脂质体范文10篇

时间:2023-03-20 22:02:27

脂质体范文篇1

近年来,脂质体做为药物载体已被广泛研究,一部分工作已达到了临床应用阶段[1]。脂质体能够适用临床,必须达到如下要求:具有较高的包裹率;完全除去所含有机溶剂;能够经受灭菌;制备方法适合工业生产。目前,脂质体的制备方法主要有醚注入法、逆向蒸发法、薄膜法等[2],研究者们对这些方法都进行了各方面的研究,但是脂质体在溶液状态下仍存在着一些问题,脂质体分散系的不稳定性:如药物的渗漏、粒子的聚集以及磷脂在液态下的氧化、水解,这就影响了脂质体在临床上的应用。为了保证脂质体在长期贮存中的稳定性,药学工作者们一直都在寻找着解决的方法,其中脂质体前体的制备提供了一个行之有效的方法,它使脂质体以固态形式贮存,只是在临用前加入分散介质即可再分散形成脂质体,这种方法不但解决了上述存在的问题,而且便于运输使用,也适用于工业生产。

关于脂质体前体与前体脂质体,我们认为是两个不同的概念。脂质体前体是指将脂质体分散系经喷干、冻干后,使用前加入溶剂可再分散成脂质体;而前体脂质体是指脂质体膜材经过一定的修饰,膜材接上高分子或氨基酸等可在体内降解的前体,可以分散状态存在,也可以固态存在,二者不可统一而论,我们仅对前一种研究情况综述。脂质体前体的制备方法很多,一种简单方法是将磷脂和脂溶性药物溶于有机溶剂中,加入一种水溶性载体(支持剂),然后在真空下抽干形成流动性较好的粉末,它容易水化再分散形成脂质体,而且具有较高的包裹率。payneNI等人[3]制备了脂溶性药物两性霉素b脂质体前体,并对其稳定性及再分散后脂质体粒子大小的影响因素进行了考察,指出脂质体前体的粒径及水化温度(假定此温度高于所用磷脂的相转化温度)对再分散后新脂质体粒径几乎没有影响。两性霉素b脂质体前体在20℃下放置9个月再分散后粒径没有变化,放置6个月后药物的包裹率也未下降。显微照相表明,水化从脂质表面开始,支持剂和脂质完全溶解后才从中心形成脂质体。国内王俊平等人用此方法,以葡萄糖为载体制备了阿霉素脂质体前体,再分散后脂质体平均粒径为1.5μm。这种方法将脂溶性药物及磷脂包衣于一种流动性好的载体上而制成脂质体前体,方法简单,但所用有机溶剂量较大。

杨志军等人[4]采用喷雾干燥方法制备了黄芩脂质体前体,并从几个方面探讨了影响黄芩脂质体再分散粒子大小的因素。分别以山梨醇、葡萄糖、蔗糖、乳糖等非挥发性、高沸点的物质作为流动床内循环流动的芯料,减低了在喷雾过程中原脂质体相互碰撞的机会,从而在一定程度上抑制了脂质体粒径的增大。但各种糖对再分散后的新脂质体粒径的影响没有差别。另外,水化时的溶媒和所包裹药物的不同也是影响脂质体粒子大小的因素。溶媒的pH值、离子强度(不同浓度naCI溶液)对新脂质体粒径影响甚微,但是人工肠液、kH2PO4溶液对空白脂质体虽无影响,却使包有黄芩的脂质体粒径大大增加,说明黄芩中的黄酮与磷脂的氢键被溶媒所破坏,所以粒径增大。陈骐等以5-Fu为药物,考察了喷干法制备脂质体前体的处方工艺,用丙乙醛监测法、酸度法考察了脂质体膜材在喷干过程中的稳定性。实验证明用简单振摇的方法即可水合再分散形成脂质体,在通常范围内,振摇时间及温度对新脂质体的粒径无显著影响。制备脂质体所用磷脂可以经受喷干的瞬间高温,未有氧化水解等破坏,稳定性较好。

以上所介绍的两种方法都有一定的局限性,前者不适合于工业生产,后者对热不稳定性药物不适用,这样冷冻干燥法则提供了一种可行的方法,国内外对此法研究较多,主要集中在如何选择一个合适的支持剂,防止药物在冷冻干燥过程中药物的渗漏及粒子间的相互聚集[5~8]。虽然许多支持剂如糖类、蛋白质类、氨基酸类等都显示出对脂质体的冻干过程中具有一定的保护作用,但发现多糖类及多元醇类效果优于其他类支持剂,其中海藻糖、山梨醇是公认最有效的[9],并对他们的作用机理进行了研究[10~12]。脂质体在冷冻干燥后以凝胶态存在,当其水合时必然有一个从凝胶态向液晶态转变的过程,脂质体在液晶态下,脂质双分子层膜的流动性增加,通透性也增加,因此在水合过程中,脂质体内所包裹的药物就会渗漏出来,而当加入海藻糖等支持剂后[13],通过dSC分析,相转化温度tm大大降低,使原来处于凝胶态的冻干脂质体仍处于液晶态,因此在水合过程中没有引起相变,只要原脂质体稳定,再分散后内部药物的渗漏就会减少甚至不渗漏。tm的降低是由于海藻糖与磷脂的末端基团形成氢键,从而使分子间范德华力降低造成的[11]。分别以葡萄糖、蔗糖、乳糖、海藻糖为支持剂,测定冷冻干燥后药物的包裹率,发现蔗糖和海藻糖更能有效地防止药物的渗漏。选择一种合适的支持剂是制备冻干脂质体前体的关键因素,但其他影响因素也不容忽视[14]。如原脂质体的粒子大小、带电情况、支持剂与磷脂的干重比等。一般原脂质体的粒径在100μm左右是最佳条件,可以使药物在冻干过程中不发生渗漏,粒子太大或太小都不稳定;原脂质体带负电稳定性稍高一些;另外,加入支持剂的总量并不是主要因素,关键是支持剂与磷脂的干重比。防止粒子间聚集一般需要支持剂与磷脂比为2∶1就可以了,而防止药物渗漏,支持剂的比例量要大得多。还有一个有趣的发现是[15]:支持剂必须在原脂质体双分子层内外都含有才能起保护作用,仅存在于外部或内部稳定性就较差,药物渗漏较多。takashiOhsawa等人[16]采用了一种新型方法制备了蛋白类药物脂质体前体,包裹率可达50%以上。方法是:即先制备空白脂质体进行冷冻干燥,然后将药物加入到冻干空白脂质体中充分振摇即形成药物脂质体,这种方法的包裹率较高,而且没有药物在冻干过程的渗漏问题,尤其对易分解的药物,可以不经过脂质体的制备过程,至今未见用此方法制备非蛋白类药物的报道,我们将对这方面做进一步的研究。

冷冻干燥法制备脂质体一个更为突出的应用是[17]在免疫原脂质体共轭物的制备上。我们知道脂质体作为蛋白质(如疫苗等)载体已越来越成为人们研究的重点[18],因为脂质体无毒,可生物降解且没有抗原性。为了省去每次都要制备脂质体的麻烦,可以先制备表面含有配基官能团的脂质体,然后进行冷冻干燥,在水化时免疫原蛋白迅速以共价键结合于脂质体上。这样带有配基的脂质体前体可以作为免疫原的空白载体(或溶剂),就可随时制备稳定性好、活性毫无损失的免疫原脂质体共轭物。相同原理下,在疫苗人工合成及药物靶向作用方面[19],冷冻干燥法制备脂质体前体也有着广泛的应用。国外一种称为mTP-PE(mu-ramyltripeptidephosphatidylethanolamine)冻干脂质体已经进入了Ⅱ期临床。

冷冻干燥法适用于工业生产,而且容易达到无菌要求,为脂质体在临床上的应用创造了条件。我们相信,随着科学技术的不断前进,脂质体作为一种新型制剂必将会克服其在应用上的种种不利因素,成为具有广泛发展前景及较高药用价值的制剂。

参考文献

1GuoLSS.novelAntifungalDrugDelivery:stableAmpho-tericinBCholesterylSulfateDisk.intJPharm,1991,75:45

2banghamAD,standishMM,watkinsJCJ.diffusionofUni-valentIonsacrossthelamellaeofSwollenPhospholipids.jMonBiol,1965,13:238

3payleNI,browningI,hynesCA.characterizationofprolip-some.jPharmSci,1986,75(4):330

4杨志军,日野知证,川岛嘉明.中国药科大学学报,1993,24(3):161

5mariaB,richardME.effectofsugaralcoholsanddisaccha-ridesininducingthehexagonalphaseandalteringmembraneproperties:implicationsfordiabetesmellitus.biochimBio-physActa,1988,943:485

6parkYS,huangL.cryoprotectiveactivityofsyntheticgly-cophospholipidsandtheirinteractionswithtrehalose.biochimBiophysActa,1992,1124:241

7croweLM,robbertM,croweJH,etal.effectsofCarbohy-dratesonmembranestabilityatlowwateractivities.biochimBiophysActa,1984,769:141

8croweLM,womershyC,peidD,etal.prevetionoffusionandleakageinfreeze-driedliposomebycarbohydrates.biochimBiophysActa,1986,861:131

9croweJH,croweLM,chapmanD.infraredSpectroscopicStudiesonInteractionsofWaterandCarbohydrateswithaBio-logicalMembrane.archBiochemBiophys,1984,232:400

10croweLM,croweJH,appelL,etal.preservationofFreeze-DriedLiposomesbyTrehalose.archBiochemBio-phys,1985,242:240

11croweJH,whittamMA,croweLM.interactionsofPhos-pholipidMonolayerswithCarbohydrates.biochimBiophysActa,1984,769:151

12talsmaH,steenbergenV,crommelinDJA.thecryop-reservationofliposomes:3.almostcompleteretentionofawater-solublemarkerinsmallliposomesinacryoprotectantcontainingdispersionafterafreezing/thawingcycle.intJPharm,1991,77:119

13harriganPR,maddenTD,cullisPR.protectionofLipo-someduringDehydrationorFreezing.chemsPhysLipids,1986,52:139

14croweJH,croweLM.factorsaffectingthestabilityofdryLiposomes.biochimBiophyActa,1988,939:327

15straussG,schurtenbergerP,hauserH.theinteractionofsaccharideswithlipidbilayervesicle:stabilizationduringfreeze-thawingandfreeze-drying.biochimBiophysActa,1986,858:169

16maddenTM,ballyMB,hopeML,etal.protectionoflargeunilamellarVesiclesbytrehaloseduringdehydration:retentionofvesiclecontents.biochimBiophysActa,1985,817:67

17ohsakaT,miuraH,haradaK.aNovelMethodforprepa-rationLiposomewithaHighcapacitytoencapsulateproteinousdrugs:freeze-dryingMethod.chempharmBull,1984,32(6):2442

脂质体范文篇2

【关键词】脂质体制备方法

1965年英国的Banghan首先发现磷脂在水中自发形成脂质体(1iposome)。脂质体是双分子类脂组成的封闭膜性微球,其结构类似生物膜。60年代,Rahman等人首先将脂质体为药物载体,将药物包裹在脂质体的水相和膜相内,控制其靶向作用,使药物富集于病变部位释放。近年来,随着生物技术的不断发展,脂质体制备工艺逐步完善,脂质体的作用机制进一步阐明。脂质体在体内无降解,无毒性,无免疫性,使得脂质体作为药物的载体可以提高药物的治疗指数,矮有降低药物的毒性,减少药物的不良反应,减少药物的剂量等优点。目前脂质体作为药物的载体越来越受到重视,进步迅速。

1薄膜分散法

将磷脂和胆固醇等类脂及脂溶性药物溶于氯仿中,将该氯仿液于玻璃瓶中旋转蒸发,使在玻璃瓶的内壁上形成薄膜,将水溶性药物溶于磷酸盐缓液中,加入玻璃瓶不断搅拌,即得脂质体。

2逆相蒸发法

将磷脂等膜材溶于有机溶剂如氯仿、乙醚等,加入待包封药物的水溶液进行短时超声,直到形成稳定的w/o型乳剂,然后减压蒸发除去有机溶剂,达到胶态后,滴加缓冲液,旋转帮助器壁上的凝胶脱落,然后再减压下继续蒸发制得水性悬浮液,通过凝胶色谱或超离心法除去未包入的药物,即得脂质体。

3冷冻干燥法

将类脂高度分散在水溶液中,冷冻干燥,然后再分散到含药的水性介质中,形成脂质体。

4冻融法

先制备未包封药物的小单室脂质体,在冻干前将待包封的药物加入,在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,形成冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合,重新形成脂质体。

5熔融法

将磷脂,表面活性剂加少量水相溶解,胆固醇熔融后与之混合,然后滴入65℃左右的水相溶液中保温制得。

6复乳法

将少量水相与较多的磷脂油相进行乳化(第1次)形成w/o的反相胶团,减压除去溶剂,然后加较大量的水相进行乳化(第2次),形成w/o/w型复乳,减压蒸发除去有机溶剂,即得脂质体。

7预脂质体法

通过减少水的量来增加干燥类脂的表面积而发展起来的,将类脂干燥到一个多空的支持体上(如粉状氯化钠,山梨醇或多糖等),然后搅拌下加入少量水以湿润被粉末包覆的干燥类脂,当支持体溶解后,就形成了一个类脂球悬浮液,一般这个过程是一点点加水,待水蒸发后再加剩余的水,最后形成一个干燥的类脂。

8手摇法

将类脂材料溶解在有机溶剂中,然后用旋转蒸发器,在真空下蒸除溶剂,加入缓冲液再加入小玻璃球帮助分散,形成一个乳白色的分散液,类脂干燥后形成一层均匀的薄膜,即得脂质体。本

9超声波分散法

水溶性药物溶于磷酸盐缓冲液中,加入磷脂与胆固醇及脂溶性药物共溶于有机溶剂的溶液,搅拌蒸发除去有机溶剂,残留液以超声波处理,然后分离出脂质体。

10非手摇法

类脂材料溶于有机溶剂中,除去有机溶剂形成类脂膜后,将氮气流通过薄膜15分钟,然后再加水膨胀,水合,并慢慢搅拌形成脂质体。

11乙醇注入法

将磷脂与胆固醇等类脂及脂溶性药物溶入乙醇,该溶液经过注射器迅速注射到磷酸盐缓冲液(或含水溶性药物)中,形成脂质体。

12乙醚注入法

将磷脂与胆固醇类脂质及脂溶性药物溶入有机溶剂里(多为乙醚),该溶液经注射器缓缓注入加热至50℃(并用磁力搅拌)的磷酸盐缓冲液(或含水溶性药物)中,不断搅拌至乙醚除尽为止,即得脂质体。

l3表面活性剂处理法

脂质薄膜,多层脂质体或单层脂质体与胆酸盐脱氧胆酸盐等表面活性剂混合,通过离心法或凝胶过滤法或透析法除去表面活性剂,即得脂质体。此外还有钙融合法、PH梯度法、喷雾干燥法、法兰西加压法、膜挤压法等。在实际应用中,常以几种方法合用,效果更好。脂质体作为一种新型的,有潜力的药物传递体系正在不断完善。近来大规模生产脂质体技术不断提高,新脂质体层出不穷,脂质体作为第四代给药系统一一靶向给药的一种重要新剂型将有广阔的应用前景。

参考文献

[1]趔海霞,郭兴奎,孙德亮.田景振.质脂体制备技术[J].山东中医杂志.2000,19(7):435—437.

[2]顾学裘,马竹卿,辛顺妹,等.抗癌药新剂型—多本脂质体的研究(II)多相脂质体(139.76)混悬液静脉注射液的研究[J].中草药,1982;13(5):15—20.

[3]阎家麒,童岩,王九一.紫杉醇脂质体的制备及其抗瘤的研究[J].药物生物技术.1996,3(3):15.

脂质体范文篇3

脂质体作为一种新型的载药系统,今年来得到广泛的应用和研究。评价脂质体质量的指标有外观、粒径分布和包封率等。其中包封率是衡量脂质体内在质量的一个重要指标。对于亲脂性药物,由于其对磷脂膜的亲和性,可以在制备过程中得到很高的包封率,且不易渗漏。而亲水性药物在制备时则必须包封在脂质体囊内部或多层脂质体层间的水性介质中,除一些特殊药物外包封率普遍不高,且易泄露。制备中为了得到更大的包封率,不得不增加囊内的容积,而这与控制脂质体在有效的粒径范围内又相互矛盾。以下将介绍一些用于提高亲水性药物在脂质体中的包封率的方法。

二,制备方法

1,常规方法

对于一些亲水性药物,使用常规的制备方法也可以得到满意的包封率。胡静等(1)用简单的薄膜水化-机械分散法研究了硫唑嘌呤(Aza)脂质体包封率的影响因素。这些因素包括卵磷脂与胆醇摩尔比、缓冲液(PBS)pH值、水相用量及药脂重量比。通过正交设计得到最佳处方所制得的3批硫唑嘌呤脂质体形态圆整,大小均匀,粒度范围0.01~0.42μm,包封率均达30%以上。但在实验中发现药脂重量比增加时,包封率反而下降,这说明Aza的利用率在减少。

吴骏等(2)使用逆相蒸发法制备阿昔洛韦ACV脂质体,经过正交优化后,得到阿昔洛韦脂质体的平均粒径为219.8nm,多分散系数为0.158,包封率为65%,且具有良好的稳定性。作者将卵磷脂、胆固醇、油酸和去氧胆酸钠溶于乙醚,于室温搅拌下滴入ACV水溶液,使形成稳定的W/O型乳剂。25℃减压蒸去乙醚,得乳白色混悬液,通过微孔滤膜后,即得ACV脂质体。产品经离心加速实验表现出良好的稳定性。此实验通过选择适当的油水体积比可使内相体积增加,提高包封率;同时加入了乳化剂可以防止脂质体的粒径增大。

翟光喜等(3)也将表面活性剂胆酸钠引入脂质体的处方中制备了低分子肝素的柔性纳米脂质体,此类脂质体具有高度的形变性,可由于经皮给药系统。制备方法就是简单的将处方混合后至冰水浴中超声处理,再通过微孔滤膜即得。经正交优化后包封率可达到33.1%。但该制剂的稳定性和储存中的渗漏作者并没有做进一步研究。陈鹰等(4)也研究了双氯芬酸钠的柔性脂质体,试验将磷脂等脂溶性成分和胆酸盐溶于乙醚中,药物则溶解在磷酸缓缓冲液中,混合后减压旋转挥干后再超声过滤。得到的脂质体包封率为73.12%。

侯新朴等对低包封率的水溶性药物(如甲硝唑)进行疏水衍生化,其疏水链将药物分子插入脂质体膜,包封率和稳定性都提高十多倍(5)。

在这些常规的制备方法中,首先应该对药物的性质有充分的了解。同时工艺参数的选择,尤其是合适的油水相比及乳化剂的用量对于水溶性药物的包封率有很大的影响。在制备过程中采用超声,加乳化剂的方法都可以有效地控制脂质体的粒径。

2,三维网状脂质体

亲水性药物在脂质体内包封的多少取决于在脂质体形成时其在囊内溶液和囊间溶液中的分配,此比率越高,包封率也越高。因此提高囊内溶液的体积可以提高药物的包封率。M.Brandl(6)等通过提高单位体积内磷脂的浓度,以增加在内相中的体积同时又不改变脂质体的形状和大小,从而增加药物的包封率。它将磷脂溶解在水性介质中达到200-300mM浓度,形成一种半固体的糊状物,再用一步高压匀质法(7)使磷脂“强制水化”制成了“Three-dimensionalliposomenetwork”。通过电镜观察,发现这种糊状物包埋了水溶性的标记药物,而且还具有缓释作用。所谓一步高压匀质法就是将磷脂粉末和药物分散在水或磷酸盐缓冲液中,轻微振摇后在GMLab40匀质机中高压匀质切割即得脂质体。

3,将药物引入制好的空白脂质体中

由于脂质体一般为混悬液,在储存和运输中难免出现渗漏,聚合等现象影响了包封率和粒径。采用空白脂质体加药物的方法可能可以解决这一问题。

Anye首先提出了前提脂质体(proliposome)的概念,将水溶性甘露醇分散在脂质体膜材的乙醇溶液中,挥干乙醇制的粉状的前体脂质体,此前体脂质体是以甘露醇为主要支架,磷脂膜粘附在其上的结构。该前体脂质体易于保存。药物则溶解在水中,临用前与前体脂质体混合,药物随水分子进入脂质体内,即得含药脂质体制剂。翟光喜等(8)将此方法用于低分子肝素,制得用于静脉注射的脂质体制剂。测得平均包封率为37.3%。这种制剂包封率主要受甘露醇与类脂的总量和配比以及混合的时间影响。在稳定性问题解决的同时,也存在粒径较大且不易控制等问题。还须进一步的研究加以解决。他(9)还将肝素加入少量PBS成糊状,再加入商品化的NatipideⅡ空白脂质体,研磨后加入抗氧剂和防腐剂,加PBS稀释后即得。药物在研磨中被包入空白脂质体凝胶颗粒中,再加入大量的水破坏凝胶状态,形成混悬液。试验所的包封率在43%左右。该制备方法中,温度对包封率又较大影响,温度升高时,脂质体流动性变大,膜内包封的药物易于渗漏。

邓意辉等(10)用主动载药法制备盐酸小檗碱脂质体,包封率得到大大的提高:被动载药法得到的包封率仅有13.3%,主动载药法的包封率最高可达84.6%。他将膜材的乙醇溶液在枸橼酸缓冲液中减压蒸发得到空白脂质体,依次加入盐酸小檗碱溶液和NaHCO3溶液调外水相pH值,水浴孵化即得。由于混合时内外水相不同的离子或化合物梯度,有利于特殊药物(离子型药物)的包封,且制剂较为稳定(放置一年无分层现象,包封率下降8%)。研究发现加药顺序、孵化时间、孵化温度、外水相pH值等都对药物的包封率有影响。由于采用主动载药法制备脂质体的包封率高、渗漏小,非常适合于工业化大生产。

4,反复冻融法

亲水性药物脂质体无论是在制备还是储存过程中都存在一个渗漏的问题,药物分配在外水相增多,使包封率降低。反复冻融法被证明是一种有效的保护药物不渗漏的方法。与其他方法相比,冻融法具有操作简单,包封率高,药物避免接触有机溶媒等特点。张奇等(11)使用了冻融法制备氟尿嘧啶脂质体,并考察了其稳定性。作者使用对水溶性药物包封率较高的逆向蒸发法制备了5-FU脂质体的混悬液后,置冰箱内反复冻融3次,发现药物的包封率比冻融前明显提高(由约25%上升到45%左右)且离心加速实验的稳定性也比冻融前好得多。这是由于冰冻使磷脂周围药物浓度增高,在反复冻融过程中粒径小的脂质体互相融合成稍大脂质体,粒径趋于均匀化,使脂质体包封率明显提高。但作者并没有控制冻融后脂质体的粒径分布。

董泽民(12)在研究赖氨匹林的鼻腔给药脂质体时也使用了冻融法。他先将磷脂等制成空白脂质体后,把药物和甘露醇溶于其中冻干,加入缓冲液振摇分散,再冻干即得。这样制得的重建性脂质体的包封率为55.94%。由于制作过程无需加热,尤其适用于对热不稳定的水溶性药物。

WeiLiang等(13)在研究含有ATP的免疫脂质体的制备时也使用到此方法。作者将包有ATP的PEG修饰脂质体结合上单克隆抗体2G4以增加其靶性,在结合的过程中未发现有ATP的泄漏。作者将脂质体材料和PEG溶于氯仿中旋转挥干成膜,加入溶有ATP的缓冲液,强力蜗旋后反复冻融5次后过膜均化,再过柱分离得脂质体,再进行进一步化学修饰。制备方法在冻融后过聚碳酸酯的膜可使脂质体的离径缩小(约200nm),且分布窄。作者认为冻融法提高包封率的机理可能是形成了某种暂时的孔洞是药物在平衡前由外相进入了内水相中。

5,使用糖保护剂防止载药脂质体的渗漏

有研究表明,在脂膜中加入蛋白,糖等类物质,会使其稳定性提高。李晓燕等(14)探讨了具有疏水链的糖保护剂癸烷基葡萄糖(β-DG)对于延缓脂质体渗漏的影响。实验使用超声法制备了水溶性药物盐酸氯喹的小单层脂质体,发现在制膜时加入β-DG,由于长链的亲脂性,使其均匀的分散在双分子层中,改变了膜的通透性,不仅提高了脂质体对药物的包封率(上升了5%),还有效地防止了药物泄漏(降低了一个数量级)。证明了癸烷基葡萄糖是一种有效的脂质体渗漏保护剂。但加入量不宜过多,因为过多的非脂类分子进入脂膜,会影响脂膜的稳定性,反而会使泄漏量上升。

6,其他新进展

对于亲水性药物脂质体,最新研究并不局限于传统的脂质体制剂的研究模式,而是灵活积极地采用其他剂型的优点和方法,提高药物的包封率和稳定性。

小分子水溶性药物在普通的水凝胶中可以被很快的释放出来,这是由于水凝胶中含有大量的水分(>90%)并且有很大的孔洞,因此达不到缓释的作用。近年来有人将此类药物包裹在脂质体中,再分散在凝胶里,可以明显延缓药物的释放,药物穿透脂质层的过程成为限速步骤。Marija(15)等研究了5-氟脲嘧啶的凝胶脂质体(liposomegels)的制备和体外释药特性。作者使用脂质成膜水化的方法制备脂质体,用缓冲液洗涤后加入冻干保护剂蔗糖进行冻干,后加入到具有壳聚糖骨架结构的凝胶中即得,药物的体外释放受脂质的组成和水化成膜的条件影响,符合Higuchi扩散模式。与对照的5-FU水凝胶相比有明显的缓释作用。在制备脂质体时,作者发现由于药物对脂相有一定的亲合力,因此其包封率随胆固醇量的下降和药物/水相质量比的增加而增加。处方中最高的包封率可达25.4%左右。作者并没有探讨该制剂的稳定性,但根据其缓释的特点可以推测脂质体周围的高粘度凝胶可能对药物的渗透有一定的保护作用。E.Ruel-Gariepy等(16)也用类似的方法制备了供体内埋植的温度敏感型凝胶脂质体。作者用逆相蒸发法先将药物制备成大单层脂质体,多层脂质体则用水化法制的。模型药物CF的包封率在1-8%之间。另制备了壳聚糖和甘油磷酸(glycerophosphate)的温度敏感性凝胶,发现壳聚糖由于不具备表面活性,不会像其他亲水凝胶中高分子化合物一样穿透脂质双分子层而导致药物渗漏,电镜观察法相脂质体在该凝胶中不会发生合并,通过磷脂酶A2可以证明脂质层的完整性。因此不会对分散在其中的脂质体的稳定性产生影响。而且作者还认为胆固醇(40mol%)通过与脂质层的相互作用降低了其通透性,且增加了稳定性,减少的药物的渗漏。

C.Tardi等(17)采用了高压匀质法使高浓度的磷脂分散,形成了一种半固体凝胶状物质,其中充满了大量的单层囊泡(SUVs),包裹在这种凝胶状磷脂囊VPGs(vesicularphospholipidgels)中的亲水性药物具有缓释作用。VPGs由于在与缓冲液混合后可变成粒径均一的脂质体,且包封率高。因此作为一种中间体或前体脂质体,尤其适用于高渗透率且无法稳定保存的药物。作为非胃肠道给药载体,作者还进一步论证了VPGs可以用于热压灭菌,这是脂质体制剂无法做到的。同时,在热压灭菌中,由于一些小囊泡的合并和增大,包入内相得体积增大,VPG的包封率反而提高(29%-47%),这与常规脂质体在加热后药物会渗漏的结果相反。

三,结语

脂质体作为一种新型的药物传递系统正越来越被人们重视,通过自身的性质或对其表面的修饰可以得到不同的靶相给药或缓控释的目的。对于不同的亲水性药物,如何能有效地提高其包封率并降低在储存中渗漏,不仅要借鉴先进的技术和辅料。还需要根据制剂设计要求找出最合适的制备工艺。

参考文献:

1,胡静,封钦锋硫唑嘌呤脂质体制备方法的研究西北药学杂志(2002)17(4):167-169

2,吴骏,朱家壁阿昔洛韦脂质体的制备和稳定性的初步考察药学学报(2003),38(7):552-554

3,翟光喜,王唯红,赵焰等低分子肝素柔性纳米脂质体的研究山东大学学报(医学版)(2002)40(3):240-242

4,陈鹰,汤韧,郑汉平等双氯芬酸钠柔性脂质体的研究中国药学杂志(2002)37(7):513-516

5,侯新朴等:甲硝唑前体药物脂质体及微量量热法药效学研究北京医科大学学报1994;26(6):481

6,M.BrandlThree-dimensionalliposomenetwork:freezefractureelectronmicroscopicalevaluationoftheirstructureandinvitroanalysisofhydrophilicmarkers(1997)advanceddrugdeliveryreview24:161-164

7,M.Brandletal.Lipsomepreparationbyanewhighpressurehomogenizergaulinmicrolab40DrugdevelopmentandIndustrialpharmacy16(14)2167-2197

8,翟光喜赵焰低分子肝素前体脂质体制剂的研究山东医科大学学报(2001)39(3):218-220)

9,翟光喜,邹立家,张天民低分子肝素脂质体的研究(2001)中国药学杂志36(5)316-318

10,邓意辉,王绍宁,吴琼等主动载药法制备盐酸小檗碱脂质体中国药学杂志(2004)39(1):40-42

11,张奇,邓英杰冻融法制备5氟尿嘧啶脂质体及其稳定性考察沈阳药科大学学报(2000)17(2)87-89

12,董泽民赖氨匹林脂质体鼻腔给药的研究中国医药工业杂志(1995)26(5)199-202

13,WeiLiang,TatyanaLevchenko,Ban-AnKhawandVladimirTorchilinATP-ContainingImmunoliposomesSpecificforCardiacMyosinCurrentDrugDelivery(2004)1(1),1-7

14,李晓燕,陈卫,候新朴癸烷基葡萄糖对载药脂质体的渗漏保护作用北京医科大学学报(1995)27(1):75

15,M.Glavas-Dodovetal.:5-Fluorouracilintopicalliposomegelsforanticancertreatment–Formulationandevaluation,ActaPharm.53(2003)241–250

脂质体范文篇4

【关键词】固体脂质纳米粒制备方法给药途径综述

药物载体输送系统亚微粒(如微乳、微球、脂质体、药质体)的研究已成为药物新剂型研究中非常活跃的领域。纳米粒又称毫微粒,是一类由天然或合成的高分子材料制成的纳米级固态胶体颗粒,粒径为10-1000nm,分为纳米球和纳米囊。药物可包埋或溶解在纳米粒的内部,也可吸附或偶合在其表面。其既能改变药物的释放速度,又能影响药物的体内分布、提高生物利用度。制备纳米粒的材料较多,大致可分为聚合物和脂质材料,前者制成的纳米粒称为聚合物纳米粒(polymericnanoparticles),后者称为固体脂质纳米粒(solidlipidnanoparticles,SLN)。SLN具有生理相容性好、可控制药物释放及良好的靶向性等优点。

1载药纳米粒的种类

1.1纳米脂质体

脂质体(脂质小囊)最早是指天然脂类化合物悬浮在水中形成的具有双层封闭的泡囊,现在可人工合成的一种具有同生物膜性质类似的磷质双分子层结构载体。亲脂性药物可包封于脂质双层膜中,亲水性药物则溶解于水相内核中。脂质体具有可保护药物免受降解,达到靶向部位和减少毒副作用等优点,同时脂质体膜易破裂、药物易渗漏、包封率低、释药快等也是其存在的缺陷。纳米脂质体的制备方法主要有超声分散法、逆相蒸发法等,张磊等用逆相蒸发一超声法制备了胰岛素纳米脂质体,平均粒径为83.3nm,包封率78.5%。

1.2聚合物纳米粒

其由天然大分子材料或合成的聚合物材料,用分散单体的聚合法或聚合物的分散法制备而成。如聚丙烯酰胺类、聚氰基丙烯酸烷酯、聚乙烯吡咯烷酮(PVP)等。聚合物系统的特点是便于化学修饰,包括嵌段和梳状聚合物的合成。聚合物纳米粒的问题是制备过程中的有机溶剂残留,聚合物毒性和缺乏大规模的生产方式。其制备方法有聚合反应法、超临界流体技术、盐析或乳化分散法等等。

1.3固体脂质纳米粒

SLN是以多种类脂材料如脂肪酸、脂肪醇及磷脂等为载体将药物包裹于类脂材料中制成固体颗粒。SLN具有一定的缓释作用,主要适用于难溶性药物的包裹,被用作静脉注射或局部给药达到靶向定位和控释作用的载体,能避免药物的降解和泄漏。它也具备毒性低、能大规模生产的优点。SLN主要适用于亲脂性药物,用于亲水性药物时存在包封率较低的缺陷。

2SLN的制备方法

2.1高速剪切匀质和超声法

这两种方法是最早用来制备SLN的方法,它们操作简单、应用广泛,其缺点是分散性能不好,超声时易被金属污染,因此限制了它们的应用。

2.2高压乳匀法

它是制备SLN可靠而有力的技术。它可分为冷乳匀法和热乳匀法。

2.2.1冷乳匀法

将药物溶解于熔融脂质材料中,固化后在液氮或干冰冷却下研磨到微米级尺寸,分散于含有表面活性剂的水相中,在低于脂质材料熔点温度下进行高压乳匀。杨时成等人用高压乳匀法研制的喜树碱固体脂质纳米粒,其平均粒径为196.8NM,载药量为4.77%,包封率为99.51%。

2.2.2热乳匀法

将脂质材料加热熔化,加入药物,熔融液分散于含有表面活性剂的水相中,然后通过高压乳匀机循环乳化,冷至室温或以下即得。SLN粒径与匀化压力和乳匀次数有关,一般来说,温度越高,由于内相的粘度降低,SLN粒径越小,但同时高温也使药物和载体的降解增加。

2.3溶剂挥发法

将脂质材料溶于与水不相混溶的有机溶剂。(如环己烷、氯仿)中,然后在水相中乳化,挥发溶剂,脂质在水介质中沉淀形成固体纳米粒。此法的优点是可以避免加热,缺点是有机溶剂的残留使药物有潜在毒性。应晓英等用此法制得卡马西平硬脂酸固体脂质纳米粒,平均粒径120.04±9.8nm,包封率89.8%,具有明显的缓释作用。

2.4溶剂分散法

将脂质在一定温度下溶于有机溶剂,然后倒人酸性(调节zata电位)水相中,得到凝聚的SLN,离心分离即可。张惠宏等叫用该法制备了丙酸倍氯米松固体脂质纳米粒,虽在最初3h有药物的突释现象,但在随后4h药物的释放明显缓慢,每天释放约为药物总量的6%,实现药物的控释。

2.5微乳法

微乳法制备SLN通常先将脂质载体加热熔化,加入药物、乳化剂、辅助乳化剂和温水制成外观透明、热力学稳定的o/w型微乳,然后在搅拌条件下将微乳分散于冷水(2-3℃)中,即可形成SLN分散体系,所获得SLN的小颗粒尺寸是由微乳胶粒沉淀而成并非机械搅拌所致。其缺点是稀释步骤使得所制备SLN含量相对于其他无稀释步骤的方法要低。

3SLN给药途径的研究

3.1注射给药

SLN主要被制成胶体溶液或冻干粉针后静注给药,达到缓释、延长药物在循环系统的停留时间等目的。杨时成等将喜树碱(CA)制成Poloxamer188包衣的固体脂质纳米粒混悬液,静脉注射后的结果为CA—SLN对心、脑有较好的靶向性和缓释作用,同时还降低CA对肾脏的毒性副作用。研究表明,SLN的毒性比聚乳酸/羟基乙酸纳米粒的毒性低90%,比聚氰基丙稀酸纳米粒的毒性低99%,适于用作静脉给药系统的药物载体。

3.2SLN的局部给药

研究表明,SLN固体颗粒本身就具有对紫外吸收作用。当SLN包封在系统物理防晒时,配方会显示出防晒效果的协同作用。同时可避免防晒分子渗透人皮肤所产生的发炎现象,从而显现出SLN在化妆品领域广大的发展前景。

3.3口服给药

SLN可用喷雾干燥或冷冻干燥法制成粉末添加到片剂基材中,制备丸剂时,SLN分散体可作为压模时的润滑剂,也可直接填充于硬胶囊或软胶囊中。于波涛等通过比较自制的氟尿嘧啶类酯纳米粒冻干针剂和商用氟尿嘧啶注射液在兔体内的药时过程均符合二室模型,但在药物动力学参数上存在明显差异,从而提示药物制成SLN后可以显著改变药物在体内的分布,最终达到靶向给药的目的。

3.4SLN的肺部给药

SLN可用喷雾干燥法制成粉末,用于肺部干粉吸人用药。药物从肺部释放的主要优点是可控制释放曲线。可考虑靶向肺巨噬细胞,因为肺部的颗粒很容易被肺部巨噬细胞获得。此外,还有透皮给药、眼部给药等,由于静脉注射给药对粒径的要求较高,使得它成为最有前途也是最具挑战性的给药途经。

4结论

虽然SLN在载药量、稳定性等方面尚存在一些问题,但其作为一种很有希望的新型载体系统,目前还处于研究阶段,其在靶向和缓控释方面仍是非常有吸引力的,相信它的发展和完善必将会使人类传统用药发生一场全新变革。

参考文献

[1]张磊,平其能,郭建新等.中国药科大学学报,2001,32(1):25.

[2]JahmkeS.Thetheoryofhighpressurehomogenization[M].in:MullerRH,BenitaS,Emulsionandnanosuspen?sionsfortheformulationofpoorlysolubledrugs.MedpharnlScientificPublishers.Stuttgart,BBohm(Eds),1998.177.

[3]杨时成,朱家壁,梁秉文等.喜树碱固体脂质体纳米粒的研究[J].药学学报,1999,32(2):146.

[4]应晓英,胡富强,袁弘.卡马西平硬脂酸固体脂质纳米粒的制备与理化性质研究[J].中国医药工业杂志,2002,33(11):543~546.

脂质体范文篇5

摘要:近20多年来,随着大量广谱抗生素的应用、骨髓和脏器的移植、皮质激素及免疫抑制剂的应用、艾滋病发病率的增加、各种导管的介入和真菌检测技术的提高,念珠菌血症和系统性曲霉感染逐渐增多。北京协和医院报道在四个不同年代败血症血培养的结果显示,1994~1995年真菌发生率为81%;2000年为67%。20年149例真菌感染的分析显示,真菌感染呈逐年上升的趋势。临床上已有耐氟康唑的念珠菌和耐两性霉素B的曲霉存在。因此需要新的抗真菌药物。目前即将推出和已上市的新药有:多烯类的制霉菌素脂质体、两性霉素B脂质体剂型AmBisome、两性霉素B脂质体复合物Abelect、两性霉素B胶样分散体Amphotec、伊曲康唑口服液和注射剂、伏立康唑注射剂和口服片剂以及卡泊芬净注射剂。各种新药均有其特点与不良反应,但总的是新药的开发和临床应用,将会对侵性真菌感染提供有力的治疗措施,真菌感染的治疗前景将会有进一步的改观。

关键词:抗真菌药;多烯类;三唑类;棘白菌素类

在过去的二十年里,随着大量广谱抗生素的应用、骨髓器官移植的开展、糖皮质激素及免疫抑制剂的应用,导管介入治疗,特别是艾滋病的流行,念珠菌血症和系统性曲霉病等系统性真菌感染逐渐增多。资料显示,上述人群中深部真菌感染发生率约为11%~40%,病死率为40%[1~3]。北京协和医院四个不同年代败血症培养的结果显示,1994~1995年真菌败血症的发生率高达81%[4];2000年真菌败血症的发生率达67%。20年149例真菌感染的分析显示,真菌感染呈逐年上升趋势[5]。去氧胆酸两性霉素B(AMB)作为治疗系统性真菌感染的广谱抗真菌药已成为治疗真菌感染的金标准,但由于不良反应限制了其广泛应用。临床上已经发现有耐氟康唑的念珠菌和耐两性霉素B的曲霉存在,因此近年来一些新的抗真菌药物包括三唑类、棘白菌素类以及毒性较小的两性霉素B衍生制剂不断出现,应用于临床取得显著疗效[6]。治疗系统性真菌感染的药物现共有多烯类(两性霉素B及其衍生物)、三唑类(如氟康唑、伊曲康唑、伏立康唑等)、嘧啶类(如氟胞嘧啶)、棘白菌素类(如卡泊芬净)、复方磺胺甲口恶唑等。第一个治疗系统性真菌感染的抗真菌药物制霉菌素由于毒性大而逐渐被停用;1959年两性霉素B产生,在20世纪70年代早期和80年代分别研究出氟胞嘧啶和酮康唑,随着氟胞嘧啶的临床应用很快出现对氟胞嘧啶耐药现象,而酮康唑的毒性也使其临床应用受到很大的限制。20世纪90年代三唑类如氟康唑、伊曲康唑由于疗效确定且不良反应较少,迅速广泛用于临床治疗系统性真菌感染。自1990年至今的14年中,先后上市并应用于临床的药物有氟康唑、伊曲康唑、两性霉素B的不同剂型[包括两性霉素B脂质体(LAMB)、两性霉素B胶体分散体(ABCD)、两性霉素B脂质复合物(ABLC)],卡泊芬净(caspofungin)及伏立康唑等。不久还有其它更多的药物将应用于临床如普沙康唑(posaconazole)、拉夫康唑(ravuconazole)、制霉菌素脂质体(liposomalnystatin,nystatinLF,商品名:Nyotran)以及micafungin(FK463)这些药物不但毒副作用少,而且在某种程度上比两性霉素B效果还好[6]。

1多烯类药物

(1)制霉菌素脂质体制霉菌素属多烯类抗真菌药,具有广谱抗真菌作用,对新型隐球菌、念珠菌属、曲霉等均有良好作用,经皮肤黏膜用药不吸收,口服几乎全部自粪便排出对深部真菌感染无治疗作用,注射用药肾毒性大。临床上仅限于局部治疗口咽部、胃肠道及阴道真菌感染。Aronex公司将游离制霉菌素包裹在多层脂质中,研制出注射用制霉菌素脂质体(liposomalnystatin,NystatinLF,现进入注册阶段)。其抗菌活性和抗菌谱与制霉菌素相仿,对念珠菌属、新型隐球菌、曲霉、根霉、镰孢霉、毛霉、梨头霉和球孢子菌属等均有抗菌活性。本品体外不但对白念珠菌有效包括对部分耐两性霉素B的白念珠菌亦具有良好活性,而且对非白念珠菌如克柔念珠菌、光滑念珠菌、滑念珠菌和热带念珠菌均具有活性,但不及对白念珠菌。能有效抑制全部受试曲霉株包括伊曲康唑耐药株;对黄曲霉的抗菌活性略优于两性霉素含脂复合制剂,但不及两性霉素B和伊曲康唑[7]。本品对临床常见真菌分离株的最小杀菌浓度(MFC)和最小抑菌浓度(MIC)相差不大,在人体内呈非线性药动学,药物终末半衰期随给药剂量增加相应延长,给药剂量范围在025~075mg/kg时,AUC呈线性增长;剂量增加至075~10mg/kg,AUC不再改变,代谢达饱和状态[8]。本品易于和网状内皮系统结合,在肺、肝、脾组织中达到较高浓度,由于本品主要经肾脏排泄,因此肾组织中也有较高的浓度。本品表现出良好的安全性,主要的不良反应有低钾血症(约占25%)、肾功能损害(每日剂量6mg/kg以上时可能发生);快速静脉点滴可能出现寒战、发热、呼吸困难,偶有皮疹、肝功能损害,但不影响治疗,无需停药。(2)两性霉素B及其不同剂型为多烯类抗真菌药,与真菌细胞膜麦角固醇结合,膜渗透性改变导致真菌死亡。该药抗菌谱广,几乎对所有的真菌都有较强的抗菌作用,对某些严重的深部真菌病如新生隐球菌脑膜炎、侵袭性曲霉病,特别是对免疫缺陷或严重粒细胞缺乏的患者的治疗以及某些地方性真菌病如球孢子菌病、组织胞浆菌病、皮炎芽生菌病等仍需应用两性霉素B,因此迄今仍是许多危重深部真菌感染治疗的首选药物。现已有三种不同的脂质体剂型问世,它们由两性霉素B用脂质或脂质体包裹或交织而成,使之能迅速被网状内皮系统所摄取,减少与蛋白质的结合,从而改善两性霉素B的体内过程和毒理学特性,具有与两性霉素B相等的临床疗效,且发生的与输注相关的毒性反应和肾毒性明显减少。①两性霉素B脂质体剂型(AMBisome),是用脂质体将两性霉素B包裹而成;②两性霉素B脂质体复合物(ABLC),商品名Abelect,是脂质体与两性霉素B交织而成;③两性霉素胶样分散体(ABCD),商品名Amphocil和Amphotec是用胆固醇硫酸酯与等量的两性霉素B混合包裹而成。

2三唑类

(1)伊曲康唑具有较酮康唑和氟康唑更广的抗菌谱,是第一个对曲霉有良好作用的唑类药,它对念珠菌、隐球菌、曲霉、组织胞浆菌、皮炎芽生菌、球孢子菌、副球孢子菌、孢子丝菌等引起的感染均有良好疗效,有效率可达80%以上,是近数十年来抗真菌感染治疗的一个很大进展。伊曲康唑与蛋白高度结合(998%);能在大多数组织和体液中达到有效治疗浓度;水性体液中药物浓度很低;几乎不能渗透到脑脊液中;在肝脏中被较广泛地代谢;排泄到粪便和尿液中;片剂稳态半衰期大约为64h,口服液和注射剂的半衰期分别为37~40h和35h[7];与两性霉素B对照研究证实,两药的有效率相等。但当曲霉病急性发作时,还需先用两性霉素B,然后改用伊曲康唑维持治疗,非急性曲霉病可开始即用伊曲康唑。它为不危及生命的组织胞浆菌病和芽生菌病等的首选药,对轻、中度的组织胞浆菌病可作为长期支持疗法的辅助治疗。对中性粒细胞缺乏患者曲霉病的预防和治疗有效,可用于艾滋病患者隐球菌病的初治和长期维持治疗。由于它不易通过血脑脊屏障,因此治疗脑曲霉引起的感染必须使用大剂量才能取得良好的效果。伊曲康唑为三唑类化合物,因此不良反应明显较酮康唑低,患者易耐受,不良反应为厌食、恶心、腹痛、便秘等消化道反应和头痛、头晕、瘙痒等。长期治疗的患者中有70%发生血清转酶升高,但停药后多能恢复。(2)伏立康唑具有广谱抗真菌活性,其作用机理是通过抑制真菌细胞色素P450介导的14a固醇去甲基作用,阻断麦角固醇生物合成这一关键步骤发挥药效。其抗菌活性10~500倍于氟康唑,对所有曲霉、隐球菌、念珠菌属包括对氟康唑耐药的克柔念珠菌和光滑念珠菌均有杀菌活性。对氟康唑、伊曲康唑和两性霉素B不敏感的皮炎芽生菌、粗球孢子菌、巴西副球孢子菌及荚膜组织胞浆菌亦具抗菌活性。伏立康唑还对一些少见的真菌如足分支霉属和链孢霉属亦有杀菌活性,而这些菌对现有的抗真菌药敏感性差。体外试验还观察到对临床标本中分离出的包括顶孢霉、链格孢菌属、双极霉属、Cladophialophoraspp.、荚膜组织胞浆菌,其中大部分菌株在伏立康唑血浓度为005~2μg/ml时即可被抑制。它对口咽念珠菌病及急性和慢性侵袭性曲霉病的疗效满意。对耐氟康唑的念珠菌感染和艾滋病患者和急性曲霉感染的免疫功能低下的患者均有很好的疗效。口服后伏立康唑吸收良好迅速,约1~2h血药浓度达到高峰,伏立康唑表现为非线性的药代动力学。应用伏立康唑负荷剂量(6mg/kgiv,bid或口服400mgQ12h初试2次)在用药后d1就达到接近稳态血药浓度,在健康人群中的生物利用度为96%。伏立康唑在组织中的浓度高于血浓度,高于所有敏感菌的MIC(1000ng/ml)。主要在肝内代谢后被清除,从尿中排除<2%。临床治疗适应证:治疗曲霉感染;治疗对氟康唑耐药的严重侵袭性念珠菌感染,包括克柔念珠菌感染;治疗足分支霉属和链孢霉属导致的严重真菌感染;亦可用于免疫功能缺陷者有严重致命性真菌感染。无论是静脉滴注或口服给药,首次给药时d1均应给予首次负荷剂量,以使其血药浓度在给药d1即接近于稳态浓度。负荷剂量(第1个24h):Q12h给药1次,每次6mg/kg(适用于第1个24h),维持剂量(开始用药24h以后)bid,每次4mg/kg;静脉滴注和口服给药尚可以进行序贯治疗。疗程视患者用药后的临床和微生物学反应而定。静脉用药的疗程不宜超过6个月。不良反应最常见有视觉障碍、发热、皮疹、呕吐、恶心、腹泻、外周浮肿及腹痛。不良反应为轻到中度,及时停药可恢复,极少数出现严重肝肾损害、史蒂文斯约翰逊综合征、中毒性表皮溶解坏死[9,10]。

3棘白菌素类

卡泊芬净(caspofungin)是棘白菌素类抗真菌药的第一个产品,属于β1,3D葡聚糖合成抑制剂。与两性霉素B和唑类抗真菌药物不同,卡泊芬净以真菌细胞壁为靶位,特异性抑制细胞壁β1,3D葡聚糖的合成,破坏真菌细胞壁的完整性,使真菌细胞内渗透压不稳定,最终导致真菌细胞溶解。由于哺乳动物不存在β1,3D葡聚糖,故本品不会对哺乳动物产生类似两性霉素B作用机制为基础的毒性作用,故患者耐受性较好。卡泊芬净具有广谱抗真菌活性,对白念珠菌、非白念珠菌及曲霉属的真菌均有很好的抗真菌活性,对耐氟康唑、两性霉素B或氟胞嘧啶的念珠菌、曲霉等也具有体外抗菌活性。与唑类或多烯类无交叉耐药,对念珠菌分离株也无天然耐药,适用于对其他治疗无效或不能耐受的侵袭性曲霉病。美国FDA已经批准卡泊芬净治疗侵袭性念珠菌病,其适应证包括中性粒细胞减少症及非中性粒细胞减少症患者的念珠菌血症和食道念珠菌及口咽念珠菌病。在一项随机、双盲、多中心非劣效性研究中,研究者对卡泊芬净和两性霉素B治疗侵袭性念珠菌病的疗效进行观察,结果显示,对于白念珠菌感染,卡泊芬净与两性霉素B的疗效相似;对非白念珠菌感染,有效率分别为81%和68%,两者治疗侵袭性念珠菌病的总体疗效相当。在临床事件、实验室检查结果异常、所有的药物相关不良事件、因不良事件而中止研究、输注相关的不良事件、低血钾症及肾毒性等方面,前者的发生率均显著低于后者[11,2]。

4小结

新的抗真菌药物的开发和临床应用,为治疗深部真菌感染提供有力的保证,相信对深部真菌感染的治疗将会有很大的改观。

参考文献

[1]VerduynLunelFM,MeisJF,VossA.Nosocomialfungalinfections:candidemia[J].DiagnMicrobiolInfectDis,1999,34:213

[2]KullbergBJ,OudeLashotAM.Epidemiologyofopportunisticinvasivemycoses[J].EurJMedRes,2002,7:183

[3]EllisM.Invasivefungalinfections:evolvingchallengesfordiagnosisandtherapeutics[J].MolImmunol,2001,38:947

[4]刘正印,王爱霞,盛瑞媛,等.从99例败血症看院内感染的新动向[J].中华内科杂志,1998,37(5):323

[5]刘正印,盛瑞媛,李旭丽,等.院内真菌感染149例分析[J].中华医学杂志,2003,83(5):399

[6]MckinseyDS.Makingbestuseofthenewerantifungaldrugs[J].InfectMed,2003,20:392

[7]CarrilloMunozAJ,QuindosG,TurC,etal.Invitroantifungalactivityofliposomalnystatinincomparisonwithnystatin,amphotericinBcholesterylsulfate,liposomalamphotericinB,amphotericinBlipidcomplex,amphotericinBdesoxycholate,fluconazole,anditraconazole[J].JAntimicrobChemother,1999,44:397

[8]NgAW,WasanKM,LopezBerestetinG.Developmentposomalpolyeneantibiotics:anhistoricalperspective[J].JPharmSci,2003,6:67

[9]汪复.抗深部真菌感染药物临床进展[J].中国抗感染化疗杂志,2003,3:310

[10]HitchcockCA,PyeGW,OliverGP,etal.UK109,496:anovel,widespectrumtriazolderivativeforthetreatmentoffungalinfection:antifungalactivityandselectivityinvitro[C].WashingtonDC.MicrobiologyAsf.35thIntersciencesconferenceonantimicrobialagentsandchemotherapy,1995

脂质体范文篇6

[关键词]乌蕨;总黄酮;抗氧化

乌蕨[Stenolomachusanum(L.)Ching]为鳞始蕨科植物乌蕨的全草,又名野鸡尾、金花草、中华金粉蕨,具有清热、解毒、利湿、止血的功效[1]。其主要含有芳樟醇、松油醇和香叶醇等挥发性成分以及木犀草素、牡荆素等黄酮类化合物[2~4]。据报道,乌蕨具有抑菌、护肝、止血、解毒等作用,且安全,无毒副作用[5~7]。目前国内研究主要集中在乌蕨抗菌作用,笔者未见对其抗氧化作用的报道。为了合理利用该植物资源并确定其主要抗氧化活性成分,笔者对其进行了体外抗氧化研究,现报道如下。

1仪器与试药

1.1仪器BS224S精密电子天平(北京赛多利斯仪器系统有限公司),TU-1900双光束紫外可见分光光度计(北京普析通用仪器有限公司),KQ-5000超声波清洗器(昆山超声仪器有限公司)。

1.2试药乌蕨药材于2008年10月采自杭州九溪,经熊耀康教授鉴定为乌蕨[Stenolomachusanum(L.)Ching]的地上部分,阴干,粉碎,备用。芦丁标准品购自中国药品生物制品检定所(批号:100080-20030);大豆卵磷脂购自Sigma公司(批号:F20070207);其他试剂均为分析纯。

2方法

2.1乌蕨提取物的制备定量称取乌蕨干燥粗粉10g,加16倍量含0.1%盐酸的60%乙醇回流提取4h,提取1次,提取液减压浓缩至含醇量约10%抽滤,除去杂质,加60%乙醇定容至100mL,作为供试品溶液,备用。参照文献[8],经测定其总黄酮含量为11.89%。

2.2抗氧化活性实验[9~11]

2.2.1磷钼络合物法总抗氧化活性的测定在5mL具塞试管中加入供试品溶液适量,加试剂液4mL,加纯化水定容至5mL,加盖,混匀,置95℃水浴反应30min,冷却后,以纯化水作空白,于695nm波长下测定其吸光度。

2.2.2还原力测定取供试品溶液适量,加入磷酸缓冲液(0.2mol·L-1,pH6.6)1.5mL及1%铁氰化钾溶液1mL,50℃保温20min后,加入10%三氯乙酸溶液1mL,混匀,加纯化水2.5mL及0.1%三氯化铁溶液0.1mL。在700nm处测定反应液吸光度值。吸光度值越大,表示还原力越强。

2.2.3脂质体氧化法将大豆卵磷脂分散于去离子水中,20kHz超声波处理30min,周围以冰水冷却,制得大豆磷脂浓度为0.8%的人工脂质体。取脂质体1mL,加入供试品溶液适量,以10mmol·L-1乙酸铜溶液20μL催化氧化反应,混匀后放置于回转式恒温水浴振荡器上,于暗处37℃、100r·min-1进行开口氧化,每隔一定时间,取氧化液0.5mL,加纯化水至5mL,于235nm处测定其吸光度,以摩尔消光系数ε=26000(mol)-1·L·cm-1计算脂质体体系中共轭二烯氢过氧化物的生成量。

2.2.4抗羟自由基(·OH)作用实验在5mL具塞试管中加Tris-HCl缓冲液1.0mL,加入供试品溶液适量、亚甲基蓝溶液1.0mL、过氧化氢溶液0.50mL、硫酸亚铁溶液0.50mL,加纯化水稀释至刻度。用直径1cm比色皿,以纯化水作空白,于663nm波长处测定吸光度(A),其清除率可用下式计算:

A样:加入清除剂后测得的反应体系吸光度值;A未损:指示剂本身的吸光度值;A损:未加清除剂时反应体系吸光度值。

3结果

3.1乌蕨总黄酮体外抗氧化活性见表1。样品还原力和总抗氧化值均以吸光度(A)值表示。

由表1可见,乌蕨总黄酮具有较强的抗氧化活性,可提高羟自由基的清除率,抑制卵磷脂氧化产物的生成。

3.2乌蕨总黄酮与抗氧化活性相关性分析以羟自由基清除率(X1)、还原力(X2)、CD抑制率(X3)和总抗氧化值(X4)为横坐标,乌蕨总黄酮含量(Y)为纵坐标,采用SPSS13.0软件对表1结果进行线性关系考察,得方差分析表(表2)和回归标准残差正态P-P图(图1)。

由表2和图1可知,P<0.01,自变量(Xn)与因变量(Y)服从正态分布,证明乌蕨总黄酮含量与抗氧化活性之间存在显著的线性关系。进而对其进行多元线性回归分析,得回归系数分析表(表3)。

在95%可信区间内,线性相关系数r=0.9995。

证明回归方程真实、可靠,具有统计学意义。可用于替代实验点对实验结果进行分析。

由此得拟合方程:Y=-17.453+11.015X1+36.458X2+35.917X3+12.790X4,经标准化后,拟合方程:Y=0.152X1+0.410X2+0.391X3+0.048X4。

4讨论

自由基是生物体生化反应的普遍介质。现代研究表明,许多疾病如心脑血管疾病、肝硬化、癌症以及人体衰老等过程都与自由基的作用有关[12]。目前在医疗和食品领域使用较多的是合成抗氧化剂,如二丁基羟基甲苯(BHT)、丁基羟基茴香醚(BHA)等,对生物体有潜在的毒副作用。黄酮类化合物是一种天然的抗氧化剂,具有抗衰老、增强机体免疫力等多种药理活性作用。其主要通过酚羟基与自由基进行抽氢反应生成稳定的半醌自由基,从而中断链式反应,达到抗氧化作用,且高效、低毒[13~15]。因此,越来越受到国内外医药工作者的重视。

本实验表明,乌蕨总黄酮具有较强的还原力、抗脂质体氧化和清除自由基等作用,且随提取液浓度的增加,其抗氧化性能逐渐增强,两者在6~42mg·mL-1浓度范围内均呈正相关。因此,笔者推断黄酮类化合物可能是其抗氧化作用的主要物质基础。

脂质体范文篇7

摘要:进入九十年代后期,随着新技术和新工艺的发展,胰岛素非注射给药系统的研究发展迅速,不少制剂现已进入了临床试验阶段,有希望在最近一两年内上市,从而将给长期蒙受注射痛苦的糖尿病人带来福音。本文重点综述了胰岛素口服、肺部和口腔等非注射给药系统的研究进展。

关键词:胰岛素;非注射给药途径;糖尿病治疗

糖尿病是位于心血管疾病和癌症之后威胁人类健康的一大疾病。据1998美国糖尿病协会年度报告中指出,目前世界范围内糖尿病患者约为1.35亿人,到2025年,估计糖尿病患者将上升到3亿人,其中发达国家由5100万增加到7200万,增加42%;而发展中国家由8400万跃进到2.28亿人,增幅达170%。在发达国家中,美国糖尿病患者接近1600万,约占美国总人口的5.9%,为此美国每年在预防和治疗糖尿病上约花费1000亿美元左右。我国的糖尿病患病状况也不容乐观。1998年的统计表明,我国有2000多万糖尿病患者,25岁至64岁的人群中发病率为2.5%。随着我国人口的日益老龄化以及现代人生活方式的改变,预防和治疗糖尿病已经引起了广泛的关注。

胰岛素是I型和中重度II型糖尿病患者日常治疗中不可缺少的药物。目前市售胰岛素制剂多数为注射剂,长期的注射会给病人带来躯体痛苦和耐受性,这已经是临床上治疗糖尿病被长期困扰的问题。胰岛素非注射给药剂型的开发近二十年来一直在不断地研制探索中,九十年代后期,随着新技术和新工艺的发展,不少胰岛素非注射给药制剂进入了临床试验阶段,从而使该类制剂的开发进入了一个崭新时期。

1口服给药

口服给药是所有给药途径中最为方便的一种,其病人依从性最好。但由于胰岛素作为一种蛋白质,在胃肠道内的吸收难以克服酸催化分解、蛋白酶降解以及粘膜穿透性差等屏障,具有生物利用度低下的缺点,因而提高该药物的生物利用度是药剂学家多年来一直在研究克服的难题。目前胰岛素口服制剂的研究主要着重于如下几方面:

1.1微球及毫微球制剂

Ramdas等制备了含有海藻酸的壳聚糖微球[1],包裹胰岛素进行肠道给药,利用海藻酸和壳聚糖的粘附能力增加药物在吸收部位的滞留时间。Nagareya等[2]利用w/o/w方法制备出50μm左右的羟丙基甲基纤维素-醋酸琥珀酸酯(AS-HG)微球,含4%月桂酸和9%胰岛素(包封率达90%),胰岛素在pH1.2溶液中不释放,而在pH6.8溶液中快速释放。大鼠肠道给药50u/kg,0.5小时后即出现明显的降血糖作用。Purdue大学的Lowman等[3]将pH敏感性的聚甲基丙烯酸-g-乙二醇的亲水凝胶制成微球,内含胰岛素,在胃酸环境中凝胶并不膨胀,当到达中性或偏碱性环境的小肠后,凝胶微球开始膨胀,胰岛素被释放出来产生降血糖效果。在正常及糖尿病大鼠身上降血糖作用能持续8小时。

1997年Nature杂志发表了Mathlowitz等[4]制备的胰岛素生物溶蚀性毫微球,平均粒径96.7nm,载体材料为富马酸-乙交酯-丙交酯的共聚物。该毫微球在肠道中具有较强的粘附力,能进入小肠吸收细胞,同时也能被Peyer结摄取而进入淋巴循环。毫微球能保护胰岛素不受酶的降解,同时增加其在吸收部位的滞留时间。大鼠体内的口服糖耐量实验表明,该制剂(20u给药量)有效地抑制了口服高血糖的形成。

1988年法国学者Damge和Couvreur等人[5]首先将聚氰基丙烯酸烷基酯为材料制备胰岛素毫微囊并获得成功。给予大鼠口服12.5u/kg或50u/kg胰岛素毫微囊,可分别降低血糖水平至50-60%达6-20天,在健康及糖尿病狗身上药效上长达6-8天。关于该制剂长时间的药效作用机理,最近清华大学的郑昌学等[6]通过抗体捕捉实验,认为胰岛素是借助于共价键的作用被牢牢吸附于毫微囊表面,因而产生极慢的释放作用。但是后来Couveur等人[7]却认为在制备毫微囊的过程中,胰岛素其实并没有与氰基丙烯酸异丁酯产生相互作用,也没有被共价结合到毫微囊的表面,而是被包裹在内核的油相。张强等[8]改进了毫微囊的制备方法,通过乳液聚合法制备出胰岛素的氰基丙烯酸正丁基酯毫微球,药物包封率达到75%左右。该胰岛素毫微球降糖效果维持12小时,比毫微囊的作用要迅速得多,可见毫微囊和毫微球对胰岛素的释放控制有很大差异。

1.2胰岛素脂质体

通过改变脂质体的成份来提高胰岛素的生物利用度或作用时间是近年来的研究热点。Muramatsu等[9]将二棕榈酰磷酯酰胆碱(DPPC)和豆甾醇取代胆固醇制得脂质体,胰岛素的包封率最高达到33%。以80u/kg的剂量口服给予正常大鼠,结果报道给药21小时后以DPPC:豆甾醇(7:4)的组分制备的脂质体的降血糖作用最明显,生物利用度可高达31.6%。Iwanaga等[10]将脂质体表面包裹PEG-2000或粘液素(mucin)。与未经表面处理的脂质体相比,PEG-2000包裹的胰岛素脂质体在小肠内的驻留时间明显延长,而经粘液素处理的脂质体在胃内驻留时间延长,在肠道内驻留时间没有改变。

沈阳药科大学最近研制了胰岛素微粒剂。他们将胰岛素与明胶形成复合物后,通过高速匀浆分散法制备成脂质体,经过冷冻干燥和过筛等处理得到微粒剂。糖尿病小鼠,大鼠,高血糖家兔的降糖实验表明,小鼠灌胃8u/kg,降糖百分率为33%,4u/kg降糖百分率为21%;13u/kg的剂量使肾上腺素注射后家兔的一过性高血糖趋于正常水平。在正常狗身上,2.7u/kg的胰岛素微粒剂即引起明显的血糖下降(>20%)。此制剂不含蛋白酶抑制剂,辅料无毒,有较大的临床应用前景。

1.3胰岛素微乳及油制剂微乳作为口服胰岛素载体具有粒径细小和渗透能力强的特点,可保护胰岛素在胃肠道中不受酸和酶的破坏,同时可模拟食物中乳糜微粒的成分被吸收进入淋巴系统,最终进入血液循环。Cortecs公司开发的胰岛素微乳制剂在水相中含胰岛素和蛋白酶抑制剂,油相中含胆固醇、磷酯和游离脂肪酸。口服后药物可被上皮细胞吸收,按1u/kg剂量对3例IDDM病人给药,血糖均见明显下降。

1997年,Cortecs公司进一步开发了胰岛素的油制剂。该方法[11]通过一种特殊工技术即通过两亲性表面活性剂的作用将亲水性药物如胰岛素或降钙素等增溶到弱极性的油中而形成了澄清透明的溶液,称为MacrosolTM,胰岛素在此系统中具有很高的物理稳定性。6个健康志愿者在灌胃口服该制剂后体内的葡萄糖水平比空白降低34%,胰岛素水平升高31%,C-肽水平下降38%。大动物的降糖实验结果与人体实验相似。Cortecs公司在1997年宣布已经完成了该制剂的II期临床试验。

与Cortecs公司相似,国内也正在开发类似的胰岛素油制剂,在糖尿病小鼠和大鼠身上已经显示出稳定的降血糖效应,目前该项工作正在进一步研究中。

2肺部给药

相对于蛋白多肽药物的胃肠道吸收而言,肺部具有较多的优点,如巨大的肺泡表面积;极薄的肺泡细胞膜;丰富的毛细血管网;狭小的气血通路;低酶活性;肺深处较慢的清除速率等。这些良好的生理环境为蛋白多肽的吸收提供了有利条件。

胰岛素的毫微球及微球制剂的肺部给药最近已经有人开始进行研究。Kawashima等[12]制备出粒径约400nm的聚乳酸毫微球,药物的包封率约为47%,通过超声雾化器将此毫微球导入豚鼠气管内,3.9u/kg的胰岛素剂量下可使降血糖作用维持48小时。此外,沈赞聪等[13]制备并研究了胰岛素氰基丙烯酸正丁酯毫微球在大鼠体内的降血糖效应。胰岛素微球的研究很是瞩目,1997年底Edwards等[14]在Science上报道了胰岛素多孔微球的成功制备和长时间的降血糖作用。他们利用双乳化溶剂挥发法制备出密度仅为0.1g/cm3,粒度大于5μm的聚乳酸微球。这种微球具有疏松的孔状结构,质轻,很容易被吸入。实验表明该多孔微球的肺部可呼吸率为50%,而非多孔微球的可呼吸率不足21%。经正常大鼠肺部吸入后其体内的降血糖作用能持续达96小时。相对皮下注射途径,经吸入给药的胰岛素多孔微球的生物利用度达87.5%,而同样条件下的非多孔微球的生物利用度仅为12%。该制剂在25℃RH33%条件下3个月内很稳定。

早在1987年上就有对糖尿病患儿进行胰岛素吸入治疗的临床研究。1993年Laube等人[15]考察6例糖尿病人通过雾化吸入器吸入1u/kg的胰岛素注射液的降血糖情况。6个病人中,平均最低血糖下降值为55%,最低能下降71%,表现出显著的降血糖效果。1998年他们又在7名糖尿病患者[16]中考察了雾化吸入1u/kg的胰岛素注射液相对皮下注射0.1u/kg后的药物生物利用度,同时用同位素标记法求出胰岛素在肺内的沉积分数。实验表明胰岛素的生物利用度为14.7%,如果考虑胰岛素的沉积分数,生物利用度则为18.9%。同年他们又考察了7名糖尿病人[17]雾化吸入1.5u/kg胰岛素注射液对餐后高血糖的调节作用Chakraborti[18]将吸入给药剂量降低至10-20u/人。7名NIDDM病人被分为两组,第一组5名病人早餐后4小时雾化吸入10u人胰岛素注射液(Actrapid),15min后体内血糖开始下降,45min达最低。第二组2名病人则在午餐后2小时吸入10u人胰岛素注射液,30min内未见血糖下降,此时再吸入10u人胰岛素注射液后,病人血糖开始下降,情况与第一组5名病人相似。作者认为第一次给药则是阻止了餐后的高血糖形成。

Aradigm公司开发了具有精确控制及监测给药量等功能的雾化吸入装置AERxTM。他们在7例健康志愿者和20例IDDM病人的试验都肯定了与皮下相似的降血糖作用和较高的的可重复性。病人在使用时可通过装置上的液晶显示来调节正确的喷雾速率和呼吸深度。除了胰岛素以外,此装置还在吗啡和芬太尼等镇痛药的吸入给药上进行研究。

与Aradigm公司开发胰岛素雾化吸入装置的同时,Dura和Inhale公司开发了胰岛素粉末吸入制剂。该制剂在16例NIDDM病人上考察给药后餐后高血糖的抑制作用及在51例NIDDM病人3个月的长期给药观察,都获得满意的结果。迈阿密大学的Skyler博士等在70名IDDM病人身上比较Inhale公司的粉末吸入剂与皮下注射治疗效果。他们将病人分为2组,半数病人仍维持常规的胰岛素注射给药治疗,另外半数病人在每次餐前吸入1-2次胰岛素粉末,晚上睡前注射1次长效胰岛素注射剂。经2个月治疗后,两组病人的血糖水平几乎相同,粉末吸入组没有出现肺损害的情况。

胰岛素肺部给药制剂目前很引人注目,估计1-2年内有上市的可能,这对糖尿病人来说将是一个很大的福音。

3口腔给药

在SanFrancisco举行的2000年DrugDeliverySystem会议上,加拿大Generex公司报道的胰岛素口腔喷雾剂引起了广泛的关注。该制剂经口腔喷雾后,通过口腔颊侧的粘膜吸收,10min内胰岛素开始起效。目前该制剂正在美国和加拿大进行临床试验,下一步的临床试验拟于今年底在英国和意大利进行。该制剂虽尚未得到FDA的批准,但据称已经收到FDA较有利的答复。Generex公司申报的商品名在美国将为Oralgen,在加拿大则为Oralin。

4其它给药途径

胰岛素经鼻粘膜吸收被认为是效果确切的,其鼻腔给药制剂包括鼻用气雾剂,喷雾剂,滴鼻剂等均有报道。但由于鼻粘膜较为脆弱,长期给药后易引起局部刺激和充血损伤。Kupila等[19]认为制剂中的吸收促进剂会大大降低病人的依从性,而不加促进剂条件下则无降血糖效果,因而胰岛素经鼻吸收并不是最理想的途径。

除此这外,胰岛素的眼用制剂、栓剂以及透皮吸收贴剂等都在研究中,但研究较为局限,未能成为胰岛素非注射给药的热点。

最近在Science2000年二月份杂志上Rivera等[20]报道了一种新型基因技术,该技术先将病人免疫上一种无害病毒,该病毒可将胰岛素通过基因转染到细胞内,并在内质网中形成聚集体。另外再合成一种小分子药物,口服该药物在体内可引起细胞内胰岛素的解聚,从而出现胰岛素的快速脉冲释放。治疗时病人在餐前仅需口服一粒含有该小分子药物的药片,就可以引起体内胰岛素的脉冲释放,引起血糖下降。体内胰岛素释放量取决于口服小分子药物的剂量。这种基因治疗法在蛋白多肽给药中的新应用,目前已经在糖尿病小鼠身上得到非常满意的预期效果。

脂质体范文篇8

关键词胰岛素;非注射给药途径;糖尿病治疗

糖尿病是位于心血管疾病和癌症之后威胁人类健康的一大疾病。据1998美国糖尿病协会年度报告中指出,目前世界范围内糖尿病患者约为1.35亿人,到2025年,估计糖尿病患者将上升到3亿人,其中发达国家由5100万增加到7200万,增加42%;而发展中国家由8400万跃进到2.28亿人,增幅达170%。在发达国家中,美国糖尿病患者接近1600万,约占美国总人口的5.9%,为此美国每年在预防和治疗糖尿病上约花费1000亿美元左右。我国的糖尿病患病状况也不容乐观。1998年的统计表明,我国有2000多万糖尿病患者,25岁至64岁的人群中发病率为2.5%。随着我国人口的日益老龄化以及现代人生活方式的改变,预防和治疗糖尿病已经引起了广泛的关注。

胰岛素是I型和中重度II型糖尿病患者日常治疗中不可缺少的药物。目前市售胰岛素制剂多数为注射剂,长期的注射会给病人带来躯体痛苦和耐受性,这已经是临床上治疗糖尿病被长期困扰的问题。胰岛素非注射给药剂型的开发近二十年来一直在不断地研制探索中,九十年代后期,随着新技术和新工艺的发展,不少胰岛素非注射给药制剂进入了临床试验阶段,从而使该类制剂的开发进入了一个崭新时期。

1口服给药

口服给药是所有给药途径中最为方便的一种,其病人依从性最好。但由于胰岛素作为一种蛋白质,在胃肠道内的吸收难以克服酸催化分解、蛋白酶降解以及粘膜穿透性差等屏障,具有生物利用度低下的缺点,因而提高该药物的生物利用度是药剂学家多年来一直在研究克服的难题。目前胰岛素口服制剂的研究主要着重于如下几方面:

1.1微球及毫微球制剂

Ramdas等制备了含有海藻酸的壳聚糖微球[1],包裹胰岛素进行肠道给药,利用海藻酸和壳聚糖的粘附能力增加药物在吸收部位的滞留时间。Nagareya等[2]利用w/o/w方法制备出50μm左右的羟丙基甲基纤维素-醋酸琥珀酸酯(AS-HG)微球,含4%月桂酸和9%胰岛素(包封率达90%),胰岛素在pH1.2溶液中不释放,而在pH6.8溶液中快速释放。大鼠肠道给药50u/kg,0.5小时后即出现明显的降血糖作用。Purdue大学的Lowman等[3]将pH敏感性的聚甲基丙烯酸-g-乙二醇的亲水凝胶制成微球,内含胰岛素,在胃酸环境中凝胶并不膨胀,当到达中性或偏碱性环境的小肠后,凝胶微球开始膨胀,胰岛素被释放出来产生降血糖效果。在正常及糖尿病大鼠身上降血糖作用能持续8小时。

1997年Nature杂志发表了Mathlowitz等[4]制备的胰岛素生物溶蚀性毫微球,平均粒径96.7nm,载体材料为富马酸-乙交酯-丙交酯的共聚物。该毫微球在肠道中具有较强的粘附力,能进入小肠吸收细胞,同时也能被Peyer结摄取而进入淋巴循环。毫微球能保护胰岛素不受酶的降解,同时增加其在吸收部位的滞留时间。大鼠体内的口服糖耐量实验表明,该制剂(20u给药量)有效地抑制了口服高血糖的形成。

1988年法国学者Damge和Couvreur等人[5]首先将聚氰基丙烯酸烷基酯为材料制备胰岛素毫微囊并获得成功。给予大鼠口服12.5u/kg或50u/kg胰岛素毫微囊,可分别降低血糖水平至50-60%达6-20天,在健康及糖尿病狗身上药效上长达6-8天。关于该制剂长时间的药效作用机理,最近清华大学的郑昌学等[6]通过抗体捕捉实验,认为胰岛素是借助于共价键的作用被牢牢吸附于毫微囊表面,因而产生极慢的释放作用。但是后来Couveur等人[7]却认为在制备毫微囊的过程中,胰岛素其实并没有与氰基丙烯酸异丁酯产生相互作用,也没有被共价结合到毫微囊的表面,而是被包裹在内核的油相。张强等[8]改进了毫微囊的制备方法,通过乳液聚合法制备出胰岛素的氰基丙烯酸正丁基酯毫微球,药物包封率达到75%左右。该胰岛素毫微球降糖效果维持12小时,比毫微囊的作用要迅速得多,可见毫微囊和毫微球对胰岛素的释放控制有很大差异。

1.2胰岛素脂质体

通过改变脂质体的成份来提高胰岛素的生物利用度或作用时间是近年来的研究热点。Muramatsu等[9]将二棕榈酰磷酯酰胆碱(DPPC)和豆甾醇取代胆固醇制得脂质体,胰岛素的包封率最高达到33%。以80u/kg的剂量口服给予正常大鼠,结果报道给药21小时后以DPPC:豆甾醇(7:4)的组分制备的脂质体的降血糖作用最明显,生物利用度可高达31.6%。Iwanaga等[10]将脂质体表面包裹PEG-2000或粘液素(mucin)。与未经表面处理的脂质体相比,PEG-2000包裹的胰岛素脂质体在小肠内的驻留时间明显延长,而经粘液素处理的脂质体在胃内驻留时间延长,在肠道内驻留时间没有改变。

沈阳药科大学最近研制了胰岛素微粒剂。他们将胰岛素与明胶形成复合物后,通过高速匀浆分散法制备成脂质体,经过冷冻干燥和过筛等处理得到微粒剂。糖尿病小鼠,大鼠,高血糖家兔的降糖实验表明,小鼠灌胃8u/kg,降糖百分率为33%,4u/kg降糖百分率为21%;13u/kg的剂量使肾上腺素注射后家兔的一过性高血糖趋于正常水平。在正常狗身上,2.7u/kg的胰岛素微粒剂即引起明显的血糖下降(>20%)。此制剂不含蛋白酶抑制剂,辅料无毒,有较大的临床应用前景。

1.3胰岛素微乳及油制剂微乳作为口服胰岛素载体具有粒径细小和渗透能力强的特点,可保护胰岛素在胃肠道中不受酸和酶的破坏,同时可模拟食物中乳糜微粒的成分被吸收进入淋巴系统,最终进入血液循环。Cortecs公司开发的胰岛素微乳制剂在水相中含胰岛素和蛋白酶抑制剂,油相中含胆固醇、磷酯和游离脂肪酸。口服后药物可被上皮细胞吸收,按1u/kg剂量对3例IDDM病人给药,血糖均见明显下降。

1997年,Cortecs公司进一步开发了胰岛素的油制剂。该方法[11]通过一种特殊工技术即通过两亲性表面活性剂的作用将亲水性药物如胰岛素或降钙素等增溶到弱极性的油中而形成了澄清透明的溶液,称为MacrosolTM,胰岛素在此系统中具有很高的物理稳定性。6个健康志愿者在灌胃口服该制剂后体内的葡萄糖水平比空白降低34%,胰岛素水平升高31%,C-肽水平下降38%。大动物的降糖实验结果与人体实验相似。Cortecs公司在1997年宣布已经完成了该制剂的II期临床试验。

与Cortecs公司相似,国内也正在开发类似的胰岛素油制剂,在糖尿病小鼠和大鼠身上已经显示出稳定的降血糖效应,目前该项工作正在进一步研究中。

2肺部给药

相对于蛋白多肽药物的胃肠道吸收而言,肺部具有较多的优点,如巨大的肺泡表面积;极薄的肺泡细胞膜;丰富的毛细血管网;狭小的气血通路;低酶活性;肺深处较慢的清除速率等。这些良好的生理环境为蛋白多肽的吸收提供了有利条件。

胰岛素的毫微球及微球制剂的肺部给药最近已经有人开始进行研究。Kawashima等[12]制备出粒径约400nm的聚乳酸毫微球,药物的包封率约为47%,通过超声雾化器将此毫微球导入豚鼠气管内,3.9u/kg的胰岛素剂量下可使降血糖作用维持48小时。此外,沈赞聪等[13]制备并研究了胰岛素氰基丙烯酸正丁酯毫微球在大鼠体内的降血糖效应。胰岛素微球的研究很是瞩目,1997年底Edwards等[14]在Science上报道了胰岛素多孔微球的成功制备和长时间的降血糖作用。他们利用双乳化溶剂挥发法制备出密度仅为0.1g/cm3,粒度大于5μm的聚乳酸微球。这种微球具有疏松的孔状结构,质轻,很容易被吸入。实验表明该多孔微球的肺部可呼吸率为50%,而非多孔微球的可呼吸率不足21%。经正常大鼠肺部吸入后其体内的降血糖作用能持续达96小时。相对皮下注射途径,经吸入给药的胰岛素多孔微球的生物利用度达87.5%,而同样条件下的非多孔微球的生物利用度仅为12%。该制剂在25℃RH33%条件下3个月内很稳定。

早在1987年上就有对糖尿病患儿进行胰岛素吸入治疗的临床研究。1993年Laube等人[15]考察6例糖尿病人通过雾化吸入器吸入1u/kg的胰岛素注射液的降血糖情况。6个病人中,平均最低血糖下降值为55%,最低能下降71%,表现出显著的降血糖效果。1998年他们又在7名糖尿病患者[16]中考察了雾化吸入1u/kg的胰岛素注射液相对皮下注射0.1u/kg后的药物生物利用度,同时用同位素标记法求出胰岛素在肺内的沉积分数。实验表明胰岛素的生物利用度为14.7%,如果考虑胰岛素的沉积分数,生物利用度则为18.9%。同年他们又考察了7名糖尿病人[17]雾化吸入1.5u/kg胰岛素注射液对餐后高血糖的调节作用。

Chakraborti[18]将吸入给药剂量降低至10-20u/人。7名NIDDM病人被分为两组,第一组5名病人早餐后4小时雾化吸入10u人胰岛素注射液(Actrapid),15min后体内血糖开始下降,45min达最低。第二组2名病人则在午餐后2小时吸入10u人胰岛素注射液,30min内未见血糖下降,此时再吸入10u人胰岛素注射液后,病人血糖开始下降,情况与第一组5名病人相似。作者认为第一次给药则是阻止了餐后的高血糖形成。

Aradigm公司开发了具有精确控制及监测给药量等功能的雾化吸入装置AERxTM。他们在7例健康志愿者和20例IDDM病人的试验都肯定了与皮下相似的降血糖作用和较高的的可重复性。病人在使用时可通过装置上的液晶显示来调节正确的喷雾速率和呼吸深度。除了胰岛素以外,此装置还在吗啡和芬太尼等镇痛药的吸入给药上进行研究。

与Aradigm公司开发胰岛素雾化吸入装置的同时,Dura和Inhale公司开发了胰岛素粉末吸入制剂。该制剂在16例NIDDM病人上考察给药后餐后高血糖的抑制作用及在51例NIDDM病人3个月的长期给药观察,都获得满意的结果。迈阿密大学的Skyler博士等在70名IDDM病人身上比较Inhale公司的粉末吸入剂与皮下注射治疗效果。他们将病人分为2组,半数病人仍维持常规的胰岛素注射给药治疗,另外半数病人在每次餐前吸入1-2次胰岛素粉末,晚上睡前注射1次长效胰岛素注射剂。经2个月治疗后,两组病人的血糖水平几乎相同,粉末吸入组没有出现肺损害的情况。

胰岛素肺部给药制剂目前很引人注目,估计1-2年内有上市的可能,这对糖尿病人来说将是一个很大的福音。

3口腔给药

在SanFrancisco举行的2000年DrugDeliverySystem会议上,加拿大Generex公司报道的胰岛素口腔喷雾剂引起了广泛的关注。该制剂经口腔喷雾后,通过口腔颊侧的粘膜吸收,10min内胰岛素开始起效。目前该制剂正在美国和加拿大进行临床试验,下一步的临床试验拟于今年底在英国和意大利进行。该制剂虽尚未得到FDA的批准,但据称已经收到FDA较有利的答复。Generex公司申报的商品名在美国将为Oralgen,在加拿大则为Oralin。

4其它给药途径

胰岛素经鼻粘膜吸收被认为是效果确切的,其鼻腔给药制剂包括鼻用气雾剂,喷雾剂,滴鼻剂等均有报道。但由于鼻粘膜较为脆弱,长期给药后易引起局部刺激和充血损伤。Kupila等[19]认为制剂中的吸收促进剂会大大降低病人的依从性,而不加促进剂条件下则无降血糖效果,因而胰岛素经鼻吸收并不是最理想的途径。

除此这外,胰岛素的眼用制剂、栓剂以及透皮吸收贴剂等都在研究中,但研究较为局限,未能成为胰岛素非注射给药的热点。

最近在Science2000年二月份杂志上Rivera等[20]报道了一种新型基因技术,该技术先将病人免疫上一种无害病毒,该病毒可将胰岛素通过基因转染到细胞内,并在内质网中形成聚集体。另外再合成一种小分子药物,口服该药物在体内可引起细胞内胰岛素的解聚,从而出现胰岛素的快速脉冲释放。治疗时病人在餐前仅需口服一粒含有该小分子药物的药片,就可以引起体内胰岛素的脉冲释放,引起血糖下降。体内胰岛素释放量取决于口服小分子药物的剂量。这种基因治疗法在蛋白多肽给药中的新应用,目前已经在糖尿病小鼠身上得到非常满意的预期效果。

5结语

随着新技术新方法的不断发展,胰岛素给药系统将日臻完善,将来肯定会有最适于临床应用的非注射胰岛素给药系统上市,长期罹于注射痛苦的问题将得到最终解决。

参考文献

1RamdasM,DileepKJ,AnithaY,etal.Alginateencapsulatedbioadhesivechitosanmicrospheresforintestinaldrugdelivery.JBiomaterAppl,1999,13(4):290~296

2NagareyaN,UchidaT,MatsuyamaK.Preparationandcharacterizationofentericmicrospherescontainingbovineinsulinbyaw/o/wemulsionsolventevaporationmethod.ChemPharmBull,1998,46(10):1613~1617

3LowmanAM,MorishitaM,KajitaM,etal.OraldeliveryofinsulinusingpH-responsivecomplexationgels.JPharmSci,1999,88(9):933~937

4MathiowitzE,JacobJS,JongYS,etal.Biologicallyerodablemicrospheresaspotentialoraldrugdeliverysystems.Nature,1997,386:410~414

5DamgeC,MichelC,ApranhamianM,etal,Newapproachfororaladministrationofinsulinwithpolyalkylcyanoacrylatenanocapsulesasdrugcarrier.Diabetes,1988,37:246~251

6DuanMX,YueZC,MaH,etal.Stateofinsulinencapsulatedbypolyalkylcyanoacrylatenanoparticles.ProceedInternSympPoly.DrugDel,(Boston,1999)351

7AboubakarM,PuisieuxF,CouvreurPetal.Studyofthemechanismofinsulinencapsulationinpoly(isobutylcyanoacrylate)nanocapsulesobtainedbyinterfacialpolymerization.JBiomedMaterRes,1999,47(4):568~576

8张强,丁继军,叶国庆等,口服胰岛素毫微球的体外释药及对糖尿病大鼠的降血糖作用。药学学报,1998,33(2):152~156

9MuramatsuK,MaitaniY,NagaiT.Dipalmitoylphosphatidylcholineliposomeswithsoybean-derivedsterolsandcholesterolasacarrierfortheoraladministrationofinsulininrats.BiolPharmBull,1996,199(8):1055~1058

10IwanagaK,OnoS,NariokaK,etal.Applicationofsurface-coatedliposomesfororaldeliveryofpeptide:effectsofcoatingtheliposome''''ssurfaceontheGItransitofinsulin.JPharmSci,199988(2):248~252

11NewRRC,KirbyCJ.Solubilisationofhydrophilicdrugsinoilyfromulations.AdvDruDelRev,1997,24:59~69

12KawashimaY,YamamotoH,Takeuchi,etal,PulmonarydeliveryofinsulinwithnebulizedDL-lactide/glycolidecopolymer(PLGA)nanospherestoprolonghypoglycemiceffect..JControlledRelease,1999,62(1-2):279~287

13沈赞聪,张强,魏树礼.胰岛素毫微球肺部给药对正常大鼠的降血糖作用.北京医科大学学报1999,31(5):436~438

14EdwardsDA,HanesJ,CaponettiG,etal,LargePorousparticlesforpulmonarydrugdelivery.Science,1997,276:1868~1871

15LaubeBL,GeorgopoulosA,AdamsIIIGK.Preliminarystudyoftheefficacyofinsulinaerosoldeliveredbyoralinhalationindiabeticpatients.JAMA,1993,269(16):2106~2109

16LaubeBL,BenedictGW,DobsAS.Timetopeakinsulinlevel,relativebioavailability,andeffectofsiteofdepositionofnebulizedinsulininpatientswithnoninsulin-dependentdiabetesmellitus.JAerosolMed,1998,11(3):153~173

17LaubeBL,BenedictWG,DobsAS.Thelungasanalternativerouteofdeliveryforinsulinincontrollingpostprandialglucoselevelsinpatientswithdiabetes.Chest,1998,114:1734~1739

18ChakrabortiRN.Bronchopulmonaryabsorptionofaerosolisedinsulin.JIndianMedAssoc,1999,97(12):493~495.

脂质体范文篇9

关键词胰岛素;非注射给药途径;糖尿病治疗

糖尿病是位于心血管疾病和癌症之后威胁人类健康的一大疾病。据1998美国糖尿病协会年度报告中指出,目前世界范围内糖尿病患者约为1.35亿人,到2025年,估计糖尿病患者将上升到3亿人,其中发达国家由5100万增加到7200万,增加42%;而发展中国家由8400万跃进到2.28亿人,增幅达170%。在发达国家中,美国糖尿病患者接近1600万,约占美国总人口的5.9%,为此美国每年在预防和治疗糖尿病上约花费1000亿美元左右。我国的糖尿病患病状况也不容乐观。1998年的统计表明,我国有2000多万糖尿病患者,25岁至64岁的人群中发病率为2.5%。随着我国人口的日益老龄化以及现代人生活方式的改变,预防和治疗糖尿病已经引起了广泛的关注。

胰岛素是I型和中重度II型糖尿病患者日常治疗中不可缺少的药物。目前市售胰岛素制剂多数为注射剂,长期的注射会给病人带来躯体痛苦和耐受性,这已经是临床上治疗糖尿病被长期困扰的问题。胰岛素非注射给药剂型的开发近二十年来一直在不断地研制探索中,九十年代后期,随着新技术和新工艺的发展,不少胰岛素非注射给药制剂进入了临床试验阶段,从而使该类制剂的开发进入了一个崭新时期。

1口服给药

口服给药是所有给药途径中最为方便的一种,其病人依从性最好。但由于胰岛素作为一种蛋白质,在胃肠道内的吸收难以克服酸催化分解、蛋白酶降解以及粘膜穿透性差等屏障,具有生物利用度低下的缺点,因而提高该药物的生物利用度是药剂学家多年来一直在研究克服的难题。目前胰岛素口服制剂的研究主要着重于如下几方面:

1.1微球及毫微球制剂

Ramdas等制备了含有海藻酸的壳聚糖微球[1],包裹胰岛素进行肠道给药,利用海藻酸和壳聚糖的粘附能力增加药物在吸收部位的滞留时间。Nagareya等[2]利用w/o/w方法制备出50μm左右的羟丙基甲基纤维素-醋酸琥珀酸酯(AS-HG)微球,含4%月桂酸和9%胰岛素(包封率达90%),胰岛素在pH1.2溶液中不释放,而在pH6.8溶液中快速释放。大鼠肠道给药50u/kg,0.5小时后即出现明显的降血糖作用。Purdue大学的Lowman等[3]将pH敏感性的聚甲基丙烯酸-g-乙二醇的亲水凝胶制成微球,内含胰岛素,在胃酸环境中凝胶并不膨胀,当到达中性或偏碱性环境的小肠后,凝胶微球开始膨胀,胰岛素被释放出来产生降血糖效果。在正常及糖尿病大鼠身上降血糖作用能持续8小时。

1997年Nature杂志发表了Mathlowitz等[4]制备的胰岛素生物溶蚀性毫微球,平均粒径96.7nm,载体材料为富马酸-乙交酯-丙交酯的共聚物。该毫微球在肠道中具有较强的粘附力,能进入小肠吸收细胞,同时也能被Peyer结摄取而进入淋巴循环。毫微球能保护胰岛素不受酶的降解,同时增加其在吸收部位的滞留时间。大鼠体内的口服糖耐量实验表明,该制剂(20u给药量)有效地抑制了口服高血糖的形成。

1988年法国学者Damge和Couvreur等人[5]首先将聚氰基丙烯酸烷基酯为材料制备胰岛素毫微囊并获得成功。给予大鼠口服12.5u/kg或50u/kg胰岛素毫微囊,可分别降低血糖水平至50-60%达6-20天,在健康及糖尿病狗身上药效上长达6-8天。关于该制剂长时间的药效作用机理,最近清华大学的郑昌学等[6]通过抗体捕捉实验,认为胰岛素是借助于共价键的作用被牢牢吸附于毫微囊表面,因而产生极慢的释放作用。但是后来Couveur等人[7]却认为在制备毫微囊的过程中,胰岛素其实并没有与氰基丙烯酸异丁酯产生相互作用,也没有被共价结合到毫微囊的表面,而是被包裹在内核的油相。张强等[8]改进了毫微囊的制备方法,通过乳液聚合法制备出胰岛素的氰基丙烯酸正丁基酯毫微球,药物包封率达到75%左右。该胰岛素毫微球降糖效果维持12小时,比毫微囊的作用要迅速得多,可见毫微囊和毫微球对胰岛素的释放控制有很大差异。

1.2胰岛素脂质体

通过改变脂质体的成份来提高胰岛素的生物利用度或作用时间是近年来的研究热点。Muramatsu等[9]将二棕榈酰磷酯酰胆碱(DPPC)和豆甾醇取代胆固醇制得脂质体,胰岛素的包封率最高达到33%。以80u/kg的剂量口服给予正常大鼠,结果报道给药21小时后以DPPC:豆甾醇(7:4)的组分制备的脂质体的降血糖作用最明显,生物利用度可高达31.6%。Iwanaga等[10]将脂质体表面包裹PEG-2000或粘液素(mucin)。与未经表面处理的脂质体相比,PEG-2000包裹的胰岛素脂质体在小肠内的驻留时间明显延长,而经粘液素处理的脂质体在胃内驻留时间延长,在肠道内驻留时间没有改变。

沈阳药科大学最近研制了胰岛素微粒剂。他们将胰岛素与明胶形成复合物后,通过高速匀浆分散法制备成脂质体,经过冷冻干燥和过筛等处理得到微粒剂。糖尿病小鼠,大鼠,高血糖家兔的降糖实验表明,小鼠灌胃8u/kg,降糖百分率为33%,4u/kg降糖百分率为21%;13u/kg的剂量使肾上腺素注射后家兔的一过性高血糖趋于正常水平。在正常狗身上,2.7u/kg的胰岛素微粒剂即引起明显的血糖下降(>20%)。此制剂不含蛋白酶抑制剂,辅料无毒,有较大的临床应用前景。

1.3胰岛素微乳及油制剂微乳作为口服胰岛素载体具有粒径细小和渗透能力强的特点,可保护胰岛素在胃肠道中不受酸和酶的破坏,同时可模拟食物中乳糜微粒的成分被吸收进入淋巴系统,最终进入血液循环。Cortecs公司开发的胰岛素微乳制剂在水相中含胰岛素和蛋白酶抑制剂,油相中含胆固醇、磷酯和游离脂肪酸。口服后药物可被上皮细胞吸收,按1u/kg剂量对3例IDDM病人给药,血糖均见明显下降。

1997年,Cortecs公司进一步开发了胰岛素的油制剂。该方法[11]通过一种特殊工技术即通过两亲性表面活性剂的作用将亲水性药物如胰岛素或降钙素等增溶到弱极性的油中而形成了澄清透明的溶液,称为MacrosolTM,胰岛素在此系统中具有很高的物理稳定性。6个健康志愿者在灌胃口服该制剂后体内的葡萄糖水平比空白降低34%,胰岛素水平升高31%,C-肽水平下降38%。大动物的降糖实验结果与人体实验相似。Cortecs公司在1997年宣布已经完成了该制剂的II期临床试验。

与Cortecs公司相似,国内也正在开发类似的胰岛素油制剂,在糖尿病小鼠和大鼠身上已经显示出稳定的降血糖效应,目前该项工作正在进一步研究中。

2肺部给药

相对于蛋白多肽药物的胃肠道吸收而言,肺部具有较多的优点,如巨大的肺泡表面积;极薄的肺泡细胞膜;丰富的毛细血管网;狭小的气血通路;低酶活性;肺深处较慢的清除速率等。这些良好的生理环境为蛋白多肽的吸收提供了有利条件。

胰岛素的毫微球及微球制剂的肺部给药最近已经有人开始进行研究。Kawashima等[12]制备出粒径约400nm的聚乳酸毫微球,药物的包封率约为47%,通过超声雾化器将此毫微球导入豚鼠气管内,3.9u/kg的胰岛素剂量下可使降血糖作用维持48小时。此外,沈赞聪等[13]制备并研究了胰岛素氰基丙烯酸正丁酯毫微球在大鼠体内的降血糖效应。胰岛素微球的研究很是瞩目,1997年底Edwards等[14]在Science上报道了胰岛素多孔微球的成功制备和长时间的降血糖作用。他们利用双乳化溶剂挥发法制备出密度仅为0.1g/cm3,粒度大于5μm的聚乳酸微球。这种微球具有疏松的孔状结构,质轻,很容易被吸入。实验表明该多孔微球的肺部可呼吸率为50%,而非多孔微球的可呼吸率不足21%。经正常大鼠肺部吸入后其体内的降血糖作用能持续达96小时。相对皮下注射途径,经吸入给药的胰岛素多孔微球的生物利用度达87.5%,而同样条件下的非多孔微球的生物利用度仅为12%。该制剂在25℃RH33%条件下3个月内很稳定。

早在1987年上就有对糖尿病患儿进行胰岛素吸入治疗的临床研究。1993年Laube等人[15]考察6例糖尿病人通过雾化吸入器吸入1u/kg的胰岛素注射液的降血糖情况。6个病人中,平均最低血糖下降值为55%,最低能下降71%,表现出显著的降血糖效果。1998年他们又在7名糖尿病患者[16]中考察了雾化吸入1u/kg的胰岛素注射液相对皮下注射0.1u/kg后的药物生物利用度,同时用同位素标记法求出胰岛素在肺内的沉积分数。实验表明胰岛素的生物利用度为14.7%,如果考虑胰岛素的沉积分数,生物利用度则为18.9%。同年他们又考察了7名糖尿病人[17]雾化吸入1.5u/kg胰岛素注射液对餐后高血糖的调节作用。Chakraborti[18]将吸入给药剂量降低至10-20u/人。7名NIDDM病人被分为两组,第一组5名病人早餐后4小时雾化吸入10u人胰岛素注射液(Actrapid),15min后体内血糖开始下降,45min达最低。第二组2名病人则在午餐后2小时吸入10u人胰岛素注射液,30min内未见血糖下降,此时再吸入10u人胰岛素注射液后,病人血糖开始下降,情况与第一组5名病人相似。作者认为第一次给药则是阻止了餐后的高血糖形成。

Aradigm公司开发了具有精确控制及监测给药量等功能的雾化吸入装置AERxTM。他们在7例健康志愿者和20例IDDM病人的试验都肯定了与皮下相似的降血糖作用和较高的的可重复性。病人在使用时可通过装置上的液晶显示来调节正确的喷雾速率和呼吸深度。除了胰岛素以外,此装置还在吗啡和芬太尼等镇痛药的吸入给药上进行研究。

与Aradigm公司开发胰岛素雾化吸入装置的同时,Dura和Inhale公司开发了胰岛素粉末吸入制剂。该制剂在16例NIDDM病人上考察给药后餐后高血糖的抑制作用及在51例NIDDM病人3个月的长期给药观察,都获得满意的结果。迈阿密大学的Skyler博士等在70名IDDM病人身上比较Inhale公司的粉末吸入剂与皮下注射治疗效果。他们将病人分为2组,半数病人仍维持常规的胰岛素注射给药治疗,另外半数病人在每次餐前吸入1-2次胰岛素粉末,晚上睡前注射1次长效胰岛素注射剂。经2个月治疗后,两组病人的血糖水平几乎相同,粉末吸入组没有出现肺损害的情况。

胰岛素肺部给药制剂目前很引人注目,估计1-2年内有上市的可能,这对糖尿病人来说将是一个很大的福音。

3口腔给药

在SanFrancisco举行的2000年DrugDeliverySystem会议上,加拿大Generex公司报道的胰岛素口腔喷雾剂引起了广泛的关注。该制剂经口腔喷雾后,通过口腔颊侧的粘膜吸收,10min内胰岛素开始起效。目前该制剂正在美国和加拿大进行临床试验,下一步的临床试验拟于今年底在英国和意大利进行。该制剂虽尚未得到FDA的批准,但据称已经收到FDA较有利的答复。Generex公司申报的商品名在美国将为Oralgen,在加拿大则为Oralin。

4其它给药途径

胰岛素经鼻粘膜吸收被认为是效果确切的,其鼻腔给药制剂包括鼻用气雾剂,喷雾剂,滴鼻剂等均有报道。但由于鼻粘膜较为脆弱,长期给药后易引起局部刺激和充血损伤。Kupila等[19]认为制剂中的吸收促进剂会大大降低病人的依从性,而不加促进剂条件下则无降血糖效果,因而胰岛素经鼻吸收并不是最理想的途径。

除此这外,胰岛素的眼用制剂、栓剂以及透皮吸收贴剂等都在研究中,但研究较为局限,未能成为胰岛素非注射给药的热点。

最近在Science2000年二月份杂志上Rivera等[20]报道了一种新型基因技术,该技术先将病人免疫上一种无害病毒,该病毒可将胰岛素通过基因转染到细胞内,并在内质网中形成聚集体。另外再合成一种小分子药物,口服该药物在体内可引起细胞内胰岛素的解聚,从而出现胰岛素的快速脉冲释放。治疗时病人在餐前仅需口服一粒含有该小分子药物的药片,就可以引起体内胰岛素的脉冲释放,引起血糖下降。体内胰岛素释放量取决于口服小分子药物的剂量。这种基因治疗法在蛋白多肽给药中的新应用,目前已经在糖尿病小鼠身上得到非常满意的预期效果。

5结语

随着新技术新方法的不断发展,胰岛素给药系统将日臻完善,将来肯定会有最适于临床应用的非注射胰岛素给药系统上市,长期罹于注射痛苦的问题将得到最终解决。

参考文献

1RamdasM,DileepKJ,AnithaY,etal.Alginateencapsulatedbioadhesivechitosanmicrospheresforintestinaldrugdelivery.JBiomaterAppl,1999,13(4):290~296

2NagareyaN,UchidaT,MatsuyamaK.Preparationandcharacterizationofentericmicrospherescontainingbovineinsulinbyaw/o/wemulsionsolventevaporationmethod.ChemPharmBull,1998,46(10):1613~1617转3LowmanAM,MorishitaM,KajitaM,etal.OraldeliveryofinsulinusingpH-responsivecomplexationgels.JPharmSci,1999,88(9):933~937

4MathiowitzE,JacobJS,JongYS,etal.Biologicallyerodablemicrospheresaspotentialoraldrugdeliverysystems.Nature,1997,386:410~414

5DamgeC,MichelC,ApranhamianM,etal,Newapproachfororaladministrationofinsulinwithpolyalkylcyanoacrylatenanocapsulesasdrugcarrier.Diabetes,1988,37:246~251

6DuanMX,YueZC,MaH,etal.Stateofinsulinencapsulatedbypolyalkylcyanoacrylatenanoparticles.ProceedInternSympPoly.DrugDel,(Boston,1999)351

7AboubakarM,PuisieuxF,CouvreurPetal.Studyofthemechanismofinsulinencapsulationinpoly(isobutylcyanoacrylate)nanocapsulesobtainedbyinterfacialpolymerization.JBiomedMaterRes,1999,47(4):568~576

8张强,丁继军,叶国庆等,口服胰岛素毫微球的体外释药及对糖尿病大鼠的降血糖作用。药学学报,1998,33(2):152~156

9MuramatsuK,MaitaniY,NagaiT.Dipalmitoylphosphatidylcholineliposomeswithsoybean-derivedsterolsandcholesterolasacarrierfortheoraladministrationofinsulininrats.BiolPharmBull,1996,199(8):1055~1058

10IwanagaK,OnoS,NariokaK,etal.Applicationofsurface-coatedliposomesfororaldeliveryofpeptide:effectsofcoatingtheliposome''''ssurfaceontheGItransitofinsulin.JPharmSci,199988(2):248~252

11NewRRC,KirbyCJ.Solubilisationofhydrophilicdrugsinoilyfromulations.AdvDruDelRev,1997,24:59~69

12KawashimaY,YamamotoH,Takeuchi,etal,PulmonarydeliveryofinsulinwithnebulizedDL-lactide/glycolidecopolymer(PLGA)nanospherestoprolonghypoglycemiceffect..JControlledRelease,1999,62(1-2):279~287

13沈赞聪,张强,魏树礼.胰岛素毫微球肺部给药对正常大鼠的降血糖作用.北京医科大学学报1999,31(5):436~438

14EdwardsDA,HanesJ,CaponettiG,etal,LargePorousparticlesforpulmonarydrugdelivery.Science,1997,276:1868~1871

15LaubeBL,GeorgopoulosA,AdamsIIIGK.Preliminarystudyoftheefficacyofinsulinaerosoldeliveredbyoralinhalationindiabeticpatients.JAMA,1993,269(16):2106~2109

16LaubeBL,BenedictGW,DobsAS.Timetopeakinsulinlevel,relativebioavailability,andeffectofsiteofdepositionofnebulizedinsulininpatientswithnoninsulin-dependentdiabetesmellitus.JAerosolMed,1998,11(3):153~173

17LaubeBL,BenedictWG,DobsAS.Thelungasanalternativerouteofdeliveryforinsulinincontrollingpostprandialglucoselevelsinpatientswithdiabetes.Chest,1998,114:1734~1739

18ChakrabortiRN.Bronchopulmonaryabsorptionofaerosolisedinsulin.JIndianMedAssoc,1999,97(12):493~495.

脂质体范文篇10

关键词:药物传输系统脉冲式给药系统结肠定位给药系统受体型与免疫型靶向制剂

药物传输系统(DrugDeliverySystems,DDS)系指人们在防治疾病的过程中所采用的各种治疗药物的不同给药形式,在60年代以前的药剂学中称为剂型。如注射剂、片剂、胶囊剂、贴片、气雾剂等。随着科学的进步,剂型的发展已远远超越其原有的内涵,需要用药物传输系统或给药器(Device)这类术语加以表述,即原由药物与辅料制成的各种剂型已满足不了临床治疗的需要,有的将药物制成输注系统供用,有的则采用钛合金制成给药器植入体内应用,使临床用药更理想化。为克服普通制剂的有效血浓维持时间短的缺陷,出现了长效注射剂,口服长效给药系统或缓/控释制剂、经皮给药系统等一系列新的制剂。由于缓/控释制剂的特点,它的市场前景看好。缓释制剂通常是指口服给药后能在机体内缓慢释放药物,使达有效血浓,并能维持相当长时间的制剂。控释制剂系指释药速度仅受给药系统本身的控制,而不受外界条件,如pH、酶、离子、胃肠蠕动等因素的影响[1],是按设计好的程序控制释药的制剂,如零级释药的渗透泵,脉冲释药的微丸,结肠定位释药的片剂或胶囊以及自动调节释药的胰岛素给药器等等。亦有些文献对缓释、控释制剂不加严格区分,统称为缓/控释制剂。

国外现有规格不同的缓/控释制剂商品达数百种以上,其剂型亦有片剂、胶囊、栓剂、渗透泵、透皮贴片、药条、植入剂、粘膜粘附剂及注射剂等多种形式,其中以口服缓/控释制剂发展最快。缓释微丸胶囊剂与缓释片相比,具有安全系数高的特点,一个胶囊是由上百粒缓释微丸组成,若有个别小丸进入胃肠道后发生迅速崩解释药的现象,其影响是微小的,而缓释片若有崩释现象,因其单次剂量比普通制剂大,其后果是不言而喻的了;而且缓释微丸胶囊不易对胃空速率慢的患者发生叠加释放的现象,以及不易受胃液pH值变化的个体差异的影响。因此,缓释微丸胶囊比缓释片更具有发展前景。

我国早在1977年版的中国药典就收载了防治血吸虫病的没食子酸锑钠缓释片,但在这方面的研究直到80年代才被广泛重视。1995年我国批准的缓/控释制剂就有7个,脂质体、微球、毫微粒等亚微粒分散给药系统以及结肠定位给药系统这类口服靶向给药制剂国内研究也很活跃(目前脂质体已有批准生产的品种)。今就以下几个侧面进行概述。

1新型缓/控释制剂研究概况

1.1胃内滞留型控释给药系统[2,3]可参阅有关文献。

1.2脉冲式给药系统根据时辰药理学研究,药物的治疗作用、不良反应和体内过程均有时间节律,这已成为设计定时释药这类控释制剂的重要依据。释药方式符合人体昼夜节律变化的规律,这是近代药剂学研究的一种新型释药模式。国外有多家制药企业正在研究开发这类脉冲式给药系统,国内亦已开始研究。

脉冲释药系统(pulsatilereleasesystem)口服时将以时控的方式在胃肠道内特定部位释放药物。这类给药系统特别适用于夜间或醒后马上需要有一个血浓峰值的疾病(如失眠、哮喘、关节炎、局部缺血性心脏病等),也适用于在肠道较下部位处释药和吸收的那些疾病(如结肠癌、溃疡性结肠炎、口服肽类等)。目前国外投入这类研究的主要有平喘药、心血管药和H2受体阻断剂及胰岛素等。引入注目的是ALZA公司和Searle公司共同开发的维拉帕米昼夜节律脉冲释药系统商品名为Calan-OROS。治疗实践证明:高血压患者最佳给药时间为清晨3点左右,此时患者体内儿茶酚胺水平增高,心脏、血管收缩加强,因而最可能出问题,该给药系统晚上临睡前服用,次日清晨可释放脉冲剂量的药物,十分符合该病节律变化的需要,预计该剂型很快即可上市。

1.2.1脉冲释药片按时控崩解机制(time-controlleddisintegrationmechanism)设计的一种干压包衣片可达脉冲释药之目的。其片芯由药物与崩解剂组成,其外壳是由水渗透性小的复合材料组成。调节外壳厚度与水渗透性即可控制其脉冲释药时间。例如:以盐酸硫氮NFDA1酮为模型药物(在较宽的胃肠道内可被吸收),选用羧甲基纤维素钙(ECG-505)作崩解剂,硬脂酸镁为润滑剂压制成片芯。外壳由氢化蓖麻油(HCO)、聚氯乙烯(PVC)和聚乙二醇(PEG6000)混合组成,采用90~94℃熔融法制粒,取20目颗粒,以干压包衣法制片,调节PEG用量及外壳厚度即可控制水的渗透速率。这种系统的平均时滞为(7±1)h,此时药物在15min内释放完毕。

1.2.2脉冲释药微丸[4]亦称时控爆裂系统(time-controlledexplosionsystem,TES)。这种球形微丸的结构可分4层,从里到外分丸芯、药物层、膨胀剂层及水不溶性聚合物外层衣膜,见图1。当水份通过外层衣膜向系统内渗透,接触膨胀剂,一旦水化膨胀剂的膨胀力超过外层衣膜的抗张强度时,膜开始破裂,触发药物释放。可通过改变外层衣膜的厚度来控制释放药物的时间。不同的药物。这类给药系统国内亦已开始研究。

1.3结肠定位给药系统[5~11]结肠部位疾病如溃疡性结肠炎、结肠癌等要求能在结肠部位释药;此外,随着生物工程的发展,多肽类、蛋白类药物增多,这类药物通常要注射给药,因它们在胃肠道上段稳定性及吸收利用差,故不宜口服,可是在结肠段降解蛋白的酶类较少,往往吸收利用较好,若能制成结肠定位给药系统,则多肽类、蛋白类药物口服给药就有希望,因而国内外均致力于研制开发这类新型给药系统。这类给药系统通常可由下列几种材料制成。

1.3.1pH敏感的肠溶材料采用双层衣膜控制药物在结肠部位释放。如:将消炎痛(25%W/W)、乳糖(62%W/W)、淀粉(10%W/W)混匀,以10%(W/V)PVP水溶液湿润制粒,55℃干燥,整粒后加1%M.S,以Φ4.5mm凹冲压片后包HPMC缓释衣层(增重35.7%,配方为:MethocelK155.0,PEG4001.0,Talc2.0,PVP2.5,乙醇84.0,水5.5),再包肠衣层(增重5%,配方为:8%(W/V)Eudragitl,2%DEP)。这类材料易受肠道pH值变化的影响。

1.3.2时控型材料通常食物在胃及小肠分别滞留约3h左右,所以食物运行至结肠约需5~7h。若能控制在5~7h释药者即可达结肠给药之效。前述时控型脉冲释药系统即属此类,这类给药系统因各人胃排空速率不同,所以个体差异较大。

1.3.3酶消化型材料利用结肠部位特有的微生物所产生的酶,以降解高分子材料而释药,例如,偶氮聚合物、果胶等可被结肠中特有的微生物酶降解而释药。这类材料结肠定位的专属性较前两类强。

1.3.4其他采用高频胶囊,在胶壳上装一个微型线圈,在高频磁场作用下线圈产生电流,引发胶壳破裂而释药。

1.4自动调节给药系统[12,13]可参阅有关文献。

2靶向给药系统研究现状

在临床治疗疾病的过程中往往需要提高药物的靶向性,以期最大限度地增强药物的疗效,同时使药物的不良反应降至最低,因此靶向给药系统(TDDS)已成为现代药剂学的重要内容。通常可将控释制剂分成两大类:一类专门研究如何控制制剂中药物释放的速度,即零级、一级还是脉冲式释药,抑或自调式释药等等(已在前述内容中讨论);另一类专门研究如何控制制剂中药物释放的去向,这是一类要求更高、难度更大的新制剂,因而将其归属于靶向制剂进行单列讨论。

2.1靶向给药制剂的分类

2.1.1按给药途径分全身作用靶向给药制剂,即通过口服或注射等方式给药后,能使药物导向所需发挥作用的部位;非全身作用的靶向给药制剂,即局部用药后,药物就在该部位发挥治疗作用。

2.1.2按作用方式分主动靶向(activetargeting)给药制剂具有识别靶组织或靶细胞的大分子,以其为载体的能力;被动靶向(passivetargeting)给药制剂,像脂质体、微球、毫微粒、乳剂或复乳等微粒载体制剂,对靶细胞并无识别能力,但可经血循环到达它们不能通过的毛细血管床,并在该部位释药。

2.1.3按药物作用水平分一级靶向,如微粒载体制剂只能将药物输送至特定的器官;二级靶向,系指能将药物输送至某器官的特定部位;三级靶向,系指能将药物输送至特定部位的病变细胞内。如若能将药物制成三级靶向制剂,则可使药物在细胞水平上发挥作用,药物可专门攻击病变细胞,对正常细胞没有或几乎没有不良的影响,可使药物的疗效达到最理想的程度。