蓄能电站范文10篇

时间:2023-04-09 08:13:36

蓄能电站

蓄能电站范文篇1

摘要:抽水蓄能电站日本神流川金居原新技术

一、前言

日本是世界上的经济大国,也是电力生产大国。日本的电源构成以核电为首位,其次依次为燃煤火电、LNG火电和燃油火电。日本的常规水电开发较充分,但水电资源总量不多,在电源构成中占的比重不大。常规水电站除了径流式电站外,优先用于峰荷发电;许多LNG火电站和燃油火电站也按每日开停机模式运行。为了解决调峰新问题,已经建设了大批抽水蓄能电站。2000年,日本共有43座抽水蓄能电站,总装机容量24705MW,名列世界首位。抽水蓄能电站在电网中的功能首先是调峰填谷,改善负荷系数;同时用于调频、维持电网稳定和调压。在日本,抽水蓄能电站是公认的主要调峰手段。日本抽水蓄能电站平均年发电运行小时数只有620h,可见其主要用于峰荷发电和解决电网的新问题。尽管抽水蓄能电站的建设成本不低,但和其他调峰电源相比,还是有竞争力的。因此,日本近年来还在继续建设抽水蓄能电站。

为了增强新建抽水蓄能电站在电力市场的竞争力,日本抽水蓄能电站的建设采取了一些应对办法,新建抽水蓄能电站着眼于充分发挥抽水蓄能电站的优势。从规划和设计来说,除了担负调峰填谷的静态功能外,更致力于发挥抽水蓄能电站的动态功能。机组要有更快的对负荷变化的跟踪能力,适应频繁的工况转换,水库库容要满足更长时间事故备用的能力。而为了降低工程投资,从站址选择上要选水头更高的站址,安装体现机组制造最新水平的超高水头大容量的抽水蓄能机组,缩小地下洞室的尺寸。同时还要尽可能减少对环境的影响,降低环境保护的投资。这些办法中很重要的一条就是发展高水头和大容量的抽水蓄能机组,加大电站的规模。近期正在建设或预备建设的抽水蓄能电站中,有一些超大型的电站。本文要介绍的神流川(Kannagawa)抽水蓄能电站和金居原(Kaneihara)抽水蓄能电站可以作为其中的典型代表。这两座电站的水库规划、水工建筑物设计和工程施工中采用了一些新的理念和新的技术。

二、两座超大型抽水蓄能电站概况

1、神流川抽水蓄能电站

神流川抽水蓄能电站由日本东京电力公司开发,位于群马县和长野县交界处。上水库位于长野县信浓川水系南相木川上,下水库位于群马县利根川水系神流川上,地下厂房在群马县境内。该电站装机容量达2700MW,是目前世界上装机容量最大的抽水蓄能电站。地下厂房分两处,1号厂房安装4台机组,容量共1800MW;2号厂房安装2台机组,容量共900MW。两处厂房有各自的输水系统,但共用上、下水库,和我国广州抽水蓄能电站相似。电站有效发电水头653m,最大发电水头695m,最大抽水扬程728m,属700m水头段机组。单机额定容量450MW,其额定容量和发电水头的乘积超过了日本目前已部分投入运行的葛野川抽水蓄能电站机组,属世界上最大的抽水蓄能机组。该电站目前正在建设中,至2001年11月,工程进展已完成61%。

2、金居原抽水蓄能电站

金居原抽水蓄能电站由日本关西电力公司开发,位于滋贺县和岐阜县交界处。上水库位于岐阜县木曾川水系八草川上,下水库位于滋贺县淀川水系须亦川上,地下厂房在滋贺县境内。该电站装机容量2280MW,在世界上也名列前茅。电站的6台机组安装在一个地下厂房内,是世界上同一地下厂房内装机容量最多的抽水蓄能电站。电站有效发电水头514.8m,最大发电水头535.2m,最大抽水扬程约560m。由于该电站水头变幅高达150m,计划有部分机组要采用可变速机组。该电站的前期预备工程如对外交通道路的施工已在进行中,但主体工程尚未开工。

三、水库动能规划和大坝

1、增大水库调节库容和电站的事故备用能力

日本纯抽水蓄能电站上下水库的有效发电库容(以满出力发电小时数计)比我国的抽水蓄能电站用得大。一方面是为适应周调节的要求。通常情况下,发电只在星期一至星期五进行,而抽水则天天都要进行,因此水库的库容要大于日循环所需库容。另一方面,为了加强抽水蓄能电站和其他形式的电源在市场上的竞争能力,抽水蓄能电站应有更多的事故备用能力。水库有效库容提供的满出力发电小时数,神流川抽水蓄能电站为7h,而金居原抽水蓄能电站为9h。日本在上世纪70年代规划设计的一批抽水蓄能电站,水库蓄能量的满负荷发电小时数多数在6h左右,最多到7h(新高濑川抽水蓄能电站),少的只有4h(大平抽水蓄能电站)。和这些抽水蓄能电站的平均水平相比,这两个电站的满出力发电小时数要高一些。

2、加大水库的水位变幅,选用可变速机组

为了降低工程投资,提高经济优势,减轻对环境的影响,在规划抽水蓄能电站的水库时,要求在满足电网需求的前提下,减小水库的总库容和占地面积。高水头的站址自然是优先考虑的。其次是加大水库的水位变幅,增加水库的工作水深,以增加水库的调节库容。这样一来,水泵水轮机的工作水头比(Hpmax/Htmin)自然要变大,可能超出常规的范围,必须选用可变速机组。

神流川抽水蓄能电站最大发电水头695m,接近单级可逆式水泵水轮机制造能力的上限,很符合高水头站址的标准。该电站水库水位变幅并不大。上水库坝高136m,水位变幅27m;下水库坝高120m,水位变幅30m;水头总变幅57m。Hpmax/Htmin%26lt;1.15,在一般单转速水泵水轮机的水头(扬程)变幅范围之内。该电站采用的是单转速机组。金居原抽水蓄能电站最大发电水头535.2m,也属于高水头电站。而该电站在加大水库的水位变幅,增加水库的工作水深方面最为典型。上水库水位变幅95m,下水库水位变幅55m,合计150m。Hpmax/Htmin接近1.45,远超过一般单转速水泵水轮机的水头(扬程)变幅范围。因此该电站计划有部分机组要采用可变速机组,可以任意调整机组转速,以保证能在不同的水头(扬程)段高效率和平安地运行。事实上,日本可变速抽水蓄能机组发展很快,自大河内(Okawachi)抽水蓄能电站采用这种机组以来,已有数座新建及扩建的抽水蓄能电站选用了可变速机组。

3、坝型选择和库容的综合考虑

由于环境保护的要求,不答应过大的水库沉没,两座电站的上下水库都建在高山环抱的山谷地带,优点是最高库水位远低于库周山岭的地下水位,除坝基外,库盆没有采取专门的防渗办法。但这样的地形条件带来的缺点是为了获得必要的库容必须修建高坝。为避免土石坝上游坝体侵占库容,如地质条件答应,则尽可能建混凝土坝。

神流川抽水蓄能电站下水库坝和金居原抽水蓄能电站上水库坝都采用了混凝土重力坝。正在建设的神流川下库大坝采用日本的碾压混凝土筑坝工法(RCD),碾压混凝土水泥用量110~100kg/m3,至2001年11月,大坝混凝土浇筑已经完成。神流川抽水蓄能电站上水库坝和金居原抽水蓄能电站下水库坝的地质条件不适合建混凝土坝,都采用粘土心墙堆石坝。日本迄今为止尚未真正建设过混凝土面板堆石坝。日本是多地震国家,土石坝的坝坡放得较缓。为适应抽水蓄能电站的工作条件,上游坝坡则更缓。神流川上库坝上下游坝坡分别为1摘要:2.7和1摘要:2.0,金居原下库坝的上下游坝坡为1摘要:2.9和1摘要:2.1。

四、输水系统

1、输水道的布置和最大流速

神流川抽水蓄能电站的输水道总长约6350m,在世界上的抽水蓄能电站中算是相当长的了。好在它的水头也很高(有效发电水头653m),L/H=9.7,尚在通常认为较好的L/H%26lt;10的范围内。输水道分成两组,分别对应两个地下厂房。其中1号输水道连接4台机组,上游引水隧洞长2445m,内径8.2m,钢筋混凝土衬砌。经上调压井后分为两条压力钢管。压力钢管主管长约1300m,内径4.6m,其中斜井段长约960m,倾角48°。在下平段作第2次分岔,分成两条内径2.3m的支管,各长约100m。尾水道依次由4条合为2条,再经尾水调压井后合为1条,内径为4.1m~8.2m,尾水隧洞总长约2300m,全部用钢筋混凝土衬砌。2号输水道连接2台机组,引、尾水隧洞主洞内径均为6.1m,在上调压井和尾水调压井处不作分岔,其余和1号输水道完全相同。

金居原抽水蓄能电站的枢纽布置比神流川电站要紧凑,输水道总长约2600m,L/H=5.1。采用一洞三机,引水和尾水主隧洞各2条。地下厂房基本上是首部开发的布置,从上进出水口至厂房的两条上游输水道仅长910m和920m。不需要设上游调压井,上游闸门井后的两条压力钢管长740m和710m,内径5.7m,倾角分别为53°和57°。在厂房前60m处各分岔两次后分别和6台机组相连,分岔后的支管进球阀前内径2.4m。6条内径4.2m的尾水支管经两个尾水调压井后合为两条内径7.2m的钢筋混凝土衬砌的尾水主隧洞。尾水道总长分别为1600m和1610m。

这两座电站压力钢管主管内的最大流速,在通过最大发电流量时均超过10m/s,基本上是日本抽水蓄能电站的一般做法。该流量比我国大型抽水蓄能电站压力钢管的设计最大流速高。流速高则水头损失大,对抽水蓄能电站来说,最终要用增加抽水电量也即抽水电费来补偿。欧美和日本的抽水电价相对便宜一些,在经济直径计算时往往选择较小的直径,宁可水头损失大一些。我国目前情况和他们不同,压力钢管内的最大流速一般只有6~8m/s,通过相同流量时管径要大一些。其实对某些输水道不长、水头损失总量不大的工程,适当提高输水道内的最大流速以减少基本建设的一次投资、减小压力钢管的制作难度,可能是更好的方案。

2、压力钢管的新水平

两座电站压力钢管的HD参数均甚高。神流川电站压力钢管下平段最大静水压816m,动水压力超过1000m,HD超过46000kN/m。金居原电站虽然承受水压要低一些(压力钢管下平段最大静水压649m),但是管径为5.7m,以动水压力计算的HD值和神流川电站也相差无几。神流川电站的压力钢管已采用了HT100级的高强钢板。将该等级的钢板用于压力钢管,在日本是首次。金居原电站的压力钢管计划也要采用HT100级的高强钢板,将是日本压力钢管使用该等级钢板的第2个工程。

神流川电站压力钢管的斜井段长约1000m,倾角48°,围岩地质条件相对软弱,为了平安和节约投资,开挖施工使用了直径为6.6m的全断面隧洞掘进机(TBM)。在如此陡倾角、大直径的斜井开挖时使用TBM,据称在日本是首次,在世界上也没有先例。金居原电站的压力斜井虽然比神流川电站斜井短一些,可是直径更大,倾角也更陡。按现在的计划,斜井施工不使用TBM。但该电站的压力斜井的施工支洞,以及尾水隧洞、进厂交通洞、尾水隧洞和出线电缆洞计划使用TBM开挖。

3、尾水隧洞

两座电站的尾水隧洞都很长,而且由于机组单机容量大、转速高,Hs绝对值也很大(神流川Hs=-104m,金居原Hs=-95m),所以两座电站的尾水调压井的规模都很大。神流川电站1号输水道尾调高148m(从尾水隧洞中心线起算,下同),为带上室的阻抗式,井身内径10m。金居原电站由于下水库的水位变幅大,原设计尾水调压井高186m,带有上室,井身为内长轴15m、短轴10m的椭圆形,便于三条尾水支洞同时进入井内。

近年来,为了减少土建工程量、降低工程投资,日本抽水蓄能工程界正在探索高水头抽水蓄能电站长尾水隧洞取消调压井的可能性,进行了相应的试验探究。有一座设计中的抽水蓄能电站尾水洞长近900m,经探究可以取消尾水调压井。在探究中他们提出了一个尾水隧洞时间参数Tws(单位s),表示尾水隧洞内水力过渡过程压力变化相对于Hs值的比例,即摘要:Tws=LV/[g(-Hs)。式中L为尾水隧洞长度(m),V为尾水隧洞内平均流速(m/s),g为重力加速度(m/s2),-Hs为最小沉没深度(m)。根据多座抽水蓄能电站的设计经验,可以取消尾水调压井的Tws不能大于6s,但如Tws大于4s就须进行具体探究。本文介绍的这两座电站的尾水隧洞太长,按工程数据计算,神流川1号输水道Tws=14.3s,2号输水道Tws=12.9s,金居原电站Tws=11.2s,均远大于6s的限值。故两座抽水蓄能电站设置尾水调压井是必须的。

五、地下厂房

1、地下厂房的布置特征

由于两座抽水蓄能电站的水泵水轮机要求的最小沉没深度都非常大,而地质条件又答应,采用地下式厂房是必然的选择。

在输水系统部分已经介绍,神流川电站的地下厂房分为两处。1号地下厂房安装4台机组,厂房尺寸为长214.7m,宽34.0m,高55.3m;2号地下厂房安装2台机组,厂房尺寸为长139.0m,宽度和高度和1号地下厂房相同。之所以将地下厂房分两处布置,据说主要是由于地质条件的原因。两处地下厂房加在一起,共长约350m,分两处布置也为加快施工进度创造了条件。金居原电站的地下厂房安装全部6台机组,厂房尺寸长269.9m(其中主厂房段长197.5m),宽25m,高48.3m。

和我国已经建设的大型抽水蓄能电站相比,这两座电站的地下厂房除了规模大之外,还有一些特征。这两座电站的地下厂房在布置上都是把主变压器放在主厂房洞的两端,主副厂房和主变洞合为一个洞室。副厂房也不是集中布置在主厂房的一端,而是在主厂房内分散布置。这样的布置方式和我国抽水蓄能电站通常的布置是不同的。但在日本,以前就有一些抽水蓄能电站的地下厂房采用这种布置方式。另外,神流川电站的1号厂房和金居原电站的厂房都把安装场布置在厂房的中部而不是在厂房的一端(神流川电站2号厂房因为只有2台机组,安装场是布置在一端的)。安装场放在地下厂房的中部,在日本是常用的做法,而我国已建大型抽水蓄能电站仅十三陵的地下厂房是这样布置的。中国和日本抽水蓄能电站地下厂房布置方式的不同,除了各自的习惯做法外,从水工结构的观点来说,可能主要还是考虑到地质条件对洞室围岩稳定的影响。日本抽水蓄能电站地下厂房的地质条件多数都不好,采用一个长的大洞室,比起用两个相互平行、间距又不可能很远的大洞室来,围岩的整体稳定性自然要更好一些。同样,安装场放在地下厂房中部比起放在端部来,可以减少洞室上下游高边墙的连续长度,对增加高边墙的稳定性也是有利的。

2、地下厂房支护方式和施工技术的发展

和日本早期的抽水蓄能电站地下厂房相比,神流川电站和金居原电站地下厂房结构的明显进步在于厂房洞室的支护方式。由于围岩条件不好,以往日本抽水蓄能电站地下厂房基本上都是全钢筋混凝土衬砌,或者至少顶拱是钢筋混凝土衬砌的。而这两个电站的地下厂房洞室支护已完全改变了以前的常规做法。神流川电站地下厂房尽管跨度已达到34m,其顶拱和边墙均采用锚杆喷混凝土加系统的预应力锚索支护。预应力锚索为1000kN等级,长度一般为15m,围岩好的地方也有长10m的,间距3m×3m;系统锚杆长5m。金居原电站地下厂房跨度25m,设计也是对顶拱和边墙采用喷锚支护。顶拱喷混凝土厚32cm,边墙喷混凝土厚24cm,也要加系统的预应力锚索或锚杆。

神流川电站的地下厂房洞已于2001年10月完成开挖。34m的跨度对抽水蓄能电站的厂房是比较少见的。为了确保施工平安,开挖的程序上有些新意。顶拱先开挖中导洞,导洞顶拱支护好以后再向两侧扩挖。扩挖时每侧的岩体等分为若干区段,每段在洞轴线方向的长度为15m左右。同侧的各区段采用“跳仓”式的开挖,即隔一段挖一段,挖完一段随即支护好;而两侧的先开挖区段相互错开,以减少顶拱支护前的自由跨度。待整个顶拱的先开挖区段支护好后,顺序开挖留下的区段。顶拱开挖支护完毕后再用类似的方法逐层下扩。该厂房洞开挖时采用了观测施工管理系统,即综合了勘察、设计、施工和监测功能的一体化信息系统。对开挖区域进行了连续监测。围绕厂房洞室建立了约1600个测点,不断地监测围岩的状况。通过计算机系统对观测数据的高速处理,分析围岩由于开挖而产生的应力变形的变化,并将分析结果反馈给后续开挖过程的设计,以促进洞室的开挖做到平安和经济。

六、减轻对环境的不利影响

重视保护环境,减轻工程对环境的不利影响,已成为工程设计和施工必须做到的重要方面。作为发达国家的日本,更是如此。两座电站在环境保护方面也有一些新的理念。

1、不改变河水的流向。如前所述,神流川电站上水库位于信浓川水系,该水系流入日本海;而下水库所在的利根川水系则流入太平洋。上水库集水面积6.2km2。尽管面积不大,为了使这块集水面积上的径流不致改变其归属,从而不改变下游的生态环境,上水库集水面积的产水未被截留,而是通过导流洞和放水设施如数排向下游。这是考虑环境效益重于经济效益的实例。以前,通过跨流域调水来增大抽水蓄能电站的经济效益,曾是抽水蓄能电站选点规划时要考虑的因素之一。在环境保护日益重要的今天,规划的观念也要更新。

2、不破坏地面自然景观。除了大坝和水库以外,所有的设施都尽可能设置在地下。除了采用地下输水系统和地下厂房外,这两座超大型抽水蓄能电站的站内交通道路都大量地采用了隧洞的形式。神流川电站的对外交通道路从位于下水库左岸的进厂交通洞洞口跨过水库库尾,再沿下水库右岸经大坝右坝头直至下游和已有公路连接,长度超过5km,大部分采用隧洞。金居原电站下库区从大坝下游通向库尾地面开关站和进厂交通洞口的道路以及对外交通道路改线段采用隧洞共长3.42km,约占这些道路总长度的50%。此外,为了少破坏地面植被,筑坝材料尽可能在库内沉没区开挖。库外料场和弃渣区均精心做了水土保持设施,重新种植当地的不同植物,以恢复原有的自然景观。

七、结束语

为了增强抽水蓄能电站在电力市场的竞争力,日本抽水蓄能电站的建设有针对性地采取了一些应对办法,并已在新建的抽水蓄能电站中实施,以充分发挥抽水蓄能电站的优势。日本抽水蓄能电站建设技术也在这个过程中得到新的发展。限于笔者所能获得的资料,本文仅主要介绍了两座正在建设的超大型抽水蓄能电站规划和土建方面的一些新的技术进展。值得指出的是,由于近年来日本经济发展持续低迷,电力需求增长缓慢,对新电源点包括新抽水蓄能电站的建设速度也有明显的影响。例如神流川抽水蓄能电站虽然地下厂房已经开挖完毕,但计划要到2005年才发电;金居原抽水蓄能电站的建设机构早已成立并运作,但至今主体工程尚未开工。尽管如此,日本从上世纪90年代以来抽水蓄能电站建设的新理念和新技术,还是值得我们探究和借鉴的。

参考文献

[1YasudaMasashi,Japan’sExperienceinPumpedStorage,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[2YasudaMasashi,CommercialArrangementsofPumpedStorageDevelopmentinJapan,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[3YasudaMasashi,OptimizationofPumpedStorageDevelopment,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[4TokyoElectricPowerCo.,TheWorld’sLargestPumpedStorageHydropowerProject摘要:Kannagawa

[5东京电力株式会社,神流川发电所工事概要图,1999年4月。

[6关西电力株式会社金居原水力发电所建设预备所,金居原水力发电所建设工事概要,2000年5月。

蓄能电站范文篇2

关键词:抽水蓄能电站工程;造价;影响因素;控制;措施

我国目前抽水蓄能电站在运、在建规模分别达到1923万千瓦、3015万千瓦,而且“十三五”期间将新开工抽水蓄能容量6000万千瓦,到2020年我国抽水蓄能运行装机容量预计达到4000万千瓦。在社会经济飞速发展的同时,国家对环保、水保的要求越来越高,人员工资步步高升,钢材水泥等大宗材料压产能造成价格猛涨,给抽水蓄能电站建设带来一定挑战。面对市场竞争环境的日益激烈,就如何增强自身竞争实力、如何在保证质量和安全的前提下降低造价,已经成为许多抽水蓄能电站建设者所着重关注的话题。对此,在抽水蓄能电站建设工程中,务必要做好造价控制工作,并针对其中所存在的影响因素,及时抑制影响因素的产生,从而使造价控制成效能够得以凸显,以保障自身的健康持续发展。浙江缙云抽水蓄能电站位于浙江省丽水市缙云县,距杭州市、丽水市直线距离分别为200Km、25Km,负责建设的抽水蓄能电站设计总装机180万千瓦,项目建设总工期75个月,计划2017年开工。上水库位于大洋镇,下水库位于方溪乡,电站建成后主要承担浙江电网调峰、填谷、调频、调相及事故备用等任务。

一、浙江缙云抽水蓄能电站工程造价影响因素分析

以浙江缙云抽水蓄能电站工程造价影响因素来说,其中主要影响因素包括设计影响因素、技术措施影响因素、招标采购因素影响、完工结算工作造价控制、融资管理因素控制、竣工决算与造价控制因素材料、设备环节的影响因素、人为因素以及制度因素等。对此,应主动分析上述影响因素,及时分析出影响因素的产生原因,以期彻底去除影响因素,保证造价控制。下面详细介绍浙江缙云抽水蓄能电站工程招标设计阶段造价影响因素,详细内容主要体现如下:其一,设计工作造价控制因素。设计工作对工程造价的影响很大,设计工作中的造价控制主要体现在技术与经济的结合上,既要满足技术先进,又要满足经济合理和节约投资。其二,技术措施影响因素。筹建期工程、大坝主体工程、厂房、引水系统、机电部分、房屋建筑等都是缙云抽水蓄能电站的主要组成部分。根据现场地质条件,合理设置施工次序,优化设计,房屋建筑永临结合都可以结余而工程投资、减少资源浪费。其三,招标采购结算造价控制因素。招标采购阶段是整个工程进行控制的关键环节。为保证工程项目按着既定目标实施,选择实力雄厚、信誉优良的施工承包商至关重要。其四,移民征地因素。做好征地和移民安置工作对保证工程顺利开展、造价有效控制和社会稳定都具有重要意义。移民规划范围、工地时间、移民安置费用支付计划等都是影响移民费用的因素。其五,融资管理因素。蓄能电站投资资金的80%左右依靠融资,数量巨大,融资利率、融资时间、资金供应节奏等都会对财务费用造成重大影响。其六,人员及人工因素。工程管理者自身管理水平高低,施工队伍组织管理能力高低,也是影响工程造价的重要因素。其七,制度因素。在开展造价工作时,制度因素也为影响造价控制的一项主要因素。制度的缺失,不但会产生混乱施工现场,甚至还会出现一些安全问题,严重影响到现场施工人员的生命安全,影响到工程造价工作的开展。

二、浙江缙云抽水蓄能电站工程控制造价的措施探究

伴随着我国社会经济的快速发展,也推动了我国抽水蓄能电站建设的快速进展。而在抽水蓄能电站工程实施的过程中,需要做好抽水蓄能电站工程控制造价工作,从而提高抽水蓄能电站工程的经济效益,推动工程的顺利实施和顺利完成,实现企业经济效益的最大化,下面以浙江缙云抽水蓄能电站为例,对抽水蓄能电站工程控制造价的措施进行详细的分析与研究,以实现企业更为长远的发展和不断进步。(一)设计工作造价控制。为加强缙云电站设计工作中的造价控制,电站建设管理者在招标设计阶段就要对设计工作采取如下控制措施:1.做好工程总平面布置工作,合理安排各枢纽建筑物、构筑物、加工厂、仓库、营地等布置,减少因布置不合理导致的运输、管理等费用成本增加,有效节约投资;保证地质勘测工作的准确性,力争避免因勘测工作深度不够而导致的工程设计变更等后续问题,导致出现重大设计变更致使工程造价突破审计的投资概算;通过设计优化,在满足设计质量、保证使用功能的前提下降低工程造价。2.优化各单项工程的开工建设时间,减少财务成本。上、下库工程等非关键线路的单项工程可适当靠后组织开工建设。3.采用通用设计。采用通用设计,一是可以节约时间,加快工程建设进度;二是提高设计质量,避免设计中常有的碰、错、漏、补等现象,减少设计变更;三是可以促进构件制作和建筑施工的机械化、专业化,节约建筑材料。在缙云电站设计工作中,积极应用通用设计成果。4.严格设计单位变更内控流程。设计人员在工程设计中发生下列情况,必须立即报告设计总工程师和项目经理,经其批准后方可继续进行或修改:布置或结构形式变更,且可能引起工程量增加;工程材料、主要施工技术要求变更,可能引起工程量单价较大变更;设备选型改变;单项工程量与可研阶段相比超过3%。项目经理部应建立工程量台账和工程造价台账,随时汇总各专业最新设计成果,定期检查工程量及造价的变动情况,形成造价动态管控机制,严格控制不合理变更。5.加强精细化设计。在确定技术方案后,设计单位应参照已建抽水蓄能电站的工程经验,认真做好“三对应”工作。即每一单项设计都必须做好下列三项对应检查工作:(1)结构型式(设备型号)、主要布置与招标图纸相一致;(2)主要施工技术要求、工程材料与合同技术规程相一致;(3)主要工程量与合同中工程量报价单相应工程量相一致。倘若在施工设计过程中发现“三对应”有不符合者,如工程量超报价单、修改结构型式或布置(且这种修改将造成施工方法、布置的较大变更)、增加施工报价项目等,应由专业人员慎重研究后报请设计项目经理,按设计变更原则处理。6.严格执行各类标准。在招标设计阶段,各专业设计应严格执行国家、行业部门、国家电网公司和新源公司的有关标准,如《建设工程工程量清单计价规范》GB50500-2013、《水电工程工程量清单计价规范(2010年版)》、《输变电工程工程量清单计价规范》、《公路工程工程量清单计价规范》等。(二)技术措施控制造价。浙江缙云抽水蓄能电站工作人员根据现场地质条件,合理设置施工次序,优化设计,房屋建筑永临结合,合理地降低工程造价、减少资源浪费。1.筹建期工程是主体工程施工的前提和保证,为主体工程施工提供必要的交通、场地、用水、用电、通风等条件。设计单位应高度重视筹建期项目的勘察设计工作。如,对于进场公路,环库公路,设计人员必需实地进行考察,合理优化公路线型,减少开挖量、降低施工难度;对于桥梁、涵洞,应结合实际地形、地质条件,合理确定构筑物的结构形式、跨度、基础位置等,并结合交通运输条件、回填料开采利用等因素合理确定过水构筑物的结构型式是选择桥梁还是涵洞;对于隧洞设计,则应注重洞口位置的选择、隧道坡度选定,从而达到减少开挖量、降低施工难度及对明线段线型的影响的目地;对于在关键线路的通风兼安全洞、进场交通洞应高度重视,提高地质勘查精度,对于存在大的断层、涌水及软弱结构面的洞段,设计单位应提出详细的技术参数要求及安全、质量预控措施,在施工过程中加强地质超前预报。2.结合大坝导流方式和轴线处地形地质条件,进一步细化本工程总体开挖顺序,施工方法及出渣道路、填筑上坝道路的布置,减少开挖填筑工程量,缩短运输路线,从而节省工程投资。进一步优化基础处理和防渗方案,优化灌浆工艺,节省工程投资。3.浙江缙云抽水蓄能电站厂房设计采用通用设计,同时同步开展厂房内部布置三维设计,减少专业之间“错、漏、碰、缺”的常见通病,控制和降低工程建设成本。细化厂房桥机形成前厂房重大件设备的调运、安装措施,合理安排厂房施工计划,在保证进度的前提下降低造价。4.浙江缙云抽水蓄能电站工程引水系统为斜井、平洞相结合的结构形式,单段斜井长度超过300米,存在施工工期紧、施工难度大、工艺水平要求高的特点。设计单位应加强设计交底工作,明确安全、质量控制要求;积极配合缙云公司对施工方案的审查,保证施工方案的技术可行性、经济合理性;设计单位在施工过程中应根据的水文、地质条件及时对设计参数进行调整和优化,进一步达到降本增效的目的。5.在总结类似工程机电设计经验的基础上,开展设计优化,加强精细化设计工作,尽可能减少因设计修改而引起的工程量变更。主要措施如下:(1)强调项目的计划性、前瞻性管理,在设计项目、人员安排、时间安排上结合电站总体进度进行优化,保障设计工作的人员投入;(2)在满足规程规范的基础上,尽可能从节约工程投资的角度出发,从方便施工及运行管理的角度出发,加强细节设计工作;(3)利用设计单位的三维设计平台,细化深化三维设计工作,充分利用三维设计进行设备布置优化、碰撞检查,减少错漏碰缺;(4)加强专业间的协同设计,使配合更为紧密、配合精度更高,时间更为紧凑;(5)充分考虑电站施工期与永久运行期设备的永临结合问题,尽可能节约工程投资。6.房屋建筑建设方面,缙云抽水蓄能电站工程技术人员充分考虑电站施工期与永久运行期房屋建筑的永临结合问题,尽可能节约工程投资、减少资源浪费。(三)招标采购阶段造价控制。招标采购阶段是整个工程进行控制的关键环节。为保证工程项目按着既定目标实施,选择实力雄厚、信誉优良的施工承包商至关重要。为此,重点从以下几个方面着手:1.做好招标文件的编制工作,提高招标文件的质量严把招标文件编制质量关,严格招标文件编制审查制度,要求设计院在编制技术规范书时做到内容完整、要求明确、条款严密;严格按水电工程量清单计价规范编制工程量清单,对照招标图纸进行工程量梳理,保证清单准确、不漏项,列明项目编码、项目特征、工序要求、工程量等内容,使投标单位准确报价;对招标文件的边界条件界定尽量做到合理有序,减少项目实施过程中因合同条款含混导致的索赔。结合新源公司设置招标限价原则的有关要求,合理编制最高限价,在保证招标结果合理性的同时,争取有效降低工程成本2.重视工程量清单编制工作工程量清单是投标人填报分项工程单价、对工程进行计价的依据,是计价、询标和评标工作的基础,是施工过程中支付工程进度款的依据,更是办理工程结算、竣工结算及工程索赔的重要依据。为保证工程量清单的准确性与完整性,设计院在编制工程量清单时应做到:(1)掌握工程量清单的编制依据。(2)熟悉清单项目的工程内容(3)准确描述清单项目的项目特征。(4)准确计算清单项目的工程量。严格依据《水电工程工程量计算规定2010版》、《水电工程工程量清单计价规范2010版》、《建筑工程清单计价规范》(GB50500-2013)中规定的工程量计算规则计算。(5)非实体项目不要漏项。(6)认真复核工程量清单。工程量清单编制完成后,除编制人要反复检查外,还必须有其他人审核。工程量清单主要复核清单项目是否错项、漏项,项目特征描述是否清楚,工程量计算是否有误等等。在设计单位完成工程量清单编制和提供设计图纸后,缙云公司组织有丰富经验的技术和经济专家对工程量清单和设计图纸进行审查,保证工程量清单的准确性和完整性,设计方案切实可行又经济合理。3.合理安排招标采购时间,提高资金的使用效率一是根据国网公司直属产业单位年度招标批次安排时间及新源公司招标批次审查安排时间,合理确定招标采购时间,结合工程总工期的时间安排及移民征地工作的开展情况,对已具备开工建设条件的项目提前安排招标批次,实现移民搬迁完成,地方政府提供净地后能在第一时间安排工程承包单位进场施工,缩短因供地不具备条件导致的等待时间;二是充分考虑各项目的施工时间确定招标时间,做到标段时交面的有效搭接,减少等待时间;三是适时安排招标时间,确定工程施工时段,结合资本金到位情况及融资到位情况,合理安排工程招标采购及资金支付,提高资金的使用效率。4.合理确定工期根据分标方案、工程量强度、施工难度和地质条件等,合理确定标段的工期,科学先进不冒进,使承包单位在项目施工时能在资源上做到合理投入,达到控制工程造价的目的。(四)做好移民征地工作。缙云抽水蓄能电站高度重视移民征地工作。一是督促地方政府按照工程用地进度要求,及时提供工程用地,满足工程施工需要;二是在合理规划占地范围,尽量封闭施工区域,减少施工对村民的干扰,最大限度减少施工单位因施工干扰而提出的索赔。合理安排移民安置相关费用支付。缙云电站项目移民、专业项目数量多,工作量大,总费用高,移民费用支付既要适度提前保证移民安置实施,又要避免过度超付,造成大量资金占用,增加资金成本。移民安置费用实行专账管理,除实施管理费以外的费用按照实施进度计划,适度提前支付,每月补偿款由缙云县人民政府根据实施进度提前一个月提出拨付申请,经移民监理审核同意再进行支付,为避免资金超付拨付后在缙云县人民政府移民安置转用账户上滞留,每次支付前需提供专账资金小于800万元的证明。实施管理费根据实施进度比例的85%支付,支付至90%后停止支付,待完成移民安置验收并将所有资料提交归档后支付余款。(五)融资管理。电站建设资金主要由资本金和银行贷款两部分组成,资本金占总投资的20%,电站投资的其余部分主要由国内商业银行贷款解决。以充分利用自有资金为前提,优先考虑内部融资、债券融资等低成本融资方式,以长期资金为主,短期融资为辅,原则上短期融资比例不低于10%。融资采取信用贷款方式为主其他融资方式为辅。由新源公司和本公司按“择优”原则共同审议确定项目贷款银行,利用银团贷款方式筹集项目所需资金,确保项目低成本可持续融资。公司严格按新源公司批准的融资方案开展融资工作。各类融资合同的签订都需经过会签,财务部门负责人、法律事务专责及总会计师、总经理均需审核融资合同条款是否合理并在合同会签簿上签署意见。合同审核无误后,应由法定代表人或授权人代表与金融机构签订借款合同,签字权限按新源公司“法定代表人授权书”的有关规定执行。公司融资执行情况统一纳入财务管控系统登记备案,并按月填写“融资情况执行表”,新源公司通过对银行账户的监控以及通过融资情况执行表监督我公司是否有超预算的融资行为,并按月考核公司融资方案申报及执行情况,作为年度考核的依据。(六)人员及人工费用环节控制造价。在抽水蓄能电站工程施工中,最为关键的一项环节就是控制施工进度,施工队伍施工效率高低很大程度上会影响施工成本,进而影响工程造价。工程建设管理者自身管理水平高低也是影响工程造价的重要因素。人工费造价控制,主要体现在提升工作效率上,工作效率一旦提升,势必能够降低施工时间,落实对人工成本的合理控制。对工程建设管理者来说,应重视人工费环节造价控制。首先要解决的就是人员工资与降低人员费用两者之间的矛盾性,对此,工程建设管理者应以原有的施工工艺为基础,科学估计抽水蓄能电站工程实际用工量,而后合理雇佣施工人员,使施工造价能够得到控制。(七)健全造价控制制度。健全造价控制制度,为开展施工造价控制工作的必要前提。因此,缙云公司从成立之初就积极编写设计、合同管理等造价控制管理制度,结合缙云抽水蓄能电站情况,有针对的健全造价控制制度,确保发挥积极作用,为缙云抽水蓄能电站工程造价控制工作的开展提供帮助,从而真正落实对造价的科学控制。

总而言之,对于抽水蓄能电站工程建设而言,应从招标设计阶段就提前考虑各种造价影响因素,结合电站实际情况积极做好造价控制工作,及时对各个环节的成本予以控制,达到控制造价的目的。

参考文献:

[1].付燕燕,鞠文希,尹玉泽.水利水电工程设计阶段工程造价的控制[J].云南水力发电,2018,34(04):157-158.

[2].王淋桃.水利水电工程造价管理中存在的问题及其解决对策研究[J].现代物业(中旬刊),2018(08):152.

[3].罗川炼.水利水电工程造价控制中一些问题的处理策略[J].中国标准化,2018(22):146-147.

[4].王婧.水利水电工程设计阶段工程造价控制刍议[J].广东水利电力职业技术学院学报,2018,16(04):19-21.

蓄能电站范文篇3

1抽水蓄能电站设置调压井的初步判断

1.1从水力学角度分析设置调压井的条件

在初步判断是否需要设置上游调压井时,可以根据导叶关闭时间Ts和高压管道中水击压力允许值来近似判断。对常规电站水头一般低于200m,高压管道水击类型一般是未相水击,其简化公式为:

式中:

hm-未项水击压力

通过上式可确定贯性时间常数TW:

对于抽水蓄能电站,最高水击压力一般是由水轮机甩负荷工况控制,过渡过程计算与常规电站没有本质区别。抽水蓄能电站较经济水头一般为400~600m,蓄能电站的水头一般是比较高的,对于高水头电站,输水系统水击类型往往是第一相水击,其简化公式为:

式中:h1-第一相水击压力相对值;

τ0-导叶的起始相对开度;

a-水击波波速。

通过上式可确定贯性时间常数TW:

当μτ0>1时,水击压力为第一相水击;当μτ0<1时,水击压力为未相水击。当μτ0=1时第一相水击压力与未相水击压力相等。在相同导叶关闭时间,产生相同水击压力,不同水击类型所要求的输水系统贯性时间常数TW并不相同,第一相水击要求的TW要比未相水击要求的小。也就是说,蓄能电站设置调压井的条件要比常规电站严格。

1.2从电站调节性能方面分析设置调压井的条件

抽水蓄能电站对电网负荷变化的迅速响应能力通过合理选择输水系统、机组和控制设备参数来实现。要想使电站具有良好的调节性能,在可行性研究阶段就应注重这一方面的问题。

否则方案一旦确定,就无法在后期建设中实现良好的运行方式。在前期设计中,主要通过调整输水系统的惯性时间常数TW和机组加速时间常数Ta来解决这一问题。通过图1对日本和我国大型抽水蓄能电站的统计可以看出,各蓄能电站基本全部位于《水电站调压井规范》DL/T5058-1996推荐的调速性能好的区域内,再一次证明抽水蓄能电站对电站调节性能要求要比常规电站严格。

2设计内水压力的初步确定

常规电站当水头大于100m时,控制水击压力的上升值不超过30%。对于蓄能电站来说,设计水头比较高,由于经济性和机组特性等原因,使蓄能电站输水系统的设计内水压力的采用值比常规电站要高。在电站前期设计中,很难得到机组全特性曲线,难以进行较确切的过渡过程分析。在这种情况下,可以寻求替代方法。通过对中日27个大型电站统计分析发现最大设计内水压力H1与最大静水头H2有很好的相关性,详见图2。相关系数R=0.99,相关方程为:

H1/H2=1.307

在没有机组资料情况下,设计内水压力可按管道最大静水头1.31倍来考虑。

3结论

蓄能电站范文篇4

抽水蓄能电站属于一种有效的电网调峰设施,其运行时的主要特征为:(1)可以迅速地启停,且快速地对急剧发生变化的负荷作出反应,适用于黑启动、系统调频、无功调节、快速对负荷进行跟踪等辅助性的功能中。(2)除了可以提供给系统峰荷电能,还能帮系统消除低谷电能[1]。由此可见,抽水蓄能电站的建设对于电力系统稳定、安全运行具有重要意义。抽水蓄能电站以水泵抽水方式把电力系统内多余的电能转成上水库水势能,随后在电力系统需要的时候,经水轮发电机把势能转成电能。在通常情况下,抽水蓄能电站具备下水库、上水库、高地、高压引水系统、低压尾水系统以及抽水蓄能机组等,其整体结构如图1所示。

2工程概况以及抽水蓄能电站施工供电接入系统设计概述

2.1工程概况。如今某地水电调峰的能力约为2000MW,很多时候都不符合当地需求。因此,为了确保当地电网可以稳定、安全地工作,亟需建设抽水蓄能电站。经过深入探讨,当地政府规划建设抽水蓄能电站1座,装设300MW相关机组共4台。2.2设计方案选择及优化注意事项。(1)设计方案应当具备较强的灵活性,同时在符合技术标准的前提下,最大限度地减少投资。(2)方案中供电接入系统需要有科学的潮流流向,以便保证电力在高峰期也能被安全、稳定地输送出去;同时确保低谷抽水灵活简便,能够符合电力系统稳定、安全的运行需求。(3)方案应保证发电厂可以方便地管理抽水蓄能电站。(4)方案需要便于对电网接线以及电压等级等进行简化。(5)方案应当与当地整体电网的发展方向相符合。2.3设计方案选择及优化主要思路。有关部门在对各种方案进行比选时,需要综合考虑工程总体造价、接入点、潮流、电压等级以及线路整体的路径等。

3方案具体设计

3.1选择接入点。经过实地勘察,此工程周边有5座变电站,规格分别为220kV的变电站2座(A、B站),1000kV的变电站1座(C站)以及500kV的变电站2座(D、E),且每一座变电站都接入间隔供电厂。经过调查分析,其中A站周边电量已经处于平衡状态,如果抽水蓄能电站被接入到此220kV的变电站,极易致使电力外送的容量受到限制,所以优先将此变电站予以排除。3.2方案制定。设计人员按照当地实际状况,设计出以下四种设计方案:(1)从电站中直出220kV的线路3回,其中2回被接入到500kV的D变电站,另外1回被接入到220kV的B变电站,其线路的长度是42km以及51㎞,且导线的截面为LGJ-2×630㎜2。(2)从电站中直出500kV的线路2回,被接入到C变电站的500kV一侧,其线路的长度是49㎞,且导线的截面为LGJ-4×400㎜2。(3)从电站中直出500kV的线路2回,被接入到500kV的E变电站,其线路的长度是53㎞,且导线的截面同(2)。(4)从电站中直出500kV的线路2回,被接入到500kV的D变电站,其线路的长度是51㎞,且导线的截面同(2)。3.3比选方案。3.3.1投资总额。经过计算可知,四种方案的投资总额分别为26013万元、24166万元、25633万元以及23467万元,方案(1)投资总额最多,方案(4)投资总额最少。3.3.2短路电流。经过实地勘察可知,当地水平最高的短路电流为500kV的网架短路电流,为了确保输电稳定、安全,还需要对当地短路电流加以有效限制。经过设计调查可知,方案(3)短路电流达到极限,若采用此方案,需要对短路电流加以限制。当前我国最常用的限制方式为“电网解环”[2]。需要注意的是,若采用“电网解环”,会增加一定程度的投资总额。3.3.3潮流的整体分布。经过有关人员的调查、统计和计算可知,各个方案整体的分布潮流都比较合理、科学,无“线路过载”隐患,然而方案(2)会在某些时候接近输送线路极限功率,若用此方案,有关部门为了避免突破输送线路极限功率,就应当采用相应的控制方式,这在一定程度上也会增加投资总额。3.3.4工程实施方式。对于(1)方案而言,其接入线路的路径类似方案(4),然而需要跨越3次河流,同时还需要跨越高速公路,沿途主要的地形多为丘陵以及山区,占比分别是66%与35%。相比于其他方案,此方案线路的总体长度最长,且具备最大的工程量。对于(2)方案而言,其一共有12回的出线,其中仅有2回能够让抽水蓄能电站进行接入,然而接入的难度非常大,加之经过勘测,若想接入此2回,需要使周边其余4回的线路进行停电才能顺利施工,这极易影响当地的整体电网运行。对于(3)方案而言,其接入的线路会跨越1条河、3条高速公路以及5条单回的线路,加之存在占比为45%的山区地形,使得实际施工会存在许多难题。对于(4)方案而言,其接入的线路需要绕过1座县城、2条高速路、1条省道、1条国道、1条铁路、1座水库、1个风景区、1条河以及2条单回线路,而途径山区的占比仅为19%,且施工环境良好,制约因素极少,总体的施工难度很低。通过对上述四个方面的对比可知,方案(4)的施工难度最低,且总体投资金额也很低,所以在本文涉及的工程中,选择方案(4)。

4主接线方案

4.1发电机和变压器组的接线方式。对于发电机和主变压器组而言,可选择的接线方式主要有三种,即单元接线,联合式单元接线以及扩大式单元接线,三种接线方式如图2所示。图2三种单元接线方式(1)第一种接线方式:此方式连接形式很简洁,相关设施布置思路很明确,可靠性也较高。然而,若选用此接线方式便需要4回高压出线,与方案(4)进线2回的方式不符;(2)第二种接线方式:此方式连接形式也很简洁,相关设施布置思路也较为明确。在此方式中,整体的进线可以降低至2回,与方案(4)相符,同时也使布置、接线更简便,最大限度地降低了相关资金投入[3];(3)第三种接线方式:此方式连接形式较为繁复,虽然进线的回路数也符合方案(4),然而经过多年实践可知,其可靠性较差。因此,经过比对,本工程发电机和主变压器组选择第二种“联合式单元接线”方式。4.2开关站的主接线方式。对于开关站而言,其主接线方式可供选择的方式主要有三项,即角型接线、3/2接线以及双母线接线。其中,角型接线方式中,任何设施出现故障都不会影响整体供电,具有较高可靠性,经济性较高;3/2接线虽然也有较高可靠性,任何设施出现故障都不会影响整体供电,然而其投资极高;而对于双母线接线方式而言,一旦母线隔离开关出现故障,将导致2台相关机组发生停机现象,因此没有较高的可靠性。经过比对,本工程开关站选用角型接线的接线方式。

参考文献

[1]王小军,董政淼,曹永闯.天池抽水蓄能电站施工供电接入系统设计方案的选择及优化[J].水电与抽水蓄能,2018,4(05):85-90.

[2]何小军.抽水蓄能电站工程安全监测自动化应用研究[D].山东大学,2017.

蓄能电站范文篇5

1.1保护方式

本工程光缆线路系统具备保护倒换功能,选用的SDH自愈环结构为:2纤单向通道保护环。该结构环网由2根光纤组成,其中一根用于传输业务信号,称主用光纤,另一根用于保护,称备用光纤。基本原理采用1+1的保护方式,1+1保护方式的保护系统和工作系统在发送端两路信号是永久相连的,接收端则从收到的两路信号中择优选取。优点:双发选收,实现简单,倒换速度快,因不使用自动保护倒换(APS)协议,倒换时间一般小于30ms。

1.2组网方案

蒲石河电站厂内光纤通信网包括8个光纤通信站和站址之间的光缆线路,8个光纤通信站的地点分别为交通洞口中控楼、地下厂房、500kV开关站、66kV施工变电所、下水库大坝集控楼、下水库进/出水口、上水库进/出水口、王家街生活区。光纤设备的配置和连接。蒲石河抽水蓄能电站厂内光纤通信网8个光纤通信站内的光纤通信设备皆采用SDH155系列设备,双光接口配置,光接口类型为L-1.1,8个光纤通信站内共11套光传输设备,皆配置相应数量的2M接口的电支路,并分别配置2个10M/100M以太网接口,各站皆配置相应数量的智能PCM设备,每个智能PCM设备内部包含所有时隙的全交叉矩阵,可与同类型设备联合组网。各通信站设备数量为交通洞口中控楼配置3套一体化光端机,3套智能PCM设备,1套综合配线系统,500kV开关站配置2套一体化光端机,1套智能PCM设备,1套综合配线系统,其余6个通信站皆各配置1套一体化光端机,1套智能PCM设备,1套综合配线系统。本厂内光纤通信网设置1套网络管理系统,1条公务联络信道。

1.3厂内光缆线路

蒲石河电站厂内光纤通信网8个光纤通信站之间的光缆线路,站址之间的光缆线路路由分别为交通洞口中控楼至地下厂房,地下厂房至500kV开关站,500kV开关站至66kV施工变电所,66kV施工变电所至下水库大坝集控楼,下水库大坝集控楼至交通洞口中控楼,交通洞口中控楼至下水库进/出水口,500kV开关站至上水库进/出水口,交通洞口中控楼至王家街生活区,线路总长约为15km。除交通洞口中控楼至下水库进/出水口段是直埋式光缆线路外,其余各段皆为架空敷设或沿电缆架敷设ADSS光缆或阻燃防鼠光缆线路。本系统光缆芯数由计算机监控系统、厂用保护、状态监测、消防火警、通风、通信、视频、局域网、综合数据网、电力系统通信和预留光纤组成。结合本系统特点,采用ITU-T简易的G.652光纤,工作波长为1310nm,有利于提高系统传输质量、降低光缆成本。

2主要设备的选择

2.1一体化光端机

本工程采用中兴通讯股份有限公司生产的ZXMPS200与ZXMPS330光端机设备进行通信网络的组建。利用ZXMP系列设备具备交叉能力强、可以在一个子架内实现多方向光信号优势,在一套ZXMP系列设备实现多个逻辑网元,逻辑网元可以是ADM、TM、REG类型,实现大容量业务上下,便于各类业务管理。利用ZXMP系列设备强大的升级能力,本工程建设155M速率自愈环,通过更换光板,就可以平滑升级为622Mbit/s速率自愈环。

2.2智能PCM设备

本工程选用的智能PCM设备的型号为:BX10。该系统以大容量交叉连接矩阵为核心,集成了数字/模拟接入、复用、交叉连接、传输功能于同一平台。BX10采用了标准化结构框架,开放式智能总线,结构简单,功能强大。BX10将SDH传输与PCM接入于一体,通过基于PCM技术的综合业务接入平台提供话音,数据及交叉连接(DXC1/0)等业务,将所接入的业务通过复用及交叉等处理后直接进入SDH光口。

3结语

蓄能电站范文篇6

日本是世界上的经济大国,也是电力生产大国。日本的电源构成以核电为首位,其次依次为燃煤火电、LNG火电和燃油火电。日本的常规水电开发较充分,但水电资源总量不多,在电源构成中占的比重不大。常规水电站除了径流式电站外,优先用于峰荷发电;许多LNG火电站和燃油火电站也按每日开停机模式运行。为了解决调峰问题,已经建设了大批抽水蓄能电站。2000年,日本共有43座抽水蓄能电站,总装机容量24705MW,名列世界首位。抽水蓄能电站在电网中的作用首先是调峰填谷,改善负荷系数;同时用于调频、维持电网稳定和调压。在日本,抽水蓄能电站是公认的主要调峰手段。日本抽水蓄能电站平均年发电运行小时数只有620h,可见其主要用于峰荷发电和解决电网的问题。尽管抽水蓄能电站的建设成本不低,但与其他调峰电源相比,还是有竞争力的。因此,日本近年来还在继续建设抽水蓄能电站。

为了增强新建抽水蓄能电站在电力市场的竞争力,日本抽水蓄能电站的建设采取了一些应对措施,新建抽水蓄能电站着眼于充分发挥抽水蓄能电站的优势。从规划和设计来说,除了担负调峰填谷的静态功能外,更致力于发挥抽水蓄能电站的动态功能。机组要有更快的对负荷变化的跟踪能力,适应频繁的工况转换,水库库容要满足更长时间事故备用的能力。而为了降低工程投资,从站址选择上要选水头更高的站址,安装体现机组制造最新水平的超高水头大容量的抽水蓄能机组,缩小地下洞室的尺寸。同时还要尽可能减少对环境的影响,降低环境保护的投资。这些措施中很重要的一条就是发展高水头和大容量的抽水蓄能机组,加大电站的规模。近期正在建设或准备建设的抽水蓄能电站中,有一些超大型的电站。本文要介绍的神流川(Kannagawa)抽水蓄能电站和金居原(Kaneihara)抽水蓄能电站可以作为其中的典型代表。这两座电站的水库规划、水工建筑物设计和工程施工中采用了一些新的理念和新的技术。

二、两座超大型抽水蓄能电站概况

1、神流川抽水蓄能电站

神流川抽水蓄能电站由日本东京电力公司开发,位于群马县与长野县交界处。上水库位于长野县信浓川水系南相木川上,下水库位于群马县利根川水系神流川上,地下厂房在群马县境内。该电站装机容量达2700MW,是目前世界上装机容量最大的抽水蓄能电站。地下厂房分两处,1号厂房安装4台机组,容量共1800MW;2号厂房安装2台机组,容量共900MW。两处厂房有各自的输水系统,但共用上、下水库,与我国广州抽水蓄能电站相似。电站有效发电水头653m,最大发电水头695m,最大抽水扬程728m,属700m水头段机组。单机额定容量450MW,其额定容量与发电水头的乘积超过了日本目前已部分投入运行的葛野川抽水蓄能电站机组,属世界上最大的抽水蓄能机组。该电站目前正在建设中,至2001年11月,工程进展已完成61%。

2、金居原抽水蓄能电站

金居原抽水蓄能电站由日本关西电力公司开发,位于滋贺县与岐阜县交界处。上水库位于岐阜县木曾川水系八草川上,下水库位于滋贺县淀川水系须亦川上,地下厂房在滋贺县境内。该电站装机容量2280MW,在世界上也名列前茅。电站的6台机组安装在一个地下厂房内,是世界上同一地下厂房内装机容量最多的抽水蓄能电站。电站有效发电水头514.8m,最大发电水头535.2m,最大抽水扬程约560m。由于该电站水头变幅高达150m,计划有部分机组要采用可变速机组。该电站的前期准备工程如对外交通道路的施工已在进行中,但主体工程尚未开工。

三、水库动能规划和大坝

1、增大水库调节库容与电站的事故备用能力

日本纯抽水蓄能电站上下水库的有效发电库容(以满出力发电小时数计)比我国的抽水蓄能电站用得大。一方面是为适应周调节的要求。通常情况下,发电只在星期一至星期五进行,而抽水则每天都要进行,因此水库的库容要大于日循环所需库容。另一方面,为了加强抽水蓄能电站与其他形式的电源在市场上的竞争能力,抽水蓄能电站应有更多的事故备用能力。水库有效库容提供的满出力发电小时数,神流川抽水蓄能电站为7h,而金居原抽水蓄能电站为9h。日本在上世纪70年代规划设计的一批抽水蓄能电站,水库蓄能量的满负荷发电小时数多数在6h左右,最多到7h(新高濑川抽水蓄能电站),少的只有4h(大平抽水蓄能电站)。与这些抽水蓄能电站的平均水平相比,这两个电站的满出力发电小时数要高一些。

2、加大水库的水位变幅,选用可变速机组

为了降低工程投资,提高经济优势,减轻对环境的影响,在规划抽水蓄能电站的水库时,要求在满足电网需求的前提下,减小水库的总库容和占地面积。高水头的站址自然是优先考虑的。其次是加大水库的水位变幅,增加水库的工作水深,以增加水库的调节库容。这样一来,水泵水轮机的工作水头比(Hpmax/Htmin)自然要变大,可能超出常规的范围,必须选用可变速机组。

神流川抽水蓄能电站最大发电水头695m,接近单级可逆式水泵水轮机制造能力的上限,很符合高水头站址的标准。该电站水库水位变幅并不大。上水库坝高136m,水位变幅27m;下水库坝高120m,水位变幅30m;水头总变幅57m。Hpmax/Htmin<1.15,在一般单转速水泵水轮机的水头(扬程)变幅范围之内。该电站采用的是单转速机组。金居原抽水蓄能电站最大发电水头535.2m,也属于高水头电站。而该电站在加大水库的水位变幅,增加水库的工作水深方面最为典型。上水库水位变幅95m,下水库水位变幅55m,合计150m。Hpmax/Htmin接近1.45,远超过一般单转速水泵水轮机的水头(扬程)变幅范围。因此该电站计划有部分机组要采用可变速机组,可以任意调整机组转速,以保证能在不同的水头(扬程)段高效率和安全地运行。事实上,日本可变速抽水蓄能机组发展很快,自大河内(Okawachi)抽水蓄能电站采用这种机组以来,已有数座新建及扩建的抽水蓄能电站选用了可变速机组。

3、坝型选择与库容的综合考虑

由于环境保护的要求,不允许过大的水库淹没,两座电站的上下水库都建在高山环抱的山谷地带,优点是最高库水位远低于库周山岭的地下水位,除坝基外,库盆没有采取专门的防渗措施。但这样的地形条件带来的缺点是为了获得必要的库容必须修建高坝。为避免土石坝上游坝体侵占库容,如地质条件允许,则尽可能建混凝土坝。

神流川抽水蓄能电站下水库坝和金居原抽水蓄能电站上水库坝都采用了混凝土重力坝。正在建设的神流川下库大坝采用日本的碾压混凝土筑坝工法(RCD),碾压混凝土水泥用量110~100kg/m3,至2001年11月,大坝混凝土浇筑已经完成。神流川抽水蓄能电站上水库坝和金居原抽水蓄能电站下水库坝的地质条件不适合建混凝土坝,都采用粘土心墙堆石坝。日本迄今为止尚未真正建设过混凝土面板堆石坝。日本是多地震国家,土石坝的坝坡放得较缓。为适应抽水蓄能电站的工作条件,上游坝坡则更缓。神流川上库坝上下游坝坡分别为1:2.7和1:2.0,金居原下库坝的上下游坝坡为1:2.9和1:2.1。

四、输水系统

1、输水道的布置与最大流速

神流川抽水蓄能电站的输水道总长约6350m,在世界上的抽水蓄能电站中算是相当长的了。好在它的水头也很高(有效发电水头653m),L/H=9.7,尚在通常认为较好的L/H<10的范围内。输水道分成两组,分别对应两个地下厂房。其中1号输水道连接4台机组,上游引水隧洞长2445m,内径8.2m,钢筋混凝土衬砌。经上调压井后分为两条压力钢管。压力钢管主管长约1300m,内径4.6m,其中斜井段长约960m,倾角48°。在下平段作第2次分岔,分成两条内径2.3m的支管,各长约100m。尾水道依次由4条合为2条,再经尾水调压井后合为1条,内径为4.1m~8.2m,尾水隧洞总长约2300m,全部用钢筋混凝土衬砌。2号输水道连接2台机组,引、尾水隧洞主洞内径均为6.1m,在上调压井和尾水调压井处不作分岔,其余与1号输水道完全相同。

金居原抽水蓄能电站的枢纽布置比神流川电站要紧凑,输水道总长约2600m,L/H=5.1。采用一洞三机,引水和尾水主隧洞各2条。地下厂房基本上是首部开发的布置,从上进出水口至厂房的两条上游输水道仅长910m和920m。不需要设上游调压井,上游闸门井后的两条压力钢管长740m和710m,内径5.7m,倾角分别为53°和57°。在厂房前60m处各分岔两次后分别与6台机组相连,分岔后的支管进球阀前内径2.4m。6条内径4.2m的尾水支管经两个尾水调压井后合为两条内径7.2m的钢筋混凝土衬砌的尾水主隧洞。尾水道总长分别为1600m和1610m。

这两座电站压力钢管主管内的最大流速,在通过最大发电流量时均超过10m/s,基本上是日本抽水蓄能电站的一般做法。该流量比我国大型抽水蓄能电站压力钢管的设计最大流速高。流速高则水头损失大,对抽水蓄能电站来说,最终要用增加抽水电量也即抽水电费来补偿。欧美和日本的抽水电价相对便宜一些,在经济直径计算时往往选择较小的直径,宁可水头损失大一些。我国目前情况与他们不同,压力钢管内的最大流速一般只有6~8m/s,通过相同流量时管径要大一些。其实对某些输水道不长、水头损失总量不大的工程,适当提高输水道内的最大流速以减少基本建设的一次投资、减小压力钢管的制作难度,可能是更好的方案。

2、压力钢管的新水平

两座电站压力钢管的HD参数均甚高。神流川电站压力钢管下平段最大静水压816m,动水压力超过1000m,HD超过46000kN/m。金居原电站虽然承受水压要低一些(压力钢管下平段最大静水压649m),但是管径为5.7m,以动水压力计算的HD值与神流川电站也相差无几。神流川电站的压力钢管已采用了HT100级的高强钢板。将该等级的钢板用于压力钢管,在日本是首次。金居原电站的压力钢管计划也要采用HT100级的高强钢板,将是日本压力钢管使用该等级钢板的第2个工程。

神流川电站压力钢管的斜井段长约1000m,倾角48°,围岩地质条件相对软弱,为了安全和节约投资,开挖施工使用了直径为6.6m的全断面隧洞掘进机(TBM)。在如此陡倾角、大直径的斜井开挖时使用TBM,据称在日本是首次,在世界上也没有先例。金居原电站的压力斜井虽然比神流川电站斜井短一些,可是直径更大,倾角也更陡。按现在的计划,斜井施工不使用TBM。但该电站的压力斜井的施工支洞,以及尾水隧洞、进厂交通洞、尾水隧洞和出线电缆洞计划使用TBM开挖。

3、尾水隧洞

两座电站的尾水隧洞都很长,而且由于机组单机容量大、转速高,Hs绝对值也很大(神流川Hs=-104m,金居原Hs=-95m),所以两座电站的尾水调压井的规模都很大。神流川电站1号输水道尾调高148m(从尾水隧洞中心线起算,下同),为带上室的阻抗式,井身内径10m。金居原电站由于下水库的水位变幅大,原设计尾水调压井高186m,带有上室,井身为内长轴15m、短轴10m的椭圆形,便于三条尾水支洞同时进入井内。

近年来,为了减少土建工程量、降低工程投资,日本抽水蓄能工程界正在探索高水头抽水蓄能电站长尾水隧洞取消调压井的可能性,进行了相应的试验研究。有一座设计中的抽水蓄能电站尾水洞长近900m,经研究可以取消尾水调压井。在研究中他们提出了一个尾水隧洞时间参数Tws(单位s),表示尾水隧洞内水力过渡过程压力变化相对于Hs值的比例,即:Tws=LV/[g(-Hs)]。式中L为尾水隧洞长度(m),V为尾水隧洞内平均流速(m/s),g为重力加速度(m/s2),-Hs为最小淹没深度(m)。根据多座抽水蓄能电站的设计经验,可以取消尾水调压井的Tws不能大于6s,但如Tws大于4s就须进行详细研究。本文介绍的这两座电站的尾水隧洞太长,按工程数据计算,神流川1号输水道Tws=14.3s,2号输水道Tws=12.9s,金居原电站Tws=11.2s,均远大于6s的限值。故两座抽水蓄能电站设置尾水调压井是必须的。

五、地下厂房

1、地下厂房的布置特点

由于两座抽水蓄能电站的水泵水轮机要求的最小淹没深度都非常大,而地质条件又允许,采用地下式厂房是必然的选择。

在输水系统部分已经介绍,神流川电站的地下厂房分为两处。1号地下厂房安装4台机组,厂房尺寸为长214.7m,宽34.0m,高55.3m;2号地下厂房安装2台机组,厂房尺寸为长139.0m,宽度和高度与1号地下厂房相同。之所以将地下厂房分两处布置,据说主要是由于地质条件的原因。两处地下厂房加在一起,共长约350m,分两处布置也为加快施工进度创造了条件。金居原电站的地下厂房安装全部6台机组,厂房尺寸长269.9m(其中主厂房段长197.5m),宽25m,高48.3m。

与我国已经建设的大型抽水蓄能电站相比,这两座电站的地下厂房除了规模大之外,还有一些特点。这两座电站的地下厂房在布置上都是把主变压器放在主厂房洞的两端,主副厂房和主变洞合为一个洞室。副厂房也不是集中布置在主厂房的一端,而是在主厂房内分散布置。这样的布置方式与我国抽水蓄能电站通常的布置是不同的。但在日本,以前就有一些抽水蓄能电站的地下厂房采用这种布置方式。另外,神流川电站的1号厂房和金居原电站的厂房都把安装场布置在厂房的中部而不是在厂房的一端(神流川电站2号厂房因为只有2台机组,安装场是布置在一端的)。安装场放在地下厂房的中部,在日本是常用的做法,而我国已建大型抽水蓄能电站仅十三陵的地下厂房是这样布置的。中国和日本抽水蓄能电站地下厂房布置方式的不同,除了各自的习惯做法外,从水工结构的观点来说,可能主要还是考虑到地质条件对洞室围岩稳定的影响。日本抽水蓄能电站地下厂房的地质条件多数都不好,采用一个长的大洞室,比起用两个相互平行、间距又不可能很远的大洞室来,围岩的整体稳定性自然要更好一些。同样,安装场放在地下厂房中部比起放在端部来,可以减少洞室上下游高边墙的连续长度,对增加高边墙的稳定性也是有利的。

2、地下厂房支护方式与施工技术的发展

与日本早期的抽水蓄能电站地下厂房相比,神流川电站和金居原电站地下厂房结构的明显进步在于厂房洞室的支护方式。由于围岩条件不好,以往日本抽水蓄能电站地下厂房基本上都是全钢筋混凝土衬砌,或者至少顶拱是钢筋混凝土衬砌的。而这两个电站的地下厂房洞室支护已完全改变了以前的常规做法。神流川电站地下厂房尽管跨度已达到34m,其顶拱和边墙均采用锚杆喷混凝土加系统的预应力锚索支护。预应力锚索为1000kN等级,长度一般为15m,围岩好的地方也有长10m的,间距3m×3m;系统锚杆长5m。金居原电站地下厂房跨度25m,设计也是对顶拱和边墙采用喷锚支护。顶拱喷混凝土厚32cm,边墙喷混凝土厚24cm,也要加系统的预应力锚索或锚杆。

神流川电站的地下厂房洞已于2001年10月完成开挖。34m的跨度对抽水蓄能电站的厂房是比较少见的。为了确保施工安全,开挖的程序上有些新意。顶拱先开挖中导洞,导洞顶拱支护好以后再向两侧扩挖。扩挖时每侧的岩体等分为若干区段,每段在洞轴线方向的长度为15m左右。同侧的各区段采用“跳仓”式的开挖,即隔一段挖一段,挖完一段随即支护好;而两侧的先开挖区段相互错开,以减少顶拱支护前的自由跨度。待整个顶拱的先开挖区段支护好后,顺序开挖留下的区段。顶拱开挖支护完毕后再用类似的方法逐层下扩。该厂房洞开挖时采用了观测施工管理系统,即综合了勘察、设计、施工和监测功能的一体化信息系统。对开挖区域进行了连续监测。围绕厂房洞室建立了约1600个测点,不断地监测围岩的状况。通过计算机系统对观测数据的高速处理,分析围岩由于开挖而产生的应力变形的变化,并将分析结果反馈给后续开挖过程的设计,以促进洞室的开挖做到安全和经济。

六、减轻对环境的不利影响

重视保护环境,减轻工程对环境的不利影响,已成为工程设计和施工必须做到的重要方面。作为发达国家的日本,更是如此。两座电站在环境保护方面也有一些新的理念。

1、不改变河水的流向。如前所述,神流川电站上水库位于信浓川水系,该水系流入日本海;而下水库所在的利根川水系则流入太平洋。上水库集水面积6.2km2。尽管面积不大,为了使这块集水面积上的径流不致改变其归属,从而不改变下游的生态环境,上水库集水面积的产水未被截留,而是通过导流洞和放水设施如数排向下游。这是考虑环境效益重于经济效益的实例。以前,通过跨流域调水来增大抽水蓄能电站的经济效益,曾是抽水蓄能电站选点规划时要考虑的因素之一。在环境保护日益重要的今天,规划的观念也要更新。

2、不破坏地面自然景观。除了大坝和水库以外,所有的设施都尽可能设置在地下。除了采用地下输水系统和地下厂房外,这两座超大型抽水蓄能电站的站内交通道路都大量地采用了隧洞的形式。神流川电站的对外交通道路从位于下水库左岸的进厂交通洞洞口跨过水库库尾,再沿下水库右岸经大坝右坝头直至下游与已有公路连接,长度超过5km,大部分采用隧洞。金居原电站下库区从大坝下游通向库尾地面开关站和进厂交通洞口的道路以及对外交通道路改线段采用隧洞共长3.42km,约占这些道路总长度的50%。此外,为了少破坏地面植被,筑坝材料尽可能在库内淹没区开挖。库外料场和弃渣区均精心做了水土保持设施,重新种植当地的不同植物,以恢复原有的自然景观。

七、结束语

为了增强抽水蓄能电站在电力市场的竞争力,日本抽水蓄能电站的建设有针对性地采取了一些应对措施,并已在新建的抽水蓄能电站中实施,以充分发挥抽水蓄能电站的优势。日本抽水蓄能电站建设技术也在这个过程中得到新的发展。限于笔者所能获得的资料,本文仅主要介绍了两座正在建设的超大型抽水蓄能电站规划和土建方面的一些新的技术进展。值得指出的是,由于近年来日本经济发展持续低迷,电力需求增长缓慢,对新电源点包括新抽水蓄能电站的建设速度也有明显的影响。例如神流川抽水蓄能电站虽然地下厂房已经开挖完毕,但计划要到2005年才发电;金居原抽水蓄能电站的建设机构早已成立并运作,但至今主体工程尚未开工。尽管如此,日本从上世纪90年代以来抽水蓄能电站建设的新理念和新技术,还是值得我们研究和借鉴的。

参考文献

[1]YasudaMasashi,Japan’sExperienceinPumpedStorage,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[2]YasudaMasashi,CommercialArrangementsofPumpedStorageDevelopmentinJapan,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[3]YasudaMasashi,OptimizationofPumpedStorageDevelopment,PumpedStorageInternationalWorkshop,November2000,NanjingChina.

[4]TokyoElectricPowerCo.,TheWorld’sLargestPumpedStorageHydropowerProject:Kannagawa

[5]东京电力株式会社,神流川发电所工事概要图,1999年4月。

[6]关西电力株式会社金居原水力发电所建设准备所,金居原水力发电所建设工事概要,2000年5月。

蓄能电站范文篇7

湖南某抽水蓄能电站上、下游库区均位于福寿山-汨罗江部级风景名胜区范围内,上游库区部分区域还属于福寿山省级森林公园范围内。基于大量文献调研与工程实践经验,本文初步识别与湖南某抽水蓄能电站建设相关的水环境风险、生态环境风险以及地质环境风险等3类环境风险。水环境风险主要是在电站建设过程中可能由于施工产生的废料、废水、废渣等施工垃圾的不合规排放,导致地表水水质污染,以及电站建设过程中的打桩、基坑开挖等施工工序导致地下水环境稳定性破坏,产生地下水水位下降以及地下暗流、暗河等地下径流水质污染。生态环境风险主要是电站建设过程中由于需要修建拦河坝、上下游水库、生活区、上下游交通通道等水利枢纽设施,导致电站周边农田、森林等面积缩小,部分农业用地可能由于电站施工过程中产生的污染物质导致污染以及农作物减产,部分生物物种可能由于施工产生的污染与噪音被动迁移栖息地,甚至死亡。地质环境风险主要是在电站建设过程中可能由于炸药爆破等因素的影响,导致施工区域以及周边区域山体出现滑坡、塌方以及泥石流等自然灾害。

2事故树分析模型

2.1事故树构建流程。事故树将导致事故发生的诸多事件通过树状的逻辑图谱有序的连接起来,可以较好的表达事故产生的机理,明确导致事故发生的各事件的内在关联。事故树的构建流程本质上是一个逆向分析的过程:首先,通过构建顶上事件,即某事故的发生,作为事故树的起点。其次,对该顶上事件通过科学的分析手段逐层分解,得到诸多中间事件,并定义这些中间事件相对于上层事件的因果关系,这些中间事件在事故树中起到一个承接的作用,但这些事件并不是导致事故发生的最本质原因。最后,对中间事件进一步分解得到最底层的基本事件,并定义基本事件相对于上层事件的因果关系,这些事件通常较为具体,基本无法再做进一步细分。通过上述步骤便可得到一个完整并具有清晰逻辑关系表达的事故树。事故树分析方法对于本文环境风险研究较为适用,可以通过该方法探究各环境风险以及环境风险事件间的因果关联,同时也可定量评估各环境风险事件结构重要度,因此本文将利用事故树来开展相关研究。2.2事故树分析流程。事故树分析流程可划分为以下几个阶段:2.2.1最小割集计算。事故树的逻辑关系有“与门”、“或门”两种,为求解最小割集需要根据事故树的逻辑图谱,利用布尔逻辑运算法则,将顶上事件用“与门”、“或门”表达出来,其中“与门”代表乘法,“或门”代表加法。通过顶上事件最终的数学表达结果,得到导致顶上事件发生的所有基本事件组合,即最小割集。(1)式中,Z为顶上事件;Xi为某一级中间事件;Xii为某二级中间事件;Yj为某基本事件。2.2.2结构重要度计算。各基本事件结构重要度可表示为:(2)式中,m为最小割集数量;n为含有第j个基本事件的最小割集数量;Wk第j个基本事件的第k个最小割集中基本事件的数量。基本事件结构重要度可以表征该事件对于顶上事件发生的贡献值,重要度越高则贡献值越大。

3环境风险事故树构建

3.1顶上事件确定。为利用事故树理论开展湖南某抽水蓄能电站建设环境风险研究,首先需要确定顶上事件,即电站建设过程中与环境相关最不期望发生的事件。从本文研究角度,该最不期望发生事件即为环境破坏事件,因此将环境破坏定义为顶上事件。3.2因果关系确定。在顶上事件确定后,需要从顶上事件开始,逐级分解得到中间事件,并继续分解得到无法再予以细分的基本事件。根据前文识别得到的各环境风险,可以得到湖南某抽水蓄能电站建设各级环境风险中间事件、环境风险基本事件以及各级环境风险事件间的因果关系。具体内容见表1。对于表1中的环境风险一级中间事件,可以用逻辑门“与门”表示各事件间的逻辑关系,即水环境破坏、生态环境破坏以及地质环境破坏这三个事件均发生时,才会导致顶上事件环境破坏事件的发生。同样地表水环境破坏与地下水环境破坏同时发生才会导致水环境破坏,因此其之间的逻辑关系也为“与门”。对于环境风险基本事件施工排污、爆破炸药残留物只要其中有一个事件发生,均会导致地表水环境破坏,因此其之间的逻辑关系为“或门”。3.3事故树构造。根据上文对环境风险一级中间事件、二级中间事件以及环境风险基本事件之间关系的描述,构建湖南某抽水蓄能电站建设环境风险事故树见图1。

4环境风险分析

4.1最小割集计算。在环境风险事故树构建完成的基础上,为进一步分析湖南某抽水蓄能电站建设环境风险,需要根据事故树所表述的逻辑关系,利用布尔逻辑运算法则求解出导致环境破坏事件发生的所有事故模式,即求解最小割集。根据式(1)可以得到12个最小割集为:4.2结构重要度计算。根据式(2)可以得到湖南某抽水蓄能电站建设各环境风险基本事件结构重要度见表2。通过表2可以得到Y5、Y6、Y7、Y8、Y9、Y10这6个环境风险基本事件的结构重要度最高,因此其对于环境破坏的影响最大,工程建设过程中需要对上述几个基本事件的发生做严格控制。同时也可以通过图1得到,农业用地减少、农业用地污染、农作物减产、森林面积减少、动物种群减少以及植被种类减少等6个结构重要度最高的环境风险基本事件均属于生态环境破坏一级中间事件,因此在工程建设过程中对于生态环境保护需要格外重视,减少电站减少对周边区域环境的影响。

5环境风险预防机制

5.1管理措施。项目建设单位在施工过程中应建立切实可行的环境风险预防机制和奖惩措施,强化环境风险管理,减少环境风险基本事件尤其是生态环境破坏事件的发生几率。建设单位需要定期组织环境安全相关专家对现场作业人员强化环境风险预防机制的学习,做到从被动环境保护到主动环境保护的转变,督促现场作业人员严格执行相关环境风险预防机制。5.2技术措施。h项目建设单位需要加强对于项目施工方施工工法与施工工序的监督检查,加强对施工组织设计中安全文明施工部分内容的审查,提高审批标准,鼓励施工方利用先进环保的施工机械、设备以及材料,做到从源头上减少项目建设对周边环境的影响。5.3组织措施项目建设单位应根据项目实际情况建立环境风险预防组织机构,环境风险预防组织机构除了针对现有可预测的环境风险事件开展预防与管控外,还需要对一些突发环境风险事件进行应急管理,构建一整套环境风险应急事件处理系统,并依托《湖南省突发环境事件应急预案》的要求编制突发环境风险事件应急预案。环境风险预防组织机构需要加强对于突发环境风险事紧急处置的能力,在日常工作中加强管理与宣传工作,减少不必要的环境破坏与损失。

6结论

蓄能电站范文篇8

关键词:Goldisthal抽水蓄能电站创新设计

经过了六年多的施工建设,2003年2月3日,VattenfallEuropeGeneration(VE-G)1060MW的Goldisthal抽水蓄能电站第一台水泵-水轮机投入运行。

Goldisthal电站位于德国图林根州南部的Schwarza河上,是欧洲最大的抽水蓄能电站之一。最早的两个电站装机容量都是265MW,已经投入使用,并且成功地为Vattenfall的高压输电网送电。2004年伊始,另外两个变速机组也将投入运营。Goldisthal电站将会跻身于世界上最大的、最先进的抽水蓄能电站行列。

负责水泵-水轮机组(KonsortiumGoldisthal水力发电站)的集团包括VATECHEscherWyss股份有限公司、Voith西门子水力发电站和CKDBlansko工程部门等等。发电机由ARGEAEV集团提供,包括AlstomEnergietechnik股份有限公司和VATECHELIN股份有限公司。

土建工程包括发电主厂房、隧洞和上游水库,其承建者是ARGEPSWGoldisthal集团。

上游水库环形坝的沥青衬砌是由瑞士的WaloBertschinger施工,下库主坝的沥青衬砌由Strabag完成。

1.创新与协作

Goldisthal是德国新近修建的唯一一座最大的水力发电设计方案,至少超前20年。由于它包括4个发电能力331MVA的机组,它不仅是世界上同类电站发电量最多的一座,最具能量的设备之一,而且还有一些创新点。

完全自动化环形焊接技术(TIG-Hot金属丝过程)首次应用于焊接钢制隧道内衬的环形接缝,达到了很高的安全性和焊接质量,其效率是手工焊接的两倍,而且证明对于高强度QT钢焊接是最好的。在点焊前,所有的焊接参数和程序都已经在VATECH水力发电站的林茨工厂按1∶1的比例原形展现。焊工的培训以及焊接程序的测试也将随后进行。

VATECHHydro对Goldisthal的提供范围包括变速异步发电机和同步发电机的详细设计,活动部分、轴承、轴和转动部分的生产,交流线圈的安装,所有装置安装和投入运营的监督管理,以及DIATech追踪诊断体系的安装。较大的水力发电设备,包括节制闸、叉管和所有的进、出口的水工钢结构都是由VATECHHydro和Linz提供的,电动机是由VATECHHydro和澳大利亚的Vienna/Weiz提供的。

2.提高效率

8400t钢隧道内衬是在一个临时的野外制造厂现场生产出来的。节制闸门和钢隧道内衬总共有320000t,其中160000t是在临时的施工现场生产的。

这种电动发电机的主要优点之一就是可以在分载涡轮运转方式(标准操作)下显著提高效率。为了实现变速运转,四台发动发电机其中两台是带有旋转炉双馈异步电机。

与正常的同步电机不同的是其转子是由三相交流电提供能量,这就可以通过用一个低频率变化的转动场传动转子来改变转动,而且是有计划地设计一套可确保高效运作的程序。在水泵运转中,为了高压输电网的稳定输出,可以控制输出量。这些机器额定电能331MVA、额定电压18KV和300347的转速(535转/分钟),另外的两台设计成常规的静态激振同步电机。

该级别的异步电机在欧洲是特有的。类似产品只有在日本生产过。在欧洲和美国使用的许多大电机都是VATECHHydro生产的。

在德国,VATECHHydro与他的合作伙伴VoithSiemensHydro和CKDBlansk已经协作完成设计、供货并将完成安装、委托这四台水泵-水轮机,包括附件。在机械上,已经实现了水泵-水轮机组设计上的创新。最显著的设计特性包括一个带有轻型调速环导叶运行装置设计理念、FEM计算、最优化的蜗壳设计和在没有水压力的情况下埋置蜗壳。用于Goldisthal水泵-水轮机预应力导叶轴承证实了VATECHHydro的技术在一些年前已经有所发展,尤其应用于水泵-水轮机组。

VATECHHydro作为水泵-水轮机协会的领导者,应对水泵-水轮机的基础工程技术负责,提供一套座环的蜗壳、两套完整的带有导叶的导叶装置、上下机盖、两套转轮、专门为安装水泵-水轮机建起的成套工具等等,还有发电站的高低压系统。

3.监测和故障早发现

鉴于生产最大化和成本最小化的重要性,先进的监测和诊断系统对环境改变下的监测指示,对于分析趋势和超越警戒水面提供警告是十分重要的。它们应该提供在发生严重破坏之前非正常老化和故障变异原因的快速诊断,这些分析和诊断结果可以帮助电站操作员、技术专家和电站业主作出明智的选择,这样就可以降低维修费用和提高发电效率。

硬件和软件的利用是根据现代系统概念面向未来的发展和补充,也应支持溶合现有的监测部件要素和一定用户的扩充。

早期故障诊断、减少不定期的运转中断和缩短修理时间是将来运作过程的主要目的。此外,长时间的电子存储精确的结果能够更容易地了解历史数据,不仅在数据分析时具备巨大的优势,而且还可以帮助改善电站经营。达到峰值能量供应表明提高了效率。

为了完成这些目标,在Goldisthal的抽水蓄能电站上装备了DIATECH监测和诊断系统。

4.在线智能监测系统

在一定程度上DIATECH系统和国际供电公用公司合作发展。软件和硬件是由微软公司生产的“视窗”操作系统的技术发展而来的。它的模数体系结构使得对单个操作者的专用方案增强和补充发展成为可能。这种开放式的系统体系结构允许三方成果的简单综合。

各种诊断模块(已知模块)对于机械、绝缘和热力问题的鉴定是有用的,验证和监测不同的运转方式(停止、启动、稳定状态、关闭)和模型(例如发电、同步电容器运转、水泵作用运转)。

使用这种在线智能监测系统,能够较早发现主要机器部件的状态改变,而且更容易判断应力的大小,从而事先提供一个基本可靠的维修策略。这使得监控机器管理简化,与此同时改进电站的实用高效。

5.气候和地貌

旱季水库将提供2.9106m3的水量并在雨季水库能起到控制增大洪水的作用。由于上下库水位差很大,因此,两库的水都允许使用。

在站点,特殊的气候条件要求所有的安装制作必须在抗寒的条件下完成。必须严格地遵从许多的环境规律,尤其是对于野外装配工作。与土木承包商的密切合作对隧洞工程的完成也是至关重要的。

上库坐落在Farmdenkopf山上,是一座沥青混凝土密封、填石环形水坝。上库蓄水能力为12106m3,经由钟形入口,连接两个920m长直径为6.2m的钢纹压力隧洞,通往发电站的洞室。

主要的洞室长137m,宽26m,高49m。该发电站由水泵-水轮机、发电机、球形阀和附属设备四部分组成。两条380m长直径为8.2m的尾水渠通向下库的出口,下库由Schwarza河上67m高的填石水坝构成,也组建了一个小型的电力设备。

6.环境保护

Goldisthal工程的目的是为了开发可靠并且环保的水电能源。通过建造地下发电站,让庄稼继续在地面上生长,业主和建筑队都能够保护环境,则可避免主要的环境变化。地下洞室式发电站的运转也将是比较经济的。

电站除了提供1060MW的能量外,还将带来其它方面的利益,包括调节高压输电网和其他后备电站的主次功率。另外,在工程建设时期将用到近1000多个工人,还将有50个永久性工作岗位。另外将为当地的服务和维修部门创造80个工作岗位。

精密的规划设计和施工上库占地55公顷,包括截流,钻4.74km长的隧洞进入山脉,开挖大量的石头。为了避免地质上的断层,涡流洞窟干线的位置不得不改变。不管工程多么巨大,采用简单易行的方式。

蓄能电站范文篇9

1三维基础地理信息系统的优势

快捷性。利用GIS系统能够了解项目建设规划方案具体情况,能够动态反映施工导流面貌情况,及时采取有效防护措施,有效控制建设施工进度,能够对建设工程施工情况进行实时监控管理。高效性。利用GIS能够实现数据的管理及可视化分析,进一步对监测过程中的大量数据进行管理和分析,防止人为错误,提升数据的准确度。便捷性。GIS系统能够通过可视化图形显示,方便进行信息查询,同时该系统输出功能能够对任意属性生成统计量表,进而简化监测工作任务,能够实现全国水利工程建设规划监测网络的连接。通过WebGIS系统能够建立与全国水利工程建设规划监测网络的连接,实时显示工程在建设过程中存在的规划问题,强化各有关部门对建设规划的监控。能够实现数据的集成,利用GIS系统对建设项目开发进行预测,能够为建设规划方案提供重要参考依据。WebGIS也被称为是网络GIS,随当前信息化建设的发展,可以将web浏览器作为应用平台,利用互联网将数据共享到Web上供用户进行数据浏览,此外还可以进行多种空间检索和空间分析。在当前水利工程建设中所需要的数据主要为文字和图形为主,但要想快速获取一些地理信息和大量空间数据需要将其数字化,以信息数字化形式直观显示复杂的施工过程,进而能够发挥GIS在水利工程建设规划中的应用价值。

2工程案例分析

在本研究中,我们以山东文登抽水蓄电站作为研究对象,该工程装机容量1800MW,包括开关站,水库,改建工程,地下厂房,输水系统等新建工程,预计施工周期为78个月,在整个施工中涉及范围较广,开挖、填筑土石量相对较大,同时会形成大面积裸露边坡和废弃物。如果在施工中防护措施不到位将会导致出现严重的建设安全质量问题,比如可能会引发土体崩塌,局部滑坡等问题,对当地环境来说产生不利影响。在建设工程中开展建设规划监测,能够全面掌握当前该地区的土壤浸蚀情况,进一步验证建设规划设施的安全性,分析建设规划方案的效果,根据检测结果及时完善措施,利用空间信息技术进一步强化和推进建设规划监测工作。

3建设规划监测信息系统

首先从系统的设计上来看,该系统是由GIS系统、数值分析、结果输出、模型库共同构成的,其中监测数据主要是以属性和空间数据格式输出,能够储存在相应的数据库中,通过系统运算和模型分析,能够对结果通过图表形式输出,同时系统设置数据接口能够利用IS等技术与建设规划网络进行连接,能够及时将检测结果反馈到上级有关部门。从数据输入上来看,开发建设规划监测工作的建设项目其具体的检测内容包括:建设规划状况、防治措施以及影响建设规划工作开展的重要因素。最终监测结果获得的数据是以空间和属性数据的形式输入到数据库中,具体的数据特征如表1所示。从数据库和模型库设计上来看,系统数据库主要包括属性和空间数据库两种,能够用于属性数据和空间数据的储存、调取,模型库主要储存于系统运算模型中,在建设规划信息系统中需要建立土地整治率,治理度指标模型以及建设规划控制比模型,能够用于评价建设规划情况。从GIS系统的统计分析角度上来看,利用该系统能够对所输入的数据进行逻辑分析计算,最后输出准确的结果。从数据输出的相关设计来看,具体为:查询功能。能够对系统中的数据进行双向查询,根据属性对图形进行查询,能够对地块属性完成相应的数据查询。比如在图形中选取建设规划区进行信息查询,弹出对话框中包含该地区的监测时段,雨量,土壤腐蚀情况,建设施工情况等信息,同时还能够实时动态的查询该区域。在具体建设过程中的日径流量变化情况。根据用户属性进行相应的图形查询,该功能能够用于工程建设规划情况的查询以及建设效果实施查询,比如可以在查询条件中输入土壤侵蚀度高于500的条件,则可以在图形上显示出相应的区域。专题图。用户根据自己所需属性生成专题图,一般包括植被盖度图,建设规划防治效果图,统计图表,根据用户要求可对统一监测要素进行关系图表设计,也可生成不同时间段的监测变化趋势,比如一个季度降雨量的预测趋势图,工程在不同时间段内的建设规划防治措施,施工进度图,各个防治区中土壤侵蚀度关系量表等。防治指标,我们可以通过模型计算建设规划治理度,控制比,植物覆盖率等相关指标,能够用于评价该地区建设规划的具体防治效果。其他功能。通过系统调阅相关的信息,包括建设规划方案的报告书,设计变更方案以及监理资料等,能够与建设规划监测网络进行有效连接。在本研究中利用该系统所获得的建设规划监测成果,可通过MIS技术运用于当地上级部门的建设规划现有网络中,能够对接全国的建设规划监测网络,便于将检测结果及时反馈到上级有关部门,强化上级部门对于工程建设中建设规划情况的实时监控,为制定有效决策提供参考。

4系统的界面设计

三维基础地理信息系统以Windows作为平台,采用C++语言编程,该系统具有良好的可视化效果,在建设规划监测项目过程中运用三维基础地理信息系统,能够在数据管理、可视化分析、空间分析等方面进行庞大数据分析,提高监测效率,强化监测进度,便于原数据查询,能够实时反映建设规划情况。同时能够对接全国建设规划监测网络,强化上级部门对于工程进行建设规划监控。IS是地理信息获取的重要手段,在GIS系统中运用IS能够快速调取多种参数,提高数据的处理能力,由于双精度条件的限制,当前IS主要用于大比例尺宏观监测,随着计算机技术的发展,未来IS技术将逐渐趋向于微观监测。目前,有关部门在项目建设规划方案中尝试引入IS技术,因此在系统监测中需要注意IS的应用,能够为其引入微观监测提供依据。利用GPS可获取准确的位置,不过GPS与GIS合成能够将所调查的信息输入到GIS系统中,用于图层生成,便于后续的监测任务。利用土壤侵蚀模型分析该地区的土壤侵蚀程度,是对该地区建设规划实施效果以及对某地区土壤侵蚀的综合评价工具。此外,由于传统GPS精确度低,在实际监测中需要提高监测精确度,并且国内缺乏统一建设规划模型,项目建设开发的模型主要为区域建设规划模型,其精确度较低,利用三维基础地理信息系统能够对所获得的监测数据进行数据集成分析,进而为建设规划模型的模拟提供思路。

5小结

总而言之,在当前抽水蓄电站项目建设开发过程中将三维基础地理信息系统运用于建设规划监测系统中,能够提高数据分析处理能力,能够为该地区建设规划方案实际效果提供精确的评价。

参考文献

[1]张小冬,吴超,刘学山,etal.基于3D-GIS的抽水蓄能电厂动态监控与仿真技术研究[J].测绘工程,2017(11):74-79.

[2]李刚,侯为林,王博.抽水蓄能电站水淹风险评价研究[J].河南科学,2018,36(12):142-147.

蓄能电站范文篇10

1.输水系统布置方案选择

1.1地形、地质条件

输水系统沿线地形陡缓相间,冲沟较发育,高差大,基本无全风化带,风化裂隙较发育。输水系统自上而下依次通过中奥陶系上马家沟(O2S)组、下马家沟(O2X)组、下奥陶系亮甲山(O1L)组、冶里(O1Y)组、上寒武系凤山组(∈3f)、长山组(∈3c)、崮山组(∈3g)、中寒武系张夏组(∈2Z)的地层。岩性为灰岩、白云岩、页岩、砂岩等,平均饱和抗压强度为92.8~128.2MPa,根据《水利水电工程地下洞室围岩分类》围岩分类为Ⅱ~Ⅲb类围岩,构造发育部位为Ⅳ~Ⅴ类。

地下水以基岩裂隙水为主,局部有少量的岩溶裂隙水,主要接受大气降水的补给。∈2Z2、∈3c1、O1L2-1、O2x1、O2s1-1组岩层为区域性岩溶作用的相对隔水层,岩溶相对发育,其间为相对含水层,相对隔水层与相对含水层呈“互层”状,并且常在含水层底部形成少量上层滞水。上层滞水共有三层,即①上部为上、下马家沟上层滞水;②中部为冶里、凤山上层滞水;③下部为崮山上层滞水。

厂区及输水系统位于区域地下水分水岭,不利于地下水的赋存,地下水埋藏较深,且围岩属中等透水~弱透水,输水系统围岩渗透条件比较好。

输水系统位于西河~耿家庄宽缓背斜的NW翼,尾水隧洞段位于背斜的SE翼,岩层基本水平,倾角3~10°,工程区发育的主要构造有F112、F114、F118、F116、fp21、fp27、fp30等断层和P5张性断裂带等,构造发育的主要方向为NE30~NE60°。输水系统区域内主要发育有4组裂隙,产状为:①NE5~30°SE∠70~80°;②NE30~50°SE∠70~88°;③NE50~60°SE∠70~89°;④NW330~360°SE∠70~85°。以第②组裂隙最为发育。

1.2输水线路的选择

在进行输水系统线路选择时应尽可能布置成最短的直线,综合考虑地形、地质、枢纽布置等条件选择了3条线路布置方案进行比较,即东线、直线和西线三个方案,详见图1。

由于上、下水库在平面上呈NE54°左右方向展布,采用线路最短的直线布置方案时,管线走向为NE50°左右,与站址区主要构造线走向、区内最为发育的第2组主要裂隙及P5破碎带基本平行或成10~20°的小角度相交,且岩层层面与陡倾的构造、裂隙和开挖临空面很容易形成不稳定块体,对围岩稳定非常不利。所以对直线方案不做重点比较。

工程区大小冲沟较发育,地形比较破碎,适合线路布置的位置并不多。为合理确定输水系统线路,对东线和西线两个方案进行了比较。

(1)西线方案

西线方案在平面上沿山脊布置,输水系统走向从NE85°折向NE26°。高压管道部分位于由F112、F116、F118、F208、F209、F114等断层组成的断层密集带中,断层走向为NE20°~NE40°、倾角70°~80°,在满足地形条件下,高压管道难于避开这些断层。在平面和立面上都与高压管道基本平行或成小角度相交,且高压管道与工程发育的第1和第2组主要裂隙基本平行,围岩稳定问题比较突出。

输水系统的惯性时间常数Tw=2.0s左右,在立面布置上,可不设置调压井,但增加了高压管道长度,经过比较,设置上游调压井方案比不设调压井方案可节省投资1140.5万元,所以重点以设置调压井方案与东线方案进行综合技术经济比较。

(2)东线方案

东线方案线路走向从NE15.5°折向NE70°。高压管道部分走向NE70°与P5张性断裂带、F112等构造夹角皆大于30°,与工程区发育的裂隙夹角较大,围岩稳定条件较好。输水系统总长为1811.15m,Tw=2.0s左右,不需设置调压井。投资与与西线方案相当。

经棕合比较后,东线方案围岩稳定条件比较好,工程布置简单,投资与西线方案相当,所以推荐东线方案线路布置。

1.3电站开发方式选择

在输水系统线路确定后,对电站开发方式进行综合比较。根据本电站的特点即上、下水库距离比较短,电站设计水头较高,输水系统距高比较小,L/H在2.0左右,地下厂房可布置的范围不大等,在此仅就首部和尾部两种电站开发方式进行了综合比较。

(1)工程布置

首部布置方案输水系统是由上水库进/出水口、高压管道、尾水调压井、尾水隧洞和下水库进/出水口组成。输水系统总长为L=2123.77m。详见图2。首部布置方式,高压管道比较短,尾水隧洞大于临界长度,需增设尾水调压井。地下厂房可以布置在地质条件相对好的崮山组∈3g和张夏组∈3z2地层中,由于受地形所限,交通洞、通风兼安全洞、出线兼安全洞等附属洞室洞口位置与尾部布置基本相同。从而使附属洞室长度增加。

尾部方案输水系统由上水库进/出水口、高压管道、尾水隧洞、下水库进/出水口等组成。输水系统总长为1859.28m,详见图5。高压管道比较长,地下厂房布置在地质条件相对较差∈3z地层中,但是附属洞室及高压出线电缆较短,且可不设调压井。

(2)工期

首部方案与尾部方案施工组织设计基本相同,不会因厂房位置而改变工程的关键线路,也就是说2个方案总工期相同。因首部方案增设尾水调压井,导致施工支洞和通风洞长度的增加,使地下厂房施工工期比尾部方案增加3~5个月,地下厂房系统需提前安排施工。

(3)工程造价

首部、尾部方案输水系统和地下厂房系统工程静态投资分别为:68848.17、61883.86万元,动态投资为95203.24万元、85076.23万元。首部方案与尾部方案相比,静态投资增加6964.31万元,动态投资10127.01万元。

首部和尾部开发方式综合技术经济比较见表1。

表1电站开发方式比较表

方案

首部方案

尾部方案

输水系统总长

m

2123.77

1859.28

高压管道长度

m

1188.11

1424.62

发电工况水头损失

m

18.045

20.152

是否设置调压井

需设尾水调压井,尾水事故闸门室与尾水调压井结合。

输水及地下厂房系统主要工程量

洞挖

万m3

77.58

58.29

万m3

23.22

20.80

钢筋

t

11333

10471

钢衬

t

9062

10064

厂房预应力锚索

918

1182

水道预应力锚索

6562

4477

地下厂房位置

崮山组∈3g和张夏组∈3z2地层,埋深450m左右

张夏组∈3z2地层,埋深230m左右

工期

首部方案厂房工期比尾部方案长3-5个月,总工期相同

静态投资

万元

68848.17

61883.86

动态投资

万元

95203.24

85076.23

主要优缺点

1.厂房围岩地质条件相对较好。

2.高压管道较短。

3.需增设尾水调压井和尾水事故闸门。

4.各附属洞室及高压出线电缆较长。

5.总工期相同,但厂房工期增长。

6.投资较大,静态比尾部方案多6964.31万元,动态多10127.01万元。

1.厂房围岩地质条件相对较差。

2.高压管道较长。

3.不需设置调压井和尾水事故闸门室。

4.各附属洞室及高压出线电缆较短,比首部方案减少465m。

5.工程投资小。

从地形条件、地质条件、工程布置、工期、工程投资等方面综合比较可以看出,尾部方案明显优于首部方案,所以推荐尾部布置方案。

1.4供水方式比较

1.4.1引水道供水方式比较

在保证电能损失基本相等基础上,对一管四机、一管二机、一管一机3个方案进行比较。

一管四机方案的投资最少,但管径大,输水系统最大PD=5360m2,钢管最大厚度达83mm(HT-80,)。已超过世界最高水平,无论从加工制造和现场安装都是很困难的。技术可行性比较差,另外,电站运行灵活性差,也不利于提前发电;一管一机方案管径小,钢管最大厚度为44mm,比较薄,制造、安装容易,且不设岔管,运行灵活,但工程量大,工程造价高,较一管两机方案投资增加6596.6万元;一管两机方案最大PD=3800m2左右,钢衬厚度为40~60mm。类比国外工程,如日本的今市和蛇尾川电站的最大钢衬厚度都已达到62~64mm。所以无论从制造加工、现场安装条件来说,一管两机方案在技术上是可行的;较一管一机方案工程量少,投资省,因此本阶段引水道供水方式推荐一管两机方案。

1.4.2尾水隧洞数量比较

电站采用尾部开发方式,尾水隧洞较短,不需设尾水调压井。尾水隧洞比较了一机一洞、两机一洞、四机一洞三个方案。一机一洞方案不需另设尾水事故闸门,及尾水岔管,工程量小和投资最少,布置简单,运行灵活。故选用一机一洞布置方式。

1.5竖井、斜井方案比较

相应于选定的尾部开发方式,输水系统在立面布置上受P5和F112等不利地质构造的控制,为将P5和F112等地质构造对输水系统围岩稳定的影响减少至最小,对上竖井下斜井、上斜井下竖井、斜井、竖井4个布置方案进行了综合比较。比较结果见表2。

表2竖斜井综合比较表

方案

上竖井下斜井

上斜井下竖井

斜井

竖井

输水系统总长(m)

2023.68

1952.21

1859.28

2121.07

高压管道长度(m)

1589.02

1517.55

1424.62

1686.41

惯性时间常数Tw(s)

2.30

2.15

2.07

2.40

3#机组引水系统主要工程量

洞挖(万m3)

6.44

6.06

5.46

7.24

砼(万m3)

2.84

2.62

2.36

3.14

钢衬(t)

10137.0

8550.4

8009.8

11320.6

投资(万元)

25704.4

21725.1

20433.9

28812.3

P5和F112在下平段与高压管道相交,围岩稳定条件较好,

P5可能与高压管道中平段相交,但F112与下竖井以小角度相交,围岩稳定条件较差.

P5可能与中下平段相交,围岩稳定条件较好,F112与下斜井大角度相交,对围岩稳定影响不大。

P5和F112在下平段与高压管道相交,围岩稳定条件较好,

施工

条件

高压管道成洞条件较好,但钢衬厚度较大,最大为62mm

下竖井围岩稳定条件较差,施工难度较大。钢衬厚度较薄,为57mm

下斜井上段围岩稳定条件较差,施工难度较大,钢衬厚度较薄,为57mm

高压管道成洞条件较好,但钢衬厚度较大,为59mm

工程量及费用

工程量较大。投资比3方案高5270.2万元

工程量较小。投资比3方案高1291.2万元

工程量最小。投资为20433.9万元

工程量最大。投资比3方案高8378.4万元

综合比较

地质和施工条件都比较好,但工程量与投资比较大。惯性时间常数也较大。

虽然工程量比较小,但下竖井难于避开F112。围岩稳定条件较

差。

工程量与投资最少,P5与中平段相交,围岩稳定条件较好。惯性时间常数最小。

,但工程量与投资最大。惯性时虽然围岩稳定条件较好间常数也最大。

斜井方案明显优于其它3个方案。P5、F112等构造对输水系统围岩稳定的影响相对其它方案是比较小的,且工程量和工程投资也是最小的,惯性时间常数最小,电站运行稳定性较好,所以设计推荐斜井方案。

2输水系统衬砌型式选择

通过供水方式综合比较,确定引水系统采用一管两机的供水方式,高压管道最大PD值高达3500m2以上。输水系统衬砌型式的确定对其造价有着举足轻重的影响。对于高PD值高压管道,衬砌型式的选择尤为重要。目前大PD高压管道常采用的衬砌型式有:钢筋砼衬砌、预应力砼衬砌、钢板衬砌等。

2.1砼衬砌方案的布置与设计

从经济角度来讲,充分利用围岩的弹性抗力,不衬或采用砼衬砌是比较经济的,但是砼衬砌对围岩的地质条件要求比较高,要想使砼衬砌可行,必须同时满足应力条件和渗透条件。砼衬砌方案的布置详见图3。

2.1.1应力条件

应力条件是指沿管线各点的最大静水压力要小于围岩的最小主压应力。为便于确定管线的布置,首先根据挪威准则初步验算覆盖层的厚度,再根据地应力资料最终确定输水系统管线布置。

对输水系统各控制点覆盖层厚度分别进行计算,除部分高压支管外,其它部位均能够满足挪威准则的要求。

为了解输水系统压力管道范围内的地应力情况,对输水系统上平段ZK97-27、中平段位置ZK97-26、下平段附近的ZK97-21等钻孔进行了地应力测试。高压管道埋藏较深的部分,最小主压应力皆大于内水压力静水头,是能够满足应力条件的。通过三维地应力场回归结果可知,岔管部位的最小主压应力为9.0MPa左右,大于内水压力静水头,也能满足应力条件。从地形、地质条件来讲,具备了采用钢筋砼衬砌条件,而高压支管部分,经过P5张性断裂带、F112、fp38等地质构造,且不能满足应力条件,所以岔管后的高压支管采用钢板衬砌。

2.1.2渗漏条件

渗漏条件是指输水系统渗漏量应在设计允许范围之内。本工程上、下水库皆为人工库,无天然径流补给,且下水库为悬库,高于滹沱河床180m左右,补水费用比较高。鉴于本工程特点,对渗漏条件要求比较高。

输水系统沿线上马家沟组(O2S2)、下马家沟组(O2X1)、冶里组(O2Y)、凤山组(∈3f)、崮山组(∈3g)地层岩溶相对比较发育,属中等透水~弱透水,占高压管道砼衬砌段长度的77%左右,渗透系数为0.8×10-5~1.2×10-5cm/s。尾水隧洞及高压管道下平段,发育有P5、F112、fp38、fp28、fp30、F207、fp11、fp13、F118、F114、F116、F209等地质构造,容易形成集中渗流通道。

地下水类型以基岩裂隙水为主,局部有少量岩溶裂隙水,主要接受大气降水补给。工程区O2S1-1、O2X1、O1L2—1、∈3C1、∈2Z2为相对隔水层,其间为相对含水层,在含水层底部存在少量上层滞水。由于输水系统位于西河—耿家庄宽缓背斜的轴部附近,地下水位很低,通过厂房平洞PD95-1内各钻孔水位长期观测结果,张夏组岩层的地下水位为716.0~719.0m,崮山组岩层地下水位为768.0~769.0m。

输水系统沿线大部分岩层属中等透水~弱透水,且地下水位比较低,为减少渗漏量,输水系统钢筋砼衬砌采用限裂设计,最大裂缝开展宽度为0.2mm。

(1)钢筋砼衬砌结构设计

根据钢筋、砼、围岩的变形协调条件,计算围岩、钢筋砼承担内水压力的比例,其中钢筋砼承担的内水压力按限裂设计,不足部分通过高压灌浆使衬砌产生预压应力来承担。钢筋砼衬砌计算结果见表3。输水系统钢筋砼衬砌采用限裂设计,最大灌浆压力为9.8MPa。目前我国采用灌浆压力最高的为天荒坪抽水蓄能电站,最高值为9.0MPa。南非的德拉肯斯保抽水蓄能电站预应力砼管,最大灌浆压力为8.0MPa,因此从结构方面来说除下斜井下部灌浆压力比较大外,钢筋砼衬砌基本是可行的。

表3钢筋砼衬砌计算结果

部位

R

(m)

Rr

(m)

Rs

(m)

P(MPa)

E(MPa)

Pr

(MPa)

Ps

(MPa)

Pg(MPa)

P0

(MPa)

中平段

2.35

2.95

2.29

6.45

8500

4.77

0.24

1.44

4.81

下斜井中下部

2.1

2.7

2.04

9.0

8000

6.30

0.28

2.42

8.00

下平段

2.1

2.7

2.04

10.1

6000

6.87

0.28

2.98

9.8

(2)输水系统渗漏量估算

采用钢筋砼衬砌还必须满足渗漏条件,按围岩与砼衬砌厚壁组合圆筒进行估算。输水系统沿线各段渗漏量估算结果见表4。从计算结果来看,整个输水系统渗漏量为6.064m3/s,单位管道长度平均渗漏流量为4.04×10-3m3/s.m。与站址选择补充报告中羊老蹄—李家庄方案输水系统三维有限元渗流计算结果(整个输水系统渗漏流量为10.484m3/s,单位管道长度平均渗漏流量为4.5×10-3m3/s.m)相当,说明渗漏量估算结果是基本可信的。

表4输水系统渗漏量估算结果

部位

围岩

渗透系数KR

10-6m/s

内径D

m

砼衬砌

厚度

m

各管段

长度L

m

单位管长

渗流量QC

m3/s.m

各段渗

漏流量

m3/s

上平段

10

4.7

0.6

318.12

0.000745

0.237×2

上竖井O2S1O2X2

10

4.7

0.6

140

0.00129

0.181×2

上竖井O2X1

0.004

4.7

0.6

120

0.0000169

0.002×2

上竖井O1L2

10

4.7

0.6

165.07

0.00297

0.490×2

中平段

10

4.7

0.6

92.98

0.00331

0.308×2

下斜井

8

4.2

0.6

349.63

0.00424

1.482×2

尾水隧洞

0.4

4.3

0.6

424.66

0.00039

0.166×4

合计

6.064

整个输水系统的渗漏流量是很大的,既使内水压力较低的上平段及尾水隧洞渗漏流量分别为0.474m3/s和0.664m3/s也是比较大的,整个输水系统每天渗漏量可达52万m3,占调节库容的12%,钢筋砼衬砌难以满足渗漏条件,应采用预应力砼或钢板等无渗漏衬砌型式。

2.2预应力砼衬砌

根据预应力的施加方法,预应砼衬砌可分为二种类型,一是依靠围岩约束,通过高压灌浆来施加预应力的高压灌浆法预应力砼衬砌;二是通过张拉预应力筋来实现预应力的后张法预应力砼衬砌,也称环形锚索预应力砼衬砌。

2.2.1高压灌浆法预应力砼衬砌

高压灌浆法预应力砼衬砌,能够利用围岩约束,充分发挥围岩的弹性抗力,利用高压灌浆在砼衬砌上产生的预压应力来抵消由内水压力产生的拉应力,使衬砌结构处于受压状态或拉应力不大于砼抗拉强度的状态。是一种比较经济的衬砌型式,但对围岩条件要求比较高。

高压灌浆法预应力砼衬砌计算结果见表5,通过计算可知,既使压力不太高的中平段,所需灌浆压力达11.72MPa,灌浆压力作用下,砼衬砌的压应力为51.3MPa,既使C60砼也不能满足强度要求。

表5高压灌浆法预应力砼衬砌灌浆压力计算成果

项目

单位

计算位置

引水隧洞

中平段

尾水隧洞

围岩单位弹性抗力系数K0

kN/cm3

2.5

2.8

1.0

设计内水压力P

MPa

1.18

6.45

1.16

洞径D

m

4.7

4.7

4.3

衬砌厚度

m

0.6

0.6

0.6

灌浆压力q0/设计内水压力p

1.88

1.82

2.23

灌浆压力q0

MPa

2.22

11.72

2.60

q0作用下砼衬砌的压应力σθ

MPa

15.31

51.3

10.7

备注

C30砼即可满足要求

既使C60砼也不能满足要求

C25砼即可满足要求

目前大规模灌浆所实现的压力为8~9MPa,11.72MPa以上的灌浆压力实现难度比较大,所以整个输水系统采用高压灌浆法预应力砼衬砌实现难度比较大,只有根据各段不同条件,采用不同的衬砌型式。

虽然上平段及尾水隧洞设计内水压力比较低,所需最大灌浆压力也不大,考虑到上平段位于上马家沟组地层,围岩分类属Ⅲb类,岩溶比较发育,高压灌浆难度比较大;尾水隧洞位于张夏组地层中,构造比较发育,围岩分类为Ⅲb类,构造发育部位为Ⅳ~Ⅴ类,围岩条件较差,且洞间距不大,所以对于上平段及尾水隧洞,也不推荐高压灌浆法预应力砼衬砌型式。

2.2.2环锚预应力砼衬砌

环锚预应力砼衬砌由于受锚具布置所限,能实现PD值不高,一般在1600m2以下,而本工程最大PD=3500m2以上,整个输水系统采用环锚预应力砼衬砌是难以实现的,只有PD值不高的部位可考虑。

环锚预应力砼衬砌是通过张拉预应力锚索来实现,内水压力基本由预应力锚索承担,对围岩条件要求比较低。上平段和尾水隧洞PD=510m2左右,据国内小浪底无粘结预应力混凝土衬砌及隔河岩有粘结预应力混凝土衬砌工程经验,预应力混凝土衬砌投资比钢板衬砌方案可节约30%左右。国外高压管道工程实践也证明了预应力混凝土衬砌比钢板衬砌方案可节省10%~30%的造价;经工程类比认为在此内水压力条件下进行后张预应力混凝土衬砌是可行的。从我国已完成的清江隔河岩、天生桥及正在施工的黄河小浪底排沙洞情况看,目前我国在设计、施工与材料方面均具备采用环锚预应力混凝土衬砌的条件,上平段及尾水隧洞PD值不高具各采用后张预应力混凝土衬砌的条件。技施阶段,考虑环锚衬砌施工工艺较复杂,而且需进行必要的试验,通过补充分析研究,上平段和尾水隧洞采用钢板衬砌。

2.3钢板衬砌

钢板衬砌也就是地下埋管,对围岩条件要求比砼衬砌方案低的多,钢衬方案布置见图5。地下埋管结构是按钢衬—砼—围岩联合作用,共同承担内水压力来设计。

通过过渡过程计算,压力管道末端的最大水击压力为944.47m水头。最大设计内水压力为10.15MPa高压管道最大PD=3553m2。经过计算,高压管道最大钢衬厚度为57mm(HT-80)。从国外工程实例可以看出,钢衬厚度大于57mm的工程实例比较多,最大的是日本的今市抽水蓄能电站钢衬厚度为77mm,且我国已建的十三陵抽水蓄能电站高压管道,已有较大规模采用80级钢材的经验,因此高压管道采用钢衬方案技术上是可行的。

2.4衬砌型式比较结论

(1)由于输水系统沿线围岩属中等透水~弱透水,且地下水位比较低,虽然采用钢筋砼衬砌在结构上是基本可行的,但渗漏比较严重。因此无论是从电能损失还是从运行期水量补给角度上看,钢筋砼衬衬都是不能满足要求的。

(2)为减少渗漏量,若输水系统全部采用高压灌浆法预应力砼衬砌,由于高压管道PD值比较大,即使压力不太高的中平段所需灌浆压力已将达11.72MPa,目前大规模灌浆所实现的压力一般最大为8~9MPa,整个输水系统采用高压灌浆法预应力砼衬砌实现难度比较大;且在灌浆压力作用下,砼衬砌的强度也难以满足要求。上平段及尾水隧洞设计内水压力比较低,所需最大灌浆压力也不大,但考虑到上平段岩溶比较发育,高压灌浆难度比较大;同时尾水隧洞围岩构造比较发育,围岩条件较差,且洞间距不大,所以对于上平段及尾水隧洞,也不推荐高压灌浆法预应力砼衬砌型式。

(3)高压管道采用钢板衬砌,所需最大钢衬厚度为57mm(HT-80),类比国外工程实例和我国设计、施工经验来看,这种规模的高压钢管技术上是可行的。

3经济管径比较

根据输水系统的具体情况,整个输水系统大至分为三段,即上斜井、下斜井和尾水隧洞。对上述各管段分别拟定三个管径方案,共组合成27个方案,采用费用现值最小法进行比较。从能量损失和电站运行稳定性考虑,6方案(上平段及上斜井为4.7m、中平段及下斜井为3.8m、高压支管为2.8m、尾水隧洞为4.3m)为较优方案。

由于高压管道的设计水头比较高,钢板衬砌厚度较大。为了降低PD值,减少钢板衬砌和钢岔管的设计、制造难度,在上述确定的输水系统管径方案的基础上,针对下斜井的洞径又作了进一步优化,将3.8m直径的下斜井分为2段,上段直径为4.2m,下段直径为3.5m,高压支管直径为2.5m。经对此方案经济分析与方案6相比,其费用现值减少了52万元;水头损失为20.15m,减少了2.28m;电站综合效率提高到0.75,明显较优。

最终确定输水系统管径为:上平段及上斜井为4.7m、中平段及下斜井上段为4.2m、下斜井下段及下平段为3.5m、高压支管为2.5m、尾水隧洞为4.3m。

4水力计算

输水系统水力计算主要包括水头损失和水力过渡过程分析两部分。计算的主要目的是预测整个输水系统发电、抽水工况的能量损失,过渡工况机组转速变化和输水系统压力变化及其极值,选定导水机构合理调节时间和启闭规律,使输水系统结构设计和机组参数的确定做到经济合理。

4.1水头损失计算

水头损失包括沿程水头损失和局部水头损失,水头损失计算结果见表6。

表6输水系统水头损失计算结果

工况

1#输水系统

2#输水系统

双机发电

双机抽水

双机发电

双机抽水

水头损失计算公式

1.6481×10-3Q2

1.7698×10-3Q2

1.6134×10-3Q2

1.7366×10-3Q2

流量(m3/s)

111.76

93.28

111.76

93.28

水头损失值(m)

20.585

15.400

20.152

15.110

注:Q为2台机组的相应引用流量。

4.2水力过渡过程计算

由于抽水蓄能电站具有一机多用,工况转换频繁的特点,复杂多变的工况转换产生的瞬变水力过程,因水体惯性的存在及系统中的能量不平衡,将造成输水系统内水压力急剧上升或下降和机组转速的急剧上升。为使输水系统的压力上升和机组转速上升保持在经济合理的范围内,选定导水机构合理调节时间和启闭规律,因此本阶段委托清华大学进行各工况的水力过渡过程计算。计算成果如下:

(1)输水系统最大水击压力为944.47m水头,发生在机组蜗壳进口管道中心线处。压力升高值为201.11m水头,相对升高为27.1%。高压管道上弯点中心线最小压力为11.81m水头,上弯点顶部的最小水头为9.46m,大于规范规定的不小于2.0m正压的要求。输水系统的最小水击压力为6.86m水头,发生在下水库进/出水口处。

(2)上游闸门井最高涌浪水位为1496.91m,低于闸门井顶高程(1499.5m)2.59m。下游闸门井最高涌浪水位为843.73m,低于闸门井顶高程(844.5m)0.77m;上游闸门井的最低涌浪水位为1438.65m,闸门井处隧洞顶最小正压力为25.3m。下游闸门井的最低涌浪水位为788.84m,闸门井处隧洞顶最小正压力为5.79m。上、下游闸门井的最低水位均满足规范规定的不小于2.0m正压的要求。

(3)机组最大转速为706.5rpm,最大转速上升率为41.3%。

(4)通过小波动稳定分析可知,在小负荷变化情况下,输水系统的过渡过程也是稳定的。

因此证明输水系统的布置是合理的。待下阶段取得水泵水轮机可靠的特性曲线后,将进一步核算水力过渡过程。

5进/出水口设计

上水库位于上马家组第2段O2s2地层中,由于O2s地层中O2s2-2、O2s2-4、O2s2-6为岩性较软的白云岩,而且存在软弱夹层,为使高压管道的上平段避开O2s2-4组地层,改善上平段围岩稳定条件,结合总体布置,上水库进/出水口采用井式。

为了对上水库进/出水口的设计体形的合理性进行验证和优化,委托天津大学水利工程科学研究所对上水库进/出水口进行1:39.17的水工模型试验,试验成果表明:上水库进/出水口在发电和抽水工况下,进/出水时的库水位均较平稳,未出现有害的吸气漩涡,各孔口的流量分配均匀,水头损失也较小,流速分布较均匀,均能满足抽水蓄能电站进/出水口水力学的要求。但是,经多次修改模型试验,均未能完全消除出水口底部的反向流速问题,虽然反向流速不大,仍有待下阶段进一步试验研究。

下水库对侧式和塔式进/出水口进行综合比较后,推荐侧式进/出水口。

6岔管设计

本阶段比较了钢筋混凝土岔管和钢岔管两种结构型式,详见专题报告之八《高压岔管型式研究报告》。推荐采用内加强月牙肋钢岔管。从输水系统总体布置(见图4)来看,岔管采用非对称Y型是比较顺畅的。在岔管体形设计时,初步选用不对称Y形岔管。岔管主管两支管轴线夹角为50°,设计内水压力为10.15Mpa,为减少岔管不对称性,在主锥前通过两节园锥过渡,将分岔角增大到72°。通过采用三维有限元进行优化,岔管主体最大壁厚为82mm,肋板最大厚度为180mm。在钝角区和肋板存在明显侧向弯曲。为改善受力状态,减少钢板厚度,对岔管布置进行调整,采用对称Y形布置形式,经多方案优化后,确定岔管主体最大壁厚为68mm,肋板最大厚度为150mm,两个岔管布置方案应力水平相当,而钢板厚度却大大减薄。减少了制造安装难度。

7输水系统结构设计

7.1高压管道结构设计

压力管道为地下埋藏式,最大PD=3500m2以上。按钢衬、砼、围岩三者联合受力设计,考虑三者之间存在初始缝隙,并假定砼只传递径向荷载,砼厚度均为57cm。根据《水电站压力钢管设计规范》(SDJ144-85)和参考已建抽水蓄能电站经验进行压力钢管设计。