信号缺失、传输数据慢等问题。所以,健全卫星通信网络还要不断探索新技术,使卫星通信技术更加完善,真正不受限制。

4.2 大容量、高速度成为未来要求

上文中提到,卫星宽带通信中,传统的Ku频段和C频段的卫星已经不能满足现代卫星宽带通信的要求,未来这一趋势将会更加明显。这就需要研发者不断研发新的卫星通信系统,建立多频段的卫星通信网络,从而提高数据传输速度,使卫星通信系统真正融入到生产生活中,提高生产生活质量。

4.3 综合卫星服务成为未来对卫星通信系统的要求

目前卫星通信服务很大程度还是利用在地面及高空中,但是在海域的覆盖却明显缺少,因此,要不断延伸卫星通信的功能,拓展其使用范围,使其具有更加全面的功能。除了应用于特殊行业,也要能被广泛的应用在日常的生产生活中,方便生产生活。

5 结语

卫星通信具有很多优势和特点,并在日常生活、国防建设、经济发展等众多领域发挥着其独到作用,目前已成为社会建设过程中不可缺少的重要通信工具。然而,在发展卫星通信时,我们同样要关注其中的不足和缺陷,努力进行探索和改善,建立更加完善的、科学的卫星通信系统,这不但是实现经济社会发展的需要,更是实现人类发展的需要。因此,相关科研人员要正确分析现实,客观认识自身不足,不断吸收先进经验,探索完善技术,以促进卫星通信技术的发展,真正使卫星通信技术发挥其最大功效。

[参考文献]

[1]高亚哲.卫星通信的管理与应用探索[J].中国新通信,2013(18).

[2]沈永言,赵猛.宽带网络的核心价值与卫星通信的重要作用[J].数字通信世界,2013,(10).

[3]高大兵,许玉昆,张凤晓.浅析卫星通信的商业价值[J].现代商业,2008(18).

[4]王世强,侯妍.卫星通信系统技术研究及其未来发展[J].现代电子技术,2009(17).

卫星通信论文篇10

[关键词]相干解调;载波恢复;相位误差检测;QPSK解调

中图分类号:TN81.6 文献标识码:A 文章编号:1009-914X(2016)04-0306-02

1 引言

卫星和以卫星为基础的通信系统自1965年开始实用以来已经有了显著的发展。因其具有覆盖地域广、通信距离远、通信容量大、传输质量好等特点,已成为现代信息社会的一种重要通信手段[1]。解调器是卫星通信地球站不可缺少的一个重要组成部分,解调器性能的好坏对整个接受系统的性能有着决定性的影响。载波恢复是相干解调的关键技术环节。相干解调中,首先要在接受端恢复相干载波,这个相干载波应与发送载波在频率上同频,在相位上保持同步的关系。载波恢复就是要实现这一过程,它是相干解调的先决条件[2]。

2 载波相位误差检测算法

载波恢复主要包括载波相位误差检测、载波恢复环路滤波器以及VCO[3]。载波相位误差检测能够检测出发端所发送的QPSK调制信号载波相位与本地VCO产生的相干载波相位之间的误差,载波恢复环路滤波器则对此误差信号进行滤波,VCO在滤波后的误差信号控制下输出与发端载波同频同相的相干载波。本论文采用的载波恢复环路是基于最大后验概率估计的判决反馈环[4]。算法的原理如图1所示。

输入信号是中频信号,频率为140MHz,符号速率为2-45Mbaud可变[5]。I-Q解调包括一对匹配的混频器及π/2移相电路,输入中频经I-Q解调、匹配滤波得到I、Q两路基带信号。、分别为其对应的硬判决。判决的过程为:首先根据匹配滤波器输出的、信号得到一个值为的相角。然后将这个相角与MPSK信号的每一个调制角度()相比较,从中选出一个与其最接近的角度作为所发送符号对应的调制相位的估值。则和即为其对应的同相和正交分量、。这样得到的发端所发送符号对应的调制相位估值是其最大后验概率估计。

图3和图4所示分别为QPSK及8PSK信号在不同信噪比情况下,利用MATLAB编程语言实现对环路模型仿真得到的鉴相特性与理论计算得到的鉴相特性对比图。

由这图3和图4可以看出,信噪比越高,鉴相特性曲线的线性范围越大,仿真结果与理论计算结果吻合得越好。这主要是因为信噪比的降低会造成判决误差的增大,从而环路的鉴相特性也就受到影响。此外,从图中还可看出,鉴相特性具有的周期性,这表明仿真结果与理论分析是一致的。

5 结束语

卫星通信的诸多特点使其在现代通信中已占有举足轻重的地位,且随着人类对信息资源需求的不断增加,卫星通信的业务量将会成倍增长。解调是卫星通信地球站进行信号接收与处理的前提,解调器性能的好坏对整个接收系统有着决定性的影响。

本文对卫星通信用高速解调器中载波恢复环路进行分析,首先给出了载波恢复环的结构形式及所采用的算法;然后对其原理、环路的鉴相增益特性等环路的主要性能指标进行了认真分析与研究。最后结合MATLAB仿真,得到的鉴相特性与利用理论公式计算得到的鉴相特性对比图。

参考文献

[1] 吕海寰等.卫星通信系统[M].北京:人民邮电出版社,1996,2-7.

[2] 闻英有,王光兴,等.卫星综合信息网的管理体系及管理星簇生成算法[J].东北大学学报(自然科学版),2003,24(7):651-654.

[3] L. E. Franks.Carrier and Bit Synchronization in Data Communication-A Tutorial Review[J].IEEE Transactions on Communications,1980,28(8):1107-1120.

[4] William Osborne,Brian Kopp.An Analysis of Carrier Phase Jitter in an M-PSK Receiver Utilizing MAP Estimation[J].IEEE Transactions on Communications,1993,7:465-470.

[5] Riccardo De Gaudenzi.Analysis of an All-Digital Maximum Likelihood Carrier Phase and Clock Timing Synchronizer for Eight Phase-Shift Keying Modulation[J].IEEE Transactions on Communications,1994,42(2/3/4):773-782.

[6] M. K. Simon.Further Results on Optimum Receiver Structures for Digital Phase and Amplitude Modulated Signals[J].ICC,1978,42(1):1-7.

[7] 陈洪.关于航天测控飞机卫星移动通信调制解调技术的分析研究[J].军事通信技术,2000,21(4):35-41.

[8] Riccardo De Gaudenzi,Tobias Garde,Vieri Vanghi.Performance Analysis of Decision-Directed Maximum-Likelihood Phase Estimators for M-PSK Modulated Signals[J].IEEE Transactions on Communications,1995,43(12):3090-3100.

[9] 王华.卫星通信编码调制技术研究[D].北京:北京理工大学博士学位论文,1999,8-44.