游隙范文10篇

时间:2023-03-25 18:59:24

游隙范文篇1

论文摘要:滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段。装配工作中应弄清概念,明确轴承装配的技术要求,同时还要兼顾轴承温升的控制和保持良好的润滑,对此工艺方法正确加以运用,能够保证滚动轴承装配的质量。

滚动轴承的装配是钳工装配和修理工作中经常要做的一项操作,而滚动轴承游隙的调整和预紧是滚动轴承装配工作的一个重要环节。准确把握游隙调整和预紧的工艺概念,并且在装配工作中正确地运用这种工艺方法,是轴承装配工作质量的保证。

滚动轴承的游隙是指在一个套圈固定的情况下,另一个套圈沿径向或轴向的最大活动量,故游隙又分为径向游隙和轴向游隙两种。

滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命;游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此,许多轴承在装配时都要严格控制和调整游隙。

预紧就是轴承在装配时,给轴承的内圈或外圈一个轴向力,以消除轴承游隙,并使滚动体与内、外圈接触处产生初变形。预紧能提高轴承在工作状态下的刚度和旋转精度。对于承受载荷较大,旋转精度要求较高的轴承,大都是在无游隙甚至有少量过盈的状态下工作的,这种情况下就需要在装配时对轴承进行预紧。

游隙的调整和预紧通常都是采用使轴承的内圈对外圈作适当的轴向相对位移的方法来完成的。

从以上工艺学概念不难看出,通过对滚动轴承游隙的调整,可以提高轴承的承载能力和旋转精度,提高轴承的使用寿命。但同时会使轴承摩擦加剧,发热量增大,所以,调整游隙或预紧的同时必须保证良好的润滑和散热。如果调整不当或润滑不良,就会反过来使轴承磨损加剧,寿命减少。因此,正确地进行滚动轴承游隙的调整和预紧,还要注意以下问题。

一、装配技术要求是选择装配工艺方法的根本依据

对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。

在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。

二、要在热平衡条件下达到游隙调整和预紧的要求

滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。三、保持良好的润滑

良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。

还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。

总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。

参考文献:

[1]蒋增福:钳工工艺与技能训练.北京:中国劳动社会保障出版社,2001。

[2]劳动人事培训就业局编:钳工工艺学.劳动人事出版社,1986。

[3]上海市劳动局技工培训处编:高级机工简明读本.上海科学技术出版社,1992。

游隙范文篇2

论文摘要:滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段。装配工作中应弄清概念,明确轴承装配的技术要求,同时还要兼顾轴承温升的控制和保持良好的润滑,对此工艺方法正确加以运用,能够保证滚动轴承装配的质量。

滚动轴承的装配是钳工装配和修理工作中经常要做的一项操作,而滚动轴承游隙的调整和预紧是滚动轴承装配工作的一个重要环节。准确把握游隙调整和预紧的工艺概念,并且在装配工作中正确地运用这种工艺方法,是轴承装配工作质量的保证。

滚动轴承的游隙是指在一个套圈固定的情况下,另一个套圈沿径向或轴向的最大活动量,故游隙又分为径向游隙和轴向游隙两种。

滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命;游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此,许多轴承在装配时都要严格控制和调整游隙。

预紧就是轴承在装配时,给轴承的内圈或外圈一个轴向力,以消除轴承游隙,并使滚动体与内、外圈接触处产生初变形。预紧能提高轴承在工作状态下的刚度和旋转精度。对于承受载荷较大,旋转精度要求较高的轴承,大都是在无游隙甚至有少量过盈的状态下工作的,这种情况下就需要在装配时对轴承进行预紧。

游隙的调整和预紧通常都是采用使轴承的内圈对外圈作适当的轴向相对位移的方法来完成的。

从以上工艺学概念不难看出,通过对滚动轴承游隙的调整,可以提高轴承的承载能力和旋转精度,提高轴承的使用寿命。但同时会使轴承摩擦加剧,发热量增大,所以,调整游隙或预紧的同时必须保证良好的润滑和散热。如果调整不当或润滑不良,就会反过来使轴承磨损加剧,寿命减少。因此,正确地进行滚动轴承游隙的调整和预紧,还要注意以下问题。

一、装配技术要求是选择装配工艺方法的根本依据

对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。

在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。

二、要在热平衡条件下达到游隙调整和预紧的要求

滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。

三、保持良好的润滑

良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。

还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。

总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。

参考文献:

[1]蒋增福:钳工工艺与技能训练.北京:中国劳动社会保障出版社,2001。

[2]劳动人事培训就业局编:钳工工艺学.劳动人事出版社,1986。

[3]上海市劳动局技工培训处编:高级机工简明读本.上海科学技术出版社,1992。

游隙范文篇3

论文摘要:滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段。装配工作中应弄清概念,明确轴承装配的技术要求,同时还要兼顾轴承温升的控制和保持良好的润滑,对此工艺方法正确加以运用,能够保证滚动轴承装配的质量。

滚动轴承的装配是钳工装配和修理工作中经常要做的一项操作,而滚动轴承游隙的调整和预紧是滚动轴承装配工作的一个重要环节。准确把握游隙调整和预紧的工艺概念,并且在装配工作中正确地运用这种工艺方法,是轴承装配工作质量的保证。

滚动轴承的游隙是指在一个套圈固定的情况下,另一个套圈沿径向或轴向的最大活动量,故游隙又分为径向游隙和轴向游隙两种。

滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命;游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此,许多轴承在装配时都要严格控制和调整游隙。

预紧就是轴承在装配时,给轴承的内圈或外圈一个轴向力,以消除轴承游隙,并使滚动体与内、外圈接触处产生初变形。预紧能提高轴承在工作状态下的刚度和旋转精度。对于承受载荷较大,旋转精度要求较高的轴承,大都是在无游隙甚至有少量过盈的状态下工作的,这种情况下就需要在装配时对轴承进行预紧。

游隙的调整和预紧通常都是采用使轴承的内圈对外圈作适当的轴向相对位移的方法来完成的。

从以上工艺学概念不难看出,通过对滚动轴承游隙的调整,可以提高轴承的承载能力和旋转精度,提高轴承的使用寿命。但同时会使轴承摩擦加剧,发热量增大,所以,调整游隙或预紧的同时必须保证良好的润滑和散热。如果调整不当或润滑不良,就会反过来使轴承磨损加剧,寿命减少。因此,正确地进行滚动轴承游隙的调整和预紧,还要注意以下问题。

一、装配技术要求是选择装配工艺方法的根本依据

对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。

在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。

二、要在热平衡条件下达到游隙调整和预紧的要求

滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。三、保持良好的润滑

良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。

还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。

总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。

参考文献:

[1]蒋增福:钳工工艺与技能训练.北京:中国劳动社会保障出版社,2001。

[2]劳动人事培训就业局编:钳工工艺学.劳动人事出版社,1986。

[3]上海市劳动局技工培训处编:高级机工简明读本.上海科学技术出版社,1992。

游隙范文篇4

论文摘要:滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段。装配工作中应弄清概念,明确轴承装配的技术要求,同时还要兼顾轴承温升的控制和保持良好的润滑,对此工艺方法正确加以运用,能够保证滚动轴承装配的质量。

滚动轴承的装配是钳工装配和修理工作中经常要做的一项操作,而滚动轴承游隙的调整和预紧是滚动轴承装配工作的一个重要环节。准确把握游隙调整和预紧的工艺概念,并且在装配工作中正确地运用这种工艺方法,是轴承装配工作质量的保证。

滚动轴承的游隙是指在一个套圈固定的情况下,另一个套圈沿径向或轴向的最大活动量,故游隙又分为径向游隙和轴向游隙两种。

滚动轴承装配时,其游隙不能太大,也不能太小。游隙太大,会造成同时承受载荷的滚动体的数量减少,使单个滚动体的载荷增大,从而降低轴承的旋转精度,减少使用寿命;游隙太小,会使摩擦力增大,产生的热量增加,加剧磨损,同样能使轴承的使用寿命减少。因此,许多轴承在装配时都要严格控制和调整游隙。

预紧就是轴承在装配时,给轴承的内圈或外圈一个轴向力,以消除轴承游隙,并使滚动体与内、外圈接触处产生初变形。预紧能提高轴承在工作状态下的刚度和旋转精度。对于承受载荷较大,旋转精度要求较高的轴承,大都是在无游隙甚至有少量过盈的状态下工作的,这种情况下就需要在装配时对轴承进行预紧。

游隙的调整和预紧通常都是采用使轴承的内圈对外圈作适当的轴向相对位移的方法来完成的。

从以上工艺学概念不难看出,通过对滚动轴承游隙的调整,可以提高轴承的承载能力和旋转精度,提高轴承的使用寿命。但同时会使轴承摩擦加剧,发热量增大,所以,调整游隙或预紧的同时必须保证良好的润滑和散热。如果调整不当或润滑不良,就会反过来使轴承磨损加剧,寿命减少。因此,正确地进行滚动轴承游隙的调整和预紧,还要注意以下问题。

一、装配技术要求是选择装配工艺方法的根本依据

对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。

在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。

二、要在热平衡条件下达到游隙调整和预紧的要求

滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。三、保持良好的润滑

良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。

还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。

总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。

参考文献:

[1]蒋增福:钳工工艺与技能训练.北京:中国劳动社会保障出版社,2001。

[2]劳动人事培训就业局编:钳工工艺学.劳动人事出版社,1986。

[3]上海市劳动局技工培训处编:高级机工简明读本.上海科学技术出版社,1992。

游隙范文篇5

对滚动轴承游隙的调整可以有效地提高轴承的旋转精度,提高轴承的承载能力,延长轴承的使用寿命,同时还可以有效地减少振动和噪声,但并非所有的滚动轴承在装配时都需要进行游隙的调整。而预紧固然可以提高轴承刚性和旋状精度,但是同时会使摩擦加剧,润滑油膜被破坏并产生大量的热,因此,被预紧的轴承必须进行强制润滑和冷却,这种工艺方法仅限于对轴承刚性和旋转精度要求极高的情况下采用,是一种较为特殊的工艺方法,生产实际中也只是在机床主轴装配中用到,其它传动机构的轴承装配几乎见不到。

在滚动轴承装配中是否进行游隙的调整和预紧,要根据技术文件提出的装配技术要求决定。具体地说,在装配技术要求中,一般对于高速、重载或旋转精度要求较高的轴承会有调整轴承游隙或预紧的要求,反之,则会保持轴承游隙,装配时仅作轴向固定即可。从轴承的种类上看,对于圆锥滚子轴承、角接触轴承、推力轴承均需要对其游隙进行调整;对于一般低速、轻载的向心球轴承,多数情况下不需要对其游隙进行调整,而只作轴向固定。

二、要在热平衡条件下达到游隙调整和预紧的要求

滚动轴承实际的理想工作间隙,是在轴承温升稳定后所调整的间隙。因此,轴承游隙的调整应分两个阶段进行:首先在常温下按照有关的操作规范和技术要求对轴承游隙进行调整,至间隙合适并用手转动应感到旋转灵活;然后,将调整机构适当回松(防止试车时由于温度升高而使轴承突然抱死),进行空运转试验,从低速到高速空运转时间不超过2小时,在最高速的空运转时间不少于30分钟,轴承应运转灵活、噪声小、工作温度不超过50℃,最后将调整机构复位并锁紧即可。

三、保持良好的润滑

良好的润滑不仅可以起到减小摩擦的作用,同时还对轴承和轴上零件具有冷却作用。滚动轴承游隙进行调整以后,摩擦会有所加剧,产生的热量会使整个传动系统温度有所升高。如果不能及时散热,这些热量就(下转第44页)(上接第39页)会使传动零件尺寸发生变化,从而影响到滚动轴承间隙的变化,产生更多的热量,形成恶性循环。因此,对于经过游隙调整的滚动轴承,必须要保持良好的润滑,以减少摩擦,更重要的是用不断循环流动的润滑油带走大量的热,控制温度的升高,实现传动系统的热平衡。

还要特别注意:在进行空运转试验之前,一定要首先检查润滑系统各部位供油是否正常,特别是经过预紧的轴承部位,更需要特别留意其润滑油供给充足,工作状况良好。

总之,滚动轴承游隙的调整和预紧工艺,是提高轴承旋转精度和承载能力、降低传动系统振动和噪声的有效手段,操作中除了应达到滚动轴承装配的一般技术要求外,还要重点考虑轴承温升和润滑对调整工作的影响,并且在进行空运转试验之后还要进行细致的检查和二次调整,耐心细致的工作态度也是装配维修钳工不可缺少的良好品质。

参考文献:

[1]蒋增福:钳工工艺与技能训练.北京:中国劳动社会保障出版社,2001。

[2]劳动人事培训就业局编:钳工工艺学.劳动人事出版社,1986。

[3]上海市劳动局技工培训处编:高级机工简明读本.上海科学技术出版社,1992。

[4]王兴民:钳工工艺学.北京:中国劳动出版社,1996。

[5]尚德香:机械制造工艺学,延边大学出版社,1987。

游隙范文篇6

关键词:滚动轴承;基本结构;识别方法

随着农业机械的推广和使用,一些不法商贩利用农民的惜投心理,将工厂废旧轴承经处理后销售到农村,给农业生产造成较大的破坏。现将滚动轴承的基本结构、相应作用以及几种识别滚动轴承伪劣的简易方法介绍如下。

一、滚动轴承的基本结构及相应作用

以滑动轴承为基础发展起来的滚动轴承,其工作原理是以滚动摩擦代替滑动摩擦,一般由2个套圈,1组滚动体和1个保持架所组成的通用性很强、标准化和系列化程度很高的机械基础件。由于各种机械工作条件不同,对滚动轴承在负荷能力、结构和使用性能等方面都提出了不同要求。但其最基本的结构是由内圈、外圈、滚动体和保持架组成。其相应作用为:对于向心轴承,内圈通常与轴紧配合,并与轴一起运转,外圈通常与轴承座或机械壳体孔成过渡配合,起支承作用。但是,在某些场合下,也有外圈运转,内圈固定起支承作用或者内圈、外圈都同时运转的。对于推力轴承,与轴紧配合并一起运动的称轴圈,与轴承座或机械壳体孔成过渡配合并起支承作用的称座圈。滚动体(钢球、滚子或滚针)在轴承内通常借助保持架均匀地排列在2个套圈之间作滚动运动,它的形状、大小和数量直接影响轴承的负荷能力和使用性能。保持架除能将滚动体均匀地分隔开以外,还能起引导滚动体旋转及改善轴承内部润滑性能等作用。

二、简易检测方法

2.1眼观手感法

一是眼观。首先看外表,检查轴承上有无正规的出厂标记,无标记者多为不合格产品。然后,洗掉轴承外包装的油脂,认真检查轴承内、外圈的滚道及滚动体上有无麻点、凸坑、锈蚀等,凡有者均为不合格产品,不能使用。二是手感法。用右手指卡住轴承内圈,左手快速转动轴承外圈,好的轴承转动平稳、声音较小,无阻滞、冲击或颤动等感觉;而伪劣轴承在转动过程中则有“哗哗”的噪声,卡轴承的手指感觉到阻滞、冲击或颤动,这时轴承切不可用。

2.2量具测量法

滚动轴承是标准部件,轴承的内、外圈均经过磨削加工,误差极小。为判别伪劣,可用外径千分尺和内径百分表测量内、外圈的直径。经过处理后的轴承外径变小,内径变大。

2.3试插游隙法

一是塞尺检查法。各种滚动轴承,其游隙均有标准规定,伪劣轴承因各零件超差,如游隙就转不动,故一般偏大。使用者一般不具备按标准检查的条件,但可用塞尺(厚薄规)检查游隙。由于游隙小,所用塞尺很薄,强度低,且轴承又是曲面,硬塞不易塞进,可将塞尺塞在2个滚动体中间并靠近一滚动体的顶部,转动内圈,如滚动体能滚过且力度不大,所量值除以2即为轴承游隙值。如滚动时觉得太紧或太松,则应将塞尺适当加厚或减薄。应注意的是,插入塞尺后在滚动体滚动过后如感太吃力,不要强行滚过,以免损坏塞尺。应检查不少于3个滚动体,且都在允许公差范围内。二是保险丝压痕法。将细保险丝砸薄,滚过轴承滚动体顶部与外圈的间隙,所得厚度除以2即为游隙,其余与塞尺查检相同(此法一般不用于球轴承检查)。

2.4外圈径向跳动检测法

一是车床检测法。可在车床上加工1个芯轴,使芯轴的直径与所测轴承内径配合适宜,且有小锥度(应尽可能地小,以便装拆。磁力表座固定在车床导轨上,先测芯轴的跳动量,再将轴承套在芯轴上,将表头垂直打在轴承外圈中部,芯轴不动,转动轴承外圈。表针的变化量即为轴承外圈的径向跳动量。二是简易外圈径向跳动检测法。用上述检测法中所用芯轴,即可检测外圈的径向跳动,方法有2种:一种是将芯轴一端水平夹在台虎钳上,测试方法与车床检测相同;另一种是将芯轴垂直夹在台虎钳上,被测轴承套在芯轴上,在轴承外圈施加一定的力(内径φ10~30mm为15N;φ30~50mm为20N;φ50~160mm为25N)。现场测试时可用相同轴承数只,重量与要求相差不大即可。其检测方法与车床检测相同。当2个结果不同时,应以后一种方法为准。

2.5硬度检测法

轴承套圈硬度值为50~65HRC,高或低于此值均为不合格轴承,检查点应在内圈或外圈的侧面,以免损坏轴承。

三、结语

上述各项,经过经验判断有怀疑者,可根据现有的条件,逐项检测。对有1项不合格者就不必再进行其他项的检测。对检测值超标不多者,应继续检测其他项,考虑到检测条件和误差,对各项检测值均超标不多应视为合格。同时,农机用户应到规范市场去采购,注意保存好购货凭证,出现问题便于退货和索赔。在使用前一定要注意按上述方法检查,彻底杜绝漏洞,以减少对农业生产的损失。

参考文献:

[1]林菊娥,李桂福.机械基础[M].北京:北京理工大学出版社,2009.

[2]倪惠新,范国良.高级机修工艺学[M].北京:宇航出版社,1993.

游隙范文篇7

关键词:滚动轴承基本结构识别方法

随着农业机械的推广和使用,一些不法商贩利用农民的惜投心理,将工厂废旧轴承经处理后销售到农村,给农业生产造成较大的破坏。现将滚动轴承的基本结构、相应作用以及几种识别滚动轴承伪劣的简易方法介绍如下。

一、滚动轴承的基本结构及相应作用

以滑动轴承为基础发展起来的滚动轴承,其工作原理是以滚动摩擦代替滑动摩擦,一般由2个套圈,1组滚动体和1个保持架所组成的通用性很强、标准化和系列化程度很高的机械基础件[1-2]。由于各种机械工作条件不同,对滚动轴承在负荷能力、结构和使用性能等方面都提出了不同要求。但其最基本的结构是由内圈、外圈、滚动体和保持架组成。其相应作用为:对于向心轴承,内圈通常与轴紧配合,并与轴一起运转,外圈通常与轴承座或机械壳体孔成过渡配合,起支承作用。但是,在某些场合下,也有外圈运转,内圈固定起支承作用或者内圈、外圈都同时运转的。对于推力轴承,与轴紧配合并一起运动的称轴圈,与轴承座或机械壳体孔成过渡配合并起支承作用的称座圈。滚动体(钢球、滚子或滚针)在轴承内通常借助保持架均匀地排列在2个套圈之间作滚动运动,它的形状、大小和数量直接影响轴承的负荷能力和使用性能。保持架除能将滚动体均匀地分隔开以外,还能起引导滚动体旋转及改善轴承内部润滑性能等作用[3-4]。

二、简易检测方法

1、眼观手感法

一是眼观。首先看外表,检查轴承上有无正规的出厂标记,无标记者多为不合格产品。然后,洗掉轴承外包装的油脂,认真检查轴承内、外圈的滚道及滚动体上有无麻点、凸坑、锈蚀等,凡有者均为不合格产品,不能使用。二是手感法。用右手指卡住轴承内圈,左手快速转动轴承外圈,好的轴承转动平稳、声音较小,无阻滞、冲击或颤动等感觉;而伪劣轴承在转动过程中则有“哗哗”的噪声,卡轴承的手指感觉到阻滞、冲击或颤动,这时轴承切不可用。

2、量具测量法

滚动轴承是标准部件,轴承的内、外圈均经过磨削加工,误差极小。为判别伪劣,可用外径千分尺和内径百分表测量内、外圈的直径。经过处理后的轴承外径变小,内径变大。

3、试插游隙法

一是塞尺检查法。各种滚动轴承,其游隙均有标准规定,伪劣轴承因各零件超差,如游隙就转不动,故一般偏大。使用者一般不具备按标准检查的条件,但可用塞尺(厚薄规)检查游隙。由于游隙小,所用塞尺很薄,强度低,且轴承又是曲面,硬塞不易塞进,可将塞尺塞在2个滚动体中间并靠近一滚动体的顶部,转动内圈,如滚动体能滚过且力度不大,所量值除以2即为轴承游隙值。如滚动时觉得太紧或太松,则应将塞尺适当加厚或减薄。应注意的是,插入塞尺后在滚动体滚动过后如感太吃力,不要强行滚过,以免损坏塞尺。应检查不少于3个滚动体,且都在允许公差范围内。二是保险丝压痕法。将细保险丝砸薄,滚过轴承滚动体顶部与外圈的间隙,所得厚度除以2即为游隙,其余与塞尺查检相同(此法一般不用于球轴承检查)。

4、外圈径向跳动检测法

一是车床检测法。可在车床上加工1个芯轴,使芯轴的直径与所测轴承内径配合适宜,且有小锥度(应尽可能地小,以便装拆。磁力表座固定在车床导轨上,先测芯轴的跳动量,再将轴承套在芯轴上,将表头垂直打在轴承外圈中部,芯轴不动,转动轴承外圈。表针的变化量即为轴承外圈的径向跳动量。二是简易外圈径向跳动检测法。用上述检测法中所用芯轴,即可检测外圈的径向跳动,方法有2种:一种是将芯轴一端水平夹在台虎钳上,测试方法与车床检测相同;另一种是将芯轴垂直夹在台虎钳上,被测轴承套在芯轴上,在轴承外圈施加一定的力(内径φ10~30mm为15N;φ30~50mm为20N;φ50~160mm为25N)。现场测试时可用相同轴承数只,重量与要求相差不大即可。其检测方法与车床检测相同。当2个结果不同时,应以后一种方法为准。

5、硬度检测法

轴承套圈硬度值为50~65HRC,高或低于此值均为不合格轴承,检查点应在内圈或外圈的侧面,以免损坏轴承。

上述各项,经过经验判断有怀疑者,可根据现有的条件,逐项检测。对有1项不合格者就不必再进行其他项的检测。对检测值超标不多者,应继续检测其他项,考虑到检测条件和误差,对各项检测值均超标不多应视为合格。同时,农机用户应到规范市场去采购,注意保存好购货凭证,出现问题便于退货和索赔。在使用前一定要注意按上述方法检查,彻底杜绝漏洞,以减少对农业生产的损失。

参考文献:

[1]林菊娥,李桂福.机械基础[M].北京:北京理工大学出版社,2009.

[2]倪惠新,范国良.高级机修工艺学[M].北京:宇航出版社,1993.

游隙范文篇8

关键词:球铰;关节轴承;抗震;结构优化

1引言

球铰作为一种典型的运动副,具有3个转动自由度,可绕某一点的任意方向旋转,在并联机构中得到越来越多应用[1-2]。球铰可以采用滑动配合或者滚动配合。滚动球铰摩擦阻力小,局限性是承载能力差、额定载荷较低,因此在并联机构设计中仍然以滑动球铰为主[3]。目前,在建筑抗震设计中,常常使用球铰关节来释放建筑结构某些自由度,改善结构内部的应力分布,减少应力集中现象,确保建筑结构的安全。常见球铰结构有盆式橡胶支座、球型铰支座,它通过抗震构造和液压减震元件的缓冲,消化吸收了地震所带来的冲击能量,减轻地震对建筑结构的破坏性[4]。因此,本文利用了球铰关节的抗震特点,设计并优化了某建筑项目所用到的球铰关节的结构。该球铰要求使用年限为50年,建筑钢结构安全等级为一级,建筑抗震设防为重点设防类。作为钢结构的铰接节点,该球铰结构主要承受拉力,设计载荷为1000kN,安全系数取1.5,极限载荷为1500kN,旋转摆动角±6°。为了解该球铰结构的受力情况,本文采用了有限元软件,对球铰关节进行仿真分析,通过对几何模型的边界条件设置、接触对设置、材料模型和网格划分等要素的设置,建立了球铰关节的仿真模型。为确保模型受力情况与节点实际受力一致,建模时将底座下部采用螺栓固定,受力杆件承受拉向的极限载荷,以此考察球铰关节的受力情况,评价结构的合理性和可靠性。

2原始结构设计方案

2.1初始设计结构。某建筑项目原有球铰结构设计方案如图1所示,主要部件包括球头杆、球铰底座、球铰盖板三部分,其中球铰底座和球铰盖板以螺纹连接方式锁固,球头杆的球头部分落在底座和盖板内表面所包围的球窝中,而球头杆柄部带有内螺纹与外部建筑杆件进行连接固定。初始设计时,三个零件件均选用GCr15材料,热处理硬度要求为54HRC~60HRC。2.2结构仿真分析。通过有限元建模仿真分析,原球铰结构方案的极限载荷作用下的球头杆应力分布如图2所示,盖板应力分布如图3所示,底座应力分布如图4所示,位移分布如图5所示。从应力分布来看,球头杆最大等效应力为380.5MPa,出现在球头杆柄部的内螺纹上,该零件应力较大区域主要在柄部和球面顶部;球铰盖板最大等效应力为321.0MPa,出现在盖板的顶面开口内倒角处,而内螺纹上部也出现一定程度的应力集中;球铰底座最大等效应力为176.6MPa,出现在外圆柱面与下部法兰的连接处。由图5可知,球铰的球头杆位移量最大,其数值最大为2.073mm,而底座和盖板则变形较小,均在1.2mm以下。2.3原结构存在问题。通过观察原结构设计方案,可以看出该方案存在以下问题:①原设计方案的球铰关节结构较为简单,在使用过程中内部球面滑动摩擦副会有磨损、黏合现象,润滑、防水、防尘与防腐蚀等问题会使产品寿命变短,无法保证50年的使用寿命。②球铰关节结构的轴向游隙无法精确调整,影响使用安装精度,容易造成过紧卡死或者过松窜动的现象。③结构受力时,零件内部的应力分布高低差别较大,球头杆内螺纹、盖板的顶部端口处存在较大应力集中现象,而整体结构的下部分基本处于低应力区,承载安全系数富裕度较大。④球铰关节各零件均采用GCr15材料,而零件的壁厚差别较大,在热处理过程中无法实现整体淬硬,存在表层硬度偏高、芯部硬度偏低现象,在壁厚差别较大的地方更容易引起淬火裂纹、变形不一致的问题,造成产品装配精度低和使用寿命短等问题。可见,原设计方案并不是最佳方案,需要进一步优化设计球铰关节节点的结构,改善内部受力和加工所存在的工艺问题。

3优化设计后方案

3.1优化后结构。根据上面所述的结构问题,对原有球铰关节的结构进行了调整,优化后的结构方案如图6所示。此结构引入了一种关节轴承的新型球铰结构,零件包括销轴、底座、底板、两套带自润滑材料角接触关节轴承和一套防护装置(包括O形密封圈、环形紧箍圈、不锈钢波纹管密封罩、内六角螺钉、压板等组成)。新旧结构对比,主要变化如下:原有球头杆零件变为销轴和关节轴承内圈3个零件,壁厚均匀性较为一致,热处理变形小、硬度分布更为均匀。球铰底座和盖板变为底座、底板和关节轴承外圈4个零件,各零件的壁厚较为一致,热处理变形小、硬度分布更为均匀。底板与底座采用螺纹连接结构,可起到调整轴承径向游隙作用,待轴承游隙调整好后,可对底板进行点焊加固,防止螺纹松懈造成游隙变大,从而防止结构受冲击时带来的轴向窜动。两套角接触关节轴承外圈和内圈材料为钢/钢,内圈外球面镶嵌固体自润滑材料,可有效保证结构的自润滑作用,从而实现免维护并延长使用寿命。新结构考虑了防水、防尘、防腐蚀因素,增加了顶部的防护罩等装置,可防止外部杂物进入内部造成轴承卡死损坏,从而延长产品的使用寿命。新结构的外形尺寸做了适当减小,使结构更加紧凑,内部受力更加合理,质量由原来的350kg减少至310kg,减去约11%。此外,新方案的销轴可实现360°周向转动、±10°摆动,能承受轴向和侧向高载荷的静载或动载作用,用在普通建筑的抗震结构中,可承受一般地震冲击和外部激励交变载荷的频繁作用。总之,新结构方案设计易于维护,维护成本低,使用寿命更长。3.2结构仿真分析。同理,新结构方案的球铰关节,在轴向极限载荷为1500kN作用下,其主要承载零件的等效应力分布及位移分布分别如图7~图12所示。图7销轴应力分布图8上、下轴承外圈应力分布图9上、下轴承内圈应力分布图10底座应力分布图11底板应力分布图12位移分布从图7~图11可看出,销轴最大等效应力为409.2MPa,发生在中部凸台与销轴连接过渡圆角处;外圈最大等效应力为317.9MPa,出现在上轴承外圈,而下轴承外圈受力很小;内圈最大等效应力为262.5MPa,同样出现在上轴承内圈;底座最大等效应力为345.5MPa,出现在底部台阶与外圆柱面过渡圆角上;底板最大等效应力为129.8MPa,出现在螺纹的最下部。由图12可知,球铰结构的最大位移量为3.049mm,比原结构位移量2.073mm略大,但此位移属于弹性变形量,载荷卸除时可恢复原状态,不影响节点的使用。由此可得,各零件的最大等效应力均低于材料的屈服强度,不仅能够满足设计承载载荷要求,而且内部应力分布更加合理、均匀。

4结论

球铰结构的原设计方案构造简单,在润滑、防水、防尘与防腐蚀方面并未考虑,而且承载时内部应力分布不是非常合理。新优化设计的球铰关节结构更加紧凑,各零件的壁厚分布更加均匀,内部受力更加合理,而且解决了防水、防尘、防腐蚀和润滑等问题。优化后的球铰结构质量比原来的减轻了40kg,所减质量比例达到了11%。

参考文献:

[1]刘天柱.基于3-RPS并联机构的自调平升降机设计与研究[D].淄博:山东理工大学,2017.

[2]苗蓉.基于BP神经网络的并联机构误差分析[J].机床与液压,2017,45(11):13-17.

[3]刘良宝,吴振强,张洁,等.滑动球铰的精度分析及减摩优化[J].航空精密制造技术,2018,54(6):28-31,36.

游隙范文篇9

关键词:单螺杆加工机床布局主轴结构进给深度传动间隙

一、介绍机床的布局

压缩机排气量的大小决定了星轮、螺杆直径的大小和啮合中心距的大小,因此螺杆直径的不同,机床的主轴与刀具的回转中心也不同。为满足加工不同直径的螺杆,目前国内单螺杆加工机床的布局大致有以下几种方案。

第一种:机床的主轴与刀具回转中心的中心距为固定式

机床的主轴与刀具回转中心的中心距为固定式,中心距不可调整。加工几种直径的螺杆就需要几种中心距规格不同的机床。

优点:机床的结构简单。

缺点:每种机床只能加工一种规格的螺杆,当市场上某种规格的压缩机螺杆需要量大时,造成一台机床加工,其他机床闲置。

第二种:机床的主轴箱为可回转式

机床可根据加工螺杆直径的大小在加工前把主轴箱旋转一个角度。这种主轴箱能够回转的机床是对上述第一种机床在使用方法上的改进,与第一种机床的结构基本相同。

优点:机床的结构简单,能适应多种规格螺杆的加工。

缺点1:主轴箱旋转后主轴回转中心线与刀具回转中心线间的距离不易精确测量。

缺点2:主轴箱旋转后主轴前端面与刀具的回转中心线间的距离减少,因此加工较大直径的螺杆受到限制。

第三种:机床的主轴箱为横向移动式

主轴箱底部与底座之间布置有矩形滑动导轨,主轴箱移动的方向垂直于主轴回转中心线并垂直于刀具回转中心线。主轴箱的动力通过花键轴传给底座内的刀具进给机构。

根据加工螺杆直径的大小,在加工前用手轮丝杠进给机构把主轴箱移动到适当位置,然后用螺钉将主轴箱固定在底座上。主轴箱的移动距离可用光栅尺检测,位置误差±0.005mm。

采用主轴箱可横向移动的一个机床就可以加工直径φ95~φ385mm之间任何一种规格的螺杆。

由于加工φ95~φ385mm直径的螺杆,造成主轴前端面与刀具回转中心线间的距离差值过大,因此在实际应用时设计成两种规格的机床,一个机床加工φ95~φ205mm直径的螺杆,另一个机床加工φ180~φ385mm直径的螺杆。

优点:机床能适应多种规格螺杆的加工,每种规格的螺杆不需要配备相应的加工机床。

缺点:机床的结构和机床的装配较前二种机床复杂,机床的造价也较前二种机床高。

二、介绍机床的主轴结构

机床主轴箱的水平主轴和底座上的立式的主轴精度的高低决定了被加工螺杆的精度,同时螺杆在压缩机中以几千转的速度高速旋转时,精度较差的螺杆会使压缩机产生发热、振动、效率低、磨损快等现象。

国内目前现有的单螺杆加工机床主轴结构大致有以下两种方案。

第一种:轴承径向游隙不可调的主轴结构

主轴前轴承采用1个双列圆柱滚子轴承和两个推力球轴承组合,该主轴使用双列圆柱滚子轴承承受径向切削力,使用两个推力球轴承承受轴向切削力。

主轴后轴承一般采用1个双列圆柱滚子轴承或采用1个向心球轴承。

这种主轴结构的优点:主轴的加工和装配简单,造价较低。

缺点1:由于主轴轴承的径向游隙不可调整,所以主轴精度较差。虽然可以利用轴承的内径和轴径的过盈配合来消除轴承的径向游隙,但每个轴承的内径和径向游隙不是一个固定值,因此设计和加工时很难给准轴径与轴承内径的配合公差。

缺点2:在市场上很难买到国产或进口的C、D级或P4、P5级的推力球轴承,机床生产厂常用普通级轴承替代使用,此举也影响了主轴精度的提高。

轴承径向游隙不可调的主轴结构适用于一般精度的普通机床,不适用于对主轴精度要求较高的机床。

第二种:轴承径向游隙可调的主轴结构

主轴前轴承采用一个P4级圆锥孔的双列圆柱滚子轴承和1个P4级的双列向心推力球轴承组合。该主轴使用圆锥孔的双列圆柱滚子轴承承受径向切削力,使用双列向心推力球轴承承受轴向切削力和部分径向切削力。

主轴后轴承一般采用1个P5级圆锥孔的双列圆柱滚子轴承。

圆锥孔双列圆柱滚子轴承的内圈和配合轴径均为1:12圆锥,用圆螺母锁紧轴承则使轴承在轴向产生一个位移并使轴承的内圈膨胀,从而达到减少或消除轴承径向游隙的目的。

这种主轴结构的优点:主轴精度较高。在主轴前端面φ230mm直径上测量主轴的端面跳动值为0.010mm。在主轴前端φ230mm外圆上测量主轴的径向跳动值为0.005mm。第二种结构的主轴精度比第一种主轴精度提高50%左右。

这种主轴结构的缺点:

主轴的加工工艺较复杂,主轴的装配也需要有经验的工人操作才能使主轴精度达到理想数值。

三、刀具进给深度的控制

不同直径的螺杆需要加工螺旋槽的深度也不同,螺旋槽的深度从几十毫米到一百多毫米不等,刀具进给机构大约需要旋转进刀几千圈才能完成一个螺杆零件的加工。

由于刀具进给机构在刀具旋转的同时还要完成进刀动作,所以一些在普通机床上常用的机械、电气控制切深的方法都不适用于单螺杆加工机床。

单螺杆加工机床的刀具进给机构采用以下不同的方法都可以达到控制进刀深度的目的。

第一种:摩擦离合器和电气开关控制刀具进给深度

它的控制原理是刀具切深增大时刀具进给机构的负载扭距增大,使刀具进给机构传动链中的摩擦离合器打滑,一个机械连杆机构触发电气开关并发出声、光信号提示操作者,此时操作者人工操作断开刀具进给机构的动力。

这种控制方法的优点是:控制方法简单及零件加工和操作不受突然断电的影响。

缺点是:加工不同直径的螺杆需要调整摩擦离合器压紧碟簧的预紧力。

由于每个螺杆材质的密度、硬度存在细微差异及刀具锋利程度也存在差异,因此使这种控制方法的精度不太准确,可能导致螺杆螺旋槽的深度公差过大。

第二种:用电磁离合器、编码器组合控制刀具进给深度

刀具进给系统中,装有电磁离合器及一对用于检测刀具转动圈数的测速齿轮和一个编码器。

它的控制原理是刀具刚接触螺杆表面时手工启动编码器记数开关,记数装置则开始记数,当刀具旋转到事先设定的圈数时也就是达到切削深度时,电磁离合器自动断开刀具进给的动力并发出声、光信号提示操作者零件已加工完毕。

该检测装置通过数显表显示进给圈数或进给量。电磁离合器脱开后,刀具只随立轴旋转并无进给运动。

这种控制方法的优点是:螺杆螺旋槽的深度公差控制较准确,由于有数显表显示要加工的深度或圈数和已加工的深度或圈数,在操作上也很直观和方便。

缺点是:机床的电气控制较复杂同时这种控制方法在零件加工时如果厂区突然断电,事先设定的数据会丢失。

如果在电气控制中加入蓄电池,使之在断电维初期维持检测装置的工作,上述问题就可以得到解决。

四、齿轮传动间隙的控制

单螺杆加工机床在加工螺杆时,由于螺旋槽是在刀具旋转和工件旋转的合成作用下完成加工的。在刚切入工件时刀具在旋转的切向方向上受到的走刀抗力较大,刀具在将要切出工件时在螺旋槽的作用下,刀具在旋转的切向方向上受到的走刀抗较小,甚至是受到工件螺旋槽的推力。

由于存在着机床箱体孔加工、齿轮加工等各种误差,刀具旋转轴的传动间隙过大,俗称旷量大。

检测传动间隙过大的方法是将动力输入轴固定并左右旋转晃动输出轴,如果是用常规的传动结构设计制造机床,输出轴的传动间隙摆角在十几度到几十度。传动间隙过大造成螺杆的螺旋槽加工表面有明显的接刀痕,从而影响了螺杆的加工精度。

机床在装配完成后刀具旋转轴的传动间隙过大,实际上是齿轮受各种误差的影响,造成齿轮侧隙的过大。

机床机械传动中的齿轮加工不管是采用几级精度的,设计者考虑到齿轮的制造误差、箱体中心距加工误差、温度变化、润滑油膜厚度、装配误差等因素,机床传动设计必须保证齿轮传动留有一定的侧隙,侧隙的大小决定了齿轮齿厚公差的大小。

单螺杆加工机床的主传动结构有区别于其他机床的特殊性。为减小或得到合理的传动间隙目前单螺杆加工机床常采用以下两种办法。

第一种:在输出轴上安装抱闸

在刀具旋转输出轴外圆径向对称位置装有抱闸,抱闸前端顶住刀具旋转输出轴的外圆,抱闸为弹簧预紧。

抱闸的工作原理是靠抱闸产生的摩擦力来增大输出轴阻尼,降低轴的旋转灵敏度。

优点是:抱闸结构简单并且不改变原有机床结构,这种方法间接地达到了减少传动间隙的目的,在实际应用中有一定的效果。

缺点1:弹簧预紧的抱闸由于对刀具输出轴外圆施加了较大径向力,实际上增大了机床的负载扭距,造成电机功率增大,同时齿轮、轴承磨损加快。

缺点2:弹簧预紧的抱闸由于对刀具输出轴外圆施加了较大径向力可能对刀具输出轴的几何精度造成负面影响。

第二种:双齿轮传动

把主传动中所有主动齿轮的齿宽增加1/3~1/2。把所有被动齿轮做成两层结构,一层齿轮是原有齿轮,另一层是用来减少传动间隙的齿轮,它的齿宽约是原有齿轮齿宽的1/3~1/2。用数个螺钉将两个齿轮毛坯安装在一起并拧死在再制齿。

制齿后将齿轮装在机床传动轴上,松开齿轮固定螺钉,将约1/3~1/2齿宽的齿轮朝着该齿轮旋转运动相反的方向转动齿轮,转动角度的大小以齿轮长期工作、最大温升时齿轮侧隙大于零。

双齿轮传动的工作原理是用双齿轮中较宽的齿轮传递动力,较窄的齿轮起到减少传动间隙的作用。沿着轴心线看调整后的两层齿轮的齿形有微量错位,

结构优点:根据齿轮的实际制造误差、箱体中心距实际加工误差、等因素,调整齿轮的传动间隙使之在一个合理的范围之内,与抱闸结构相比更合理、适用。

游隙范文篇10

电动机安装形式为IMB3。电动机冷却风路采用经济实用半管道出风。转子铁心两端不带冷却风扇。为了确保电动机性能的准确性,设计电磁方案时尽量使气隙磁场分布接近合理化,性能指标达到最高,定、转子均采用新系列通用冷轧硅钢片设计。电动机轴承均采用滚动轴承,电动机结构示意图。圆柱滚子轴承只用于承受径向载荷,且承载能力强,使用中对同轴度要求高,在滚子轴承中极限转速较高。允许外圈与内圈轴线偏斜度较小(2''''~4''''),故只能用于刚性较大的轴上,并要求支撑座孔很好地对称。此次设计中,对大轴及相关零部件的加工质量有严格的要求,特别是轴承档的全跳不得超过0.025mm。深沟球轴承主要用于承受径向载荷,但当增大轴承径向游隙时,具有一定的角接触球轴承的性能,可以承受径向、轴向联合载荷。在转速较高又不宜采用推力球轴承时,也可用来承受纯轴向载荷。深沟球轴承装在轴上后,在轴承的轴向游隙范围内,可限制轴或外壳两个方向的轴向位移,因此可在双向作轴向定位。此外,该类轴承还具有一定的调心能力,当相对于外壳孔倾斜2''''~10''''时,仍能正常工作,但对轴承寿命有一定的影响。与尺寸相同的其他类型轴承比较,此类轴承摩擦因数小、极限转速高、噪声低,且结构简单,使用方便。外圈带止动槽的可简化轴向定位,缩小轴向尺寸。综合两种轴承的性能特点,在该同步电动机的结构设计时轴伸端采用深沟球轴承6244M/C3和圆柱滚子轴承NU244M/C3相结合,非轴伸端用一件圆柱滚子轴承NU244M/C3,这种轴承组合在力求成本最低的情况下,充分利用了各个轴承的优势,满足电动机的设计要求。

2电动机重点结构设计

2.1轴承

传统的同步电动机结构是采用座式滑动轴承,电动机机座与端罩及轴承同装在一个底板上,两轴承中心的轴向距离为2000mm(图3)。而采用端盖滑动轴承后两轴承中心的轴向距离压缩为1770mm。通过本次改进,采用滚动轴承后的两轴承中心的轴向距离压缩到了1297mm。

2.2集电环

对用户要求集电环防护等级为IP23的同步机,原来设计的集电环为下端采用支架承托和上端用螺杆拉紧联合固定形式(到机座端面距离为850mm)。在本电动机设计时改变大型同步机集电环的支撑形式,在电动机端盖上加工止口,并设计了高度为100mm的连接环,实行过渡连接(集电环端面到机座端面距离为650)。由于连接环的高度有限,原用轴承测温元件WZP-280体积大,考虑到安装特别困难,设计时改用体积小,经济实惠的端面热电阻WZPM-201来检测轴承温度。改进集电环连接形式后,安装方便,电动机结构因此而更加紧凑。

2.3连接环

设计连接环时,在保证连接环与轴承外盖不干涉的情况下,考虑用户给轴承加脂以及排脂时的空间、方便安装轴承测温和把合螺丝,所以连接环的圆周设计为辐射筋、周边为敞开的形式。

3结语